1
|
Wu Y, Duan Z, Qu L, Liu Y, Ma X, Fan D. Ginsenoside Rk1 Ameliorates Non-Alcoholic Fatty Liver Disease by Targeting CD36 to Modulate the AMPK Signaling Pathway. Food Res Int 2025; 211:116426. [PMID: 40356178 DOI: 10.1016/j.foodres.2025.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic disorder associated with obesity and insulin resistance. Ginsenoside Rk1 (Rk1), a natural compound extracted from ginseng, exerts various pharmacological effects, including anti-inflammatory, hepatoprotective, hypolipidemic, and insulin-sensitizing properties. This study investigated the therapeutic effects of Rk1 on NAFLD induced by a Western diet in mice and explored the underlying molecular mechanisms. The results showed that Rk1 treatment significantly reduced weight gain, improved insulin sensitivity, and attenuated liver damage and lipid accumulation in the mice. RNA sequencing and molecular analyses showed that Rk1 downregulated the expression of the fatty acid translocase CD36, and restored AMP-activated protein kinase phosphorylation. Furthermore, Rk1 alleviated hepatic inflammation and oxidative stress in NAFLD mice by affecting the sirtuin 1 (SIRT1) and forkhead box O1 (FOXO1) pathways and regulated fatty acid synthesis by affecting the expression of the mechanistic target of rapamycin complex 1 (mTORc1) and sterol regulatory element-binding protein 1c (SREBP1). These findings highlight the potential of Rk1 as a natural therapeutic agent for NAFLD and contribute to research on the use of functional foods and bioactive compounds for metabolic disease management.
Collapse
Affiliation(s)
- Yuqing Wu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China; Xi'an Giant Biotechnology Co., Ltd., Xi'an, 710076, China.
| | - Yannan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Wang X, Fang X, Zhou J, Pu H, Shang Q, Li J, Qin X, Zhao Q, Gu W. Hepatoprotective effects of wine-steamed Schisandra sphenanthera fruit in alleviating APAP-induced liver injury via the gut-liver axis. Food Funct 2025; 16:3643-3657. [PMID: 40243619 DOI: 10.1039/d5fo00656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Drug-induced liver injury (DILI) is a common adverse drug reaction that can result in liver injury, particularly in cases of paracetamol (APAP) abuse. Schisandra sphenanthera Rehd. et Wils. has attracted attention due to its hepatoprotective properties, and the underlying mechanism is unclear. In this study, a mouse model of APAP-induced liver injury was employed to evaluate network pharmacology analysis, histopathological analysis, the gut microbiota, and fecal metabolome to investigate the mechanism by which S. sphenanthera fruit extract (SFE) alleviates DILI. Network pharmacology indicated that the SFE can attenuate APAP-induced liver injury via key targets, including MAPK3 and CASP3. Furthermore, SFE effectively alleviated APAP-induced oxidative stress (MDA, SOD, and GSH) and inflammation (IL-6, TNF-α, and IL-1β). Further analysis of gut microbiota and fecal metabolites revealed that SFE promoted the growth of Bacteroidales and Erysipelotrichales, and decreased the growth of Lactobacillales, leading to increased production of tryptophan metabolites. Correlation analysis showed that the increase in gut microbiota by SFE was positively correlated with improved antioxidant ability and improved liver and gut function. In conclusion, SFE pretreatment can alleviate APAP-induced liver injury by targeting the gut-liver axis, and provides a valuable reference for the clinical use of SFE in the prevention or treatment of DILI.
Collapse
Affiliation(s)
- Xiaorui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Xilin Fang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Jia Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Han Pu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Qianqian Shang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Jianhua Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Xiaolu Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Qiaozhu Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Wei Gu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| |
Collapse
|
3
|
Yin J, Chen L, Lin Y, Qiu J, Liu F, Wang Y, Dou X. Bifidobacterium bifidum reduces oxidative stress and alters gut flora to mitigate acute liver injury caused by N-acetyl-p-aminophenol. BMC Microbiol 2025; 25:87. [PMID: 40000948 PMCID: PMC11853282 DOI: 10.1186/s12866-025-03775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Pharmacologically-induced liver injury from N-acetyl-p-aminophenol (APAP) overdose has become a leading cause of acute liver failure. Extensive research has elucidated the relationship between the intestinal microbiota and the pathophysiology of liver diseases. The growing body of evidence supporting the beneficial effects of probiotics, coupled with their established safety profile, has led to their widespread adoption in clinical practice. Among these, Bifidobacterium bifidum has garnered substantial attention due to its potential hepatoprotective properties, particularly in APAP-induced acute liver injury (AILI). However, the precise therapeutic effects and underlying mechanisms of its potential to alleviate drug-induced liver toxicity remain largely unexplored. To address this knowledge gap, the present study aimed to investigate the role of a new Bifidobacterium bifidum strain CGMCC No. 29,545 isolated from faeces on AILI. A mouse model was constructed through the administration of heat-killed or active B. bifidum CGMCC No. 29,545 preparations via gavage, followed by an intraperitoneal overdose of APAP. The results showed that the active B. bifidum could significantly reverse the increase in plasma transaminase levels and reduce the necrotic area of liver cells in AILI mice. A reduction in oxidative stress accompanied a reduction in this effect. Furthermore, B. bifidum attenuated plasma endotoxin levels and improved colonic inflammation, reducing hepatocyte apoptosis. The 16 S rRNA diversity of intestinal contents suggests that the involvement of B. bifidum in the regulation of the intestinal microbiota also plays a crucial role in the protection against AILI. The above results suggest that the amelioration of multiple injuries due to APAP overprocessing is closely related to active B. bifidum, which was confirmed by heat-killed B. bifidum preparations. Heat-killed B. bifidum preparations did not attenuate the degree of liver injury and oxidative stress caused by APAP treatment. The effects of two different active B. bifidum preparations provide new insights into the protective strategies of active B. bifidum as a probiotic against AILI.
Collapse
Affiliation(s)
- Juan Yin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Zhejiang, 310053, PR China
| | - Lin Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
| | - Yiyou Lin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
| | - Fucai Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
| | - Yuhao Wang
- School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, PR China.
- , 268 Kaixuan Road, Shangcheng District, Hangzhou, 310029, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
- Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Zhejiang, 310053, PR China.
| |
Collapse
|
4
|
Shang S, Yang H, Qu L, Fan D, Deng J. Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39810734 DOI: 10.1080/10408398.2025.2451761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects. However, a comprehensive overview elucidating the regulatory pathways associated with ginsenosides in liver disease remains elusive. This review aims to consolidate the molecular mechanisms through which different ginsenosides ameliorate distinct liver diseases, alongside the pathogenic factors underlying liver ailments. Notably, ginsenosides Rb1 and Rg1 demonstrate significantly effective in treating fatty liver, hepatitis, and liver fibrosis, and ginsenosides CK and Rh2 exhibit potent anti-hepatocellular carcinogenic effects. Their molecular mechanisms underlying these effects primarily involve the modulation of AMPK, NF-κB, TGF-β, NFR2, JNK, and other pathways, thereby attenuating hepatic fat accumulation, inflammation, inhibition of hepatic stellate cell activation, and promoting apoptosis in hepatocellular carcinoma cells. Furthermore, it provides insights into the safety profile and current applications of ginsenosides, thereby facilitating their clinical development. Consequently, ginsenosides present promising prospects for liver disease management, underscoring their potential as valuable therapeutic agents in this context.
Collapse
Affiliation(s)
- Shiyan Shang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Shen H, Fu J, Liu J, Zou T, Wang K, Zhang X, Wan J. Ginsenoside Rk2 alleviates hepatic ischemia/reperfusion injury by enhancing AKT membrane translocation and activation. MedComm (Beijing) 2025; 6:e70047. [PMID: 39811799 PMCID: PMC11731106 DOI: 10.1002/mco2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/20/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening. The pharmacological effects and molecular mechanisms of Rk2 on hepatic IRI were further evaluated and elucidated in vitro and in vivo. Rk2 significantly reduced inflammation and apoptosis caused by oxygen-glucose deprivation and reperfusion in hepatocytes and dose dependently protected against hepatic I/R-induced liver injury in mice. Integrated approaches, including network pharmacology, molecular docking, transcriptome analysis, and isothermal titration calorimetry, along with experimental validation, indicated that Rk2 protects against hepatic IRI by targeting and activating the AKT (RAC serine/threonine protein kinase) signaling pathway. Pharmacological inhibition of AKT pathway or knockdown of AKT1 effectively diminished protective effects of Rk2. Rk2 directly binds to AKT1, facilitating its translocation from the cytoplasm to plasma membrane. This process markedly enhanced AKT interaction with PDPK1, promoting the activation of AKT1 and its downstream signaling. Our findings demonstrate that Rk2 protects against hepatic IRI by activating AKT signaling through direct binding to AKT1 and facilitating its membrane translocation.
