1
|
Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: From molecular insights to therapeutic prospects. Biomed Pharmacother 2024; 176:116833. [PMID: 38843589 DOI: 10.1016/j.biopha.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Lung cancer poses a significant challenge regarding molecular heterogeneity, as it encompasses a wide range of molecular alterations and cancer-related pathways. Recent discoveries made it feasible to thoroughly investigate the molecular mechanisms underlying lung cancer, giving rise to the possibility of novel therapeutic strategies relying on molecularly targeted drugs. In this context, forkhead box O3 (FOXO3), a member of forkhead transcription factors, has emerged as a crucial protein commonly dysregulated in cancer cells. The regulation of the FOXO3 in reacting to external stimuli plays a key role in maintaining cellular homeostasis as a component of the molecular machinery that determines whether cells will survive or dies. Indeed, various extrinsic cues regulate FOXO3, affecting its subcellular location and transcriptional activity. These regulations are mediated by diverse signaling pathways, non-coding RNAs (ncRNAs), and protein interactions that eventually drive post-transcriptional modification of FOXO3. Nevertheless, while it is no doubt that FOXO3 is implicated in numerous aspects of lung cancer, it is unclear whether they act as tumor suppressors, promotors, or both based on the situation. However, FOXO3 serves as an intriguing possible target in lung cancer therapeutics while widely used anti-cancer chemo drugs can regulate it. In this review, we describe a summary of recent findings on molecular mechanisms of FOXO3 to clarify that targeting its activity might hold promise in lung cancer treatment.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Valizadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Coelho PS, Sousa AJO, Rodrigues ISR, Nascimento HS, Pantoja LC, Miranda MS. Preimplantation development of in vitro-produced bovine embryos treated with hydroxychloroquine. Toxicol In Vitro 2024; 98:105847. [PMID: 38759936 DOI: 10.1016/j.tiv.2024.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Hydroxychloroquine (HCQ) is a safe antimalarial drug but its overdosage or inappropriate use, such as during the pandemic, may cause adverse effects once this drug is considered a potent inhibitor of autophagy. Information about HCQ's effects on the reproductive field, including gametes and initial embryos, is limited. In this study, we evaluated the effect of HCQ (1, 6, 12, and 24 μM) on pre-implantation embryo development, autophagy, and apoptosis of bovine embryos produced in vitro. A dose-response experiment showed a reduction (p < 0.05) in cleavage only at the highest concentration. Blastocyst rate was gradually reduced (p < 0.05) with the increase of HCQ dosage starting at 6 μM, with no embryo formation occurring at 24 μM. Further analysis showed that embryos treated with 12 μM of HCQ had a higher (p < 0.05) accumulation of acidic autophagic vesicles on Days 5 and 7 of development and a higher (p < 0.01) apoptotic index on Day 7. To our knowledge, this is the first study to evaluate the effects of HCQ on embryo pre-implantation development in mammals. The results contribute with more information related to the study of autophagy in embryology as well as add some discussion on HCQ toxicology and its effects on reproductive cells.
Collapse
Affiliation(s)
- P S Coelho
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Veterinary Medicine Institute, Federal University of Pará, City of Castanhal 68741-740, Pará State, Brazil
| | - A J O Sousa
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Veterinary Medicine Institute, Federal University of Pará, City of Castanhal 68741-740, Pará State, Brazil
| | - I S R Rodrigues
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Veterinary Medicine Institute, Federal University of Pará, City of Castanhal 68741-740, Pará State, Brazil
| | - H S Nascimento
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Veterinary Medicine Institute, Federal University of Pará, City of Castanhal 68741-740, Pará State, Brazil
| | - L C Pantoja
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Veterinary Medicine Institute, Federal University of Pará, City of Castanhal 68741-740, Pará State, Brazil
| | - M S Miranda
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Veterinary Medicine Institute, Federal University of Pará, City of Castanhal 68741-740, Pará State, Brazil.
