1
|
Yu Y, Yuan M, Zhou L, Liu Y, Chen Y, Wu D, Chen Z, Yuan Q, Han Y, Wang J, Xue X. Spice aldehydes improve emulsification stability of β-carotene by Schiff base reaction binding sodium caseinate as emulsion surface stabilizer. Food Chem 2025; 475:143305. [PMID: 39946924 DOI: 10.1016/j.foodchem.2025.143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Cinnamaldehyde (CA), P-Anisaldehyde (PAA), N-heptanal (NHA) and Citronellal (CNA) were used to modify sodium caseinate (SC) as emulsifiers to stabilize β-carotene emulsion, and the binding mechanism of SC and spice aldehyde (SA) was discussed. The results showed that the binding of SA and SC was mainly driven by non-covalent interaction, especially hydrogen bonding. It was also found that CA may form covalent bond with SC through Schiff base reaction. Moreover, the combination of SA altered the structure of SC, enhanced its surface hydrophobicity, and improved its emulsifying property. The β-carotene has been better embedded by using CA-SC composite as surface stabilizer, and the droplets dispersed uniformly and with a droplet size of 222.65 nm, Emulsifying activity index (EAI) was 58.52 m2/g, emulsion stability index (ESI) was 42.22 min when the pH was 8.0. Thus, CA was better to be used to improve the emulsification stability of β-carotene by combining with SC as surface stabilizer.
Collapse
Affiliation(s)
- Ya Yu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Mengting Yuan
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ling Zhou
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yanan Liu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ya Chen
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Dongxu Wu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhihong Chen
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qingqing Yuan
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yang Han
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Juhua Wang
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China; College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui 230036, China..
| | - Xiuheng Xue
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Ma J, Sun Y, Liang J, Cheng S. Pickering emulsion stabilized by salmon protein-fucoidan complex and its absorption promotion effect on astaxanthin. Int J Biol Macromol 2025; 310:143455. [PMID: 40280510 DOI: 10.1016/j.ijbiomac.2025.143455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
In this experiment, salmon protein-fucoidan complexes (SMP-FU) were used to stabilize Pickering emulsions encapsulating astaxanthin (AXT). The hydrophobic forces and hydrogen bonding between SMP and FU were revealed as the main interaction to form the SMP-FU complex. The addition of FU led to the increase of three-phase contact angle from 51.3° to 92.1°, and the best hydrophilic-hydrophobic balance was achieved with 2 % FU. The emulsions stabilized by SMP-FU became more homogeneous and denser with the increase of FU concentration, and the smallest droplet size was obtained in the emulsion stabilized by SMP-FU(2 %), which exhibited good rheological properties and acceptable stabilities under the heating, strong ionic strength and extreme acid-base conditions. AXT loaded Pickering emulsion (PEAs) stabilized by SMP-FU (SMP-FU-PEAs) provided better protection for AXT and improved the AXT retention rate under different storage condition, and displayed better gastric acid stability and higher AXT release rate (60.57 %) and bioaccessibility index (71.52 %) in than SMP-PEAs during in vitro digestion. The Caco-2 cell assay and in vivo experiments revealed a significant increase in the uptake rate of AXT embedded in SMP-FU-PEAs, which provided a feasible way to subsequently promote the uptake and utilization of the active substance.
Collapse
Affiliation(s)
- Jiale Ma
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Sun
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiayue Liang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - ShaSha Cheng
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Li Y, Zheng S, Song Y, Jiang Q, Zhang H. Preparation, characterization, and application of composite oleogels based on whey protein isolate and sodium alginate. Int J Biol Macromol 2025; 300:140317. [PMID: 39870279 DOI: 10.1016/j.ijbiomac.2025.140317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Oleogels with solid-like properties can serve as substitutes for fats, thereby avoiding the consumption of high levels of saturated fatty acids. In this study, we developed a protein-polysaccharide composite network oleogel using whey protein isolate (WPI) and sodium alginate (SA) through an emulsion-templated method. Analysis with Fourier Transform Infrared (FTIR) spectroscopy confirmed the presence of hydrogen bonds and van der Waals forces between WPI and SA, which bolstered the oleogel's structure. The enhanced oxidative stability and oil binding capacity of the WPI-SA composite oleogels were attributed to these interactions, as compared to the WPI single-network oleogel. Large-amplitude oscillatory shear testing demonstrated that the WPI-SA composite oleogels exhibited good plastic behavior and irreversible shear thinning, whereas the WPI single-network oleogel displayed more viscous behavior and shear-thinning characteristics. In applications, replacing pork fat entirely with the WPI-SA composite oleogel in Harbin red sausage resulted in a product with similar texture and sensory qualities to the original sausage. These results suggested that the WPI-SA composite oleogel could be a potential suitable fat substitute in the food industry, particularly for meat products.
Collapse
Affiliation(s)
- Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Shijie Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yuanyuan Song
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Jiaxing Institute of Future Food, Jiaxing 314050, China.
| |
Collapse
|
4
|
Wang F, Zeng J, Lin L, Wang X, Zhang L, Tao N. Co-delivery of astaxanthin using positive synergistic effect from biomaterials: From structural design to functional regulation. Food Chem 2025; 470:142731. [PMID: 39755039 DOI: 10.1016/j.foodchem.2024.142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The powerful antioxidant properties of astaxanthin (AST) face two significant challenges: low water solubility and poor chemical stability. To overcome them, extensive research and development efforts have been directed toward creating effective delivery systems. Among them, the positive synergistic effect between biomaterials can be used to refine the design of delivery systems. Understanding the relationship between structure and function aids in tailoring applications to specific needs. This review outlines the challenges associated with delivering AST and reviews the mechanisms involved in creating delivery systems, specifically focusing on the structure-function relationship of biomaterials. It comprehensively introduces the positive synergistic effect of biomaterials with enhancing the functional properties of AST, and analyzes the impact of designed structures on function regulation and the application prospects of the delivery system in the food industry. The future demand for efficient delivery of AST will increasingly depend on the positive synergistic effect between biomaterials.
Collapse
Affiliation(s)
- Fengqiujie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Tian Y, Qiu M, Shen Y, Zheng Y, Yang X, Zhang W, Jiang Y. Interfacial properties of whey protein hydrolysates monitored by quartz crystal microbalance with dissipation. Int J Biol Macromol 2025; 301:140368. [PMID: 39884608 DOI: 10.1016/j.ijbiomac.2025.140368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Whey protein hydrolysate (WPH) can be used to develop hypoallergenic foods. However, the stabilization mechanism of WPH-stabilized emulsion is not fully understood. Here, a real-time quartz crystal microbalance with dissipation monitoring (QCM-D) was used in conjunction with a rheometer to investigate the interfacial properties of WPH. Initially, the properties of WPH with different (6 %, 8 %, 10 %, 12 % and 14 %) degree of hydrolysis (DH) were investigated. 8 %-WPH demonstrated superior emulsifying (11.49 m2/g, 81.34 min) and foaming properties (14.00 %, 7.78 %). Subsequently, the stability of different WPH-stabilized emulsions were examined. 8 %-WPH emulsion exhibited the lowest centrifugal precipitation rate (4.50 %) and Turbiscan stability index (2.24). Additionally, the 8 %-WPH promoted the adsorption and retention of molecules at the interface, which effectively reduced the interfacial tension. QCM-D measurement further proved that the 8 %-WPH possessed excellent adsorption mass and viscoelasticity. Finally, we characterized the interface-adsorbed WPH. The 8 %-WPH exhibited the highest surface hydrophobicity (1072.60) and flexibility (0.22). Notably, the 8 %-WPH showed the highest β-sheet (41.11 %). This led to stronger interactions between neighboring interfacial WPH molecules, which protected the emulsion droplets from destabilizing factors. Nevertheless, excessive hydrolysis (10 %-14 %) caused WPH molecules aggregation, which consequently diminished the viscoelasticity of the interfacial film and the emulsion stability.
Collapse
Affiliation(s)
- Yueling Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| |
Collapse
|
6
|
Ma J, He R, Chai Y, Long X, Shi W, Chen H, Pan C, Zhao Y. Stable emulsion produced by thermal modified coconut (Cocos nucifera L.) globulins-xanthan gum for protection of curcumin. Int J Biol Macromol 2025; 302:140653. [PMID: 39909253 DOI: 10.1016/j.ijbiomac.2025.140653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
In order to explore the potential applications of thermal modified (90 and 120 °C, 20 min) coconut globulins (CG) in encapsulation systems, the long-term emulsion stability was improved by adding xanthan gum (XG). Subsequently, the protection effect of thermal modified CG-XG emulsion on curcumin (Cur) was demonstrated. The results showed that the XG decreased the interfacial adsorption of heated-CG. When 0.1 % XG was added, the Kr value and interfacial viscoelasticity of 90 °C-CG were significantly increased. However, when the concentration of XG increased to 0.2 %, the Kr value and interfacial viscoelasticity showed significant decrease. The interfacial viscoelasticity of 120 °C-CG decreased with the increase of XG. However, the emulsion prepared by 120 °C-CG-XG had a higher viscosity and a more compacted three-dimensional gel network structure, which led to the higher long-term stability. The heated-CG-XG emulsion system showed an excellent encapsulation effect on Cur, especially for the 120 °C-CG-0.2XG encapsulation system, which could improve the bioaccessibility of Cur from 18.21 % to 36.23 % (p < 0.05). Our work indicated that the 120 °C-CG emulsion system have the potential use in Cur encapsulation delivery, which is of great significance for the commercial application of thermal modified CG.