Collapse
Affiliation(s)
- Hong Shen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Jiajun Fu
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Toujun Zou
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kun Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Xiao‐Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
- Basic Medical SchoolWuhan UniversityWuhanChina
| | - Jian‐Bo Wan
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
6
|
Rameshrad M, Naraki K, Memariani Z, Hosseinzadeh H. Protective effects of Panax ginseng as a medical food against chemical toxic agents: molecular and cellular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8395-8419. [PMID: 38861010 DOI: 10.1007/s00210-024-03186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Humans are exposed to different types of toxic agents, which may directly induce organ malfunction or indirectly alter gene expression, leading to carcinogenic and teratogenic effects, and eventually death. Ginseng (Panax ginseng) is the most valuable of all medicinal herbs. Nevertheless, specific data on the antidotal mechanisms of this golden herb are currently unavailable. Based on the findings of in vitro, in vivo, and clinical studies, this review focused on the probable protective mechanisms of ginseng and its major components, such as protopanaxadiols, protopanaxatriols, and pentacyclic ginsenosides against various chemical toxic agents. Relevant articles from 2000 to 2023 were gathered from PubMed/Medline, Scopus, and Google Scholar. This literature review shows that P. ginseng and its main components have protective and antidotal effects against the deteriorative effects of pesticides, pharmaceutical agents, including acetaminophen, doxorubicin, isoproterenol, cyclosporine A, tacrolimus, and gentamicin, ethanol, and some chemical agents. These improvements occur through multi-functional mechanisms. They exhibit antioxidant activity, induce anti-inflammatory action, and block intrinsic and extrinsic apoptotic pathways. However, relevant clinical trials are necessary to validate the mentioned effects and translate the knowledge from basic science to human benefit, fulfilling the fundamental goal of all toxicologists.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Wang WT, Xue YJ, Zhou JK, Zhang Z, Guo SY, Zhao CF, Bai Y, Zhu YT, Zhang LZ, Guo S, Ren GX. Exploring the antimicrobial activity of rare ginsenosides and the progress of their related pharmacological effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155904. [PMID: 39151265 DOI: 10.1016/j.phymed.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.
Collapse
Affiliation(s)
- Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ya-Jie Xue
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Sheng-Yuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao-Fan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu-Ting Zhu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Zhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Shanxi University, Taiyuan 030006, China.
| | - Gui-Xing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
8
|
Wu H, Qu L, Bai X, Zhu C, Liu Y, Duan Z, Liu H, Fu R, Fan D. Ginsenoside Rk1 induces autophagy-dependent apoptosis in hepatocellular carcinoma by AMPK/mTOR signaling pathway. Food Chem Toxicol 2024:114587. [PMID: 38461953 DOI: 10.1016/j.fct.2024.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third most lethal cancer in the world. Recent studies have shown that suppression of autophagy plays an important role in the development of HCC. Ginsenoside Rk1 is a protopanaxadiol saponin isolated from ginseng and has a significant anti-tumor effect, but its role and mechanism in HCC are still unclear. In this study, a mouse liver cancer model induced by diethylnitrosamine and carbon tetrachloride (DEN + CCl4) was employed to investigate the inhibitory effect of Rk1 on HCC. The results demonstrate that ginsenoside Rk1 effectively inhibits liver injury, liver fibrosis, and cirrhosis during HCC progression. Transcriptome data analysis of mouse liver tissue reveals that ginsenoside Rk1 significantly regulates the AMPK/mTOR signaling pathway, autophagy pathway, and apoptosis pathway. Subsequent studies show that ginsenoside Rk1 induces AMPK protein activation, upregulates the expression of autophagy marker LC3-II protein to promote autophagy, and then downregulates the expression of Bcl2 protein to trigger a caspase cascade reaction, activating AMPK/mTOR-induced toxic autophagy to promote cells death. Importantly, co-treatment of ginsenoside Rk1 with autophagy inhibitors can inhibit apoptosis of HCC cells, once again demonstrating the ability of ginsenoside Rk1 to promote autophagy-dependent apoptosis. In conclusion, our study demonstrates that ginsenoside Rk1 inhibits the development of primary HCC by activating toxic autophagy to promote apoptosis through the AMPK/mTOR pathway. These findings confirm that ginsenoside Rk1 is a promising new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Huanyan Wu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China; Xi'an Giant Biotechnology Co., Ltd., Xi'an, 710076, China
| | - Xue Bai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Yuan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Hongyan Liu
- Shaanxi Gaint Biotechnology Co., Ltd., Xi'an, 710076, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
9
|
Fan J, Liu F, Ji W, Wang X, Li L. Comprehensive Investigation of Ginsenosides in the Steamed Panax quinquefolius with Different Processing Conditions Using LC-MS. Molecules 2024; 29:623. [PMID: 38338369 PMCID: PMC10856252 DOI: 10.3390/molecules29030623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Panax quinquefolius (PQ) has been widely used in traditional Chinese medicine and functional food. Ginsenosides are the important functional components of PQ. The ginsenosides' diversity is deeply affected by the processing conditions. The ginsenosides in the steamed PQ have been not well-characterized yet because of the complexity of their structure. In the study, the comprehensive investigation of ginsenosides was performed on the steamed PQ with different steaming times and temperatures by UPLC-Q-TOF-MS. Based on the molecular weight, retention time and characterized fragment ions, 175 ginsenosides were unambiguously identified or tentatively characterized, including 45 protopanaxatriol type, 49 protopanaxadiol type, 19 octillol type, 6 oleanolic acid type ginsenosides, and 56 other ginsenosides. Ten new ginsenosides and three new aglycones were discovered in the steamed PQ samples through searching the database of CAS SciFindern. Principal component analysis showed the significant influence on the chemical components of PQ through different processing conditions. The steaming temperature was found to promote the transformation of ginsenosides more than the steaming time. The protoginsenosides were found to transform into the rare ginsenosides by elimination reactions. The malonyl ginsenosides were degraded into acetyl ginsenosides, and then degraded into neutral ginsenosides. The sugar chain experienced degradation, with position changes and configuration inversions. Furthermore, 20 (S/R)-ginsenoside Rh1, Rh2, Rg2, and Rh12 were found to transform from the S-configuration to the R-configuration significantly. This study could present a comprehensive ginsenosides profile of PQ with different steaming conditions, and provide technical support for the development and utilization of PQ.
Collapse
Affiliation(s)
- Jiali Fan
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Feng Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
10
|
Bian X, Chen L, Bian X, Li L, Liu D, Liu S, Xu L, Huo X, Yang X. Protective effect of Tibetan medicine Qiwei Tiexie pills on liver injury induced by acetaminophen overdose: An integrated strategy of network pharmacology, metabolomics and transcriptomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155221. [PMID: 38039903 DOI: 10.1016/j.phymed.2023.155221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Drug-induced liver injury, particularly from acetaminophen (APAP), has emerged as a significant public health concern. Unfortunately, there is currently no effective treatment strategy available. Qiwei Tiexie pills (QWTX), a traditional Tibetan medicine, have demonstrated considerable clinical efficacy in treating various liver diseases. Nevertheless, the protective effect of QWTX against drug-induced liver injury and its underlying mechanism remains poorly understood. PURPOSE This study aimed to assess the therapeutic potential of QWTX, a Tibetan medicine, in an animal model of APAP-induced liver injury. Additionally, we sought to investigate the molecular mechanism through which QWTX exerts its effects. METHODS We employed LC-MS and network pharmacology to predict the potential targets of QWTX in drug-induced liver injury. Subsequently, we employed HE staining, transcriptomics, metabolomics, and qRT-PCR to analyze the mechanism underlying QWTX treatment in drug-induced liver injury. RESULTS Network pharmacology analysis revealed that the active components of QWTX are involved in inflammatory and drug metabolism-related pathways. In mouse models, pretreatment with QWTX effectively mitigated the elevated levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and inflammatory factors (IL-1β, IL-6, and TNF-α) induced by APAP overdose. Moreover, APAP inhibited 1459 differentially expressed genes (DEGs) and 874 differential accumulation metabolites (DAMs), while QWTX promoted their expression. Conversely, APAP promoted 874 genes and 119 metabolites, which were inhibited by QWTX. Further analysis demonstrated that QWTX ameliorated the metabolic disorders induced by APAP overdose and potentially exerted a protective effect by inhibiting the expression of critical genes in crucial inflammatory pathways. QWTX also up-regulated antioxidant enzymes, thereby mitigating the oxidative stress resulting from APAP overdose. CONCLUSION QWTX treatment effectively protects against APAP-induced liver damage in mice. Transcriptomic and metabolomic analyses further revealed that QWTX ameliorated hepatic metabolic disorders induced by APAP overdose while significantly suppressing the inflammatory response and oxidative stress associated with drug-induced liver injury. This study provides a new insight into the treatment of drug-induced liver injury by the TCM system and provides a basis for the development of new therapies for drug-induced liver injury by QWTX and its active ingredients.
