1
|
Zhao Z, Yang Q, Ma Y, Jiang B, Ning K, Sun G, Sun Z, Sun Z, Ma G, Tong X, Qin H, Liu H, Xu X, Yang M, Wu H, Liu X. Identifying potential Q-markers for quality evaluation of Zhenyuan capsule by integrating chemical analysis, network pharmacology, molecular docking, and molecular dynamics simulations. Nat Prod Res 2025; 39:2842-2849. [PMID: 38389428 DOI: 10.1080/14786419.2024.2319650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/19/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Quality markers (Q-markers) are of great significance for quality evaluation of herbal medicines. Zhenyuan Capsule (ZYC) is a kind of Chinese patent medicine used to treat cardiovascular diseases. However, reliable and effective Q-markers for ZYC are still lacking. Herein, a UHPLC-Q/Orbitrap-MS/MS was performed to characterise the preliminary chemical profile of ZYC. A total of 86 components were characterised among which 20 constituents were unambiguously identified by reference compounds. Based on network pharmacology, seven major ginsenosides with great importance in the network were identified as Q-markers among which ginsenoside Re with the highest betweenness was screened to inhibit the development of coronary heart disease (CHD) by binding with vascular endothelial growth factor A (VEGFA). Docking and molecular dynamics simulation studies suggested that ginsenoside Re stably bound to VEGFA. Quantitative determination and chemical fingerprinting analysis were performed using HPLC-DAD. The results showed that ginsenosides screened might function as potential Q-markers for ZYC.
Collapse
Affiliation(s)
- Zixuan Zhao
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinwen Yang
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinghong Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoping Jiang
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Ning
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Biomedicine, Beijing City University, Beijing, China
| | - Guangli Sun
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Biomedicine, Beijing City University, Beijing, China
| | - Zhonghao Sun
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaocui Sun
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoxu Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaole Tong
- Jilin Ji'an Yisheng Pharmaceutical Co., Ltd, Jilin, China
| | - Hailong Qin
- Jilin Ji'an Yisheng Pharmaceutical Co., Ltd, Jilin, China
| | - Hong Liu
- Jilin Ji'an Yisheng Pharmaceutical Co., Ltd, Jilin, China
| | - Xudong Xu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haifeng Wu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Liu
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, China
| |
Collapse
|
2
|
Li FX, Lin DM, Yang J, Cui XM, Yang XY. The transformation pathways and optimization of conditions for preparation minor ginsenosides from Panax notoginseng root by the fungus Aspergillus tubingensis. PLoS One 2025; 20:e0316279. [PMID: 40029858 PMCID: PMC11875379 DOI: 10.1371/journal.pone.0316279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/08/2024] [Indexed: 03/06/2025] Open
Abstract
Minor ginsenosides exhibit enhanced pharmacological effects in comparison to the major ginsenosides. However, the natural content of minor ginsenosides in plants is typically insufficient to satisfy clinical demand. Therefore, we investigated the biotransformation of the major ginsenosides in Panax notoginseng to minor ginsenosides by the fungus Aspergillus tubingensis. The transformation products were analyzed using TLC, HPLC, and LC-MS techniques to propose the biotransformation pathways of major ginsenosides. A. tubingensis was found to transform the main ginsenosides into 15 minor ginsenosides, inculding (R/S)-Rg3, Rk1, Rg5, F2, (R/S)-Rh1, Rk3, Rh4, (R/S)-Rg2, F4, Rg6 and (R/S)-R2. The transformation reactions encompassed isomerization, hydrolysis and dehydration. We have also optimized the reaction temperature and pH for the crude enzyme extracted from this fungus, which has a molecular weight of 66 kDa. Based on our current knowledge, this transformative characteristic of A. tubingensis was initially documented for the concurrent transformation of PPD and PPT type saponins in P. notoginseng. This method of preparing minor saponins will be valuable for the development of P. notoginseng as a traditional medicinal material.
Collapse
Affiliation(s)
- Fei-Xing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dong-Mei Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiu-Ming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Yan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming, Yunnan, China
| |
Collapse
|
3
|
Li F, Zhang R, Lin D, Yang J, Yang Y, Cui X, Yang X. Comparison of the Transformation Ability of the Major Saponins in Panax notoginseng by Penicillum fimorum Enzyme and Commercial β-glucosidase. Microorganisms 2025; 13:495. [PMID: 40142388 PMCID: PMC11944306 DOI: 10.3390/microorganisms13030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Ginsenosides with less sugar groups, which are called minor ginsenosides, might have a greater pharmacological activity and better adsorptive ability, but their content in nature is extremely low. In this study, a strain of Penicillium fimorum with a strong saponin transformation ability was isolated from fresh Gastrodia elata. A comparative biotransformation experiment of the major saponins from Panax notoginseng root were conducted using crude enzymes from P. fimorum and commercial β-glucosidase to produce minor ginsenosides. Specifically, the crude enzyme from P. fimorum was able to transform the major saponins from P. notoginseng root into 13 minor saponins in 72 h, while commercial β-glucosidase was able to transform the same major saponins into 15 minor saponins in 72 h. The most significant difference between these two enzymes is their ability to transform Rb1. To the best of our knowledge, the biotransformation ability of crude enzymes from P. fimorum is reported here for the first time. These two enzymes have the potential to improve the economic value of P. notoginseng root and expand the methods for preparing minor saponins by transforming major saponins in the total saponins of P. notoginseng root.
Collapse
Affiliation(s)
- Feixing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
| | - Ruixue Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
| | - Dongmei Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
| | - Jin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Xiaoyan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| |
Collapse
|
4
|
Liu X, Xu S, Liu C, Wang Z, Wu B, Guo M, Sun C, Yu H. Icariside II Preparation from Icariin Separated from Epimedium Herbal Extract Powder by a Special Icariin Glycosidase. J Microbiol Biotechnol 2024; 34:2683-2692. [PMID: 39603999 PMCID: PMC11729362 DOI: 10.4014/jmb.2408.08046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024]
Abstract
In this study, icariside II was prepared from icariin by a special enzyme. The yield of the substrate icariin from a powdered extract of the popular herb Epimedium was 16.9%. The enzyme, which was produced from Aspergillus sp.y48 fermentation, hydrolyzes icariin to icariside II and was characterized. The molecular weight was 75 kDa, while the optimum temperature and pH were 45°C and 5.0. The purified enzyme hydrolyzed the 7-O-glucoside of icariin or epimedin A, B, and C to icariside II, or sagittatoside A, B, and C, respectively, and further hydrolyzed the terminal 3-O-xyloside of sagittatoside B to icariside II. The enzyme is a special icariin glycosidase that hydrolyzed icariin to icariside II at low cost. Based on the crude enzyme's reaction dynamics, the optimal conditions for icariside II preparation showed that 2% icariin reacted at 45°C for 6 to 9 h. Here, we obtained 13.3 g icariside II and 0.45 g of the by-product icaritin from 20 g icariin. The icariside II molar yield was 87.4%, the by-product icaritin yield was 4.1%, and the total molar yield was 91.5%. Therefore, icariside II was resoundingly prepared from an icariin glycosidase of an Epimedium extract using a non-GMO, crude enzyme from Aspergillus sp.y48. The obtained icariside II and the by-product icaritin can be directly applied in the production of cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Xinyu Liu
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| | - Siyu Xu
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| | - Chunying Liu
- School of Life Science and Biotechnology, Liaoning Marine Microbial Engineering and Technology Center, Dalian University, Xuefu-Dajie No. 10, Economic Technological Development Zone, Dalian 116622, P.R. China
| | - Zhenghao Wang
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| | - Bo Wu
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| | - Meijuan Guo
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| | - Changkai Sun
- Research & Educational Center for the Control Engineering of Translational Precision Medicine, Dalian University of Technology, Linggong-ru No. 2, Ganjingzi-qu, Dalian 116024, P.R. China
| | - Hongshan Yu
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| |
Collapse
|
5
|
Diao M, Chen Y, Meng L, Li J, Xie N. Biotransformation approach to produce rare ginsenosides F1, compound Mc1, and Rd2 from major ginsenosides. Arch Microbiol 2024; 206:176. [PMID: 38493413 DOI: 10.1007/s00203-024-03893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
The stems and leaves of Panax notoginseng contain high saponins, but they are often discarded as agricultural waste. In this study, the predominant ginsenosides Rg1, Rc, and Rb2, presented in the stems and leaves of ginseng plants, were biotransformed into value-added rare ginsenosides F1, compound Mc1 (C-Mc1), and Rd2, respectively. A fungal strain YMS6 (Penicillium sp.) was screened from the soil as a biocatalyst with high selectivity for the deglycosylation of major ginsenosides. Under the optimal fermentation conditions, the yields of F1, C-Mc1, and Rd2 were 97.95, 68.64, and 79.58%, respectively. This study provides a new microbial resource for the selective conversion of protopanaxadiol-type and protopanaxatriol-type major saponins into rare ginsenosides via the whole-cell biotransformation and offers a solution for the better utilization of P. notoginseng waste.