| |
Collapse
|
3
|
Feng L, Liu X, Sun K, Sun Y, Wu W, Chen C, Jin X, Wan X. Ginsenoside Rb1 Inhibits the Proliferation of Lung Cancer Cells by Inducing the Mitochondrial-mediated Apoptosis Pathway. Anticancer Agents Med Chem 2024; 24:928-941. [PMID: 38465430 DOI: 10.2174/0118715206299212240304142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Lung cancer is one of the more common malignant tumors posing a great threat to human life, and it is very urgent to find safe and effective therapeutic drugs. The antitumor effect of ginsenosides has been reported to be a treatment with a strong effect and a high safety profile. OBJECTIVE This paper aimed to investigate the inhibitory effect of ginsenoside Rb1 on 95D and NCI-H460 lung cancer cells and its pathway to promote apoptosis. METHODS We performed the CCK-8 assay, fluorescence staining assay, flow cytometry, scratch healing assay, and Transwell assay to detect the effects of different concentrations of ginsenoside Rb1 on the antitumor activity of 95D and NCI-H460 cells and Western Blot detected the mechanism of antitumor effect. RESULTS Ginsenoside Rb1 treatment significantly increased the inhibition and apoptosis rates of 95D and NCIH460 cells and inhibited the cell cycle transition from S phase to G2/M. Rb1 induces apoptosis by altering the levels of P53, Bax, Cyto-c, Caspase-8, Caspase-3, Cleaved Caspase-3, Bcl-2, MMP-2, and MMP-9 proteins and activating the external apoptotic pathway. CONCLUSION Ginsenoside Rb1 inhibits proliferation and migration and induces apoptosis of 95D and NCI-H460 lung cancer cells by regulating the mitochondrial apoptotic pathway to achieve antitumor activity.
Collapse
Affiliation(s)
- Lin Feng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinze Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Kaijing Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying Sun
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xilin Wan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
4
|
Wang L, Zhang Y, Song Z, Liu Q, Fan D, Song X. Ginsenosides: a potential natural medicine to protect the lungs from lung cancer and inflammatory lung disease. Food Funct 2023; 14:9137-9166. [PMID: 37801293 DOI: 10.1039/d3fo02482b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Lung cancer is the malignancy with the highest morbidity and mortality. Additionally, pulmonary inflammatory diseases, such as pneumonia, acute lung injury, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF), also have high mortality rates and can promote the development and progression of lung cancer. Unfortunately, available treatments for them are limited, so it is critical to search for effective drugs and treatment strategies to protect the lungs. Ginsenosides, the main active components of ginseng, have been shown to have anti-cancer and anti-inflammatory activities. In this paper, we focus on the beneficial effects of ginsenosides on lung diseases and their molecular mechanisms. Firstly, the molecular mechanism of ginsenosides against lung cancer was summarized in detail, mainly from the points of view of proliferation, apoptosis, autophagy, angiogenesis, metastasis, drug resistance and immunity. In in vivo and in vitro lung cancer models, ginsenosides Rg3, Rh2 and CK were reported to have strong anti-lung cancer effects. Then, in the models of pneumonia and acute lung injury, the protective effect of Rb1 was particularly remarkable, followed by Rg3 and Rg1, and its molecular mechanism was mainly associated with targeting NF-κB, Nrf2, MAPK and PI3K/Akt pathways to alleviate inflammation, oxidative stress and apoptosis. Additionally, ginsenosides may also have a potential health-promoting effect in the improvement of COPD, asthma and PF. Furthermore, to overcome the low bioavailability of CK and Rh2, the development of nanoparticles, micelles, liposomes and other nanomedicine delivery systems can significantly improve the efficacy of targeted lung cancer treatment. To conclude, ginsenosides can be used as both anti-lung cancer and lung protective agents or adjuvants and have great potential for future clinical applications.
Collapse
Affiliation(s)
- Lina Wang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yanxin Zhang
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Zhimin Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Biotechnology & Biomedicine Research Institute, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoping Song
- Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
5
|
How ginseng regulates autophagy: Insights from multistep process. Biomed Pharmacother 2023; 158:114139. [PMID: 36580724 DOI: 10.1016/j.biopha.2022.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although autophagy is a recognized contributor to the pathogenesis of human diseases, chloroquine and hydroxychloroquine are the only two FDA-approved autophagy inhibitors to date. Emerging evidence has revealed the potential therapeutic benefits of various extracts and active compounds isolated from ginseng, especially ginsenosides and their derivatives, by mediating autophagy. Mechanistically, active components from ginseng mediate key regulators in the multistep processes of autophagy, namely, initiation, autophagosome biogenesis and cargo degradation. AIM OF REVIEW To date, a review that systematically described the relationship between ginseng and autophagy is still lacking. Breakthroughs in finding the key players in ginseng-autophagy regulation will be a promising research area, and will provide positive insights into the development of new drugs based on ginseng and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Here, we comprehensively summarized the critical roles of ginseng-regulated autophagy in treating diseases, including cancers, neurological disorders, cardiovascular diseases, inflammation, and neurotoxicity. The dual effects of the autophagy response in certain diseases are worthy of note; thus, we highlight the complex impacts of both ginseng-induced and ginseng-inhibited autophagy. Moreover, autophagy and apoptosis are controlled by multiple common upstream signals, cross-regulate each other and affect certain diseases, especially cancers. Therefore, this review also discusses the cross-signal transduction pathways underlying the molecular mechanisms and interaction between ginseng-regulated autophagy and apoptosis.