Collapse
Affiliation(s)
- Xingbo Bian
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Lizhu Chen
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xuefeng Bian
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Lele Li
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Dan Liu
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Siying Liu
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Lu Xu
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xuyang Huo
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xiaohang Yang
- College of Pharmacy, Jilin Medical University, Jilin 132013, Jilin, China.
| |
Collapse
|
11
|
Singh D, Khan MA, Siddique HR. Unveiling the therapeutic promise of natural products in alleviating drug-induced liver injury: Present advancements and future prospects. Phytother Res 2024; 38:22-41. [PMID: 37775996 DOI: 10.1002/ptr.8022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Drug-induced liver injury (DILI) refers to adverse reactions to small chemical compounds, biological agents, and medical products. These reactions can manifest as acute or chronic damage to the liver. From 1997 to 2016, eight drugs, including troglitazone, nefazodone, and lumiracoxib, were removed from the market due to their liver-damaging effects, which can cause diseases. We aimed to review the recent research on natural products and their bioactive components as hepatoprotective agents in mitigating DILI. Recent articles were fetched via searching the PubMed, PMC, Google Scholar, and Web of Science electronic databases from 2010 to January 2023 using relevant keywords such as "natural products," "acetaminophen," "antibiotics," "paracetamol," "DILI," "hepatoprotective," "drug-induced liver injury," "liver failure," and "mitigation." The studies reveal that the antituberculosis drug (acetaminophen) is the most frequent cause of DILI, and natural products have been largely explored in alleviating acetaminophen-induced liver injury. They exert significant hepatoprotective effects by preventing mitochondrial dysfunction and inflammation, inhibiting oxidative/nitrative stress, and macromolecular damage. Due to the bioavailability and dietary nature, using natural products alone or as an adjuvant with existing drugs is promising. To advance DILI management, it is crucial to conduct well-designed randomized clinical trials to evaluate natural products' efficacy and develop new molecules clinically. However, natural products are a promising solution for remedying drug-induced hepatotoxicity and lowering the risk of DILI.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
12
|
Li X, Lao R, Lei J, Chen Y, Zhou Q, Wang T, Tong Y. Natural Products for Acetaminophen-Induced Acute Liver Injury: A Review. Molecules 2023; 28:7901. [PMID: 38067630 PMCID: PMC10708418 DOI: 10.3390/molecules28237901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The liver plays a vital role in metabolism, synthesis, and detoxification, but it is susceptible to damage from various factors such as viral infections, drug reactions, excessive alcohol consumption, and autoimmune diseases. This susceptibility is particularly problematic for patients requiring medication, as drug-induced liver injury often leads to underestimation, misdiagnosis, and difficulties in treatment. Acetaminophen (APAP) is a widely used and safe drug in therapeutic doses but can cause liver toxicity when taken in excessive amounts. This study aimed to investigate the hepatotoxicity of APAP and explore potential treatment strategies using a mouse model of APAP-induced liver injury. The study involved the evaluation of various natural products for their therapeutic potential. The findings revealed that natural products demonstrated promising hepatoprotective effects, potentially alleviating liver damage and improving liver function through various mechanisms such as oxidative stress and inflammation, which cause changes in signaling pathways. These results underscore the importance of exploring novel treatment options for drug-induced liver injury, suggesting that further research in this area could lead to the development of effective preventive and therapeutic interventions, ultimately benefiting patients with liver injury caused by medicine.
Collapse
Affiliation(s)
- Xiaoyangzi Li
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Ruyang Lao
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Jiawei Lei
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yuting Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116000, China;
| | - Qi Zhou
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| | - Ting Wang
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yingpeng Tong
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| |
Collapse
|
13
|
Yu Y, Zhou S, Wang Y, Di S, Wang Y, Huang X, Chen Y. Leonurine alleviates acetaminophen-induced acute liver injury by regulating the PI3K/AKT signaling pathway in mice. Int Immunopharmacol 2023; 120:110375. [PMID: 37267857 DOI: 10.1016/j.intimp.2023.110375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
Leonurine (Leo) is a natural alkaloid isolated from the herb Leonurus japonicus Houtt. (Leonuri) that has been shown to inhibit oxidative stress and inflammation. However, the role and mechanism of Leo in acetaminophen (APAP)-induced acute liver injury (ALI) remain unknown. In this study, we investigated the protective effect of Leo against APAP-induced ALI and elucidated the molecular mechanism. Here, we showed that the damage to mouse primary hepatocytes (MPHs) induced by APAP was attenuated by treatment with Leo, which promoted proliferation and inhibited oxidative stress injury, and Leo significantly improved APAP-induced ALI in mice. Leo could protect against APAP-induced ALI by reducing serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels, hepatic histopathological damage, liver cell necrosis, inflammation, and oxidative stress-induced damage in vivo and in vitro. Moreover, the results indicated that Leo relieved APAP-induced liver cell necrosis by reducing the expression of Bax and cleaved caspase-3 and increasing Bcl-2 expression. Leo alleviated APAP-induced oxidative stress-induced damage by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, which facilitated Nrf2 nuclear translocation and upregulated oxidative stress-related protein expression in liver tissues. Moreover, the results suggested that APAP-induced inflammation in the liver was suppressed by Leo by suppressing the Toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3) pathways. In addition, Leo facilitated the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in the liver tissue of ALI mice. Network pharmacology, molecular docking, and western blotting showed that PI3K was a potential target of Leo in the treatment of ALI. Molecular docking and cellular thermal shift assay (CETSA) indicated that Leo could stably bind to the PI3K protein. In conclusion, Leo attenuated ALI, and reversed liver cell necrosis, the inflammatory response and oxidative stress-induced damage by regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yajie Yu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shizhe Zhou
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yan Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266003, China
| | - Shuting Di
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yingluo Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xin Huang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
14
|
Wang Y, Su P, Zhuo Z, Jin Y, Zeng R, Wu H, Huang H, Chen H, Li Z, Sha W. Ginsenoside Rk1 attenuates radiation-induced intestinal injury through the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun 2023; 643:111-120. [PMID: 36592584 DOI: 10.1016/j.bbrc.2022.12.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Radiation-induced intestinal injury (RIII) frequently occurs during radiotherapy; however, methods for treating RIII are limited. Ginsenoside Rk1 (RK1) is a substance that is derived from ginseng, and it has several biological activities, such as antiapoptotic, antioxidant and anticancer activities. The present study was designed to investigate the potential protective effect of Rk1 on RIII and the potential mechanisms. The results showed that RK1 treatment significantly improved the survival rate of the irradiated rats and markedly ameliorated the structural injury of the intestinal mucosa observed by histology. Treatment with RK1 significantly alleviated radiation-induced intestinal epithelial cell oxidative stress apoptosis. Moreover, RNA-Seq identified 388 differentially expressed genes (DEGs) and showed that the PI3K-AKT pathway might be a key signaling pathway by which RK1 exerts its therapeutic effects on RIII. The western blotting results showed that the p-PI3K, p-AKT and p-mTOR expression levels, which were increased by radiation, were markedly inhibited by Rk1, and these effects were reversed by IGF-1. The present study demonstrates that Rk1 can alleviate RIII and that the mechanism underlying the antiapoptotic effects of RK1 may involve the suppression of the PI3K/Akt/mTOR pathway. This study provides a promising therapeutic agent for RIII.
Collapse
Affiliation(s)
- Yilin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Peizhu Su
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yabin Jin
- Department of Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huiwen Huang
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Zhaotao Li
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China.
| | - Weihong Sha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
15
|
Ren Y, Ye D, Ding Y, Wei N. Ginsenoside Rk1 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease via activating silence information regulator 3-mediated Nrf2/HO-1 signaling pathway. Hum Exp Toxicol 2023; 42:9603271231220610. [PMID: 38105596 DOI: 10.1177/09603271231220610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Objectives: Ginsenoside Rk1, a novel ginsenoside isolated from red ginseng, has anti-inflammatory and anti-tumor activities. This study was designed to elucidate the role of RK1 in an in vitro 1-methyl-4-phenylpyridinium (MPP+) cell model and an in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of Parkinson's disease (PD).Methods: The grasping test, pole-climbing test, and rotarod test were performed to measure the effects of RK1 on MPTP-induced motor disorders. The expression of tyrosine hydroxylase (TH) and IBA-1 were evaluated by western blotting. CCK-8 and flow cytometry assays were utilized to assess cell viability and apoptosis. Reactive oxygen species (ROS), Lactate dehydrogenase (LDH), and superoxide dismutase (SOD) were detected to analyze the effects of RK1 on oxidative stress. The levels of inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA).Results: The results showed that RK1 allayed motor deficit elicited by MPTP in a mouse model. RK1 administration augmented tyrosine hydroxylase (TH) expression in the brain striatum and substantia nigra (SN) of MPTP-treated mice. Moreover, RK1 pretreatment promoted viability and suppressed apoptosis in MPP+-induced PC-12 cells. Further, RK1 also attenuated MPP+-stimulated oxidative stress and inflammatory response in PC-12 cells. Besides, RK1 augmented the level of SIRT3, and SIRT3 deletion counteracted RK1-induced repression on MPP+-elicited apoptosis, oxidative stress, and inflammatory response in PC-12 cells via modulating the Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway.Conclusions: RK1 might exert neuroprotective effects against MPP+/MPTP-induced neurotoxicity via activating SIRT3-mediated Nrf2/HO-1 signaling. RK1 might be a promising candidate against PD.