Collapse
Affiliation(s)
- Jingrong Ma
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Yuan Chai
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Xiaoshan Long
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - WenZheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Haiming Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
7
|
Sun C, Du K, Zhu Z, Wang C, He Z, Hu Y, Xie Q, Du X. Starch nanoparticles regulate the steric conformation of soy protein isolate to stabilize high internal phase Pickering emulsions for curcumin encapsulation. Int J Biol Macromol 2025; 302:140560. [PMID: 39904433 DOI: 10.1016/j.ijbiomac.2025.140560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
This study aimed to the fabrication of high internal phase Pickering emulsions (HIPEs) via regulating the complexation of starch nanoparticles (SNPs) with soy protein isolate (SPI) at the oil-water interface. The formation of SNPs-SPI complexes was driven by the electrostatic adsorption and hydrogen bond interactions, which enhanced the biphasic wettability and reduced the interfacial tension. The SNPs-SPI complexes exhibited the superior emulsifying properties compared to those of SPI, with the SNPs3-SPI achieving the highest emulsion activity index (EAI, 65.67 m2/g) and emulsion stability index (ESI, 138.48 min). The rheological measurement revealed that the HIPEs stabilized by SNPs-SPI complexes (SNPs-SPI-E) exhibited the higher viscoelastic and gel-like structure than those of HIPEs stabilized by SPI (SPI-E). The adsorption of SNPs at the oil-water interface endowed the SNPs-SPI-E with higher encapsulation efficiency of curcumin (83.19 %-92.37 %) than that of SPI-E (75.42 %), which impeded the degradation and oxidation of curcumin. Moreover, the SNPs-SPI-E possessed the excellent storage and thermal stabilities than those of SPI-E. The curcumin encapsulated in SNPs-SPI-E exhibited the increased bioaccessibility, with SNPs3-SPI-E reaching the highest value of 38.92 %. This research would be beneficial to development of SNPs-SPI complexes interface for stabilizing HIPEs and modulating the encapsulation of bioactive ingredients.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Kai Du
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Zhijie Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Caihong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Zhaoxian He
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Qingling Xie
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Xianfeng Du
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Zhao Q, Liu Y, Feng J, Zhang J, Wang X, Li X, Ji W, Wang Y, Nan B, Liu J, Li X, Wang Y. Regulation of whey protein emulsion gel's structure with pullulan to enhance astaxanthin bioaccessibility. Carbohydr Polym 2025; 351:123113. [PMID: 39779021 DOI: 10.1016/j.carbpol.2024.123113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
In this study, the potential of using an emulsion gel based on whey protein concentrate (WPC) and pullulan (PUL) to encapsulate and deliver astaxanthin (AST) was investigated. PUL concentration was observed to affect the microstructure of WPC/PUL/AST emulsion gels, and the performance of emulsion gels was evaluated by encapsulation efficiency, simulated gastrointestinal digestion, storage stability, hardness, and water holding capacity tests. The WPC/PUL/AST emulsion gels had the highest encapsulation efficiency, gastrointestinal digestion retention, and bioaccessibility of (91.70 ± 1.47) %, (80.96 ± 5.02) %, and (40.69 ± 1.16) % at 2.0 % PUL concentration, respectively. Furthermore, adding PUL to the emulsion gels improved their hardness, water holding capacity, and storage stability. The findings suggested a potential method to optimize the bioaccessibility of AST in emulsion gels. It provided the possibility for the efficient application of AST as a functional food.
Collapse
Affiliation(s)
- Qianxi Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yankai Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jiale Feng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jiahua Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xinzhu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xun Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Wantang Ji
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| |
Collapse
|
9
|
Lee Y, Hwang CY, Cho ES, Seo MJ. Water-soluble carotenoid: focused on natural carotenoid crocin. Food Sci Biotechnol 2025; 34:1119-1138. [PMID: 40093551 PMCID: PMC11904046 DOI: 10.1007/s10068-025-01832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Carotenoids are natural isoprenoid compounds with diverse health benefits, widely used in food, cosmetics, and pharmaceuticals. However, low bioavailability and chemical instability limit their effect according to their fat-soluble property. Some strategies such as nanoencapsulation, emulsions, complexation, and glycosylation have been explored to enhance carotenoid bioavailability. In addition, there is growing interest in water-soluble carotenoids in nature. This review focuses on recent advancements in improving the water solubility of carotenoids, with special attention to naturally occurring water-soluble carotenoids like crocin. Research progress on the biosynthetic pathways of crocin derived from natural plants is summarized. In addition, heterologous production using genetic and metabolic engineering in plants and microorganisms is discussed, along with its potential applications in bio-industries. Finally, the promising pharmacological properties of crocin, including antioxidant, anti-inflammatory and anticancer effects, are presented. The sustainable production of water-soluble carotenoids through biological synthesis offers a potential for improved absorption and functionality.
Collapse
Affiliation(s)
- Yosub Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
10
|
Huan Y, Yue H, Song Y, Zhang W, Wei B, Tang Q. Whey Protein Isolate-Encapsulated Astaxanthin Nanoemulsion More Effectively Mitigates Skeletal Muscle Atrophy in Dexamethasone-Induced Mice. Nutrients 2025; 17:750. [PMID: 40077620 PMCID: PMC11901752 DOI: 10.3390/nu17050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Skeletal muscle, as the largest organ in the body and the main protein pool, is crucial for various physiological processes, but atrophy of skeletal muscle can result from glucocorticoids, including dexamethasone, or from aging. Astaxanthin (AST) is a ketocarotenoid with a variety of physiological activities. However, the clinical application of AST is hampered by its strong hydrophobicity, intense off-flavors, and susceptibility to oxidation. METHODS In this study, we prepared whey protein isolate (WPI)-encapsulated AST nanoemulsion (WPI-AST, W-A) and investigated its alleviating effects on dexamethasone-induced skeletal muscle atrophy. RESULTS The optimal concentration of astaxanthin was determined to be 30 mg/mL with an oil/water ratio of 1:5. The W-A was a typical oil-in-water (O/W) emulsion with a particle size of about 110 nm. The bioaccessibility of astaxanthin was significantly improved, with the off-flavors of astaxanthin effectively masked. After oral administration, the W-A further ameliorated skeletal muscle atrophy by inhibiting skeletal muscle catabolism, promoting skeletal muscle production, and inhibiting mitochondrial autophagy compared with the same dose of WPI and AST. In addition to this, the W-A further improved the glycometabolism of skeletal muscle by reducing the expression of Foxo3 and increasing the expression of PGC-1α. CONCLUSIONS In conclusion, the W-A nanoemulsion demonstrated good therapeutic value in alleviating skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yuchen Huan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Han Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Yanli Song
- Department of Emergency, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Wenmei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Biqian Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; (Y.H.); (H.Y.); (W.Z.); (B.W.)
| |
Collapse
|
11
|
Li K, Shi Z, Meng Z. Study on the foam properties of peanut oil body (POB)-based oil-in-water-in-oil (O/W/O) foamed emulsion gel: The key role played by the interface between the water phase and the outer oil phase. Food Chem 2025; 464:141663. [PMID: 39423524 DOI: 10.1016/j.foodchem.2024.141663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
A novel POB-based O/W/O foamed emulsion gel was constructed. The mechanism by which POB strengthens the foamed emulsion gel was preliminarily explored by studying the microstructure and rheological properties, and the applications of POB in decoration and 3D printing were analyzed. The adsorption of POBs and their fragments might strengthen the interface between the water and internal oil phases, thereby increasing the yield stress of the system, which protected the O/W/O structure from being damaged during whipping, and formed a special foam structure where air-in-oil (A/O) structures and O/W/O structure coexist. Besides, adding POB promoted the overrun of the emulsion gel, and the maximum overrun rate was 68.6 %. Finally, POB-based O/W/O foamed emulsion gel exhibited good decoration and 3D printing performance and is expected to become a healthy and higher-quality foamed food in the future.