Collapse
|
6
|
Recent advances in ginsenosides against respiratory diseases: Therapeutic targets and potential mechanisms. Biomed Pharmacother 2023; 158:114096. [PMID: 36502752 DOI: 10.1016/j.biopha.2022.114096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-β/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.
Collapse
|
7
|
Xie W, Zhu T, Zhang S, Sun X. Protective effects of Gypenoside XVII against cerebral ischemia/reperfusion injury via SIRT1-FOXO3A- and Hif1a-BNIP3-mediated mitochondrial autophagy. J Transl Med 2022; 20:622. [PMID: 36572901 PMCID: PMC9793669 DOI: 10.1186/s12967-022-03830-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mitochondrial autophagy maintains mitochondrial function and cellular homeostasis and plays a critical role in the pathological process of cerebral ischemia/reperfusion injury (CIRI). Whether Gypenoside XVII (GP17) has regulatory effects on mitochondrial autophagy against CIRI remains unclear. The purpose of this study was to investigate the pharmacodynamic effects and mechanisms of GP17 on mitochondrial autophagy after CIRI. METHODS A rat middle cerebral artery occlusion/reperfusion (MCAO/R) model was used to assess the effects of GP17 against CIRI and to explore the underlying mechanisms. An oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was used to verify the ameliorative effects on mitochondrial damage and to probe the autophagy pathways involved in combating neural injuries. RESULTS The in vivo results showed that GP17 significantly improved mitochondrial metabolic functions and suppressed cerebral ischemic injury, possibly via the autophagy pathway. Further research revealed that GP17 maintains moderate activation of autophagy under ischemic and OGD conditions, producing neuroprotective effects against CIRI, and that the regulation of mitochondrial autophagy is associated with crosstalk between the SIRT1-FOXO3A and Hif1a-BNIP3 signalling pathway that is partially eliminated by the specific inhibitors AGK-7 and 2-ME. CONCLUSION Overall, this work offers new insights into the mechanisms by which GP17 protects against CIRI and highlights the potential of therapy with Notoginseng leaf triterpene compounds as a novel clinical strategy in humans.
Collapse
Affiliation(s)
- Weijie Xie
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
- Key Laboratory of Material Basis and Resource Utilization of Chinese Herbal Medicine, Beijing, 100193, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Efficacy evaluation of Traditional Chinese Medicine in intervention of disorders of glucose and Lipid Metabolism, Beijing, 100193, China
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Ting Zhu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
- Key Laboratory of Material Basis and Resource Utilization of Chinese Herbal Medicine, Beijing, 100193, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Efficacy evaluation of Traditional Chinese Medicine in intervention of disorders of glucose and Lipid Metabolism, Beijing, 100193, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Shuxia Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
- Key Laboratory of Material Basis and Resource Utilization of Chinese Herbal Medicine, Beijing, 100193, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Efficacy evaluation of Traditional Chinese Medicine in intervention of disorders of glucose and Lipid Metabolism, Beijing, 100193, China
| | - Xiaobo Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China.
- Key Laboratory of Material Basis and Resource Utilization of Chinese Herbal Medicine, Beijing, 100193, China.