Collapse
Affiliation(s)
- Yi Ren
- Department of Neurology, the First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dan Ye
- Department of Neurology, the First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yiping Ding
- Department of Neurology, the First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ning Wei
- Department of Neurology, the First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
16
|
Lin L, Lin G, Chen X, Lin H, Lin Q, Zeng Y, Xu Y. Identification of Small Airway Epithelium-Related Hub Genes in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:3001-3015. [PMID: 36475041 PMCID: PMC9719689 DOI: 10.2147/copd.s377026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pulmonary small airway epithelia are the primary site of cellular and histological alterations in chronic obstructive pulmonary disease (COPD), while the potential therapeutic hub genes of pulmonary epithelia are rarely identified to elucidate profound alterations in the progression of the disease. Methods Microarray dataset of GSE11906 containing small airway epithelia from 34 healthy non-smokers and 33 COPD patients was applied to screen differentially expressed genes (DEGs). Weighted gene correlation network analysis (WGCNA) was further used to identify the hub genes related to clinical features. Moreover, single-cell RNA sequencing data from GSE173896 and GSE167295 dataset were applied to explore the expression and distribution of the hub genes. The expression levels of hub genes in epithelial cells stimulated by cigarette smoke extract (CSE) were detected by RT-qPCR. Results Ninety-eight DEGs correlated with clinical features of COPD were identified via limma and WGCNA. Eight hub genes (including AKR1C3, ALDH3A1, AKR1C1, CYP1A1, GPX2, CBR3, AKR1B1 and GSR) that might exert an antioxidant role in COPD process were identified. Single-cell transcriptomic analysis indicated that the expressions of AKRAC3, ALDH3A1, GPX2, CBR3 and AKR1B1 were significantly increased in the COPD group when compared with the normal group. Moreover, we found that the expression of ALDH3A1 was the most abundantly expressed in ciliated cells. RT-qPCR results indicated that the majority of candidate novel genes were significantly elevated when the epithelial cells were exposed to CSE. Conclusion Through integrating limma, WGCNA, and protein-protein interaction (PPI) analysis, a total of eight candidate hub genes of pulmonary airway epithelia were identified in COPD. Moreover, single-cell transcriptomic analysis indicated that ALDH3A1 was enriched in ciliated cells, which may provide a new insight into the pathogenesis and treatment of COPD.
Collapse
Affiliation(s)
- Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Qinhui Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China,Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China,Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Correspondence: Yuan Xu; Yiming Zeng, Department of Pulmonary and Critical Care Medicine, Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University; Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China, Email ;
| |
Collapse
|
17
|
Zhang H, Liu W, Qi SM, Chi JF, Gao Q, Lin XH, Ren S, Wang Z, Lei XJ, Li W. Improved effect of fresh ginseng paste (radix ginseng-ziziphus jujube) on hyperuricemia based on network pharmacology and molecular docking. Front Pharmacol 2022; 13:955219. [PMID: 36386218 PMCID: PMC9641371 DOI: 10.3389/fphar.2022.955219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/10/2022] [Indexed: 08/02/2024] Open
Abstract
Background: Hyperuricemia (HUA) is a metabolic disease caused by reduced excretion or increased production of uric acid. This research aims to study the practical components, active targets, and potential mechanism of the "Radix ginseng (RG)-Ziziphus jujube (ZJ)" herb pair through molecular docking, network pharmacology, and animal experiments. Methods: The potential targets of "Radix ginseng (RG)-Ziziphus jujube (ZJ)" herb pair were obtained from the TCMSP database. The therapeutic targets of HUA were acquired from the GendCards, OMIM, PharmGkb, and TTD databases. Protein-protein interaction network (PPI) was constructed in the STRING 11.0 database. The David database was used for enrichment analysis. Molecular Docking was finished by the AutoDock Vina. And we employed Radix ginseng and Ziziphus jujube as raw materials, which would develop a new functional food fresh ginseng paste (FGP) after boiling. In addition, benzbromarone (Ben) (7.8 mg/kg) and allopurinol (All) (5 mg/kg) were used as positive drugs to evaluate the hyperuricemia induced by FGP (400 and 800 mg/kg) potassium oxazine (PO) (100 mg/kg) and hypoxanthine (HX) (500 mg/kg) on mice. Results: The results showed that 25 targets in the "RG-ZJ" herb pair interacted with hyperuricemia. Then protein-protein interaction (PPI) analysis showed that TNF, IL-1β, and VEGFA were core genes. KEGG enrichment analysis showed that the Toll-like receptor signaling pathway and IL-17 signaling pathway were mainly involved. Meantime, animal experiments showed that FGP could improve the HUA status of mice by reducing serum UA BUN, XO, and liver XO levels (p < 0.05, p < 0.01). Furthermore, we analyzed the main ingredients of FGP by HPLC. We found that the main ingredients of FGP had solid binding activity to the core target of HUA by molecular docking. Conclusion: This study explored the active ingredients and targets of the "RG-ZJ" herb pair on HUA through network pharmacology, molecular docking, and animal experiments. It revealed the improvement of FGP in mice with HUA.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Wei Liu
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Si-Min Qi
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Jian-Feng Chi
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China
| | - Qiang Gao
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China
| | - Xiang-Hui Lin
- Liaoning Xifeng Pharmaceutical Group Co., Ltd., Huanren, China
| | - Shen Ren
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China
| | - Xiu-juan Lei
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Wang X, Wang R, Qiao Y, Li Y. Progress on the efficacy and mechanism of action of panax ginseng monomer saponins treat toxicity. Front Pharmacol 2022; 13:1022266. [PMID: 36199681 PMCID: PMC9527293 DOI: 10.3389/fphar.2022.1022266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 12/06/2022] Open
Abstract
As a traditional Chinese herbal medicine, Panax ginseng C. A. Meyer (PG) has preventive and therapeutic effects on various diseases. Ginsenosides are main active ingredients of PG and have good pharmacological effects. Due to the diversity of chemical structures and physicochemical properties of ginsenosides, Currently, related studies on PG monomer saponins are mainly focused on the cardiovascular system, nervous system, antidiabetic, and antitumor. There are few types of research on the toxin treatment, predominantly exogenous toxicity. PG and its monomer ginsenosides are undoubtedly a practical option for treating exogenous toxicity for drug-induced or metal-induced side effects such as nephrotoxicity, hepatotoxicity, cardiotoxicity, metal toxicity and other exogenous toxicity caused by drugs or metals. The mechanism focuses on antioxidant, anti-inflammatory, and anti-apoptotic, as well as modulation of signaling pathways. It summarized the therapeutic effects of ginseng monomer saponins on exogenous toxicity and demonstrated that ginsenosides could be used as potential drugs to treat exogenous toxicity and reduce drug toxicities.
Collapse
Affiliation(s)
- Xinyi Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rongcan Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongfei Qiao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yali Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, China
- *Correspondence: Yali Li,
| |
Collapse
|
19
|
Integration of multiplatform metabolomics and multivariate analysis for geographical origin discrimination of Panax ginseng. Food Res Int 2022; 159:111610. [DOI: 10.1016/j.foodres.2022.111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022]
|
20
|
Calycosin alleviates hyperbilirubin nerve injury in Ugt1 -/- mice by inhibiting oxidative stress, apoptosis, and mitochondrial function. Acta Histochem 2022; 124:151918. [PMID: 35724482 DOI: 10.1016/j.acthis.2022.151918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Hyperbilirubinemia is a common condition in neonates that is associated with poor neurodevelopmental outcomes. Although studies have proposed that calycosin has a neuroprotective effect, the exact molecular mechanism underlying calycosin treatment of hyperbilirubinemia remains elusive. To fill this gap, we analyzed the mechanism of calycosin treatment in hyperbilirubinemia model mice. METHOD Thirty neonatal mice were randomly divided into wide type (WT), Ugt1-/- and calycosin treatment group. Neuronal damage was observed with Nissl staining. Immunofluorescence staining were carried out to determine DNA damage repair and neurodegeneration. Oxidative stress was investigated by immunostaining with 4-hydroxynonenal (4-HNE). Western blot (WB) and Qpcr were used to detect relative protein and mRNA expression levels. Mitochondrial CI/CII activity of mitochondria was analyzed with a spectrophotometer. RESULT The total bilirubin concentration was significantly higher in Ugt1-/- group compared with WT, but calycosin treatment reduced concentration of bilirubin. The total bilirubin and bilirubin/albumin ratio were significantly higher at postnatal day 4 compared with day 2. Calycosin treatment reduced serum bilirubin concentration and bilirubin/albumin ratio. After calycosin treatment, Nissl body count increased, apoptosis-related protein was downregulated and 4-HNE level decreased. Compared with Ugt-/- group, calycosin treatment increased neurons (NeuN+) and calbindin positive cells and decreased fluorojade C(FJC)positive neurons in WT group. In mitochondria, calycosin alleviated mitochondrial electron transport chain dysfunction in Ugt1-/- mice. CONCLUSION We demonstrated that the mechanism of calycosin treatment on hyperbilirubinemia-induced Ugt1-/- was associated mainly with antioxidant effects, antiapoptosis and inhibition of normal mitochondrial function.