Collapse
Affiliation(s)
- Kangyu Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zhangyu Shi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Xu Y, Gu Y, Sun L, Zhuang Y, Li D, Ding Y, Fan X. Stability and in vitro digestion behavior of astaxanthin-loaded Pickering emulsions stabilized by OSA-modified starch: Influence of oil phase content. Int J Biol Macromol 2025; 288:138770. [PMID: 39675613 DOI: 10.1016/j.ijbiomac.2024.138770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Astaxanthin, a lipid-soluble carotenoid, is widely recognized for its health-promoting properties. However, its use in functional foods is limited due to its low water solubility, chemical instability, and poor bioavailability. This study evaluated the potential of esterified starch-stabilized emulsions as astaxanthin carriers. The effects of the oil phase content on the emulsion properties, stability, and in vitro digestion behavior of the emulsions were investigated. All emulsions exhibited adequate encapsulation efficiency (>80 %) for astaxanthin. Moreover, the particle size and viscosity of the emulsions increased with an increasing oil phase content. The emulsion with a 10 % oil phase content (E-10 %) showed high retention of astaxanthin (>40 %) under the temperature, pH, and ionic strength conditions tested and long-term stability (42 days). On the other hand, the release of free fatty acids and bioaccessibility of astaxanthin were negatively correlated with the oil phase content. And the bioaccessibility of astaxanthin was increased to 11.66 % (for E-10 %). Under a constant emulsifier concentration, E-10 % and E-20 % exhibited a thicker interfacial layer at the oil/water interface. Based on this, a smaller particle size may favor oil droplet dispersion and inhibit droplet floatation and aggregation, improving emulsion stability. Therefore, this study provides useful information on the effect of the oil phase content in esterified starch-stabilized Pickering emulsion delivery systems.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Dan Li
- Heilongjiang Green Food Science Research Institute, Harbin, 150028, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
13
|
Srivastava N, Mohan R, Roy Choudhury A. A novel gellan-based nanoemulgel delivery system for co-encapsulation and in vitro digestion of hydrophilic/hydrophobic nutraceuticals. Carbohydr Polym 2025; 348:122855. [PMID: 39562124 DOI: 10.1016/j.carbpol.2024.122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Preventive healthcare strategies are gaining attention over traditional approach of treating and managing diseases. The use of food hydrocolloids has garnered interest in developing innovative food formulations promoting healthy eating habits. Among emerging carrier systems, nanoemulgel holds significant potential with its ability to deliver hydrophilic and lipophilic nutraceuticals through a combination of nanoemulsion and hydrogel technology. For the first time, this study utilized gellan as an emulsifier and gelling agent to develop a novel nanoemulgel functional food system. Initially, a nanoemulsion composed of gellan and clove oil was prepared, having an average size of 40.10 ± 9.42 nm, which was stable under different physiological conditions. Further, nanoemulsion was combined with gellan hydrogel fabricated using ʟ-Glutamic acid as bio-linker to formulate nanoemulgel that was characterized thoroughly. We employed this system to co-encapsulate hydrophobic naringenin and hydrophilic vitamin B12. Additionally, encapsulation efficiency and release rate studies revealed high stability of bioactive at acidic pH. Moreover, release mechanism followed Korsmeyer-Peppas model and zero-order kinetics. During simulated in vitro digestion studies, site-directed release of nutraceuticals was observed. Therefore, present study represents a significant effort in developing novel functional food systems that aid in disease prevention and maintaining healthy lifestyle.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshini Mohan
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamil Nadu 641013, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Kouravand F, Shahidi F, Fathi M, Koocheki A, Roshanak S. Physicochemical stability and controlled release of vitamin D 3-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates. J Microencapsul 2024; 41:770-781. [PMID: 39565049 DOI: 10.1080/02652048.2024.2418615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
AIM The present study was conducted to produce a new carrier containing whey protein isolate-basil seed gum (WPI-BSG) conjugate to achieve superior physicochemical stability of emulsions containing vitamin D3 (Vit-D3). METHODS Zeta-potential and particle size analysis, spectrophotometric method, encapsulation efficiency, loading capacity and dialysis bag method were used to examined physicochemical stability and Vit-D3 release from the emulsions. RESULTS The conjugate-stabilised emulsion showed maximum encapsulation efficiency (87.05 ± 3.37% (w/w)) and loading capacity (5.43 ± 0.08% (w/w)) at the Vit-D3 concentration of 200 and 300 mg/kg. This emulsion also demonstrated good physical stability after 30 days of storage with the zeta potential and mean droplet size of -79.60 ± 0.62 mV and 1346.82 ± 5.95 nm, respectively. Additionally, the conjugate-stabilised emulsion had a maximum Vit-D3 retention (chemical stability) of 72.79 ± 3.58% after a 15-day storage period. CONCLUSION Our findings suggest that the conjugate-stabilised emulsion has a good stabilising capacity as a carrier for hydrophobic compounds such as Vit-D3.
Collapse
Affiliation(s)
- Farzaneh Kouravand
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Milad Fathi
- Department of Food Science and Technology, Collage of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
15
|
Teymoori F, Roshanak S, Bolourian S, Mozafarpour R, Shahidi F. Microencapsulation of Lactobacillus reuteri by Emulsion Technique and Evaluation of Microparticle Properties and Bacterial Viability Under Storage, Processing, and Digestive System Conditions. Food Sci Nutr 2024; 12:10393-10404. [PMID: 39723102 PMCID: PMC11666970 DOI: 10.1002/fsn3.4533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 12/28/2024] Open
Abstract
In this research, the emulsification method was used to encapsulate Lactobacillus reuteri in microparticles of whey protein concentrate (WPC) at different levels (1%, 2%, and 4%) and gum Arabic (GA) at three levels (0/5%, 1%, and 1/5%) and a constant level of sunflower oil (5%). The results showed that emulsions with higher quantities of wall materials exhibited better encapsulation efficiency (67%/57%) and preservation ability at different temperatures, different pH, and presence of 1% bile salt. During the storage time, the droplet size of the emulsion increased more than two times (from 2.2 to 4.6 μm) and the absolute zeta potential of the optimal emulsion decreased (from -19/63 to -16/76 mV). Encapsulating Lactobacillus reuteri in the stabilized emulsion with the highest concentration of wall material improved the cells' protection during storage. The study also observed a decline in the number of primary encapsulated live cells in the gastrointestinal tract (from 4/32 to 3/58 Log CFU/mL) after 90 days of storage. In the case of the nonencapsulated sample, the initial live population decreased from 2.8 to 1 Log CFU/mL after 90 days of storage. The electron microscope images showed that the emulsions became unstable after 30, 60, and 90 days of storage, but the microbial cells were still visible in the continuous phase. Overall, encapsulating Lactobacillus reuteri using emulsification technique can preserve the probiotics during storage and "in vitro" gastrointestinal digestion.
Collapse
Affiliation(s)
- Forough Teymoori
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Sahar Roshanak
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Shadi Bolourian
- Department of Food Additives, Food Science and Technology Research InstituteResearch Center for Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi BranchMashhadIran
| | - Rassoul Mozafarpour
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
16
|
Shuai X, Julian McClements D, Dai T, Geng Q, Wei C, Wang W, Chen J, Zhang M, Du L. Effect of different oleogelators on physicochemical properties, oxidative stability and astaxanthin delivery of macadamia oil-based oleogels. Food Res Int 2024; 196:115131. [PMID: 39614525 DOI: 10.1016/j.foodres.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
Oleogels can be formed using different types of oleogelator, which lead to different end properties. In this study, four kinds of oleogelators, rice bran wax (RBW), monoglyceride stearate (MG), beeswax (BW), and a mixture of β-sitosterol and γ-oryzanol (SO) were used to prepare astaxanthin-loaded macadamia oil-based oleogels. Fourier transform infrared spectroscopy, polarized light microscopy, X-ray diffraction, differential scanning calorimetry, and dynamic shear rheometry were then used to evaluate the effects of the different oleogelators and astaxanthin on the physicochemical properties of the oleogels. The results showed that van der Waals forces played a key role in the formation of all the oleogels, while hydrogen bonding was also important for the SO- and MG-based oleogels. Moreover, astaxanthin addition did not change the crystal morphology and intramolecular interaction forces of the oleogels, but it did increase their oxidative stability and decrease their thermal stability, hardness, and oil-binding properties. In addition, the digestive behavior of the oleogels was evaluated using a three-stage in vitro gastrointestinal model. All the oleogelators significantly affected the lipolysis of the macadamia oil and the bioaccessibility of the astaxanthin, with the degree of lipolysis being positively correlated to the bioaccessibility. MG-based oleogels were the most effective at increasing the bioaccessibility of the astaxanthin.
Collapse
Affiliation(s)
- Xixiang Shuai
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, 524091, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qin Geng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Changbin Wei
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, 524091, China.