- State Administration of Traditional Chinese Medicine Key Laboratory of Efficacy evaluation of Traditional Chinese Medicine in intervention of disorders of glucose and Lipid Metabolism, Beijing, 100193, China.
| |
Collapse
|
8
|
Li ZM, Shao ZJ, Qu D, Huo XH, Hua M, Chen JB, Lu YS, Sha JY, Li SS, Sun YS. Transformation Mechanism of Rare Ginsenosides in American Ginseng by Different Processing Methods and Antitumour Effects. Front Nutr 2022; 9:833859. [PMID: 35445056 PMCID: PMC9014012 DOI: 10.3389/fnut.2022.833859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanism by which ginsenosides from Panax quinquefolium L. transform into rare saponins by different processing methods and their antitumour effects have yet to be fully elucidated. Our study aimed to detect the effect of amino acids and processing methods on the conversion of ginsenosides in American ginseng to rare ginsenosides, using 8 monomeric ginsenosides as substrates to discuss the reaction pathway and mechanism. S180 tumour-bearing mice were established to study the antitumour effects of American ginseng total saponins (AGS-Q) or American ginseng total saponins after transformation (AGS-H) synergistic CTX. The results showed that aspartic acid was the best catalyst, and the thermal extraction method had the best effect. Under the optimal conditions, including a reaction temperature of 110°C, an aspartic acid concentration of 5%, a reaction time of 2.5 h and a liquid-solid ratio of 30 mL/g, the highest conversion of Rk1 and Rg5 was 6.58 ± 0.11 mg/g and 3.74 ± 0.05 mg/g, respectively. In the reaction pathway, the diol group saponins participated in the transformation process, and the triol group saponins basically did not participate in the transformation process. AGS-Q or AGS-H synergistic CTX, or AGS-H synergistic CTX/2 could significantly increase the tumour inhibition rate, spleen index and white blood cell count, had a significant upregulation effect on IL-2 and IL-10 immune cytokines; significantly restored the ratio of CD4+/CD8+; and significantly inhibited the level of CD4+CD25+. AGS-Q or AGS-H synergistic with CTX or CTX/2 can significantly upregulate the expression of Bax and cleaved-Caspase-3 and inhibit the expression of antiapoptotic protein Bcl-2. AGS synergistic CTX in the treatment of S180 tumour-bearing mice can improve the efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Zhi-Man Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zi-Jun Shao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Di Qu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao-Hui Huo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mei Hua
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jian-Bo Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yu-Shun Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ji-Yue Sha
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shan-Shan Li
- Institute of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
9
|
Hou X, Liu L, Wei L, Feng D, Lv M, Wang X, Yu X, Lu Z, Hou Z. A Novel Analysis Method for Simultaneous Determination of 31 Pesticides by High-Performance Liquid Chromatography-Tandem Mass Spectrometry in Ginseng. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:4208243. [PMID: 35223127 PMCID: PMC8866027 DOI: 10.1155/2022/4208243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/09/2023]
Abstract
Ginseng is a perennial herb with a long growth cycle and is known to easily accumulate pesticides during its growth process, seriously threatening people's health. Therefore, to ensure safe consumption, it is necessary to detect and monitor pesticide residues in ginseng. In this study, a novel analysis method was established for simultaneous determination of 31 pesticides in ginseng by high-performance liquid chromatography-mass spectrometry. Ginseng samples were extracted using acetonitrile, cleaned up by primary secondary amine (PSA) solid-phase extraction column eluted with acetonitrile-toluene, and then detected in multiple reaction mode (MRM). The calibration curves of target compounds were linear in the range of 0.005-1.0 mg/L, with correlation coefficients greater than 0.9921. The limits of detection of all the pesticides in ginseng were between 4.4×10-5 and 1.6 × 10-2 mg/kg. For fresh ginseng, the average recoveries ranged from 72.1 to 111.6%, and the relative standard deviations were 1.3-12.2%. For dry ginseng, the average recoveries were 74.3-108.3%, and the relative standard deviations were 0.9-14.9%. The residual concentrations of some pesticides in real samples were greater than the maximum residue limit (MRL) for European Union (EU). The method established here is rapid and simple with high sensitivity and good reproducibility, which is sensitive in the residue analysis of many pesticides in ginseng.