Collapse
|
21
|
Fan ML, Su WY, Liu YB, Hu JN, Zhang JT, Wang Z, Zheng SW, Li W. Ginsenoside Rk1 Induced Apoptosis in Ovarian Cancer SK-OV-3 Cells via ROS-Mediated Caspase Signaling Pathway. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1199.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Cao X, Zhang K, Wang X, Yao F, Sun J, Li Y, Sun D, Liu Y, Sui J. Effect of Pu-erh tea on acetaminophen-induced hepatotoxicity assessed by physiological, metabolomic, and transcriptomic analyses. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Pharmacokinetics of Ginsenoside Rb1, Rg3, Rk1, Rg5, F2, and Compound K from Red Ginseng Extract in Healthy Korean Volunteers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8427519. [PMID: 35111231 PMCID: PMC8803428 DOI: 10.1155/2022/8427519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
Individual differences in ginsenoside pharmacokinetics following ginseng administration in humans are still unclear. We aimed to investigate the pharmacokinetic properties of various ginsenosides, including Rb1, Rg3, Rg5, Rk1, F2, and compound K (CK), after a single oral administration of red ginseng (RG) and bioconverted red ginseng extract (BRG). This was a randomized, open-label, single-dose, single-sequence crossover study with washout every 1 week, and 14 healthy Korean men were enrolled. All subjects were equally assigned to two groups and given RG or BRG capsules. The pharmacokinetic parameters of ginsenosides were measured from the plasma drug concentration-time curve of individual subjects. Ginsenosides Rg3, Rk1 + Rg5, F2, and CK in the BRG group showed a higher C max, AUC(0-t), and AUC(0-∞) and shorter T max (for CK) than those in the RG group. These results suggest that BRG may lead to a higher absorption rate of bioactive ginsenosides. This study provides valuable information on the pharmacokinetics of various bioactive ginsenosides, which is needed to enhance the therapeutic efficacy and pharmacological activity of ginseng.
Collapse
|
24
|
Lin CH, Lin YA, Chen SL, Hsu MC, Hsu CC. American Ginseng Attenuates Eccentric Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients 2021; 14:nu14010078. [PMID: 35010953 PMCID: PMC8746757 DOI: 10.3390/nu14010078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise-induced muscle damage (EIMD) is characterized by a reduction in functional performance, disruption of muscle structure, production of reactive oxygen species, and inflammatory reactions. Ginseng, along with its major bioactive component ginsenosides, has been widely employed in traditional Chinese medicine. The protective potential of American ginseng (AG) for eccentric EIMD remains unclear. Twelve physically active males (age: 22.4 ± 1.7 years; height: 175.1 ± 5.7 cm; weight: 70.8 ± 8.0 kg; peak oxygen consumption [V˙O2peak] 54.1 ± 4.3 mL/kg/min) were administrated by AG extract (1.6 g/day) or placebo (P) for 28 days and subsequently challenged by downhill (DH) running (−10% gradient and 60% V˙O2peak). The levels of circulating 8-iso-prostaglandin F 2α (PGF2α), creatine kinase (CK), interleukin (IL)-1β, IL-4, IL-10, and TNF-α, and the graphic pain rating scale (GPRS) were measured before and after supplementation and DH running. The results showed that the increases in plasma CK activity induced by DH running were eliminated by AG supplementation at 48 and 72 h after DH running. The level of plasma 8-iso-PGF2α was attenuated by AG supplementation immediately (p = 0.01 and r = 0.53), 2 h (p = 0.01 and r = 0.53) and 24 h (p = 0.028 and r = 0.45) after DH running compared with that by P supplementation. Moreover, our results showed an attenuation in the plasma IL-4 levels between AG and P supplementation before (p = 0.011 and r = 0.52) and 72 h (p = 0.028 and r = 0.45) following DH running. Our findings suggest that short-term supplementation with AG alleviates eccentric EIMD by decreasing lipid peroxidation and promoting inflammatory adaptation.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Physical Education Office, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Yi-An Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Shu-Li Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan;
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| | - Cheng-Chen Hsu
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| |
Collapse
|
25
|
Florenly F, Sugianto L, Lister INE, Girsang E, Ginting CN, Afifah E, Kusuma H, Rizal R, Widowati W. Protective Effect of Eugenol against Acetaminophen-Induced Hepatotoxicity in Human Hepatocellular Carcinoma Cells via Antioxidant, Anti-Inflammatory, and Anti-Necrotic Potency. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Overdoses acetaminophen (APAP) could cause acute liver failure, even though it used is for analgesics. APAP could cause hepatotoxicity due to multiple mediators of inflammation and oxidative stress. Eugenol has been reported to have anti-inflammatory and antioxidant activity but its hepatoprotective effect has not been widely reported.
AIM: The purpose of this research is to know if eugenol could protect HepG2 cells from APAP.
METHODS: HepG2 that induced by APAP as hepatotoxicity cells model was treated by using eugenol at 6.25 and 25 μg/mL. The protective effects of eugenol toward hepatotoxicity were evaluated by determine tumor necrosis factor-α (TNF-α) concentration, apoptotic activity, reactive oxygen species (ROS) level, also cytochrome (CYP)2E1 and GPX gene expression.
RESULTS: Eugenol at 6.25 and 25 μg/mL concentration can reduce TNF-α concentration, the apoptotic, necrotic, dead cells, and ROS level. Besides it can increase the gene expression (GPX and CYP2E1). The best hepatoprotective effect was found when using the eugenol at 25 μg/mL.
CONCLUSION: Therefore, eugenol can be used to protect HepG2 cells against APAP.
Collapse
|
26
|
Zhou Y, Wang J, Zhang D, Liu J, Wu Q, Chen J, Tan P, Xing B, Han Y, Zhang P, Xiao X, Pei J. Mechanism of drug-induced liver injury and hepatoprotective effects of natural drugs. Chin Med 2021; 16:135. [PMID: 34895294 PMCID: PMC8665608 DOI: 10.1186/s13020-021-00543-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a common adverse drug reaction (ADR) and a serious threat to health that affects disease treatments. At present, no targeted clinical drugs are available for DILI. Traditional natural medicines have been widely used as health products. Some natural medicines exert specific hepatoprotective effects, with few side effects and significant clinical efficacy. Thus, natural medicines may be a promising direction for DILI treatment. In this review, we summarize the current knowledge, common drugs and mechanisms of DILI, as well as the clinical trials of natural drugs and their bioactive components in anticipation of the future development of potential hepatoprotective drugs.
Collapse
Affiliation(s)
- Yongfeng Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Junnan Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488 China
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Dingkun Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Jiaxin Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Qinghua Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Jiang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Peng Tan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Boyu Xing
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Yanzhong Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| |
Collapse
|
27
|
Sun Y, Ma N, Liu X, Yi J, Cai S. Preventive effects of Chinese sumac fruits against acetaminophen-induced liver injury in mice via regulating oxidative stress, inflammation and apoptosis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
28
|
Ghanim BY, Ahmad MI, Abdallah QM, Qatouseh LA, Qinna NA. Modulation of NRF2/ARE pathway- and cell death-related genes during drug-induced liver injury. Hum Exp Toxicol 2021; 40:2223-2236. [PMID: 34219507 DOI: 10.1177/09603271211027947] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transcriptional factor NRF2 is an emerging tool in reviewing mechanistic behavior of drug-specific injury pathways. Drug-induced liver injury (DILI) represents a major clinical concern that often manifests oxidative stress and cell death. Despite the pivotal role of NRF2 pathway in liver pathologies, it is questioned whether NRF2 activation or regulatory efficiency could be hindered in by the severity of DILI and progression of cell death. In this study, we evaluate NRF2 as a biomarker to DILI in comparison to severity of injury as well as explore stress mediating factors affecting Nrf2 expression. In vivo DILI model was established in C57BL/6 mice by acetaminophen (APAP) at different toxic doses, confirmed by dose-dependent liver pathological changes and accompanied with in vitro time- and dose-dependent depletion of GSH and SOD in isolated primary mouse hepatocytes. Increase in liver NRF2 translocation and cytosolic content was observed in 70 mg/kg APAP-treated mice. At this subtoxic dose, liver Nrf2 transcription was increased in mice by 18.3-fold, a prominent downregulation was seen in ARE (antioxidant response element) genes; Hmox1, Nqo1 and Glcm, and apoptotic Bcl2 regulating genes. In addition, upregulation in necrosis inducer Parp2 was associated to downregulation in Hmgb1. Collectively, expression of genes related to cell survival were regulated at mild APAP hepatotoxicity. By increasing APAP dose, hemorrhagic necrosis and impaired genetic transcription in both Nrf2 and several other genes were evident. In conclusion, NRF2/ARE system and cell death modulation is halted by the increase of chemical stress and found directly associated with DILI severity.