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Research Institute, Longzhou, 532400, China
| | - Jun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ming Zhang
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, 524091, China.
| | - Liqing Du
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, 524091, China.
| |
Collapse
|
17
|
Xu Y, Sun L, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. Influence of gelatinized octenyl succinic anhydride-modified waxy adlay seed starch on the properties of astaxanthin-loaded emulsions: Emulsion properties, stability and in vitro digestion properties. Food Chem 2024; 457:140105. [PMID: 38905828 DOI: 10.1016/j.foodchem.2024.140105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Octenyl succinic anhydride (OSA)-modified starch is a commonly used food emulsifier and its emulsifying properties are positively correlated with the degree of substitution (DS). However, the maximum concentration of OSA in starch approved by the FDA and the China National Food Safety Standards is 3%. This study aims to enhance the emulsifying properties of OSA-modified waxy adlay seed starch by gelatinization under a limited DS and investigate its use in preparing delivery systems. The gelatinized OSA starch exhibited a more flexible macromolecular structure and better emulsifying activity (20.19 m2/g). The gelatinized OSA starch-stabilized astaxanthin-loaded emulsions showed high retention of astaxanthin (>50%) and long-term stability (56 days). In vitro digestion, the emulsion system showed a protective effect on astaxanthin, and the bioaccessibility of astaxanthin was increased to 16.32%. This study indicated that gelatinization could enhance the emulsifying properties of OSA starch, and this starch-stabilized emulsion was an effective system for astaxanthin.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
18
|
Zheng J, Ding L, Yi J, Zhou L, Zhao L, Cai S. Revealing the potential effects of oil phase on the stability and bioavailability of astaxanthin contained in Pickering emulsions: In vivo, in vitro and molecular dynamics simulation analysis. Food Chem 2024; 456:139935. [PMID: 38870805 DOI: 10.1016/j.foodchem.2024.139935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
This study investigated the effects of oil phases on the encapsulation rate, storage stability, and bioavailability of astaxanthin (ASTA) in Pickering emulsions (PEs). Results showed PEs of mixed oils (olive oil/edible tea oil) had excellent encapsulation efficiency (about 96.0%) and storage stability of ASTA. In vitro simulated gastrointestinal digestion results showed the mixed oil PE with a smaller interfacial area and higher monounsaturated fatty acid content may play a better role in improving ASTA retention and bioaccessibility. In vivo absorption results confirmed the mixed oil PE with an olive oil/edible tea oil of 7:3 was more favorable for ASTA absorption. Molecular dynamics simulation showed ASTA bound more strongly and stably to fatty acid molecules in the system of olive oil/edible tea oil of 7:3; and van der Waals force was the main binding force. NMR further proved there really were interactions between ASTA and four main fatty acids.
Collapse
Affiliation(s)
- Jingyi Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
19
|
Jiang L, Zhang Z, Qiu C, Wen J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods 2024; 13:2453. [PMID: 39123644 PMCID: PMC11312236 DOI: 10.3390/foods13152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The efficacy of many edible bioactive agents is limited by their low water dispersibility and chemical instability in foods, as well as by their poor bioaccessibility, low absorption, and metabolism within the human gastrointestinal tract. Whey proteins are amphiphilic molecules that can be used to construct a variety of edible carrier systems that can improve the performance of bioactive ingredients. These carrier systems are being used by the food and biomedical industries to encapsulate, protect, and deliver a variety of bioactive agents. In this article, we begin by providing an overview of the molecular and functional characteristics of whey proteins, and then discuss their interactions with various kinds of bioactive agents. The ability of whey proteins to be used as building blocks to assemble different kinds of carrier systems is then discussed, including nanoparticles, hydrogels, oleogels, bigels, nanofibers, nanotubes, and nanoemulsions. Moreover, applications of these carrier systems are highlighted. Different kinds of whey protein-based carriers can be used to encapsulate, protect, and deliver bioactive agents. Each kind of carrier has its own characteristics, which make them suitable for different application needs in foods and other products. Previous studies suggest that whey protein-based carriers are particularly suitable for protecting chemically labile bioactive agents and for prolonging their release profiles. In the future, it is likely that the applications of whey protein-based carriers in the food and pharmaceutical fields will expand.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| |
Collapse
|
20
|
Wang N, Wang C, Gao X, Zhao X, Wei H, Luo J, You X, Jiang H, Zhang X, Yuan C. Docosahexaenoic acid-mediated milk protein treated by ultrasound-assisted pH shifting for enhanced astaxanthin delivery and processed cheese application. J Dairy Sci 2024; 107:4161-4173. [PMID: 38246556 DOI: 10.3168/jds.2023-24342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Whey protein isolate (WPI)-based nanodelivery systems have recently attracted an increasing amount of attention. Despite this, research focusing on milk protein concentrate (MPC) and micellar casein (MCC) as carriers loaded in hydrophobic compounds is lacking. This study investigated the mediated effect of docosahexaenoic acid (DHA) in 3 different milk proteins for the embedding of astaxanthin (ASTA) after ultrasound-assisted pH-shifting treatment. We then evaluated the application of milk protein carriers in cheese processing by comparing MPC, MCC, and WPI. The particle size, polydispersity index, and zeta potential results of the milk protein-DHA complex suggested that the addition of 0.36 μmol/mL DHA optimized the delivery of milk protein to ASTA. All 3 DHA-mediated milk proteins induced an improvement in encapsulation efficiency and antioxidant properties of ASTA. Furthermore, the DHA-mediated MPC and MCC played a stronger role in improving the bioaccessibility and thermal and storage stability of ASTA than those without DHA. Tests conducted to examine the application in cheese production indicated that MCC carrier had a positive effect on the texture of cheeses. However, the delivery effect was dependent on the milk protein variety, and MCC exhibited the best protection ability of ASTA, followed by MPC and WPI. The simulated digestion and storage stability results of cheese further confirmed that the protein encapsulation mediated by DHA was more conducive to ASTA absorption. These findings suggested that the DHA-mediated milk protein complexes studied here may be suitable hydrophilic delivery carriers for the hydrophobic nutrient ASTA, potentially playing different roles in improving its storage stability and bioaccessibility.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Cunfang Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | | | - Xinqi Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Haitao Wei
- Shandong Panda Dairy Co., Jinan 251400, China
| | - Juanjuan Luo
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Xinyu You
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Hua Jiang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Xiaoning Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
21
|
Huang M, Xu Y, Xu L, Chen X, Ding M, Bai Y, Xu X, Zeng X. The evaluation of mixed-layer emulsions stabilized by myofibrillar protein-chitosan complex for delivering astaxanthin: Fabrication, characterization, stability and in vitro digestibility. Food Chem 2024; 440:138204. [PMID: 38134832 DOI: 10.1016/j.foodchem.2023.138204] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Muscle protein based functional foods have been attracted great interests in novel food designing. Herein, myofibrillar protein (MP)-chitosan (CH) electrostatic complexes were employed to fabricate mixed-layer emulsions to protect and deliver astaxanthin. The MP/CH complex fabricated mixed-layer emulsions displayed higher stability against pH and temperature changes, exhibiting smaller droplet and homogenous distributions. After UV-light irradiation for 8 h, the mixed-layer emulsions had higher astaxanthin retention (69.11 %, 1:1 group). During storage, a lower degree of lipid oxidation, protein oxidation and higher astaxanthin retention were obtained, indicating desirable protections of mixed-layer emulsions. The vitro digestion reveled the mixed-layer emulsions could decrease the release of free fatty acids. Meanwhile, the bioaccessibility of astaxanthin was higher (30.43 %, 2:1 group) than monolayer emulsion. In all, the MP/CH prepared mixed-layer emulsions could protect and deliver fat-soluble bioactive compounds, and contributed to develop muscle protein based functional foods to meet the needs of slow and controlled release.
Collapse
Affiliation(s)
- Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yujuan Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P.R. China
| | - Lina Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mengzhen Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yun Bai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China.
| | - Xianming Zeng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| |
Collapse
|
22
|
Han L, Zhai R, Shi R, Hu B, Yang J, Xu Z, Ma K, Li Y, Li T. Impact of cod skin peptide-ι-carrageenan conjugates prepared via the Maillard reaction on the physical and oxidative stability of Antarctic krill oil emulsions. Food Chem X 2024; 21:101130. [PMID: 38292679 PMCID: PMC10826608 DOI: 10.1016/j.fochx.2024.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
This research aimed to construct an emulsifier by the Maillard reaction at various times using cod fish skin collagen peptide (CSCP) and ι-carrageenan (ι-car) to stabilize an Antarctic krill oil (AKO) emulsion. This emulsion was then investigated for physicochemical stability, oxidative stability, and gastrointestinal digestibility. The emulsion stability index and emulsifying activity index of Maillard reaction products (MRPs) were increased by 36.32 % and 66.30 %, respectively, at the appropriate graft degree (25.58 %) compared with the mixture of ι-car and CSCP. In vitro digestibility suggested the higher release of free fatty acids (FFAs) of 10d-MRPs-AKO-emulsion, and the highest bioavailability of AST in 10d-MRPs-AKO was found to be 28.48 %. The findings of this study showed the potential of MRPs to improve peptide function, serve as delivery vehicles for bioactive chemicals, and possibly serve as a valuable emulsifier to be used in the food industry.