Collapse
Affiliation(s)
- Mengxue Diao
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| | - Yanchi Chen
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Lijun Meng
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Jianxiu Li
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Nengzhong Xie
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| |
Collapse
|
6
|
Yi YS. Pharmacological potential of ginseng and ginsenosides in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Ginseng Res 2024; 48:122-128. [PMID: 38465218 PMCID: PMC10920004 DOI: 10.1016/j.jgr.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/01/2023] [Accepted: 11/10/2023] [Indexed: 03/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic fat accumulation, while nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by hepatic inflammation, fibrosis, and liver injury, resulting in liver cirrhosis and hepatocellular carcinoma (HCC). Given the evidence that ginseng and its major bioactive components, ginsenosides, have potent anti-adipogenic, anti-inflammatory, anti-oxidative, and anti-fibrogenic effects, the pharmacological effect of ginseng and ginsenosides on NAFLD and NASH is noteworthy. Furthermore, numerous studies have successfully demonstrated the protective effect of ginseng on these diseases, as well as the underlying mechanisms in animal disease models and cells, such as hepatocytes and macrophages. This review discusses recent studies that explore the pharmacological roles of ginseng and ginsenosides in NAFLD and NASH and highlights their potential as agents to prevent and treat NAFLD, NASH, and liver diseases caused by hepatic steatosis and inflammation.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Republic of Korea
| |
Collapse
|
7
|
Lim J, Kim H, Kim GHJ, Kim T, Kang CG, Kim SW, Kim D. Enzymatic upcycling of wild-simulated ginseng leaves for enhancing biological activities and compound K. Appl Microbiol Biotechnol 2024; 108:207. [PMID: 38353757 PMCID: PMC10866779 DOI: 10.1007/s00253-024-13028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Compound K (CK), a ginsenoside with high bioavailability, is present at low levels in wild-simulated ginseng leaves (WSGL). WSGL contains the CK precursors, Rd and F2, in amounts up to 26.4 ± 0.4 and 24.1 ± 1.9 mg/g extract, respectively. In this study, CK production in WGSL reached 25.9 ± 1.0 mg/g extract following treatment with Viscozyme, Celluclast 1.5 L, Pectinex Ultra SP-L, and their combination. The antioxidant activities indicated by oxygen radical absorbance capacity, ferric reducing antioxidant power, and ABTS- and DPPH radical scavenging activity of enzyme-treated WSGL were enhanced 1.69-, 2.51-, 2.88-, and 1.80-fold, respectively, compared to non-treated WSGL. Furthermore, the CK-enriched WSGL demonstrated a 1.94-fold decrease in SA-β-galactosidase expression in human dermal fibroblasts and a 3.8-fold enhancement of inhibition of nitric oxide release in lipopolysaccharide-induced RAW 264.7 cells relative to non-treated WSGL. Consequently, WSGL subjected to enzymatic upcycling has potential as a functional material in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Juho Lim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergece, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| | - Gha-Hyun J Kim
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158, USA
| | - Taeyoon Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Choon Gil Kang
- Ottogi Corporation, Anyang-si, Gyeonggi-do, 14060, Republic of Korea
| | - Seung Wook Kim
- Ottogi Corporation, Anyang-si, Gyeonggi-do, 14060, Republic of Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergece, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
- Fervere Campus Corporation, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
8
|
Kim K, Kim MH, Kang JI, Baek JI, Jeon BM, Kim HM, Kim SC, Jeong WI. Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators. J Ginseng Res 2024; 48:89-97. [PMID: 38223828 PMCID: PMC10785242 DOI: 10.1016/j.jgr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.
Collapse
Affiliation(s)
- Kyurae Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Myung-Ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Ji In Kang
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jong-In Baek
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Byeong-Min Jeon
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Ho Min Kim
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sun-Chang Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
- KAIST Institutes, KAIST, Daejeon, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Center for the Hepatic Glutamate and Its Function, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Zhang L, Wang L, Chen Y, Yang Y, Xia G, Guo Y, Yang H, Shen Y, Meyer AS. Biotransformation of ginsenoside Rb 1 and Rd to four rare ginsenosides and evaluation of their anti-melanogenic effects. J Nat Med 2023; 77:939-952. [PMID: 37329418 DOI: 10.1007/s11418-023-01719-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
Improving physiological activity of primary ginsenosides through biotransformation is of great significance for food applications. In this study, gynostapenoside XVII, gynostapenoside LXXV, ginsenoside F2, and ginsenoside CK were obtained by enzymolysis of an accessible extract composed of ginsenoside Rb1 and Rd. Their effects on melanin content and tyrosinase activity were compared in vitro, and molecular docking simulation was employed to elucidate the interaction between tyrosinase and individual saponin. The results indicated that four rare ginsenosides decreased tyrosinase activity, melanin content and microphthalmia-associated transcription factor (MITF) expression level, more greatly than their primary ginsenosides, and they were more readily to bind with ASP10 and GLY68 at active site of tyrosinase to inhibit tyrosinase activity as well. These findings suggested that the rare ginsenosides obtained by enzymolysis had excellent anti-melanogenic effect, which could expand the application of ginsenosides in the field of functional foods and health supplements.
Collapse
Affiliation(s)
- Le Zhang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Liwei Wang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yufei Chen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yaya Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Guohua Xia
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yuao Guo
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yuping Shen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
10
|
Cong L, Ma J, Zhang Y, Zhou Y, Cong X, Hao M. Effect of anti-skin disorders of ginsenosides- A Systematic Review. J Ginseng Res 2023; 47:605-614. [PMID: 37720567 PMCID: PMC10499590 DOI: 10.1016/j.jgr.2023.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 09/19/2023] Open
Abstract
Ginsenosides are bioactive components of Panax ginseng with many functions such as anti-aging, anti-oxidation, anti-inflammatory, anti-fatigue, and anti-tumor. Ginsenosides are categorized into dammarane, oleanene, and ocotillol type tricyclic triterpenoids based on the aglycon structure. Based on the sugar moiety linked to C-3, C-20, and C-6, C-20, dammarane type was divided into protopanaxadiol (PPD) and protopanaxatriol (PPT). The effects of ginsenosides on skin disorders are noteworthy. They play anti-aging roles by enhancing immune function, resisting melanin formation, inhibiting oxidation, and elevating the concentration of collagen and hyaluronic acid. Thus, ginsenosides have previously been widely used to resist skin diseases and aging. This review details the role of ginsenosides in the anti-skin aging process from mechanisms and experimental research.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinli Ma
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yundong Zhang
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Chu LL, Hanh NTY, Quyen ML, Nguyen QH, Lien TTP, Do KV. Compound K Production: Achievements and Perspectives. Life (Basel) 2023; 13:1565. [PMID: 37511939 PMCID: PMC10381408 DOI: 10.3390/life13071565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Compound K (CK) is one of the major metabolites found in mammalian blood and organs following oral administration of Panax plants. CK, also known as minor ginsenoside, can be absorbed in the systemic circulation. It has garnered significant attention in healthcare and medical products due to its pharmacological activities, such as antioxidation, anticancer, antiproliferation, antidiabetics, neuroprotection, and anti-atherogenic activities. However, CK is not found in natural ginseng plants but in traditional chemical synthesis, which uses toxic solvents and leads to environmental pollution during the harvest process. Moreover, enzymatic reactions are impractical for industrial CK production due to low yield and high costs. Although CK could be generated from major ginsenosides, most ginsenosides, including protopanaxatriol-oleanane and ocotillol-type, are not converted into CK by catalyzing β-glucosidase. Therefore, microbial cell systems have been used as a promising solution, providing a safe and efficient approach to CK production. This review provides a summary of various approaches for the production of CK, including chemical and enzymatic reactions, biotransformation by the human intestinal bacteria and endophytes as well as engineered microbes. Moreover, the approaches for CK production have been discussed to improve the productivity of target compounds.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Nguyen Trinh Yen Hanh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - My Linh Quyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Quang Huy Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Tran Thi Phuong Lien