Collapse
Affiliation(s)
- B Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
| | - M I Ahmad
- Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Q M Abdallah
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - L A Qatouseh
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - N A Qinna
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
29
|
Protopanaxatriol-type saponin protects against acetaminophen-induced liver injury through ROS-mediated JNK pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
30
|
Gong L, Liao L, Dai X, Xue X, Peng C, Li Y. The dual role of immune response in acetaminophen hepatotoxicity: Implication for immune pharmacological targets. Toxicol Lett 2021; 351:37-52. [PMID: 34454010 DOI: 10.1016/j.toxlet.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP), one of the most widely used antipyretic and analgesic drugs, principally contributes to drug-induced liver injury when taken at a high dose. APAP-induced liver injury (AILI) results in extensive necrosis of hepatocytes along with the occurrence of multiple intracellular events such as metabolic activation, cell injury, and signaling pathway activation. However, the specific role of the immune response in AILI remains controversial for its complicated regulatory mechanisms. A variety of inflammasomes, immune cells, inflammatory mediators, and signaling transduction pathways are activated in AILI. These immune components play antagonistic roles in aggravating the liver injury or promoting regeneration. Recent experimental studies indicated that natural products showed remarkable therapeutic effects against APAP hepatotoxicity due to their favorable efficacy. Therefore, this study aimed to review the present understanding of the immune response in AILI and attempted to establish ties among a series of inflammatory cascade reactions. Also, the immune molecular mechanisms of natural products in the treatment of AILI were extensively reviewed, thus providing a fundamental basis for exploring the potential pharmacological targets associated with immune interventions.
Collapse
Affiliation(s)
- Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuyang Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
31
|
Tian W, Zhao J, Choo BK, Kim IS, Ahn D, Tae HJ, Islam MS, Park BY. Camellia japonica diminishes acetaminophen-induced acute liver failure by attenuating oxidative stress in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57192-57206. [PMID: 34086174 DOI: 10.1007/s11356-021-14530-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
This experiment was to explore the possible defensive properties and potential molecular mechanisms of Camellia japonica (CJ) against APAP-stimulated acute liver failure (ALF) in mice. In this study, we investigated the effects of CJ on APAP-induced hepatotoxicity. Mice were orally treated with CJ before or after challenge with APAP. Both pretreatment and post-treatment with CJ attenuated APAP-induced hepatotoxicity, as confirmed by significantly reduced serum toxicity biomarkers and improved hepatic pathological damage. Pretreatment with CJ drastically decreased the rise of hepatic inflammatory cytokines levels and weakened neutrophil infiltration. Furthermore, pretreatment with CJ dramatically decreased the levels of hepatic oxidative stress markers such as hepatic malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE) expression and rescued the reduced hepatic level of GSH caused by APAP overdose. Additionally, CJ pretreatment markedly attenuated cyclooxygenase-2 (COX-2) activation, transcription factor nuclear factor-kappa B (NF-κB) phosphorylation, c-Jun-N-terminal kinase (JNK) phosphorylation, and activated AMP-activated protein kinase (AMPK) signaling pathway in the liver. The present study thus reveals that CJ attenuated APAP-induced ALF by inhibiting COX-2 activation, NF-κB, and JNK phosphorylation and activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Weishun Tian
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Jing Zhao
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Byung-Kil Choo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Sadikul Islam
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
32
|
Xiong J, Yang J, Yan K, Guo J. Ginsenoside Rk1 protects human melanocytes from H 2O 2‑induced oxidative injury via regulation of the PI3K/AKT/Nrf2/HO‑1 pathway. Mol Med Rep 2021; 24:821. [PMID: 34558653 PMCID: PMC8485120 DOI: 10.3892/mmr.2021.12462] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Vitiligo is a cutaneous depigmentation disorder caused by melanocyte injury or aberrant functioning. Oxidative stress (OS) is considered to be a major cause of the onset and progression of vitiligo. Ginsenoside Rk1 (RK1), a major compound isolated from ginseng, has antioxidant activity. However, whether RK1 can protect melanocytes against oxidative injury remains unknown. The aim of the present study was to investigate the potential protective effect of RK1 against OS in the human PIG1 melanocyte cell line induced with hydrogen peroxide (H2O2), and to explore its underlying mechanism. PIG1 cells were pretreated with RK1 (0, 0.1, 0.2 and 0.4 mM) for 2 h followed by exposure to 1.0 mM H2O2 for 24 h. Cell viability and apoptosis were determined with Cell Counting Kit‑8 and flow cytometry assays, respectively. The activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH‑Px) were analyzed using ELISA kits. Protein expression levels, including Bax, caspase‑3, Bcl‑2, phosphorylated‑AKT, AKT, nuclear factor erythroid 2‑related factor 2 (Nrf2), heme oxygenase‑1 (HO‑1), cytosolic Nrf2 and nuclear Nrf2, were analyzed using western blot analysis. In addition, the expression and localization of Nrf2 were detected by immunofluorescence. RK1 treatment significantly improved cell viability, reduced the apoptotic rate and increased the activity levels of SOD, CAT and GSH‑Px in the PIG1 cell line exposed to H2O2. In addition, RK1 treatment notably induced Nrf2 nuclear translocation, increased the protein expression levels of Nrf2 and HO‑1, and the ratio of phosphorylated‑AKT to AKT in the PIG1 cells exposed to H2O2. Furthermore, LY294002 could reverse the protective effect of RK1 in melanocytes against oxidative injury. These data demonstrated that RK1 protected melanocytes from H2O2‑induced OS by regulating Nrf2/HO‑1 protein expression, which may provide evidence for the application of RK1 for the treatment of vitiligo.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jianing Yang
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Kai Yan
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
33
|
Asaad GF, Ibrahim Abdallah HM, Mohammed HS, Nomier YA. Hepatoprotective effect of kaempferol glycosides isolated from Cedrela odorata L. leaves in albino mice: involvement of Raf/MAPK pathway. Res Pharm Sci 2021; 16:370-380. [PMID: 34447445 PMCID: PMC8356719 DOI: 10.4103/1735-5362.319575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 04/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background and purpose: Paracetamol is the most implicated xenobiotic in inducing hepatotoxicity. Our study aimed to determine the impact of some kaempferol glycosides isolated from the leaves of Cedrela odorata L. on paracetamol hepatotoxicity. Experimental approach: The methanolic extract of dried leaves of C. odorata L. was subjected to the combination of spectroscopic methods (1H and 13CNMR). Six kaempferol glycosides were isolated: kaempferol-3-O-β-D-glycopyranoside (astragalin), kaempferol-3-O-β-L-rhamnopyranoside, kaempferol-3-O-β-D-rutinoside, kaempferide-3-O-β-D-rutinoside, kaempferide-3-O-β-Drutinosyl-7-O-β-D-rhamnopyranoside, and kaempferol-3-O-β-D- rutinosyl-7-O-a-D-arabinopyranoside. Fifty-four female Swiss Albino mice were divided randomly into 9 groups including (1) control negative (1 mL/kg saline; IP), (2) control positive (paracetamol 300 mg/kg; IP), (3) silymarin 50 mg/kg (IP). Animals of groups 4-9 were injected with 6 different samples of isolated compounds at 100 mg/kg (IP). One h later, groups 3-9 were injected with paracetamol (300 mg/kg IP). Two h later, tissue samples were taken from all animals to assess nitrotyrosine, c-Jun N-terminal protein kinase (c-JNK), Raf -1kinase, and oxidative stress biomarkers viz. reduced glutathione (GSH) and malondialdehyde (MDA). Findings/Results: Isolated glycosides had a prominent anti-apoptotic effect via inhibition of c-JNK and Raf-1 kinase. They also exerted a powerful antioxidant effect by modulating the oxidative stress induced by paracetamol via increasing GSH, reducing MDA and nitrotyrosine concentrations compared to positive control. The glycoside (1) showed a better effect than silymarin (standard) in ameliorating the formation of nitrotyrosine, Raf-1 kinase, c-JNK, and GSH. Conclusion and implication: Kaempferol glycosides isolated for the first time from C. odorata L. leaves exerted antioxidant and antiapoptotic effects via amelioration of oxidative stress and inhibition of Raf/MAPK pathway.
Collapse
Affiliation(s)
- Gihan Farag Asaad
- National Research Centre, Pharmacology Department, Medical Research Divison, Giza, Egypt
| | | | | | - Yousra Ahmed Nomier
- Pharmacology and Toxicology Department, Pharmacy College, Jazan University, Saudi Arabia
| |
Collapse
|
34
|
Fermented ginseng leaf enriched with rare ginsenosides relieves exercise-induced fatigue via regulating metabolites of muscular interstitial fluid, satellite cells-mediated muscle repair and gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
35
|
Govindan S, Jayabal A, Shanmugam J, Ramani P. Antioxidant and hepatoprotective effects of Hypsizygus ulmarius polysaccharide on alcoholic liver injury in rats. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Yoo S, Park BI, Kim DH, Lee S, Lee SH, Shim WS, Seo YK, Kang K, Lee KT, Yim SV, Soung DY, Kim BH. Ginsenoside Absorption Rate and Extent Enhancement of Black Ginseng (CJ EnerG) over Red Ginseng in Healthy Adults. Pharmaceutics 2021; 13:pharmaceutics13040487. [PMID: 33918329 PMCID: PMC8067055 DOI: 10.3390/pharmaceutics13040487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Red ginseng (RG) and black ginseng (BG, CJ EnerG) were prepared from fresh ginseng using one and nine cycles of steaming and drying, respectively. This process reduces the molecular weight (MW) of ginsenoside-active compounds in ginseng by removing sugar moieties from their dammaranes. We compared the pharmacokinetic characteristics of ginsenosides between BG comprising mainly low-MW ginsenosides (Rg3, Rg5, Rk1, and Rh1) and RG that predominantly contains high-MW ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1). The safety profiles and tolerability were also studied using a randomized, double-blind, single-dose, crossover clinical trial. A combination of Rb1, Rg1, and Rg3, well-known representative and functional RG components, exhibited a 1 h faster absorption rate (Tmax) and 58% higher exposure (24 h area under the concentration–time curve, AUC24) in BG than in RG. Furthermore, the combination of Rg3, Rg5, and Rk1, the major and most efficient components in BG, displayed 824% higher absorption (AUC24) in BG than in RG. The total ginsenoside showed a 5 h rapid intestinal absorption (Tmax) and 79% greater systemic exposure (AUC24) in BG than in RG. No clinically significant findings were observed in terms of safety or tolerability. Thus, BG extract was more effective than RG extract.