Collapse
Affiliation(s)
- Lingyu Han
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Ruiyi Zhai
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Ruitao Shi
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Bing Hu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW United Kingdom
| | - Zhe Xu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Kun Ma
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Yingmei Li
- Linghai Dalian Seafoods Breeding Co., Ltd, Jinzhou, Liaoning 121209, China
| | - Tingting Li
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| |
Collapse
|
23
|
Liu Y, Ma L, Guo Y, Kuang H, Liu Y. Fabricating oleic acid-ovalbumin complexes using an ultrasonic-coupled weakly alkaline pH technique: Improving the dispersibility, stability, and bioaccessibility of lutein in water. Food Chem 2024; 435:137593. [PMID: 37776652 DOI: 10.1016/j.foodchem.2023.137593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
This study constructed a self-assembly non-covalent oleic acid (OA) and ovalbumin (OVA) complex via an ultrasonic coupled pH-driven approach to simultaneously improve the water dispersibility, stability, and bioaccessibility of lutein (LUT). The results showed that homogeneous, stable hydrophilic OA-OVA particles were obtained in optimized conditions (an OVA concentration of 4.0 mg/mL, pH 9.0, ultrasonic conditions of 200 W for 2 min, and OA-OVA molar ratios of 2:1-20:1), with the LUT encapsulation efficiency (EE) exceeding 88.9%. Furthermore, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) confirmed complete LUT encapsulation in the OA-OVA particles, displaying spherical particle formation with smooth surfaces. The OA-OVA complexes effectively improved the thermal and storage stability of LUT and significantly enhanced its bioaccessibility. These findings suggest that fatty acid-protein complexes may have potential application value as carotenoid delivery vectors.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Liyuan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yuanjie Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Huiying Kuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China.
| |
Collapse
|
24
|
Wang Y, Zhu S, Zhang T, Gao M, Zhan X. New Horizons in Probiotics: Unraveling the Potential of Edible Microbial Polysaccharides through In Vitro Digestion Models. Foods 2024; 13:713. [PMID: 38472826 DOI: 10.3390/foods13050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
In vitro digestion models, as innovative assessment tools, possess advantages such as speed, high throughput, low cost, and high repeatability. They have been widely applied to the investigation of food digestion behavior and its potential impact on health. In recent years, research on edible polysaccharides in the field of intestinal health has been increasing. However, there is still a lack of systematic reviews on the application of microbial-derived edible polysaccharides in in vitro intestinal models. This review thoroughly discusses the limitations and challenges of static and dynamic in vitro digestion experiments, while providing an in-depth introduction to several typical in vitro digestion models. In light of this, we focus on the degradability of microbial polysaccharides and oligosaccharides, with a particular emphasis on edible microbial polysaccharides typically utilized in the food industry, such as xanthan gum and gellan gum, and their potential impacts on intestinal health. Through this review, a more comprehensive understanding of the latest developments in microbial polysaccharides, regarding probiotic delivery, immobilization, and probiotic potential, is expected, thus providing an expanded and deepened perspective for their application in functional foods.
Collapse
Affiliation(s)
- Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Ge Y, Zhou Y, Li S, Yan J, Chen H, Qin W, Zhang Q. Astaxanthin encapsulation in soybean protein isolate-sodium alginate complexes-stabilized nanoemulsions: antioxidant activities, environmental stability, and in vitro digestibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1539-1552. [PMID: 37807825 DOI: 10.1002/jsfa.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Nanoemulsions (NEs) have been considered an effective carrier to protect environmentally labile bioactive compounds from degradation during food processing. Among the numerous types of NEs, biopolymer-stabilized NEs have gained much attention to achieve this function because of the extensive sources, biocompatibility, and tunability. Therefore, the antioxidant activities, environmental stability, and in vitro digestibility of astaxanthin (AST)-loaded soybean protein isolate (SPI)-alginate (SA) complexes-stabilized NEs (AST-SPI-SA-NEs) were investigated in this study. RESULTS The AST-SPI-SA-NEs exhibited an encapsulation efficiency of 88.30 ± 1.67%, which is greater than that of the AST-loaded SPI-stabilized NEs (AST-SPI-NEs) (77.31 ± 0.83%). Both AST-SPI-SA-NEs and AST-SPI-NEs exhibited significantly stronger hydroxyl or diphenylpicryl-hydrazyl radical-scavenging activities than the free AST. The formation of SPI-SA complexes strengthened the thermal, light, and storage stability of AST-SPI-SA-NEs with no apparently increasing mean diameter (around 200 nm). AST-SPI-SA-NEs also exhibited a better freeze-thaw dispersibility behavior than AST-SPI-NEs. AST-SPI-SA-NEs were more stable than AST-SPI-NEs were under in vitro gastrointestinal digestion conditions and exhibited a greater bioaccessibility (47.92 ± 0.42%) than both AST-SPI-NEs (12.97 ± 1.33%) and free AST (7.87 ± 0.37%). Hydrogen bonding was confirmed to participate in the formation of AST-SPI-SA-NEs and AST-SPI-NEs based on the molecular docking results. CONCLUSIONS The construction of SPI-SA-NEs is conducive to the encapsulation, protection, and absorption of AST, providing a promising method for broadening the application of AST in processed foods or developing novel ingredients of functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhong Ge
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yangying Zhou
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shunfa Li
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jing Yan
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
26
|
Zhu F. Modifications of whey proteins for emulsion based applications: Current status, issues and prospectives. Food Res Int 2024; 178:113935. [PMID: 38309906 DOI: 10.1016/j.foodres.2024.113935] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Whey proteins are a major group of dairy proteins with high potential for various food based applications. Whey protein isolate has a limited range of functionalities. This functional range can be expanded using diverse modification methods to suit specific applications. This review summarizes the recent advances in the modifications of whey proteins using chemical, physical, and enzymatic methods and their combinations as well as the modification effects on the physicochemical properties. The uses of these modified whey proteins in emulsion based food and beverage systems are described. The limitations in the studies summarized are critically discussed, while future research directions are suggested on how to better utilize whey proteins for emulsion based uses through modifications.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
27
|
Tkaczewska J, Kulawik P, Jamróz E, Čagalj M, Matas RF, Šimat V. Valorisation of prawn/shrimp shell waste through the production of biologically active components for functional food purposes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:707-715. [PMID: 37669418 DOI: 10.1002/jsfa.12969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The aim of the work was to develop a technology for using waste from prawn and shrimp processing as a source of active ingredients that could be used in the promotion of healthy foods. From fresh and freeze-dried prawn and shrimp shells, protein hydrolysates (carotenoproteins) were obtained using two different enzymes, Flavourzyme and Protamex. RESULTS The obtained hydrolysates were characterised in terms of protein content, degree of hydrolysis, and antioxidant and antimicrobial activity. The hydrolysate with the best antioxidant properties (FRAP value of 2933.33 μmol L-1 TE; ORAC value of 115.58 μmol L-1 TE) was selected and tested for its possible use as a component of functional foods. Molecular weight distribution, amino acid profile and free amino acids, the solubility of the hydrolysate in different pH ranges as well as foaming ability were determined. It was found that this hydrolysate was characterised by an amino acid profile with high nutritional value, flavour enhancement properties and excellent solubility in a wide pH range (from 97.06% to 100%). Afterward, the possibility of using carotenoproteins from prawn waste as a component of an emulsion with furcellaran and a lipid preparation of astaxanthin, taken from post-hydrolysate production waste, was investigated. The obtained complexes were stable as proved by the measurement of zeta potential (ζ = -23.87 and -22.32 to -27.79 mV). CONCLUSION It is possible to produce stable complexes of the hydrolysate with furcellaran and to emulsify a lipid preparation of astaxanthin, obtained from waste following production of the hydrolysate, in them. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Piotr Kulawik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Roberta Frleta Matas
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Split, Croatia
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| |
Collapse
|
28
|
Wang XP, Wang CF, Zhao XQ, Ma MJ, Li ZH, Jiang H, Zhang XN, Yuan CZ. Comparison of milk protein concentrate, micellar casein, and whey protein isolate in loading astaxanthin after the treatment of ultrasound-assisted pH shifting. J Dairy Sci 2024; 107:141-154. [PMID: 37690728 DOI: 10.3168/jds.2023-23691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Milk proteins can be used as encapsulation walls to increase the bioavailability of active compounds because they can bind hydrophobic, hydrophilic, and charged compounds. The objective of this study was to investigate the effects of astaxanthin (ASTA) encapsulation and the functional properties of milk protein and ASTA nanocomposites by an ultrasound-assisted pH-shifting treatment of different milk proteins, including milk protein concentrate (MPC), micellar casein (MCC), and whey protein isolate (WPI). The ultrasound-assisted pH-shifting treatment of milk protein helped to improve the encapsulation rate of ASTA. Therein, MCC showed great improvement of encapsulating ASTA after co-treatment with the raised encapsulated rate of 5.11%, followed by WPI and MPC. Furthermore, the nanocomposites of ASTA with milk protein exhibit improved bioavailability, antioxidant capacity, and storage stability. By comparison, MCC-encapsulated ASTA has the best storage stability, followed by MPC, and WPI-encapsulated ASTA has the least stability over a 28-d storage period. The results of intrinsic fluorescence and surface hydrophobicity showed that milk protein underwent fluorescence quenching after binding to ASTA, which was due to the hydrophobic sites of the protein being occupied by ASTA. In general, the nanocomposites of milk protein and ASTA fabricated by using an ultrasound-assisted pH-shifting treatment have the potential to be better nano-delivery systems for ASTA in functional foods, especially MCC, which showed excellent performance in encapsulation after treatment technique.