- Faculty of Biology and Agricultural Engineering, Hanoi Pagadogical University 2, Vinh Yen City 283460, Vietnam
| | - Khanh Van Do
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
12
|
Ma P, Peng C, Peng Y, Fan L, Chen X, Li X. A mechanism of Sijunzi decoction on improving intestinal injury with spleen deficiency syndrome and the rationality of its compatibility. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116088. [PMID: 36649851 DOI: 10.1016/j.jep.2022.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sijunzi Decoction (SJZD) is a renowned formula for the treatment of spleen deficiency syndrome (SDS) in traditional Chinese medicine (TCM). Its non-polysaccharides (NPS) component, dominated by various compounds of SJZD, has shown the remarkable efficacy in SDS, especially in gastrointestinal injury. However, the principle of compatibility of SJZD and the micro-mechanism of effect on SDS are still unclear. AIM OF THE STUDY To elucidate the scientific implications of SJZD compatibility and its micro-mechanism in the treatment of SDS-induced intestinal injury. MATERIALS AND METHODS First, the chemical composition of NPS in SJZD and incomplete SJZD (iSJZD, including SJZD-R, SJZD-A, SJZD-P, SJZD-G) were comprehensively analyzed by UPLC-QTOF-MS, and comparing their chemical composition by multivariate statistical analysis to reveal the effect of a single herb on SJZD compatibility. Second, network pharmacology and molecular docking were used to uncover the micro-mechanisms of potential active compounds in SJZD for the treatment of SDS, and develop an active component combination (ACC) by accurate quantification. Subsequently, the action of the potential active compounds and ACC was verified through in vivo and in vitro. RESULTS A total of 112, 77, 93, 87, and 67 compounds were detected in NPS of SJZD, SJZD-R, SJZD-A, SJZD-P, and SJZD-G, respectively. Changes in the chemical components of SJZD_NPS and iSJZD_NPS revealed that RG and RAM, as well as RAM and Poria significantly affected the dissolution of each other's chemical components, and the co-decoction of four herbs promoted the dissolution of the active compounds and inhibited toxic compounds. Furthermore, network pharmacology showed that 274 compounds of 15 categories in SJZD_NPS acted on the 186 key targets to treat SDS by inhibiting inflammation, enhancing immunity, and regulating gastrointestinal function and metabolism. Finally, through in vitro experiments, six compounds among 18 potential compounds were verified to markedly repair intestinal epithelium injury by modulating the FAK/PI3K/Akt or LCK/Ras/PI3K/Akt signaling pathway. It is worth mentioning that ACC, composed of 11 compounds accurately quantified, demonstrated significant in vivo treatment effects on intestinal damage with SDS similar to NPS or SJZD. CONCLUSIONS This study elucidates the scientific evidence of the "Jun-Chen-Zuo-Shi" and "detoxification and synergistic" in the decocting process of SJZD. An ACC, the active component of SJZD, ameliorate SDS-induced intestinal injury by the FAK/PI3K/Akt signaling pathway, which provides a strategy for screening alternatives to effective combinations of TCMs.
Collapse
Affiliation(s)
- Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
13
|
Wang P, Tang C, Liu Y, Yang J, Fan D. Biotransformation of High Concentrations of Ginsenoside Substrate into Compound K by β-glycosidase from Sulfolobus solfataricus. Genes (Basel) 2023; 14:genes14040897. [PMID: 37107655 PMCID: PMC10138176 DOI: 10.3390/genes14040897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The rare ginsenoside Compound K (CK) is an attractive ingredient in traditional medicines, cosmetics, and the food industry because of its various biological activities. However, it does not exist in nature. The commonly used method for the production of CK is enzymatic conversion. In order to further improve the catalytic efficiency and increase the CK content, a thermostable β-glycosidase from Sulfolobus solfataricus was successfully expressed in Pichia pastoris and secreted into fermentation broth. The recombinant SS-bgly in the supernatant showed enzyme activity of 93.96 U/mg at 120 h when using pNPG as substrate. The biotransformation conditions were optimized at pH 6.0 and 80 °C, and its activity was significantly enhanced in the presence of 3 mM Li+. When the substrate concentration was 10 mg/mL, the recombinant SS-bgly completely converted the ginsenoside substrate to CK with a productivity of 507.06 μM/h. Moreover, the recombinant SS-bgly exhibited extraordinary tolerance against high substrate concentrations. When the ginsenoside substrate concentration was increased to 30 mg/mL, the conversion could still reach 82.5% with a productivity of 314.07 μM/h. Thus, the high temperature tolerance, resistance to a variety of metals, and strong substrate tolerance make the recombinant SS-bgly expressed in P. pastoris a potential candidate for the industrial production of the rare ginsenoside CK.
Collapse
Affiliation(s)
- Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Congcong Tang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Jing Yang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
14
|
Xue J, Zhang J, Yu C, Arabi M, Li J, Li G, Yang G, Chen L, Song Z. Synthesis and evaluation of ginsenosides imprinted polymer-based chromatographic stationary phase. J Sep Sci 2023; 46:e2200825. [PMID: 36892410 DOI: 10.1002/jssc.202200825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023]
Abstract
The molecular imprinting technique has aroused great interest in preparing novel stationary phases, and the resulting materials named molecularly imprinted polymers coated silica packing materials exhibit good performance in separating diverse analytes based on their good characteristics (including high selectivity, simple synthesis, and good chemical stability). To date, mono-template is commonly used in synthesizing molecularly imprinted polymers-based stationary phases. The resulting materials always own the disadvantages of low column efficiency and restricted analytes, and the price of ginsenosides with high purity was very high. In this study, to overcome the weaknesses of molecularly imprinted polymers-based stationary phases mentioned above, the multi-templates (total saponins of folium ginseng) strategy was used to prepare ginsenosides imprinted polymer-based stationary phase. The resulting ginsenosides imprinted polymer-coated silica stationary phase has a good spherical shape and suitable pore structures. Additionally, the total saponins of folium ginseng were cheaper than other kinds of ginsenosides. Moreover, the ginsenosides imprinted polymer-coated silica stationary phase-packed column performed well in the separation of ginsenosides, nucleosides, and sulfonamides. The ginsenosides imprinted polymer-coated silica stationary phase possesses good reproducibility, repeatability, and stability for seven days. Therefore, a multi-templates strategy for synthesizing the ginsenosides imprinted polymer-coated silica stationary phase is considered in the future.
Collapse
Affiliation(s)
- Junping Xue
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Jingxiu Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Cuichi Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Guisheng Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China.,School of Pharmacy, Binzhou Medical University, Yantai, P. R. China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| |
Collapse
|
15
|
Sun Y, Fu X, Qu Y, Chen L, Liu X, He Z, Xu J, Yang J, Ma W, Li J, Guo Q, Zhang Y. Characterization of Ginsenosides from the Root of Panax ginseng by Integrating Untargeted Metabolites Using UPLC-Triple TOF-MS. Molecules 2023; 28:molecules28052068. [PMID: 36903315 PMCID: PMC10004652 DOI: 10.3390/molecules28052068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
To compare the chemical distinctions of Panax ginseng Meyer in different growth environments and explore the effects of growth-environment factors on P. ginseng growth, an ultra-performance liquid chromatography-tandem triple quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS/MS) was used to characterize the ginsenosides obtained by ultrasonic extraction from P. ginseng grown in different growing environments. Sixty-three ginsenosides were used as reference standards for accurate qualitative analysis. Cluster analysis was used to analyze the differences in main components and clarified the influence of growth environment factors on P. ginseng compounds. A total of 312 ginsenosides were identified in four types of P. ginseng, among which 75 were potential new ginsenosides. The number of ginsenosides in L15 was the highest, and the number of ginsenosides in the other three groups was similar, but it was a great difference in specie of ginsenosides. The study confirmed that different growing environments had a great influence on the constituents of P. ginseng, and provided a new breakthrough for the further study of the potential compounds in P. ginseng.