Collapse
Affiliation(s)
- Saebyul Yoo
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.Y.); (D.-h.K.)
| | - Bom-I Park
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
| | - Do-hyun Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.Y.); (D.-h.K.)
| | - Sooyoung Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.L.); (K.-T.L.)
| | - Seung-hoon Lee
- Department of Statistics, lnha University, Incheon 22212, Korea;
| | - Wang-Seob Shim
- Kyung Hee Drug Analysis Center, College of Pharmacy, Medical Center, Kyung Hee University, Seoul 02447, Korea;
| | - Yong Ki Seo
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
| | - Kimoon Kang
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.L.); (K.-T.L.)
- Kyung Hee Drug Analysis Center, College of Pharmacy, Medical Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Do Yu Soung
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
- Correspondence: (D.Y.S.); (B.-H.K.)
| | - Bo-Hyung Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.Y.); (D.-h.K.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Medical Center, Seoul 02447, Korea;
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (D.Y.S.); (B.-H.K.)
| |
Collapse
|
37
|
Li Y, Hou JG, Liu Z, Gong XJ, Hu JN, Wang YP, Liu WC, Lin XH, Wang Z, Li W. Alleviative effects of 20(R)-Rg3 on HFD/STZ-induced diabetic nephropathy via MAPK/NF-κB signaling pathways in C57BL/6 mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113500. [PMID: 33091499 DOI: 10.1016/j.jep.2020.113500] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is a major complication of diabetes. The kidney disease develops in nearly 20%-40% of type 2 diabetes (T2D) patients. Ginseng is the root of Panax ginseng C. A. Meyer and has been used in prevention and treatment of diseases for more than 2000 years as a traditional oriental medicine. The 20(R)-ginsenoside Rg3, an active saponin isolated from ginseng, can prevent and treat many diseases. The object of this research was to explore the alleviative effects of 20(R)-Rg3 on DN in mice. MATERIALS AND METHODS The T2D animal model was induced by continuous access to a high fat diet (HFD) combined with a single injection of 100 mg/kg streptozotocin (STZ) in C57BL/6 mice. The mice were treated by oral gavage of the 20(R)-Rg3 (10, 20 mg/kg) for 8 weeks. Functional and histopathological analyses of the kidneys were then performed. Protein expression levels of MAPKs and NF-κB signal pathways in the kidney were evaluated by western blotting. The expressions of HO-1 and NF-κB in the kidney were measured by fluorescent labeling staining. Other assessments including fasting blood glucose (FBG) levels, blood lipids, oxidative indicators, and inflammatory factors were all performed. RESULTS Abnormally elevated FBG levels were observed in HFD/STZ mice, contributing significantly to the occurrence of DN. Simultaneously, HFD/STZ mice showed the rise of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, and the decrease in high density lipoprotein cholesterol (HDL-C). DN was evidenced by the overproduction of malondialdehyde (MDA), decreased levels of superoxide dismutase (SOD) and catalase (CAT) enzymatic activities, high levels of serum blood urea nitrogen (BUN) and creatinine (Cr). Simultaneously, the results of the immunofluorescence assay showed an increased expression level in NF-κB p65 while a decrease in antioxidant enzyme HO-1 was observed. Herein, 20(R)-Rg3 treatment for 8 weeks not only attenuated FBG levels and advanced glycation end products (AGEs) levels but also improved insulin (INS) level, blood lipids, oxidative stress, and renal function by regulating MAPKs and NF-κB signal pathways in DN mice. CONCLUSION Taken together, the findings from the present study explicitly confirmed that 20(R)-Rg3 exerted ameliorative effects on DN mice via improving anti-oxidative activity and reducing renal inflammation.
Collapse
Affiliation(s)
- Ying Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Xiao-Jie Gong
- College of Life Science, Dalian University, Dalian, 116600, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Xiang-Hui Lin
- Liaoning Xifeng Pharmaceutical Group Co., Ltd., Huanren, 117000, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| |
Collapse
|
38
|
Hu JN, Yang JY, Jiang S, Zhang J, Liu Z, Hou JG, Gong XJ, Wang YP, Wang Z, Li W. Panax quinquefolium saponins protect against cisplatin evoked intestinal injury via ROS-mediated multiple mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153446. [PMID: 33387967 DOI: 10.1016/j.phymed.2020.153446] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cisplatin is one of the most common chemotherapeutic drugs. Cisplatin-induced toxicity gives rise to gastrointestinal cell damage, subsequent diarrhea and vomiting, leading to the discontinuation of its clinical application in long-term cancer chemotherapy. Panax quinquefolium L., also known as American ginseng, has many pharmacological activities such as improving immunity, anti-tumor, anti-radiation and blood sugar lowering. PURPOSE Previously, our laboratory reported that American ginseng berry extract could alleviate chemotherapeutic agents-induced renal damage caused by cisplatin. Hence, this study further explored the protective effect of P. quinquefolium saponins (PQS) on cisplatin-induced intestinal injury in mice and the possible molecular mechanisms. METHODS Biochemical markers, levels of inflammatory factors, histopathological staining and western blotting were used to analyze intestinal injury based on various molecular mechanisms. RESULTS We demonstrated the destruction of the intestinal barrier caused by cisplatin exposure by detecting the activity of diamine oxidase (DAO) and the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin. Meanwhile, cisplatin exposure changed SOD and MDA levels in the small intestine, causing oxidative damage to the intestinal mucosa. The inflammation associated-intestinal damage was further explored by the measurement of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and analysis of nuclear factor-kappa B (NF-κB) inflammatory pathway protein expression. Moreover, apoptotic cells labeled with TUNEL staining-positive cells and activated caspase family proteins suggest that cisplatin induces intestinal apoptosis. Interestingly, PQS pretreatment significantly reversed these situations. CONCLUSION These evidences clearly suggest that PQS can alleviate cisplatin-induced intestinal damage by inhibiting oxidative stress, reducing the occurrence of inflammation and apoptosis, and improving intestinal barrier function.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jia-Yu Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China
| | - Xiao-Jie Gong
- College of Life Science, Dalian Minzu University, Dalian 116600 China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| |
Collapse
|
39
|
Thermal transformation of polar into less-polar ginsenosides through demalonylation and deglycosylation in extracts from ginseng pulp. Sci Rep 2021; 11:1513. [PMID: 33452317 PMCID: PMC7810680 DOI: 10.1038/s41598-021-81079-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022] Open
Abstract
The present study was conducted to qualitatively and quantitatively elucidate dynamic changes of ginsenosides in ginseng pulp steamed under different temperatures (100 or 120 °C) for different durations (1-6 h) through UPLC-QTOF-MS/MS and HPLC with the aid of as numerous as 18 authentic standards of ginsenosides. Results show that levels of eight polar ginsenosides (i.e., Rg1, Re, Rb1, Rc, Rb2, Rb3, F1, and Rd) declined but those of 10 less-polar ginsenosides [i.e., Rf, Rg2, 20(S)-Rh1, 20(R)-Rg2, F4, 20(S)-Rg3, 20(R)-Rg3, PPT, Rg5, and 20(R)-Rh2] elevated with increases of both steaming temperature and duration; the optimum steaming conditions for achieving the highest total ginsenosides were 100 °C for 1 h. Particular, 20(R)-Rg3, a representative less-polar ginsenoside with high bioactivity such as potent anti-cancer effect, increased sharply but Re, the most abundant polar ginsenoside in fresh ginseng pulp, decreased dramatically. More importantly, ginsenoside species enhanced from 18 to 42 after steaming, mainly due to transformation of polar into less-polar ginsenosides. Furthermore, four malonyl-ginsenosides were detected in fresh ginseng pulps and ten acetyl-ginsenosides were formed during steaming, demonstrating that demalonylation and acetylation of ginsenosides were the dominant underling mechanisms for transformation of polar into less-polar ginsenosides.