Collapse
Affiliation(s)
- Xingang Hou
- College of Plant Protection, Jilin Agricultural University, Jilin 130118, China
| | - Liangyue Liu
- College of Plant Protection, Jilin Agricultural University, Jilin 130118, China
- Safety Evaluation Center, Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Liping Wei
- College of Plant Protection, Jilin Agricultural University, Jilin 130118, China
| | - Da Feng
- College of Plant Protection, Jilin Agricultural University, Jilin 130118, China
- Safety Evaluation Center, Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Meng Lv
- College of Plant Protection, Jilin Agricultural University, Jilin 130118, China
| | - Xiumei Wang
- College of Plant Protection, Jilin Agricultural University, Jilin 130118, China
| | - Xiaolong Yu
- College of Plant Protection, Jilin Agricultural University, Jilin 130118, China
| | - Zhongbin Lu
- College of Plant Protection, Jilin Agricultural University, Jilin 130118, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Jilin 130118, China
| |
Collapse
|
10
|
Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2020; 45:199-210. [PMID: 33841000 PMCID: PMC8020288 DOI: 10.1016/j.jgr.2020.02.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Ginseng has been used as a traditional herb in Asian countries for thousands of years. It contains a large number of active ingredients including steroidal saponins, protopanaxadiols, and protopanaxatriols, collectively known as ginsenosides. In the last few decades, the antioxidative and anticancer effects of ginseng, in addition to its effects on improving immunity, energy and sexuality, and combating cardiovascular diseases, diabetes mellitus, and neurological diseases, have been studied in both basic and clinical research. Ginseng could be a valuable resource for future drug development; however, further higher quality evidence is required. Moreover, ginseng may have drug interactions although the available evidence suggests it is a relatively safe product. This article reviews the bioactive compounds, global distribution, and therapeutic potential of plants in the genus Panax.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Mohammad Faisal Haidere
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, 1000, Bangladesh
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong-Oog Lee
- Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University, Seoul, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| |
Collapse
|
11
|
Zhou X, Qian H, Zhang D, Zeng L. Inhibition of autophagy of Cajal mesenchymal cells by gavage of tong bian decoction based on the rat model of chronic transit constipation. Saudi J Biol Sci 2019; 27:623-628. [PMID: 32210680 PMCID: PMC6997910 DOI: 10.1016/j.sjbs.2019.11.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 01/30/2023] Open
Abstract
The objective of this research was to study the effect of tong bian decoction on colon transport function of interstitial cells of Cajal (ICC) in chronic transit constipation (CTC) and the inhibition of autophagy of ICC, so as to achieve the free movement of the bowels. In this research, the experimental rats were divided into normal group (NG) and model group (MG) by random method, and the rat model of CTC was constructed by subdivision circulatory increasing operation gavage method of rhubarb. After the successful establishment of the model, the rats were divided into normal group, MG, tong bian decoction gavage group, mosapride group and normal recovery group. Then, rats in the NG and the MG were killed at the same time, and rats in the tong bian decoction gavage group, mosapride group and normal recovery group were killed at the same time. In this study, the transport function of colon of rats in each group was detected by activated carbon method, and the number of fecal residues in the colon was observed. The mRNA expression of c-kit gene in intestinal tissue of rat was detected by real-time quantitative polymerase chain reaction (RT-qPCR). In addition, the changes of ICC in rats treated with different drugs were detected by immunohistochemical method. The results revealed that in the tong bian decoction gavage group, the water content in the feces of rats was remarkably increased (P < 0.05), the amount of residual feces in the colon was remarkably reduced (P < 0.01), the percentage of carbon powder propulsion in small intestine was remarkably increased (P < 0.01), the staining area of ICC positive cells in colon tissue was remarkably increased (P < 0.05), and the expression of c-kit mRNA was remarkably increased (P < 0.01). It can be concluded that the tong bian decoction could effectively enhance the colon transport function in the rat model of CTC. This laxative mechanism promotes the regeneration and repair ability of ICC by inhibiting the autophagy of ICC, and provides power for the large intestine, so as to achieve the free movement of the bowels. Therefore, the results of this study have certain guiding meaning for the treatment of CTC with traditional Chinese medicine.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Anorectal Surgery, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haihua Qian
- Department of Anorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210023, China
| | - Dan Zhang
- Department of Anorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210023, China
| | - Li Zeng
- Department of Anorectal Surgery, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
12
|
Xiao H, Xue Q, Zhang Q, Li C, Liu X, Liu J, Li H, Yang J. How Ginsenosides Trigger Apoptosis in Human Lung Adenocarcinoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1737-1754. [PMID: 31795742 DOI: 10.1142/s0192415x19500885] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Panax ginseng is a natural medicine that has been used globally for a long time. Moreover, several studies have reported the effective activity of ginseng in treating malignancies. Various agents containing ginseng were widely used as an antitumor treatment nowadays. Lung cancer is the most common fatal cancer in China, and lung adenocarcinoma is the most common histological type of non-small cell lung cancer (NSCLC). What's worse, many patients may have a failed response to conventional therapy including chemotherapy, radiotherapy, or molecule-targeted therapy due to drug resistance. Apoptosis is a highly ordered cellular suicidal process that plays an essential role in maintaining normal homeostasis. The pharmacological mechanism of many antineoplastic drugs involves triggering of apoptotic process. In several recent studies, ginsenosides are regarded as major active components of ginseng that have the potential to control lung cancer. Most of these results have proved that ginsenosides induce apoptosis in lung cancer cells through many different signaling pathways such as PI3K/Akt, NF-κB, EGFR, and so on. This study is aimed at reviewing the signaling pathways that underlie ginsenosides-triggered apoptotic process and encourage further studies to target promising agents against lung cancer treatment.