Collapse
Affiliation(s)
- Yizheng Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojie Fu
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ying Qu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihua Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Zichao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingmei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (Q.G.); (Y.Z.); Tel.: +86-0531-82805106 (Q.G.); +86-10-82805106 (Y.Z.)
| | - Youbo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (Q.G.); (Y.Z.); Tel.: +86-0531-82805106 (Q.G.); +86-10-82805106 (Y.Z.)
| |
Collapse
|
16
|
Zeng C, Ji X, Shi Y, Mu S, Huang Y, Zhong M, Han Y, Duan C, Li X, Li D. Specific and efficient hydrolysis of all outer glucosyls in protopanaxadiol type and protopanaxatriol type ginsenosides by a β-glucosidase from Thermoclostridium stercorarium. Enzyme Microb Technol 2022; 162:110152. [DOI: 10.1016/j.enzmictec.2022.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|
17
|
Production of Minor Ginsenosides from Panax notoginseng Flowers by Cladosporium xylophilum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196615. [PMID: 36235151 PMCID: PMC9572572 DOI: 10.3390/molecules27196615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Panax notoginseng flowers have the highest content of saponins compared to the other parts of Panax notoginseng, but minor ginsenosides have higher pharmacological activity than the main natural ginsenosides. Therefore, this study focused on the transformation of the main ginsenosides in Panax notoginseng flowers to minor ginsenosides using the fungus of Cladosporium xylophilum isolated from soil. The main ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenoside Fa in Panax notoginseng flowers were transformed into the ginsenosides F2 and Rd2, the notoginsenosides Fd and Fe, and the ginsenoside R7; the conversion rates were 100, 100, 100, 88.5, and 100%, respectively. The transformation products were studied by TLC, HPLC, and MS analyses, and the biotransformation pathways of the major ginsenosides were proposed. In addition, the purified enzyme of the fungus was prepared with the molecular weight of 66.4 kDa. The transformation of the monomer ginsenosides by the crude enzyme is consistent with that by the fungus. Additionally, three saponins were isolated from the transformation products and identified as the ginsenoside Rd2 and the notoginsenosides Fe and Fd by NMR and MS analyses. This study provided a unique and powerful microbial strain for efficiently transformating major ginsenosides in P. notoginseng flowers to minor ginsenosides, which will help raise the functional and economic value of the P. notoginseng flower.
Collapse
|
18
|
Hanh TTH, Cham PT, Anh DH, Cuong NT, Trung NQ, Quang TH, Cuong NX, Nam NH, Minh CV. Dammarane-type triterpenoid saponins from the flower buds of Panax pseudoginseng with cytotoxic activity. Nat Prod Res 2022; 36:4349-4357. [PMID: 34591730 DOI: 10.1080/14786419.2021.1984908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Phytochemical investigation of a methanol extract of Panax pseudoginseng flower buds resulted in the isolation of 22 dammarane-type triterpenoid saponins, including three new compounds, pseudoginsenosides A-C (1-3), and 19 known analogs. Their chemical structures were identified by the comprehensive spectroscopic methods, including 1 D and 2 D NMR and mass spectra. In addition, their cytotoxic effects toward three human carcinoma cell lines, including liver (HepG2), breast (MCF7), and lung (A549) were also evaluated.
Collapse
Affiliation(s)
- Tran Thi Hong Hanh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Pham Thi Cham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Do Hoang Anh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen The Cuong
- Institute of Ecology and Biological Resources, VAST, Hanoi, Vietnam
| | | | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Xuan Cuong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Hoai Nam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Chau Van Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
19
|
Identification of nutritional values of the fermentative extract from the mixture of Stereum hirsutum mycelial substrates and ginseng extracts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Wang Z, Liu C, Yu H, Wu B, Huai B, Zhuang Z, Sun C, Xu L, Jin F. Icaritin Preparation from Icariin by a Special Epimedium Flavonoid-Glycosidase from Aspergillus sp.y848 Strain. J Microbiol Biotechnol 2022; 32:437-446. [PMID: 35283431 PMCID: PMC9628809 DOI: 10.4014/jmb.2112.12036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
In this study, to obtain icaritin with high pharmacological activities from icariin, which has a content ratio of over 58% in the total flavonoids of Epimedium herb, a special Epimedium flavonoid-glycosidase was produced, purified and characterized from Aspergillus sp.y848 strain. The optimal enzyme production was gained in a medium containing 5% (w/v) wheat bran extract and 0.7% (w/v) Epimedium leaf powder as the enzyme inducer, and strain culture at 30°C for 6-7 days. The molecular weight of the enzyme was approximately 73.2 kDa; the optimal pH and temperature were 5.0 and 40°C. The enzyme Km and Vmax values for icariin were 15.63 mM and 55.56 mM/h. Moreover, the enzyme hydrolyzed the 7-O-glucosides of icariin into icariside II, and finally hydrolyzed 3-O-rhamnoside of icariside II into icaritin. The enzyme also hydrolyzed 7-O-glucosides of epimedin B to sagittatoside B, and then further hydrolyzed terminal 3-O-xyloside of sagittatoside B to icarisiede II, before finally hydrolyzing 3-O-rhamnoside of icarisiede II into icaritin. The enzyme only hydrolyzed 7-O-glucoside of epimedin A or epimedin C into sagittatoside A or sagittatoside C. It is possible to prepare icaritin from the high-content icariin in Epimedium herb using this enzyme. When 2.5% icariin was reacted at 40°C for 18-20 h by the low-cost crude enzyme, 5.04 g icaritin with 98% purity was obtained from 10 g icariin. Also, the icaritin molar yield was 92.5%. Our results showed icaritin was successfully produced via cost-effective and relatively simple methods from icariin by crude enzyme. Our results should be very useful for the development of medicines from Epimedium herb.
Collapse
Affiliation(s)
- Zhenghao Wang
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| | - Chunying Liu
- School of Life Science and Biotechnology, Liaoning Marine Microbial Engineering and Technology Center, Dalian University, Xuefu-Dajie No. 10, Economic Technological Development Zone, Dalian 116622, P.R. China,
C.Y. Liu Phone/Fax: +86-135911-96400 E-mail:
| | - Hongshan Yu
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China,Corresponding authors H.S. Yu Phone/Fax: +86-411-86307737 E-mail:
| | - Bo Wu
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| | - Baoyu Huai
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| | - Ziyu Zhuang
- Dalian Center for Certification and Food and Drug, Huanghe-Lu No. 888A, Shahekou-qu, Dalian 116021, P.R. China
| | - Changkai Sun
- Research & Educational Center for the Control Engineering of Translational Precision Medicine, Dalian University of Technology, Linggong-ru No. 2, Ganjingzi-qu, Dalian 116024, P.R. China,
C.K. Sun Phone: +86-13500777607 Fax: WeChat ID: sck13500777607 E-mail:
| | - Longquan Xu
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China
| | - Fengxie Jin
- College of Biotechnology, Dalian Polytechnic University, Qinggong-Yuan No. 1, Ganjingzi-qu, Dalian 116034, P.R. China,
F.X. Jin Phone/Fax: +86-411-86307737 E-mail:
| |
Collapse
|
21
|
Chemical Distance Measurement and System Pharmacology Approach Uncover the Novel Protective Effects of Biotransformed Ginsenoside C-Mc against UVB-Irradiated Photoaging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4691576. [PMID: 35186187 PMCID: PMC8850047 DOI: 10.1155/2022/4691576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Long-term exposure to ultraviolet light induces photoaging and may eventually increase the risk of skin carcinogenesis. Rare minor ginsenosides isolating from traditional medicine Panax (ginseng) have shown biomedical efficacy as antioxidation and antiphotodamage agents. However, due to the difficulty of component extraction and wide variety of ginsenoside, the identification of active antiphotoaging ginsenoside remains a huge challenge. In this study, we proposed a novel in silico approach to identify potential compound against photoaging from 82 ginsenosides. Specifically, we calculated the shortest distance between unknown and known antiphotoaging ginsenoside set in the chemical space and applied chemical structure similarity assessment, drug-likeness screening, and ADMET evaluation for the candidates. We highlighted three rare minor ginsenosides (C-Mc, Mx, and F2) that possess high potential as antiphotoaging agents. Among them, C-Mc deriving from American ginseng (Panax quinquefolius L.) was validated by wet-lab experimental assays and showed significant antioxidant and cytoprotective activity against UVB-induced photodamage in human dermal fibroblasts. Furthermore, system pharmacology analysis was conducted to explore the therapeutic targets and molecular mechanisms through integrating global drug-target network, high quality photoaging-related gene profile from multiomics data, and skin tissue-specific expression protein network. In combination with in vitro assays, we found that C-Mc suppressed MMP production through regulating the MAPK/AP-1/NF-κB pathway and expedited collagen synthesis via the TGF-β/Smad pathway, as well as enhanced the expression of Nrf2/ARE to hold a balance of endogenous oxidation. Overall, this study offers an effective drug discovery framework combining in silico prediction and in vitro validation, uncovering that ginsenoside C-Mc has potential antiphotoaging properties and might be a novel natural agent for use in oral drug, skincare products, or functional food.