Collapse
Affiliation(s)
- X P Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - C F Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - X Q Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - M J Ma
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Z H Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - H Jiang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - X N Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - C Z Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| |
Collapse
|
29
|
Huang J, Feng X, Wang Q, Liu D, Zhang S, Chu L. Fabrication and characterization of dihydromyricetin-loaded microcapsules stabilized by glyceryl monostearate and whey protein-xanthan gum. Int J Biol Macromol 2024; 254:128039. [PMID: 37956807 DOI: 10.1016/j.ijbiomac.2023.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Dihydromyricetin (DMY) is a lipophilic nutrient with various potential health benefits; however, its poor storage stability and low solubility and bioavailability limit its applications. This study aims to encapsulate DMY in microcapsules by membrane emulsification and freeze-drying methods to overcome these issues. Glyceryl monostearate (GMS, solid lipid) and octyl and decyl glycerate (ODO, liquid lipid) were applied as the inner cores. Whey protein and xanthan gum (XG) were used as wall materials. The prepared microcapsules had an irregular blocky aggregated structure with rough surfaces. All the microcapsules had a DMY loading of 0.85 %-1.1 % and encapsulation efficiency (EE) >85 %. GMS and XG increased the DMY loading and EE. The addition of GMS and an increased XG concentration led to a decrease in the rehydration rate. The in vitro release and digestion studies revealed that GMS and XG controlled the release and digestion of DMY. The chemical stability results indicated that GMS and XG protected DMY against oxidation. An antioxidant capacity study showed that GMS and XG helped DMY in the microcapsules exert antioxidant effects. This research study provides a platform for designing microcapsules with good stability and high bioavailability to deliver lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qingding Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dongchen Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
30
|
Zhang J, Qi X, Shen M, Yu Q, Chen Y, Xie J. Antioxidant stability and in vitro digestion of β-carotene-loaded oil-in-water emulsions stabilized by whey protein isolate-Mesona chinensis polysaccharide conjugates. Food Res Int 2023; 174:113584. [PMID: 37986450 DOI: 10.1016/j.foodres.2023.113584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
The aim of this study was to investigate the delivery of functional factor β-carotene by emulsion stabilized with whey protein isolate-Mesona chinensis polysaccharide (WPI-MCP) conjugate. Results showed that the WPI-MCP complex had better antioxidant properties than WPI. Correspondingly, the emulsions stabilized by this complex also had better oxidative stability compared with protein emulsions alone. The particle size of WPI-MCP emulsion was smaller and had a better stability when MCP was added at 0.2 % (w/v). The sizes of WPI-MCP and WPI emulsions were 3594.33 and 7765.67 nm at pH 4, indicating improved emulsion stability around isoelectric point of WPI. At different NaCl concentrations, the absolute values of zeta-potential of WPI-MCP emulsions were larger than that of WPI emulsions except 0.1 % (mol/L) NaCl. The sizes of WPI and WPI-MCP emulsions were 2384.32 and 790.12 nm, respectively. During in vitro digestion, WPI-MCP stabilized emulsions slowed down the release of free fatty acids and achieved about 80 % bioaccessibility of β-carotene, indicating that WPI-MCP-stabilized emulsions encapsulating β-carotene can effectively control the release of bioactive substances. These studies have potential significance and value for the construction of food-grade emulsion delivery system.
Collapse
Affiliation(s)
- Jiahui Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
31
|
Nunes L, Hashemi N, Gregersen SB, Tavares GM, Corredig M. Compartmentalization of lutein in simple and double emulsions containing protein nanoparticles: Effects on stability and bioaccessibility. Food Res Int 2023; 173:113404. [PMID: 37803740 DOI: 10.1016/j.foodres.2023.113404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Delivery systems designed through protein stabilized emulsions are promising for incorporating carotenoids in different products. Nevertheless, the versatility in structures of such systems raises questions regarding the effect of the bioactive compound localization on their bio-efficacy, in particular for double emulsions. In this context, the aims of this study were to determine the impact of the localization of lutein in different water/oil/water double emulsions versus a single oil/water emulsion on the stability and in vitro bioaccessibility of lutein, a lipophilic carotenoid. The inner aqueous phase, which contained whey protein isolate (WPI) nanoparticles obtained by desolvation, was emulsified in sunflower oil stabilized by polyglycerol polyricinoleate (PGPR). The primary emulsion was then emulsified in a continuous aqueous phase containing whey protein isolate (WPI) and xanthan gum, the latter to increase the viscosity of the outer phase and delay creaming. Lutein was incorporated using different strategies: (1) lutein entrapped by WPI nanoparticles within the inner water phase of a double emulsion (W-L/O/W); (2) lutein incorporated into the oil phase of the double emulsion (W/O-L/W); (3) lutein incorporated in the oil phase of a single emulsion (O-L/W). All systems contained similar whey protein concentrations, as well as all other stabilizers. W-L/O/W sample showed the lowest lutein stability against light exposure during storage, and the highest lutein bioaccessibility after in vitro digestion, for freshly made samples. Furthermore, the in vitro bioaccessibility of lutein incorporated into the single emulsion was considerably lower than those observed for the double emulsions. The results reinforce the importance of designing appropriate structures for delivering improved stability and bioaccessibility of bioactive compounds.
Collapse
Affiliation(s)
- Lauane Nunes
- CiFOOD, Food Science Department, Aarhus University, Aarhus N 9200, Denmark; Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Negin Hashemi
- CiFOOD, Food Science Department, Aarhus University, Aarhus N 9200, Denmark
| | | | - Guilherme M Tavares
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo 13083-862, Brazil.
| | - Milena Corredig
- CiFOOD, Food Science Department, Aarhus University, Aarhus N 9200, Denmark
| |
Collapse
|
32
|
Fuciños C, Rodríguez-Sanz A, García-Caamaño E, Gerbino E, Torrado A, Gómez-Zavaglia A, Rúa ML. Microfluidics potential for developing food-grade microstructures through emulsification processes and their application. Food Res Int 2023; 172:113086. [PMID: 37689862 DOI: 10.1016/j.foodres.2023.113086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 09/11/2023]
Abstract
The food sector continues to face challenges in developing techniques to increase the bioavailability of bioactive chemicals. Utilising microstructures capable of encapsulating diverse compounds has been proposed as a technological solution for their transport both in food and into the gastrointestinal tract. The present review discusses the primary elements that influence the emulsification process in microfluidic systems to form different microstructures for food applications. In microfluidic systems, reactions occur within small reaction channels (1-1000 μm), using small amounts of samples and reactants, ca. 102-103 times less than conventional assays. This geometry provides several advantages for emulsion and encapsulating structure production, like less waste generation, lower cost and gentle assays. Also, from a food application perspective, it allows the decrease in particle dispersion, resulting in a highly repeatable and efficient synthesis method that also improves the palatability of the food products into which the encapsulates are incorporated. However, it also entails some particular requirements. It is important to obtain a low Reynolds number (Re < approx. 250) for greater precision in droplet formation. Also, microfluidics requires fluid viscosity typically between 0.3 and 1400 mPa s at 20 °C. So, it is a challenge to find food-grade fluids that can operate at the micro-scale of these systems. Microfluidic systems can be used to synthesise different food-grade microstructures: microemulsions, solid lipid microparticles, microgels, or self-assembled structures like liposomes, niosomes, or polymersomes. Besides, microfluidics is particularly useful for accurately encapsulating bacterial cells to control their delivery and release on the action site. However, despite the significant advancement in these systems' development over the past several years, developing and implementing these systems on an industrial scale remains challenging for the food industry.
Collapse
Affiliation(s)
- Clara Fuciños
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain.
| | - Andrea Rodríguez-Sanz
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esther García-Caamaño
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina
| | - Ana Torrado
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina.
| | - María L Rúa
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| |
Collapse
|
33
|
Panagiotakopoulos I, Karantonis HC, Kartelias IG, Nasopoulou C. Ultrasonic-Assisted Extraction of Astaxanthin from Shrimp By-Products Using Vegetable Oils. Mar Drugs 2023; 21:467. [PMID: 37755080 PMCID: PMC10532599 DOI: 10.3390/md21090467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The use of conventional astaxanthin extraction methods, typically involving organic solvents, leads to a heightened environmental impact. The aim of this study was to explore the potential use of environmentally friendly extraction solvents, such as vegetable oils, for recovering the shrimp by-product astaxanthin. METHODS Ultrasound-assisted extraction (UAE) in vegetable oils, including olive oil (OO), sunflower oil (SO), and flaxseed oil (FO), was employed to extract astaxanthin. The astaxanthin antioxidant activity was evaluated using an ABTS assay, and a mixture of gum Arabic and soy lecithin was used to form coacervates to produce astaxanthin encapsulation. RESULTS A by-product-vegetable oil ratio of 1:60, extraction time of 210 min, 60% amplitude of the extraction process, and the use of OO as the extracting medium resulted in an astaxanthin yield of 235 ± 4.07 μg astaxanthin/g by-products. The astaxanthin encapsulation efficiency on day 0 and astaxanthin recovery on day 1 were recorded at 66.6 ± 2.7% and 94.4 ± 4.6%, respectively. CONCLUSIONS The utilization of OO as an extraction solvent for astaxanthin from shrimp by-products in UAE represents a novel and promising approach to reducing the environmental impact of shrimp by-products. The effective astaxanthin encapsulation efficiency highlights its potential application in food industries.