Collapse
Affiliation(s)
- Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qianfei Xue
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunyan Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xiaoqiu Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jing Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
13
|
Lee TK, Lee D, Lee SR, Ko YJ, Sung Kang K, Chung SJ, Kim KH. Sesquiterpenes from Curcuma zedoaria rhizomes and their cytotoxicity against human gastric cancer AGS cells. Bioorg Chem 2019; 87:117-122. [DOI: 10.1016/j.bioorg.2019.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
|
14
|
Wu T, Kwaku OR, Li HZ, Yang CR, Ge LJ, Xu M. Sense Ginsenosides From Ginsengs: Structure-Activity Relationship in Autophagy. Nat Prod Commun 2019; 14. [DOI: 10.1177/1934578x19858223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The term ginseng refers to the dried roots of several plants belonging to the genus Panax of the Araliaceae family. The 3 major commercial ginsengs are Panax notoginseng (Burk.) F.H. Chen (Notoginseng), P. ginseng C.A. Meyer (Ginseng), and P. quinquefolius L. (American ginseng), which have been used as herbal medicines. Over 18,000 papers on ginsengs have been published on the basis of their structural diversity and biological activities. Many reviews have summarized the phytochemistry, pharmacology, and clinical use of ginsengs, but the structure-activity relationship (SAR) of ginsenosides from ginsengs in autophagy is unavailable. Herein, we review the structural diversity of ginsenosides, especially the ones in notoginseng, and the SAR in autophagic activity is discussed in detail.
Collapse
Affiliation(s)
- Tao Wu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Osafo Raymond Kwaku
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Hai-Zhou Li
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, P.R. China
| | - Long-Jiao Ge
- Translational Lab of Primate Brain Research, Kunming Institute of Zoology, Chinese Academy of Sciences, P.R. China
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, P.R. China
| |
Collapse
|
15
|
Kim S, Yu JS, Lee JY, Choi SU, Lee J, Kim KH. Cytotoxic Withanolides from the Roots of Indian Ginseng ( Withania somnifera). JOURNAL OF NATURAL PRODUCTS 2019; 82:765-773. [PMID: 30776236 DOI: 10.1021/acs.jnatprod.8b00665] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Withania somnifera, commonly known as "Indian ginseng" or "ashwagandha", is popular as a functional food because of its diverse purported therapeutic efficacies including invigorating, improvement of cognitive ability, and stress release activities. Chemical investigation of the MeOH extract of W. somnifera roots combined with LC/MS-based analysis resulted in the identification of six new withanolides, withasilolides A-F (1-6), as well as seven known compounds (7-13). The structures of the new compounds were established by application of spectroscopic methods, including 1D and 2D NMR, HRMS, and ECD measurements. The cytotoxicity of the isolated compounds was evaluated against four human cancer cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15). Compounds 1, 2, 4, 6, and withanone (11) each showed cytotoxicity for one or more of the four cancer cell lines used.