Collapse
|
22
|
Wang M, Li D. Ginsenoside-Mc1 reduces cerebral ischemia-reperfusion injury in hyperlipidemia through mitochondrial improvement and attenuation of oxidative/endoplasmic reticulum stress. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220212015w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
The neuroprotective effect of ginsenoside-Mc1 (GMc1) in hyperlipidemic rats in the setting of cerebral ischemiareperfusion injury (I/RI), as well as the role of mitochondrial ATP-sensitive potassium (mitoKATP) channels and oxidative/ endoplasmic reticulum (ER) stress, was investigated. Hyperlipidemia (8 weeks) was induced by a high-fat diet in Sprague Dawley rats. GMc1 (10 mg/kg, i.p.) was given to hyperlipidemic rats daily for one month before I/RI. Rat brains were subjected to 2 h of local ischemia followed by 24 h reperfusion. The cerebral infarcted injury was measured by triphenyltetrazolium chloride staining and the levels of oxidative stress indicators were detected by ELISA and spectrophotometry. A fluorometric technique was employed to evaluate mitochondrial function. Western blotting was used to detect changes in the expression of ER stress proteins. GMc1 reduced cerebral infarct volume in hyperlipidemic rats in comparison to untreated ones (P<0.01). GMc1 reduced cerebral infarct volume in hyperlipidemic rats as compared to untreated rats (P<0.01). GMc1 significantly decreased mitochondrial membrane depolarization, mitochondrial reactive oxygen species (mitoROS) and malondialdehyde levels (P<0.01), while increasing the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) (P<0.001). GMc1 administration reduced the expression of ER stress markers, including phosphorylated (p)-endoplasmic reticulum kinase (PERK), p-eukaryotic translation initiation factor 2 subunit 1 (elF2?), and C/EBP homologous protein (CHOP). Inhibition of mitoKATP channels with hydroxydecanoate significantly eliminated the protective impacts of GMc1 in hyperlipidemic rats subjected to cerebral I/RI. The neuroprotective effect of GMc1 preconditioning was remarkably improved by increasing mitoKATP channel activity and decreasing oxidative and ER stress levels in hyperlipidemic rats, implying that this compound could be an appropriate candidate for reducing cerebral I/RI in comorbidities.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Danni Li
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
KIM H, CHO SM, KIM WJ, HONG KB, SUH HJ, YU KW. Red ginseng polysaccharide alleviates cytotoxicity and promotes anti-inflammatory activity of ginsenosides. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.52220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hoon KIM
- Kyung Hee University Skin Biotechnology Center, Republic of Korea
| | | | - Woo Jung KIM
- Gyeonggido Business and Science Accelerator, Republic of Korea
| | | | | | - Kwang-Won YU
- Korea National University of Transportation, Republic of Korea
| |
Collapse
|
24
|
Han Y, Yang DU, Huo Y, Pu J, Lee SJ, Yang DC, Kang SC. In Vitro Evaluation of Anti-Lung Cancer and Anti-COVID-19 Effects using Fermented Black Color Ginseng Extract. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211034387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ginseng is known as the “king” of herbal plants and has been used widely in Asia for centuries. Ginseng contains active saponins, including protopanaxadiols, protopanaxatriols, and other compounds. There are many methods for processing ginseng, such as steaming, fermentation, expansion, and conversion of active compounds, which can improve its biological activity. In this study, we investigated the cytotoxic and oxidative effects of fermented black color ginseng (FBCG), black ginseng (BG), and white ginseng (WG) on a human lung carcinoma cell line (A549). Moreover, we found that treatment with FBCG induced oxidative stress in the A549 cell line and increases the apoptosis percentage; these effects were linked to the stimulation of the caspase 3/mitogen-activated protein kinase (caspase 3/MAPK) pathway. We also evaluated the anti-coronavirus disease-2019 (COVID-19) effect of FBCG on a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected Vero E6 cell line. Our results suggest that FBCG not only inhibits the replication of this strain of virus in the cell but also reduces the number of viral RNA (vRNA) copies in the extracellular environment. Taken together, these data show that FBCG has both potential anti-lung cancer and anti-COVID-19 effects.
Collapse
Affiliation(s)
- Yaxi Han
- Kyung Hee University, Yongin-si, Republic of Korea
| | - Dong-Uk Yang
- Kyung Hee University, Yongin-si, Republic of Korea
| | - Yue Huo
- Kyung Hee University, Yongin-si, Republic of Korea
| | - Jianyu Pu
- Kyung Hee University, Yongin-si, Republic of Korea
| | - Seung-Jin Lee
- Nature Bio Pharma Co., Ltd., Seoul, Republic of Korea
| | | | - Se Chan Kang
- Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
25
|
Yang W, Zhou J, Harindintwali JD, Yu X. Production of minor ginsenosides by combining Stereum hirsutum and cellulase. PLoS One 2021; 16:e0255899. [PMID: 34358262 PMCID: PMC8345839 DOI: 10.1371/journal.pone.0255899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Minor ginsenosides (MGs) (include ginsenoside F2, Compound K, PPT, etc), which are generally not produced by ginseng plants naturally, are obtained by deglycosylation of major ginsenosides. However, the conventional processes used to produce deglycosylated ginsenosides focus on the use of intestinal microorganisms for transformation. In this study, an edible and medicinal mushroom Stereum hirsutum JE0512 was screened from 161 β-glucosidase-producing soil microorganisms sourced from wild ginseng using the plate coloration method. Furthermore, JE0512 was used for the production of CK from ginseng extracts (GE) in solid-state fermentation (SSF) using 20 g corn bran as substrate, 4 g GE, and 20% inoculation volume, and the results showed that the highest CK content was 29.13 mg/g. After combining S. hirsutum JE0512 with cellulase (Aspergillus niger), the MGs (F2, CK, and PPT) content increased from 1.66 to 130.79 mg/g in the final products. Our results indicate that the Stereum genus has the potential to biotransform GE into CK and the combination of S. hirsutum JE0512 and cellulase could pave the way for the production of MGs from GE.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianli Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Highly regioselective hydrolysis of the glycosidic bonds in ginsenosides catalyzed by snailase. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Yue H, Liu C, Han Y, Zhuang Z, Yu H, Wang Z, Sun C, Im WT, Jin F. Preparation of minor ginsenosides C-K and C-Mx from protopanaxadiol ginsenosides of American ginseng leaves by a enzyme from Aspergillus sp.agl-84 strain. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Sun Y, Geng J, Wang D. Cardioprotective effects of Ginsenoside compound-Mc1 and Dendrobium Nobile Lindl against myocardial infarction in an aged rat model: Involvement of TLR4/NF-κB signaling pathway. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aging is the crucial co-morbidity that prevents the full cardioprotection against myocardial ischemia/reperfusion (I/R) injury. Combination therapy as a promising strategy may overcome this clinical problem. This study aimed to investigate the cardioprotective effects of Ginsenoside compound-Mc1 (GMc1) and Dendrobium Nobile Lindl (DNL) in myocardial I/R injury and explore the involvement of the TLR4/NF-κB signaling pathway in aged rats. In vivo I/R injury and myocardial infarction was established by temporary coronary ligation in 22–24 months’ old Sprague Dawley male rats. GMc1 (10 mg/kg) and DNL (80 mg/kg) were administered intraperitoneally for 4 weeks and orally for 14 days, respectively, before I/R injury. Infarct size was measured through triphenyl-tetrazolium-chloride staining. ELISA assay was conducted to quantify the levels of cardiotroponin, and myocardial content of TNF-α and glutathione. Western blotting was employed to detect the expression of TLR4/MyD88/NF-κB proteins. GMc1 and DNL significantly reduced the infarct size to a similar extent ( p < 0.05) but their combined effect was greater than individual ones ( p < 0.01). Combination therapy significantly restored the left ventricular end-diastolic and developed pressures at the end of reperfusion as compared with the untreated group ( p < 0.01). Although the GMc1 and DNL reduced the levels of inflammatory cytokine TNF-α and increased the contents of antioxidant glutathione significantly, their individual effects on the reduction of protein expression of TLR4/MyD88/NF-κB pathway were not consistent. However, their combination could significantly reduce all parameters of this inflammatory pathway as compared to untreated I/R rats ( p < 0.001). Therefore, the combined treatment with GMc1 and DNL increased the potency of each intervention in protecting the aged hearts against I/R injury. Reduction in the activity of the TLR4/MyD88/NF-κB signaling pathway and subsequent modulation of the activity of inflammatory cytokines and endogenous antioxidants play an important role in this cardioprotection.