Collapse
Affiliation(s)
| | | | | | - Constantina Nasopoulou
- Laboratory of Food Chemistry and Technology and Quality of Food of Animal Origin, Department of Food Science and Nutrition, School of Environment, University of Aegean, Metropolitan Ioakeim 2, 81400 Lemnos, Greece; (I.P.); (H.C.K.); (I.G.K.)
| |
Collapse
|
34
|
He WS, Wang Q, Li Z, Li J, Zhao L, Li J, Tan C, Gong F. Enhancing the Stability and Bioaccessibility of Tree Peony Seed Oil Using Layer-by-Layer Self-Assembling Bilayer Emulsions. Antioxidants (Basel) 2023; 12:antiox12051128. [PMID: 37237994 DOI: 10.3390/antiox12051128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Tree peony seed oil (TPSO) is an important plant source of n-3 polyunsaturated fatty acid (α-linolenic acid, ALA > 40%) that is receiving increasing attention for its excellent antioxidant and other activities. However, it has poor stability and bioavailability. In this study, a bilayer emulsion of TPSO was successfully prepared using a layer-by-layer self-assembly technique. Among the proteins and polysaccharides examined, whey protein isolate (WPI) and sodium alginate (SA) were found to be the most suitable wall materials. The prepared bilayer emulsion contained 5% TPSO, 0.45% whey protein isolate (WPI) and 0.5% sodium alginate (SA) under selected conditions and its zeta potential, droplet size, and polydispersity index were -31 mV, 1291 nm, and 27%, respectively. The loading capacity and encapsulation efficiency for TPSO were up to 84% and 90.2%, respectively. It was noteworthy that the bilayer emulsion showed significantly enhanced oxidative stability (peroxide value, thiobarbituric acid reactive substances content) compared to the monolayer emulsion, which was accompanied by a more ordered spatial structure caused by the electrostatic interaction of the WPI with the SA. This bilayer emulsion also exhibited markedly improved environmental stability (pH, metal ion), rheological properties, and physical stability during storage. Furthermore, the bilayer emulsion was more easily digested and absorbed, and had higher fatty acid release rate and ALA bioaccessibility than TPSO alone and the physical mixtures. These results suggest that bilayer emulsion containing WPI and SA is an effective TPSO encapsulation system and has significant potential for future functional food development.
Collapse
Affiliation(s)
- Wen-Sen He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qingzhi Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhishuo Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Liying Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Junjie Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chen Tan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fayong Gong
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China
| |
Collapse
|
35
|
Wang X, Shi G, Fan S, Ma J, Yan Y, Wang M, Tang X, Lv P, Zhang Y. Targeted delivery of food functional ingredients in precise nutrition: design strategy and application of nutritional intervention. Crit Rev Food Sci Nutr 2023; 64:7854-7877. [PMID: 36999956 DOI: 10.1080/10408398.2023.2193275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
With the high incidence of chronic diseases, precise nutrition is a safe and efficient nutritional intervention method to improve human health. Food functional ingredients are an important material base for precision nutrition, which have been researched for their application in preventing diseases and improving health. However, their poor solubility, stability, and bad absorption largely limit their effect on nutritional intervention. The establishment of a stable targeted delivery system is helpful to enhance their bioavailability, realize the controlled release of functional ingredients at the targeted action sites in vivo, and provide nutritional intervention approaches and methods for precise nutrition. In this review, we summarized recent studies about the types of targeted delivery systems for the delivery of functional ingredients and their digestion fate in the gastrointestinal tract, including emulsion-based delivery systems and polymer-based delivery systems. The building materials, structure, size and charge of the particles in these delivery systems were manipulated to fabricate targeted carriers. Finally, the targeted delivery systems for food functional ingredients have gained some achievements in nutritional intervention for inflammatory bowel disease (IBD), liver disease, obesity, and cancer. These findings will help in designing fine targeted delivery systems, and achieving precise nutritional intervention for food functional ingredients on human health.
Collapse
Affiliation(s)
- Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Guohua Shi
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Sufang Fan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Junmei Ma
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
36
|
Liu Z, Lin S, Liu W, Nakamura Y, Tang Y. Construction of benzyl isothiocyanate-loaded fish skin gelatin-luteolin compound emulsion delivery system, and its digestion and absorption characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1864-1873. [PMID: 36571447 DOI: 10.1002/jsfa.12411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fish skin gelatin (FSG) and luteolin (LUT) were used as composite emulsifiers, and benzyl isothiocyanate (BITC) was used as a model of nutrient delivery to construct a stable emulsion. The storage stability of the FSG-LUT emulsion and its effect on BITC release were investigated both in vitro and ex vivo. RESULTS LUT can quench FSG fluorophores statically and form a stable complex through hydrogen bonding and hydrophobic interactions. The FSG-LUT emulsion storage stability and embedding rate were higher than those of the FSG emulsion. The FSG-LUT emulsion microstructure was resistant to oral and gastric digestion, and the BITC retention rate and bioaccessibility were much higher than those of the FSG emulsion. Lastly, the ex vivo everted gut sac of rat intestine study demonstrated that BITC showed the highest absorption in the ileum, and the FSG-LUT emulsion absorbed BITC and sustained a controlled release in a specific position. CONCLUSION LUT could form stable complexes with FSG, which improved the stability and bioavailability of BITC in the FSG-LUT emulsion delivery system, and promoted further intestinal BITC absorption. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiyu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Wenwen Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yoshimasa Nakamura
- Environmental and Life Science, Institute of Academic and Research, Okayama University, Okayama, Japan
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
37
|
Wang C, Dong C, Lu Y, Freeman K, Wang C, Guo M. Digestion behavior, in vitro and in vivo bioavailability of cannabidiol in emulsions stabilized by whey protein-maltodextrin conjugate: Impact of carrier oil. Colloids Surf B Biointerfaces 2023; 223:113154. [PMID: 36708645 DOI: 10.1016/j.colsurfb.2023.113154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
An emulsion delivery system may be affected significantly by oil phase composition in terms of digestion behavior and bioavailability of the delivered substance. In this study, emulsions loaded with cannabidiol (CBD) were prepared with medium chain triglyceride (MCT), long chain triglyceride (LCT) or MCT/LCT(1:1) as carrier oil and whey protein-maltodextrin conjugate as emulsifier, and the digestion behavior of emulsion and bioavailability of CBD were assessed in vitro and in vivo. The particle size of emulsions throughout the in vitro digestion process was in the order of MCT < MCT/LCT < LCT, and three emulsions showed consistent particle size changes: stable in oral phase, sharply increased in gastric phase, and decreased in small intestine. After intestinal digestion, about 90% of free fatty acids (FFA) was released in MCT emulsion, followed by MCT/LCT (76%) and then LCT (45%). CBD was degraded during gastrointestinal digestion and the transformation stability of CBD in oil phase was in the order of LCT > MCT/LCT > MCT. Although CBD had higher bioaccessibility in MCT and MCT/LCT emulsions, the bioavailability of CBD in LCT was the highest (43%), followed by MCT/LCT (39%), MCT (33%). In vivo pharmacokinetic study showed that MCT/LCT and LCT were more favorable for CBD transport and absorption. The results may provide useful information for the construction of delivery systems, protecting CBD molecules, and improving their bioavailability.
Collapse
Affiliation(s)
- Ce Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yingcong Lu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Kalev Freeman
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
38
|
Srivastava N, Richa, Choudhury AR. Enhanced encapsulation efficiency and controlled release of co-encapsulated Bacillus coagulans spores and vitamin B9 in gellan/κ-carrageenan/chitosan tri-composite hydrogel. Int J Biol Macromol 2023; 227:231-240. [PMID: 36535354 DOI: 10.1016/j.ijbiomac.2022.12.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The current study, for the first time, attempts to co-encapsulate Bacillus coagulans spores as probiotics and vitamin B9 in the polysaccharide-based matrix for their targeted delivery. Instead of vegetative cells, probiotic spores were chosen owing to their higher stability. The matrix, tri-composite hydrogel, was synthesized from gellan, κ-carrageenan, and chitosan through self-assembly devoid of chemical cross-linkers. Hence, it was found suitable for application in the co-encapsulation of bioactive compounds. The synthesized hydrogel showed remarkable encapsulation efficiency for folic acid and probiotic spores, both individually and in combination. At acidic pH, loaded hydrogel exhibited 28.42 % and 45.14 % release of spores and folic acid, respectively, which was comparatively lower than the trends observed under neutral and alkaline pH. These results were correlated with the release pattern observed during in vitro digestibility studies. Moreover, spore conversion to vegetative cells and its high colonization were observed in the simulated intestinal phase. Therefore, the matrix maintained viability and stability of co-encapsulated folic acid and bacterial spores in gastric pH while they were slowly released in the intestinal phase. These promising findings pave the way to develop a natural matrix for co-encapsulating various bioactive compounds and probiotics.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Richa
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India.