Collapse
Affiliation(s)
- Sil Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Ji Young Lee
- Korea Research Institute of Chemical Technology , Deajeon 34114 , Republic of Korea
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology , Deajeon 34114 , Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
16
|
He Y, Su J, Lan B, Gao Y, Zhao J. Targeting off-target effects: endoplasmic reticulum stress and autophagy as effective strategies to enhance temozolomide treatment. Onco Targets Ther 2019; 12:1857-1865. [PMID: 30881038 PMCID: PMC6413742 DOI: 10.2147/ott.s194770] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive adult primary central nervous system tumor. Unfortunately, GBM is resistant to the classic chemotherapy drug, temozolomide (TMZ). As well as its classic DNA-targeting effects, the off-target effects of TMZ can have pro-survival or pro-death roles and regulate GBM chemoradiation sensitivity. Endoplasmic reticulum (ER) stress is one of the most common off-target effects. ER stress and its downstream induction of autophagy, apoptosis, and other events have important roles in regulating TMZ sensitivity. Autophagy is an evolutionarily conserved cellular homeostasis mechanism that is closely associated with ER stress-induced apoptosis. Under ER stress, autophagy cannot only remove misfolded/unfolded proteins and damaged organelles and degrade and inhibit apoptosis-related caspase activation to reduce cell damage, but may also promote apoptosis dependent on ER stress intensity. Although some protein interactions between autophagy and apoptosis and common upstream signaling pathways have been found, the underlying regulatory mechanisms are still not fully understood. This review summarizes the possible mechanisms underlying the current known off-target roles of ER stress and downstream autophagy in the regulation of cell fate and evaluates their role in TMZ treatment and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,
| | - Jing Su
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,
| | - Jingxia Zhao
- Experimental Teaching Center, School of Nursing, Jilin University, Changchun, Jilin, China,
| |
Collapse
|
17
|
Ahn SY, Jo MS, Lee D, Baek SE, Baek J, Yu JS, Jo J, Yun H, Kang KS, Yoo JE, Kim KH. Dual effects of isoflavonoids from Pueraria lobata roots on estrogenic activity and anti-proliferation of MCF-7 human breast carcinoma cells. Bioorg Chem 2019; 83:135-144. [DOI: 10.1016/j.bioorg.2018.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/30/2023]
|
18
|
Wang H, Wu B, Wang H. Alpha-hederin induces the apoptosis of oral cancer SCC-25 cells by regulating PI3K/Akt/mTOR signaling pathway. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Baek J, Lee TK, Song JH, Choi E, Ko HJ, Lee S, Choi SU, Lee S, Yoo SW, Kim SH, Kim KH. Lignan Glycosides and Flavonoid Glycosides from the Aerial Portion of Lespedeza cuneata and Their Biological Evaluations. Molecules 2018; 23:molecules23081920. [PMID: 30071639 PMCID: PMC6222362 DOI: 10.3390/molecules23081920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
Lespedeza cuneata (Fabaceae), known as Chinese bushclover, has been used in traditional medicines for the treatment of diseases including diabetes, hematuria, and insomnia. As part of a continuing search for bioactive constituents from Korean medicinal plant sources, phytochemical analysis of the aerial portion of L. cuneata led to the isolation of two new lignan glycosides (1,2) along with three known lignan glycosides (3–7) and nine known flavonoid glycosides (8–14). Numerous analysis techniques, including 1D and 2D NMR spectroscopy, CD spectroscopy, HR-MS, and chemical reactions, were utilized for structural elucidation of the new compounds (1,2). The isolated compounds were evaluated for their applicability in medicinal use using cell-based assays. Compounds 1 and 4–6 exhibited weak cytotoxicity against four human breast cancer cell lines (Bt549, MCF7, MDA-MB-231, and HCC70) (IC50 < 30.0 μM). However, none of the isolated compounds showed significant antiviral activity against PR8, HRV1B, or CVB3. In addition, compound 10 produced fewer lipid droplets in Oil Red O staining of mouse mesenchymal stem cells compared to the untreated negative control without altering the amount of alkaline phosphatase staining.
Collapse
Affiliation(s)
- Jiwon Baek
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Tae Kyoung Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Jae-Hyoung Song
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea.
| | | | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea.
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Korea.