Collapse
Affiliation(s)
- Yongle Sun
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Jing Geng
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Deyu Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| |
Collapse
|
29
|
Kim SA, Jeong EB, Oh DK. Complete Bioconversion of Protopanaxadiol-Type Ginsenosides to Compound K by Extracellular Enzymes from the Isolated Strain Aspergillus tubingensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:315-324. [PMID: 33372793 DOI: 10.1021/acs.jafc.0c07424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A compound K-producing fungus was isolated from meju (fermented soybean brick) and identified as the generally recognized as safe (GRAS) strain Aspergillus tubingensis. The extracellular enzymes obtained after the cultivation of 6 days in the medium with 20 g/L citrus pectin as an inducer showed the highest compound K-producing activity among the inducers tested. Under the optimized conditions of 0.05 mM MgSO4, 55 °C, pH 4.0, 13.4 mM protopanaxadiol (PPD)-type ginsenosides, and 11 mg/mL enzymes, the extracellular enzymes from A. tubingensis completely converted PPD-type ginsenosides in the ginseng extract to 13.4 mM (8.35 mg/mL) compound K after 20 h, with the highest concentration and productivity among the results reported so far. As far as we know, this is the first GRAS enzyme to completely convert all PPD-type ginsenosides to compound K.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun-Bi Jeong
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
30
|
Jeong EB, Kim SA, Shin KC, Oh DK. Biotransformation of Protopanaxadiol-Type Ginsenosides in Korean Ginseng Extract into Food-Available Compound K by an Extracellular Enzyme from Aspergillus niger. J Microbiol Biotechnol 2020; 30:1560-1567. [PMID: 32807754 PMCID: PMC9728230 DOI: 10.4014/jmb.2007.07003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Compound K (C-K) is one of the most pharmaceutically effective ginsenosides, but it is absent in natural ginseng. However, C-K can be obtained through the hydrolysis of protopanaxadiol-type ginsenosides (PPDGs) in natural ginseng. The aim of this study was to obtain the high concentration of food-available C-K using PPDGs in Korean ginseng extract by an extracellular enzyme from Aspergillus niger KACC 46495. A. niger was cultivated in the culture medium containing the inducer carboxymethyl cellulose (CMC) for 6 days. The extracellular enzyme extracted from A. niger was prepared from the culture broth by filtration, ammonium sulfate, and dialysis. The extracellular enzyme was used for C-K production using PPDGs. The glycoside-hydrolyzing pathways for converting PPDGs into C-K by the extracellular enzyme were Rb1 → Rd → F2 → C-K, Rb2 → Rd or compound O → F2 or compound Y → C-K, and Rc → Rd or compound Mc1 → F2 or compound Mc → C-K. The extracellular enzyme from A. niger at 8.0 mg/ml, which was obtained by the induction of CMC during the cultivation, converted 6.0 mg/ml (5.6 mM) PPDGs in Korean ginseng extract into 2.8 mg/ml (4.5 mM) food-available C-K in 9 h, with a productivity of 313 mg/l/h and a molar conversion of 80%. To the best of our knowledge, the productivity and concentration of C-K of the extracellular enzyme are the highest among those by crude enzymes from wild-type microorganisms.
Collapse
Affiliation(s)
- Eun-Bi Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se-A Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-454-3118 Fax: +82-2-444-5518 E-mail:
| |
Collapse
|
31
|
Yu H, Han Y, Liu C, Wu X, Sun C, Xu L, Jin F. Preparation of baicalein from baicalin using a baicalin-β-D-glucuronidase from Aspergillus niger b.48 strain. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Roh E, Hwang HJ, Kim JW, Hong SH, Kim JA, Lee YB, Choi KM, Baik SH, Yoo HJ. Ginsenoside Mc1 improves liver steatosis and insulin resistance by attenuating ER stress. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112927. [PMID: 32387461 DOI: 10.1016/j.jep.2020.112927] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginsenoside, a major pharmacologically active ingredient in ginseng, has been known to exhibit beneficial properties such as antioxidant and anti-inflammatory effects. Ginsenoside compound Mc1 is one of the newly identified de-glycosylated ginsenosides. Endoplasmic reticulum (ER) stress has implicated in the development of non-alcoholic fatty liver disease (NAFLD) through apoptosis and lipid accumulation. AIM OF THE STUDY We aimed to examine the protective effects of Mc1 treatment on ER stress-induced cell death and impaired insulin signaling in HepG2 human hepatoblastoma cells and ER stress-induced liver steatosis and insulin resistance in a diet-induced obesity (DIO) mouse model. MATERIALS AND METHODS HepG2 cells were treated with palmitate and Mc1 to evaluate the effects of Mc1 on ER stress-induced damage. C57BL/6 mice were fed with a high-fat diet (HFD) for 4 weeks and received an intraperitoneal injection of either vehicle or Mc1 (10 mg/kg/day). The control mice were fed with a chow diet and injected with vehicle for the same period. ER stress, cell death, and degree of steatosis were evaluated in the liver tissues of mice. The effect of Mc1 treatment on glucose metabolism was also determined. RESULTS Mc1 co-treatment reduced the palmitate-induced ER stress and death of HepG2 cells. The palmitate-induced insulin resistance improved after Mc1 co-treatment. Consistent with the in vitro data, chronic Mc1 supplementation reduced ER stress and apoptotic damage in the liver of obese mice. Mc1 treatment ameliorated glucose intolerance and insulin resistance through the suppression of c-Jun N-terminal kinase (JNK) phosphorylation. In addition, Mc1 treatment reduced obesity-induced lipogenesis and prevented fat accumulation in the liver of DIO mice. CONCLUSIONS Mc1 exerted protective effects against ER stress-induced apoptotic damage, insulin resistance and lipogenesis in palmitate-treated hepatocytes and in the liver of DIO mice. Therefore, Mc1 supplementation could be a potential therapeutic strategy to prevent NAFLD in patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| | - Hwan-Jin Hwang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| | - Joo Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| | - So-Hyeon Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| | - Jung A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
33
|
SGL 121 Attenuates Nonalcoholic Fatty Liver Disease through Adjusting Lipid Metabolism Through AMPK Signaling Pathway. Int J Mol Sci 2020; 21:ijms21124534. [PMID: 32630596 PMCID: PMC7352188 DOI: 10.3390/ijms21124534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
A ginsenoside F2-enhanced mixture (SGL 121) increases the content of ginsenoside F2 by biotransformation. In the present study, we investigated the effect of SGL 121 on nonalcoholic fatty liver disease (NAFLD) in vitro and in vivo. High-fat, high-carbohydrate-diet (HFHC)-fed mice were administered SGL 121 for 12 weeks to assess its effect on improving NAFLD. In HepG2 cells, SGL 121 acted as an antioxidant, a hepatoprotectant, and had an anti-lipogenic effect. In NAFLD mice, SGL 121 significantly improved body fat mass; levels of hepatic triglyceride (TG), hepatic malondialdehyde (MDA), serum total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL); and activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In HepG2 cells, induced by oxidative stress, SGL 121 increased cytoprotection, inhibited reactive oxygen species (ROS) production, and increased antioxidant enzyme activity. SGL 121 activated the Nrf2/HO-1 signaling pathway and improved lipid accumulation induced by free fatty acids (FFA). Sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) expression was significantly reduced in NAFLD-induced liver and HepG2 cells treated with SGL 121. Moreover, SGL 121 activated adenosine monophosphate-activated protein kinase (AMPK), which plays an important role in the regulation of lipid metabolism. The effect of SGL 121 on the improvement of NAFLD seems to be related to its antioxidant effects and activation of AMPK. In conclusion, SGL 121 can be potentially used for the treatment of NAFLD.
Collapse
|
34
|
Han X, Li W, Duan Z, Ma X, Fan D. Biocatalytic production of compound K in a deep eutectic solvent based on choline chloride using a substrate fed-batch strategy. BIORESOURCE TECHNOLOGY 2020; 305:123039. [PMID: 32114302 DOI: 10.1016/j.biortech.2020.123039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
This study involved the development of a β-glucosidase-catalyzed hydrolysis method based on a deep eutectic solvent (DES), choline chloride-ethylene glycol 2:1, and continuous feed technique to overcome the difficulty of high-concentration ginsenoside hydrolysis. A productivity of 142 mg·L-1·h-1 was achieved with the following conditions: 30 vol% DES, pH 5.0, 55 °C, and substrate concentration of 12 mM. In the presence of DES, the affinity and catalytic efficiency of β-glucosidase to Rd increased by 49 and 64%, respectively, which promoted the continuation of hydrolysis. Moreover, conformation of β-glucosidase was mostly retained, as confirmed by spectral information. Through a combination of a substrate fed-batch technique to reduce the inhibitory effects of substrates and products, the CK conversion rate increased by 44% compared to traditional single-batch in pure buffer. This report describes a practical method for the continuous conversion of natural compounds through biological processes and solvent engineering.