| |
Collapse
|
39
|
Huang J, Feng X, Zhang S, Wang L, Yue J, Chu L. Preparation and characterization of astaxanthin-loaded microcapsules and its application in effervescent tablets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1421-1431. [PMID: 36156800 DOI: 10.1002/jsfa.12237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Astaxanthin is a type of keto-carotene with potential health benefits. However, astaxanthin has poor solubility and stability, resulting in its low oral bio-availability. Microcapsules can be used to improve the water solubility, stability and oral bio-availability of lipophilic bioactive compounds. Effervescent tablets can further improve the stability, smell and taste of microcapsules, and are more easily accepted by consumers. RESULTS Astaxanthin-loaded microcapsules were prepared by layer-by-layer assembly and freeze-drying technologies. Sodium caseinate and κ-carrageenan were applied as wall materials. The prepared microcapsules had good flow properties and encapsulation efficiencies (> 85%). Fourier transform infrared spectroscopy demonstrated that the mechanisms of layer-by-layer self-assembly between sodium caseinate and κ-carrageenan might be electrostatic adsorption and hydrogen bonding. The preparation process and excipients did not affect the antioxidant effect of astaxanthin. The in vitro simulated digestion study showed that microcapsules were mainly dissolved and digested in the simulated intestinal solution. Compared with its raw material, microencapsulation could improve the bio-accessibility of astaxanthin greatly. Then, astaxanthin-loaded microcapsules were incorporated into effervescent tablets by wet granulation and tablet-pressing methods. The dissolution of astaxanthin from effervescent tablets was over 90% in 2 h, which indicated a good dissolution effect. A cytotoxicity study revealed that astaxanthin loaded effervescent tablets had a good biocompatibility. Encapsulating astaxanthin-loaded microcapsules in effervescent tablets can improve its chemical stability. CONCLUSION Effervescent tablets containing microcapsules could be used to improve the solubility, stability and bio-accessibility of lipophilic bioactive compounds. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
- The East China Science and Technology Research Institute of Changshu Company Limited, Changshu, China
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Lizeng Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Jingjing Yue
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
40
|
Liu Y, Li X, Sun H, Zhang J, Cai C, Xu N, Feng J, Nan B, Wang Y, Liu J. Whey protein concentrate/pullulan gel as a novel microencapsulated wall material for astaxanthin with improving stability and bioaccessibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Kasprzak MM, Berski W, Krystyjan M, Jamróz E, Florczuk A, Tkaczewska J, Zając M, Domagała J, Lett AM, Ptasznik S. Effects of fibre addition and processing on the stability, rheology and in vitro gastric digestion of whey protein-xanthan gum stabilised emulsions with high oil phase. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Cheng J, Shen S, Yang H, Tang D, Wang X, Lin Y, Liu X. Improved physicochemical stability and bioaccessibility of astaxanthin-loaded oil-in-water emulsions by a casein-caffeic acid-glucose ternary conjugate. Food Res Int 2023; 163:112153. [PMID: 36596104 DOI: 10.1016/j.foodres.2022.112153] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
In this study, the influence of casein-caffeic acid-glucose ternary conjugate (CSC) on the physicochemical properties and bioaccessibility of astaxanthin-loaded emulsion was investigated and compared with sodium caseinate (CSN), a synthetic emulsifier commonly used in the food industry. The CSC-stabilized emulsion exhibits droplet characteristics similar to CSN-stabilized emulsion, and can effectively resist the external forces that lead to the phase separation of the emulsion. Although phase separation also occurred at pH 4.0, CSC emulsion had a wider range of pH stability (pH 3.0, 5.0-8.0) and higher salt ion stability than CSN emulsion. Furthermore, CSC-stabilized astaxanthin emulsions showed better astaxanthin protection under different heat treatment conditions and storage temperatures compared with CSN. After 28 days of storage at 4 °C, astaxanthin residues in the CSC-stabilized emulsion reached 92.37 %. The bioaccessibility of astaxanthin in CSC-stabilized emulsion was 26.21 %, much higher than that in CSN (6.47 %). This research study provides a platform for designing astaxanthin-fortified food or beverage systems to achieve better stability and delivery to target sites.
Collapse
Affiliation(s)
- Jingrong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Shuangwei Shen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xuping Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yaosheng Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
43
|
Anal AK, Boonlao N, Ruktanonchai UR. Emulsion Systems Stabilized with Biopolymers to Enhance Oral Bioaccessibility and Bioavailability of Lipophilic Bioactive Compounds. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Improved Stabilization and In Vitro Digestibility of Mulberry Anthocyanins by Double Emulsion with Pea Protein Isolate and Xanthan Gum. Foods 2022; 12:foods12010151. [PMID: 36613367 PMCID: PMC9818945 DOI: 10.3390/foods12010151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
There is significant evidence that double emulsion has great potential for successfully encapsulating anthocyanins. However, few research studies are currently using a protein-polysaccharide mixture as a stable emulsifier for double emulsion. This study aimed to improve the stability and in vitro digestibility of mulberry anthocyanins (MAs) by employing a double emulsion composed of pea protein isolate (PPI) and xanthan gum (XG). The influence of various XG concentrations (0%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%) and different temperatures (5 °C, 25 °C, 45 °C, 65 °C) on the physical stability and the thermal degradation of MAs from double emulsions were investigated. In addition, the physicochemical properties of double emulsions and the release performance of MAs during in vitro simulated digestion were evaluated. It was determined that the double emulsion possessed the most stable physical characteristics with the 1% XG addition. The PPI-1% XG double emulsion, when compared to the PPI-only double emulsion, expressed higher thermal stability with a retention rate of 83.19 ± 0.67% and a half-life of 78.07 ± 4.72 days. Furthermore, the results of in vitro simulated digestion demonstrated that the MAs in the PPI-1% XG double emulsion were well-protected at oral and gastric with ample release found in the intestine, which was dissimilar to findings for the PPI-only double emulsion. Ultimately, it was concluded that the double emulsion constructed by the protein-polysaccharide system is a quality alternative for improving stability and absorption with applicability to a variety of food and beverage systems.
Collapse
|
45
|
Tunable oleosome-based oleogels: Influence of polysaccharide type for polymer bridging-based structuring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Li M, Sun Y, McClements DJ, Yao X, Ma C, Liu X, Liu F. Interfacial engineering approaches to improve emulsion performance: Properties of oil droplets coated by mixed, multilayer, or conjugated lactoferrin-hyaluronic acid interfaces. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Wang T, Zhang L, Chen L, Li X. Preparation of Oxidized Starch/β-Lactoglobulin Complex Particles Using Microfluidic Chip for the Stabilization of Astaxanthin Emulsion. Foods 2022; 11:3078. [PMID: 36230154 PMCID: PMC9563734 DOI: 10.3390/foods11193078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Here, we designed an oxidized starch/β-lactoglobulin (OS/β-lg) complex colloidal particle using a dual-channel microfluidic chip for the stabilization of astaxanthin emulsion. The effect of the mixing ratio, pH, and the degree of substitution (DS) of the oxidized starch on the formation of OS/β-lg complex particles was investigated in detail. The optimal complexation occurred at a pH of 3.6, a mixing ratio of 2:10, and a DS of 0.72%, giving an ideal colloidal particle with near-neutral wettability. With this optimum agent, the astaxanthin-loaded oil-in-water emulsions were successfully prepared. The obtained emulsions showed the typical non-Newton fluid behavior, and the rheological data met the Herschel-Bulkley model. The microscopic images confirmed the dense adsorption of the particle on the oil/water interface. In vitro release and stability studies demonstrated this compact layer contributed to the controlled-release and excellent stability of astaxanthin emulsions facing heat, ultraviolet, and oxidative intervention. This work suggests the potential of microfluidics for the production of food-grade solid emulsifiers.
Collapse
Affiliation(s)
| | | | | | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
48
|
Zhang L, Zaky AA, Zhou C, Chen Y, Su W, Wang H, Abd El-Aty A, Tan M. High internal phase Pickering emulsion stabilized by sea bass protein microgel particles: Food 3D printing application. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
49
|
Zhang X, Liu Z, Wang A, Zhang S, Nakamura Y, Lin S, Tang Y. Influence of fish skin gelatin-sodium alginate complex stabilized emulsion on benzyl isothiocyanate stability and digestibility in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5680-5689. [PMID: 35388504 DOI: 10.1002/jsfa.11915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND An emulsion delivery system for benzyl isothiocyanate (BITC) was prepared using fish skin gelatin (FSG) and sodium alginate (Alg). The effects of the FSG-Alg complex on the emulsion stability and BITC release pattern from the emulsion were investigated in vitro and in vivo. RESULTS The storage stability and embedding rate of the 10 g kg-1 FSG and 2.5 g kg-1 Alg (FSG-Alg) emulsion were the highest among all samples. The FSG-Alg complex provided BITC a better protection during in vitro digestion. The microstructure of the FSG-Alg emulsions was more stable during in vitro digestion, and the bioaccessibility and retention rate of BITC were much higher compared to those of the FSG emulsion. The results of the ex vivo everted gut sac of rat intestine study showed that the FSG-Alg emulsion significantly increased the BITC absorption rate in the duodenum. CONCLUSION The FSG-Alg emulsion delivery system is a highly stable system for the delivery of BITC that improves the bioaccessibility of BITC and promotes its absorption in the duodenum. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhiyu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ailin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yoshimasa Nakamura
- Environmental and Life Science, Institute of Academic and Research, Okayama University, Okayama, Japan
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
50
|
Chen Y, Su W, Tie S, Zhang L, Tan M. Advances of astaxanthin-based delivery systems for precision nutrition. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|