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Seong Lee
- Dankook University Hospital Research Institute of Clinical Medicine, Cheonan 31116, Korea.
| | - Sang-Woo Yoo
- Research & Development Center, Natural Way Co., Ltd., Pocheon 11160, Korea.
| | | | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
20
|
Cytoprotective Effect of Epigallocatechin Gallate (EGCG)-5'-O-α-Glucopyranoside, a Novel EGCG Derivative. Int J Mol Sci 2018; 19:ijms19051466. [PMID: 29762498 PMCID: PMC5983637 DOI: 10.3390/ijms19051466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is a well-studied polyphenol with antioxidant effects. Since EGCG has low solubility and stability, many researchers have modified EGCG residues to ameliorate these problems. A novel EGCG derivative, EGCG-5′-O-α-glucopyranoside (EGCG-5′Glu), was synthesized, and its characteristics were investigated. EGCG-5′Glu showed antioxidant effects in cell and cell-free systems. Under SNP-derived radical exposure, EGCG-5′Glu decreased nitric oxide (NO) production, and recovered ROS-mediated cell viability. Moreover, EGCG-5′Glu regulated apoptotic pathways (caspases) and cell survival molecules (phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent kinase 1 (PDK1)). In another radical-induced condition, ultraviolet B (UVB) irradiation, EGCG-5′Glu protected cells from UVB and regulated the PI3K/PDK1/AKT pathway. Next, the proliferative effect of EGCG-5′Glu was examined. EGCG-5′Glu increased cell proliferation by modulating nuclear factor (NF)-κB activity. EGCG-5′Glu protects and repairs cells from external damage via its antioxidant effects. These results suggest that EGCG-5′Glu could be used as a cosmetics ingredient or dietary supplement.
Collapse
|
21
|
Majeed F, Malik FZ, Ahmed Z, Afreen A, Afzal MN, Khalid N. Ginseng phytochemicals as therapeutics in oncology: Recent perspectives. Biomed Pharmacother 2018; 100:52-63. [PMID: 29421582 DOI: 10.1016/j.biopha.2018.01.155] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
During the last few decades, cancer has mushroomed as a major health issue; and almost all drugs used for its therapy are very toxic with lethal side effects. Complementary and alternative medicines gain popularity among health professionals in recent era owing to its preventive mechanism against side effect chemotherapeutic drugs. Efforts are focused by scientists to isolate compounds from medicinal plant that have chemotherapeutic attributes; and ability to neutralize the side effects of chemotherapy. Ginseng is an oriental medicinal recipe from Araliceae family and Panax species. The chemotherapeutic effect of ginsenoside is resultant of its appetites, anti-proliferative, anti-angiogenic, anti-inflammatory and anti-oxidant properties. The anticancer effect of ginseng is proven in various types of cancer, including; breast, lung, liver, colon and skin cancer. It increases the mitochondrial accumulation of apoptosis protein and downregulate the expression of anti-apoptotic protein. It also aids in the reduction of alopecia, fatigue and nausea, the known side effects of chemotherapeutic drugs. The aim of the present review is to provide the brief review of the recent researches related to mechanism of action of ginseng in different types of cancer as complementary and alternative medicine on different body organs.
Collapse
Affiliation(s)
- Fatima Majeed
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Fozia Zahur Malik
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Zaheer Ahmed
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan.
| | - Asma Afreen
- Department of Home and Health Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Muhammad Naveed Afzal
- School of Health Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54000, Pakistan; Center of Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria, 3217, Australia.
| |
Collapse
|
22
|
González-Quiroz M, Urra H, Limia CM, Hetz C. Homeostatic interplay between FoxO proteins and ER proteostasis in cancer and other diseases. Semin Cancer Biol 2018; 50:42-52. [PMID: 29369790 DOI: 10.1016/j.semcancer.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
Abstract
Cancer cells are exposed to adverse conditions within the tumor microenvironment that challenge cells to adapt and survive. Several of these homeostatic perturbations insults alter the normal function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins. ER stress triggers a conserved signaling pathway known as the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. The UPR has been described as a major driver in the acquisition of malignant characteristics that ultimately lead to cancer progression. Although, several reports describe the relevance of the UPR in tumor growth, the possible crosstalk with other cancer-related pathways is starting to be elucidated. The Forkhead Box O (FoxO) subfamily of proteins has a major role in cancer progression, where chromosomal translocations and deregulated signaling lead to loss-of-function of FoxO proteins, contributing to tumor progression. Here we discuss the homeostatic connection between the UPR and FoxO proteins and its possible implications to tumor progression and the acquisition of several hallmarks of cancer. In addition, studies linking a crosstalk between the UPR and FoxO proteins in other diseases, including neurodegeneration and metabolic disorders is provided.
Collapse
Affiliation(s)
- Matías González-Quiroz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Celia María Limia
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA.
| |
Collapse
|