Collapse
Affiliation(s)
- Xin Han
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Weina Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Xi'an Giant Biogene Co., Ltd, Xi'an, Shaanxi 710065, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
35
|
Kim AR, Kim SW, Lee BW, Kim KH, Kim WH, Seok H, Lee JH, Um J, Yim SH, Ahn Y, Jin SW, Jung DW, Oh WK, Williams DR. Screening ginseng saponins in progenitor cells identifies 20(R)-ginsenoside Rh 2 as an enhancer of skeletal and cardiac muscle regeneration. Sci Rep 2020; 10:4967. [PMID: 32188912 PMCID: PMC7080739 DOI: 10.1038/s41598-020-61491-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/24/2020] [Indexed: 01/18/2023] Open
Abstract
Aging is associated with increased prevalence of skeletal and cardiac muscle disorders, such as sarcopenia and cardiac infarction. In this study, we constructed a compendium of purified ginsenoside compounds from Panax ginseng C.A. Meyer, which is a traditional Korean medicinal plant used to treat for muscle weakness. Skeletal muscle progenitor cell-based screening identified three compounds that enhance cell viability, of which 20(R)-ginsenoside Rh2 showed the most robust response. 20(R)-ginsenoside Rh2 increased viability in myoblasts and cardiomyocytes, but not fibroblasts or disease-related cells. The cellular mechanism was identified as downregulation of cyclin-dependent kinase inhibitor 1B (p27Kip1) via upregulation of Akt1/PKB phosphorylation at serine 473, with the orientation of the 20 carbon epimer being crucially important for biological activity. In zebrafish and mammalian models, 20(R)-ginsenoside Rh2 enhanced muscle cell proliferation and accelerated recovery from degeneration. Thus, we have identified 20(R)-ginsenoside Rh2 as a p27Kip1 inhibitor that may be developed as a natural therapeutic for muscle degeneration.
Collapse
Affiliation(s)
- Ah Ra Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
- Developmental Genetics Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Seon-Wook Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Ba-Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kuk-Hwa Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Hong Seok
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Ji-Hyung Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - JungIn Um
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
| | - Soon-Ho Yim
- Department of Pharmaceutical Engineering, Dongshin University, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Department of Cardiology, Chonnam National University Hospital/Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Suk-Won Jin
- Developmental Genetics Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea.
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, 61005, Republic of Korea.
| |
Collapse
|
36
|
Ma Z, Mi Y, Han X, Li H, Tian M, Duan Z, Fan D, Ma P. Transformation of ginsenoside via deep eutectic solvents based on choline chloride as an enzymatic reaction medium. Bioprocess Biosyst Eng 2020; 43:1195-1208. [DOI: 10.1007/s00449-020-02314-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023]
|
37
|
Li WN, Fan DD. Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives. Appl Microbiol Biotechnol 2020; 104:3807-3823. [DOI: 10.1007/s00253-020-10455-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
|
38
|
Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism. J Ginseng Res 2019; 44:664-671. [PMID: 32617047 PMCID: PMC7322759 DOI: 10.1016/j.jgr.2019.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)–induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress–related cardiac diseases.
Collapse
|
39
|
Wang YS, Zhu H, Li H, Li Y, Zhao B, Jin YH. Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2. J Ginseng Res 2019; 43:452-459. [PMID: 31308817 PMCID: PMC6606818 DOI: 10.1016/j.jgr.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B (NF-κB) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. METHODS Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for NF-кB, immunofluorescence imaging for the subcellular localization of Annexin A2 and NF-кB p50 subunit, coimmunoprecipitation of Annexin A2 and NF-кB p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. RESULTS Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and NF-кB p50 subunit and their nuclear colocalization, which attenuated the activation of NF-кB and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. CONCLUSION This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.
Collapse
Affiliation(s)
- Yu-Shi Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Hongyan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| |
Collapse
|
40
|
Liu XY, Xiao YK, Hwang E, Haeng JJ, Yi TH. Antiphotoaging and Antimelanogenesis Properties of Ginsenoside C-Y, a Ginsenoside Rb2 Metabolite from American Ginseng PDD-ginsenoside. Photochem Photobiol 2019; 95:1412-1423. [PMID: 31074886 DOI: 10.1111/php.13116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/03/2019] [Indexed: 12/26/2022]
Abstract
Ginsenosides are compounds responsible for the primary pharmacological effects of American ginseng. Compound-Y (C-Y) is a minor ginsenoside and a metabolite of Panax ginseng. In this study, we investigated the protective effect of ginsenoside UVB-irradiated NHDFs and its potential for use as an antihyperpigmentation agent through ginsenoside C-Y as a functional food and cosmetic ingredient. Ginsenoside C-Y is a natural antioxidant isolated from the American ginseng PDD-ginsenoside. Our data showed that ginsenoside C-Y block UVB-exposed ROS, restrict MMP-1 production and promote procollagen type I synthesis. Interestingly, ginsenoside C-Y suppresses UVB-exposed VEGF, and TNF-α secretion, could be related with NFAT signal path. Ginsenoside C-Y has exhibited photoaging effects by increasing TGF-β1 level, fortifying Nrf2 nuclear translocation and restricting AP-1 and MAPK phosphorylation. Assessment of the melanogenic response indicated that ginsenoside C-Y inhibited melanin secretion and tyrosinase activity and decreased melanin content in Melan-a and zebrafish embryos. These results suggest that ginsenoside C-Y can be used as a potential botanical agent to protect premature skin from UVB-induced photodamage and prevent skin hyperpigmentation.
Collapse
Affiliation(s)
- Xiao-Yi Liu
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Yong-Kun Xiao
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Eunson Hwang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | | | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
41
|
Xiao Y, Liu C, Im WT, Chen S, Zuo K, Yu H, Song J, Xu L, Yi TH, Jin F. Dynamic changes of multi-notoginseng stem-leaf ginsenosides in reaction with ginsenosidase type-I. J Ginseng Res 2019; 43:186-195. [PMID: 30976159 PMCID: PMC6437641 DOI: 10.1016/j.jgr.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/05/2017] [Accepted: 10/11/2017] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Notoginseng stem-leaf (NGL) ginsenosides have not been well used. To improve their utilization, the biotransformation of NGL ginsenosides was studied using ginsenosidase type-I from Aspergillus niger g.848. METHODS NGL ginsenosides were reacted with a crude enzyme in the RAT-5D bioreactor, and the dynamic changes of multi-ginsenosides of NGL were recognized by HPLC. The reaction products were separated using a silica gel column and identified by HPLC and NMR. RESULTS All the NGL ginsenosides are protopanaxadiol-type ginsenosides; the main ginsenoside contents are 27.1% Rb3, 15.7% C-Mx1, 13.8% Rc, 11.1% Fc, 7.10% Fa, 6.44% C-Mc, 5.08% Rb2, and 4.31% Rb1. In the reaction of NGL ginsenosides with crude enzyme, the main reaction of Rb3 and C-Mx1 occurred through Rb3→C-Mx1→C-Mx; when reacted for 1 h, Rb3 decreased from 27.1% to 9.82 %, C-Mx1 increased from 15.5% to 32.3%, C-Mx was produced to 6.46%, finally into C-Mx and a small amount of C-K. When reacted for 1.5 h, all the Rb1, Rd, and Gyp17 were completely reacted, and the reaction intermediate F2 was produced to 8.25%, finally into C-K. The main reaction of Rc (13.8%) occurred through Rc→C-Mc1→C-Mc→C-K. The enzyme barely hydrolyzed the terminal xyloside on 3-O- or 20-O-sugar-moiety of the substrate; therefore, 9.43 g C-Mx, 6.85 g C-K, 4.50 g R7, and 4.71 g Fc (hardly separating from the substrate) were obtained from 50 g NGL ginsenosides by the crude enzyme reaction. CONCLUSION Four monomer ginsenosides were successfully produced and separated from NGL ginsenosides by the enzyme reaction.
Collapse
Affiliation(s)
- Yongkun Xiao
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Global Campus, Yongin, Republic of Korea
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
- Tianjin Ginkingsen Health Co., Ltd., Tianjin, China
| | - Chunying Liu
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Wan-Teak Im
- Department of Biotechnology, Hankyoung National University, Anseong, Republic of Korea
| | - Shuang Chen
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Kangze Zuo
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Hongshan Yu
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Jianguo Song
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Longquan Xu
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Tea-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Global Campus, Yongin, Republic of Korea
| | - Fengxie Jin
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
42
|
Nan B, Liu YL, You Y, Li WC, Fan JJ, Wang YS, Piao CH, Hu DL, Lu GJ, Wang YH. Protective effects of enhanced minor ginsenosides in Lactobacillus fermentum KP-3-fermented ginseng in mice fed a high fat diet. Food Funct 2019; 9:6020-6028. [PMID: 30397690 DOI: 10.1039/c8fo01056k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lactobacillus fermentum KP-3 was isolated from Korean pickle and used to ferment ginseng. The changes in the minor ginsenosides in the fermented ginseng were analyzed and the material was evaluated in high fat diet-fed mice. Total ginsenosides increased from 0.746 mg g-1 to 0.939 mg g-1 after fermentation, and the levels of minor ginsenosides (Rg2, Rg3, Rh1, Rh2, F2, and Ro) increased from 0.186 mg g-1 to 0.704 mg g-1. In an animal study, the serum TC and LDL levels in the HFD group were significantly higher than those of the control group. Compared with the HFD group, the probiotic-fermented ginseng significantly decreased the serum TC and LDL levels. In addition, the serum and liver ALT and AST levels were dramatically increased in the HFD group, but these increases were significantly inhibited by treatment with the probiotic-fermented ginseng. Furthermore, fermented ginseng reduced high fat diet-induced liver lipid accumulation. Overall, fermentation with L. fermentum KP-3 enhanced minor ginsenosides in ginseng and this probiotic-fermented ginseng ameliorated hyperlipidemia and liver injury induced by a high fat diet.
Collapse
Affiliation(s)
- Bo Nan
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dietary enzyme-treated Hibiscus syriacus L. protects skin against chronic UVB-induced photoaging via enhancement of skin hydration and collagen synthesis. Arch Biochem Biophys 2019; 662:190-200. [DOI: 10.1016/j.abb.2018.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
|
44
|
Gao Y, Liu J, Ji Q, Zhao Y, Zang P, He Z, Zhu H, Zhang L. Anti-tumor activity and related mechanism study of Bacillus Polymyxa transformed Panax ginseng C. A. Mey. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
45
|
Yu H, Wang Y, Liu C, Yang J, Xu L, Li G, Song J, Jin F. Conversion of Ginsenoside Rb1 into Six Types of Highly Bioactive Ginsenoside Rg3 and Its Derivatives by FeCl 3 Catalysis. Chem Pharm Bull (Tokyo) 2018; 66:901-906. [DOI: 10.1248/cpb.c18-00426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hongshan Yu
- College of Biotechnology, Dalian Polytechnic University
| | - Yu Wang
- College of Biotechnology, Dalian Polytechnic University
| | - Chunying Liu
- School of Life Science and Biotechnology, Liaoning Marine Microbial Engineering and Technology Center, Dalian University
| | - Jiamei Yang
- College of Biotechnology, Dalian Polytechnic University
| | - Longquan Xu
- College of Biotechnology, Dalian Polytechnic University
| | - Guanheng Li
- College of Biotechnology, Dalian Polytechnic University
| | - Jianguo Song
- College of Biotechnology, Dalian Polytechnic University
| | - Fengxie Jin
- College of Biotechnology, Dalian Polytechnic University
| |
Collapse
|
46
|
High efficiency production of ginsenoside compound K by catalyzing ginsenoside Rb1 using snailase. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Liu XY, Hwang E, Park B, Ngo HTT, Xiao YK, Yi TH. Ginsenoside C-Mx Isolated from Notoginseng Stem-leaf Ginsenosides Attenuates Ultraviolet B-mediated Photoaging in Human Dermal Fibroblasts. Photochem Photobiol 2018; 94:1040-1048. [PMID: 29779217 DOI: 10.1111/php.12940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022]
Abstract
Notoginseng is a traditional herbal medicine widely used for medicinal therapy in Asia, as it contains numerous ginsenosides with pharmacological effects. In this study, we submitted Notoginseng stem-leaf (NGL) ginsenosides to an enzyme to create a reaction with the monomer products of ginsenoside C-Mx and then investigated the ability of ginsenoside C-Mx to protect the skin against ultraviolet B-induced injury in normal human dermal fibroblasts (NHDFs). Ginsenoside C-Mx alleviated UVB-induced intracellular reactive oxygen species (ROS), MMP-1 and IL-6 expression while accelerating TGF-β and procollagen type I secretion. In addition, ginsenoside C-Mx reversed UVB-induced procollagen type I reduction by regulating the TGF-β/Smad signaling pathway. Moreover, ginsenoside C-Mx inhibited activation of AP-1 transcription factor, an inducer of MMPs. Ginsenoside C-Mx displayed an outstanding antioxidant capacity, increasing expression of cytoprotective antioxidants such as HO-1 and NQO-1 expression by enhancing the nuclear accumulation of Nrf2. Interestingly, application of ginsenoside C-Mx treatment (1, 10, 20 μm) significantly diminished UVB-induced suppressed NF-κB expression, decreasing the over-released inflammatory cytokines. Taken together, our findings indicated that ginsenoside C-Mx may act as a promising natural cosmetic ingredient for prevention and treatment of UVB-induced skin damage.
Collapse
Affiliation(s)
- Xiao-Yi Liu
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Eunson Hwang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Bom Park
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Hien T T Ngo
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Yong-Kun Xiao
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
48
|
Oh J, Kim JS. Compound K derived from ginseng: neuroprotection and cognitive improvement. Food Funct 2018; 7:4506-4515. [PMID: 27801453 DOI: 10.1039/c6fo01077f] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The evidence for the neuroprotective and cognitive effects of compound K, a metabolite biotransformed from ginsenosides Rb1, Rb2, and Rc, is reviewed here. Compound K is more bioavailable than other ginsenosides and therefore has greater potential to exert bioactive functions in the body. Although the capability of compound K to cross the blood-brain barrier is not clear, it has been reported to have neuroprotective and cognition enhancing effects and decrease inflammatory biomarkers in animal models of Alzheimer's disease and cerebral ischemia. The plethora of potential health benefits of compound K warrants further research to evaluate its biochemical mechanisms and its ability to protect healthy populations from neurodegenerative diseases.
Collapse
Affiliation(s)
- Jisun Oh
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
49
|
Liu F, Ma N, Xia FB, Li P, He C, Wu Z, Wan JB. Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography. J Ginseng Res 2017; 43:105-115. [PMID: 30662299 PMCID: PMC6323246 DOI: 10.1016/j.jgr.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/14/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022] Open
Abstract
Background Ginsenosides with less sugar moieties may exhibit the better adsorptive capacity and more pharmacological activities. Methods An efficient method for the separation of four minor saponins, including gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, from Panax notoginseng leaves (PNL) was established using biotransformation, macroporous resins, and subsequent preparative high-performance liquid chromatography. Results The dried PNL powder was immersed in the distilled water at 50°C for 30 min for converting the major saponins, ginsenosides Rb1, Rc, Rb2, and Rb3, to minor saponins, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, respectively, by the enzymes present in PNL. The adsorption characteristics of these minor saponins on five types of macroporous resins, D-101, DA-201, DM-301, X-5, and S-8, were evaluated and compared. Among them, D-101 was selected due to the best adsorption and desorption properties. Under the optimized conditions, the fraction containing the four target saponins was separated by D-101 resin. Subsequently, the target minor saponins were individually separated and purified by preparative high-performance liquid chromatography with a reversed-phase column. Conclusion Our study provides a simple and efficient method for the preparation of these four minor saponins from PNL, which will be potential for industrial applications.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ni Ma
- Department of Product Development, Wenshan Sanqi Institute of Science and Technology, Wenshan University, Wenshan, Yunnan, China
| | - Fang-Bo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhenqiang Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, China
| |
Collapse
|
50
|
Jung J, Lee NK, Paik HD. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Sci Biotechnol 2017; 26:1155-1168. [PMID: 30263648 PMCID: PMC6049797 DOI: 10.1007/s10068-017-0159-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Ginseng and red ginseng are popular as functional foods in Asian countries such as Korea, Japan, and China. They possess various pharmacologic effects, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, and anti-viral activities. Ginsenosides are a class of pharmacologically active components in ginseng and red ginseng. Major ginsenosides are converted to minor ginsenosides, which have better bioavailability and cellular uptake, by microorganisms and enzymes. Studies have shown that ginseng and red ginseng can affect the physicochemical and sensory properties, ginsenosides content, and functional properties of dairy products. In addition, lactic acid bacteria in dairy products can convert into minor ginsenosides and ginseng and red ginseng improve functionality of products. This review will discuss the characteristics of ginseng and red ginseng, and their bioconversion, functionality, and application in dairy products.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|