Collapse
|
40
|
Ryu J, Yoon J, Lee YW. Kinetic study of the thermal conversion of ginsenosides using lumped groups in steaming, hydrothermal reactions, and CO2-assisted hydrothermal reactions. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Rahaman MM, Hassan SMH, Martorell M, Sharifi-Rad J, Islam MT. Ascorbic acid interaction with phytol: a modulatory effects on the anti-pyretic activity of paracetamol in Swiss albino mice. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Antioxidants have protective capacity, and can be used combinedly with other substances. Both, ascorbic acid (AA) and phytol (PHY) have many important biological activities, including antioxidant, anti-inflammatory, and organ protective activity. Recently, PHY has been found to exert an anti-pyretic effect in a mouse model. This study aims to evaluate the combined effects of AA and/or PHY with paracetamol (PARA) in Brewer’s yeast-induced fever mice model.
Methods
AA (125 mg/kg) and/or PHY (200 mg/kg) were orally co-treated with the PARA (100 mg/kg, p.o.) in Brewer’s yeast-induced fever Swiss mice. Data were analyzed by using GraphPadPrism software (version: 6.0), considering p < 0.05 at 95% confidence interval, and using one-way analysis of variance (ANOVA) through time, followed by Dunnett’s post hoc multiple comparison test.
Results
PARA alone and with PHY and/or AA significantly (p < 0.05) reduced rectal temperature at 1st h of observation. PHY reduced rectal temperature at 2nd h, then maintained basal temperature over the observation period (4 h). AA showed an insignificant anti-pyretic effect in experimental animals. However, in combination groups, AA (i.e., with PHY or PARA) did not found to interfere the PHY and PARA mediated reduction of rectal temperature in the animals. Furthermore, AA when co-treated with the PARA + PHY, it caused a slight hypothermic temperature at 1st h, which was then started to restablish from 2nd to 3rd h, and normalized at 4th h.
Conclusion
Taken together, AA did not interfere anti-pyretic effects of PARA and PHY, suggesting its possible use as a combination substance.
Collapse
|
42
|
Ibrahim EA, Moawed FSM, Moustafa EM. Suppression of inflammatory cascades via novel cinnamic acid nanoparticles in acute hepatitis rat model. Arch Biochem Biophys 2020; 696:108658. [PMID: 33144082 DOI: 10.1016/j.abb.2020.108658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/10/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Hepatitis was characterized by extreme inflammation and hepatocellular damage. Therefore, the current study aimed to gain insights into the modulation role of Cinnamic acid nanoparticles (CANPs) against acute hepatitis induced by d-Galactosamine and gamma radiation exposure (D-Gal/radiation) in the rat model and to suggest the implied molecular mechanism of CANPs. Acute hepatitis seriousness and the serum enzyme activities of ALT, AST, and ALP have been diminished upon oral administration of CANPs. Besides, the hepatic tissue levels of malondialdehyde (MDA) and nitric oxide (NO) have been significantly decreased, and the total antioxidant activity (TAO) depletion was extremely restored. Furthermore, the reduction of hepatic damage caused by pretreatment with CANPs was accompanied by significant suppression in the levels of hepatic proinflammatory cytokines (TNF-α, IL-1β, and IL-18), NF-κB, NLRP3, caspase-1 and proapoptotic protein BAX whereas anti-apoptotic protein Bcl-2 level significantly elevated as compared with D-Gal/radiation-induced acute hepatitis (AH) group. Also, CANPs suppress the D-Gal/radiation-induced IL-1β, IL-18, and ASK1 mRNA gene expression and the protein expression of TLR4 and MyD88 in the hepatic tissue. These biochemical parameters are confirmed by histological examination of the liver tissues. The present results indicated that CANPs can protect the hepatic cells from damage by both its anti-inflammatory and antioxidant influence as well as by modulating oxidation cellular pathways that have contributed to the acute severity of hepatitis. Also, CANPs is capable of suppressing apoptosis. Consequently, Nanoparticles of Cinnamic acid have the medicinal ability to protect the liver from acute hepatitis.
Collapse
Affiliation(s)
- Ehab A Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
43
|
Steamed ginseng shoot extract rich in less-polar ginsenosides ameliorated the acute hepatotoxicity caused by overdose of acetaminophen in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
44
|
Liu W, Leng J, Hou JG, Jiang S, Wang Z, Liu Z, Gong XJ, Chen C, Wang YP, Li W. Saponins derived from the stems and leaves of Panax ginseng attenuate scrotal heat-induced spermatogenic damage via inhibiting the MAPK mediated oxidative stress and apoptosis in mice. Phytother Res 2020; 35:311-323. [PMID: 32767418 DOI: 10.1002/ptr.6801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
Heat stress (HS) reaction is a stress response caused by adverse conditions. Currently, the incidence of reproductive malignancies particularly in males has been constantly increasing. This work investigated the effects of saponins derived from the stems and leaves of Panax ginseng (GSLS) on testicular injury induced by scrotal hyperthermia in mice. GSLS (150, 300 mg/kg) were administered intragastrically to mice for 14 days, then exposed to a single scrotal heat treatment at 43°C for 18 min on seventh day. HS induced a significant loss of multinucleate giant cells, desquamation of germ cells in destructive seminiferous tubules. Moreover, HS reduced the serum testosterone, testicular tissue superoxide dismutase activity and glutathione (GSH) content, while significantly enhanced the production of malondialdehyde (p < .05). GSLS exhibited the protective potential against HS-induced injury not only by modulating Bcl-2 family and caspase protease family, but also by suppressing the protein levels of heme oxygenase-1 (HO-1), heat shock protein 70 (HSP70), hypoxia inducible factor-1α (HIF-1α) and activation of Mitogen-activated protein kinase (MAPK) signaling pathways (p < .05). In conclusion, we clearly demonstrated that GSLS exhibited a significant protective effect against HS-induced testicular dysfunction, mainly the inhibition of oxidative stress associated apoptosis partly via regulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jing Leng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xiao-Jie Gong
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Minzu University, Dalian, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
45
|
Tian M, Ma P, Zhang Y, Mi Y, Fan D. Ginsenoside Rk3 alleviated DSS-induced ulcerative colitis by protecting colon barrier and inhibiting NLRP3 inflammasome pathway. Int Immunopharmacol 2020; 85:106645. [PMID: 32521491 DOI: 10.1016/j.intimp.2020.106645] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Ginsenosides have a variety of pharmacological activities, including immunomodulatory, antitumor and anti-inflammatory activities. However, the effect of Rk3 on ulcerative colitis has rarely been reported. This study evaluated the effect of Rk3 on DSS-induced ulcerative colitis and preliminarily explored the anti-inflammatory mechanisms. Rk3 administration significantly attenuated the weight loss, increased DAI scores, colonic shortening, and increased MPO and iNOS activities caused by DSS in mice. Histological improvement was apparent, tight junctions in the colon were restored, and the levels of short-chain fatty acids (acetic acid, butyric acid and isovaleric acid) were increased. In addition, Rk3 reduced the expression of proinflammatory factors (TNF-α, IL-1β and IL-6), NLRP3, ASC, and Caspase-1, indicating blockade of the NLRP3 inflammasome pathway. These results show that Rk3 can improve DSS-induced ulcerative colitis by protecting intestinal barrier function and inhibiting NLRP3 inflammasome expression, indicating that Rk3 could be used as a potential drug for treating ulcerative colitis.
Collapse
Affiliation(s)
- Mi Tian
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yan Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
46
|
Hu JN, Xu XY, Jiang S, Liu Y, Liu Z, Wang YP, Gong XJ, Li KK, Ren S, Li W. Protective effect of ginsenoside Rk1, a major rare saponin from black ginseng, on cisplatin-induced nephrotoxicity in HEK-293 cells. Kaohsiung J Med Sci 2020; 36:732-740. [PMID: 32374939 DOI: 10.1002/kjm2.12220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Cisplatin, as one of the most effective chemotherapeutic agents, its clinical use is limited by serious side effect of nephrotoxicity. Cisplatin-induced nephrotoxicity is closely related to apoptosis induction and activation of caspase. The present study aimed to explore the potential protective effect of ginsenoside Rk1 (Rk1), a rare ginsenoside generated during steaming ginseng, on cisplatin-induced nephrotoxicity and the underlying mechanisms in human embryonic kidney 293 (HEK-293) cells. Our results showed that the reduced cell viability induced by cisplatin could significantly recover by Rk1. Furthermore, glutathione (GSH) as an oxidative index, was elevated and the lipid peroxidation product malondialdehyde (MDA) was significantly decreased after Rk1 treatment compared to the cisplatin group. Additionally, Rk1 can also decrease the ROS fluorescence expression and increase the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) compared to the cisplatin group, which suggested a suppression of oxidative response. More importantly, the cisplatin-induced elevated protein levels of Bax, cleaved caspase-3, cleaved caspase-9, and decreased protein level of Bcl-2 were reversed after treatment with Rk1. Our results elucidated the possible protective mechanism of Rk1 for the first time, which may involve in its anti-oxidation and anti-apoptosis effects.
Collapse
Affiliation(s)
- Jun-Nan Hu
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xing-Yue Xu
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shuang Jiang
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying Liu
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zhi Liu
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying-Ping Wang
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Xiao-Jie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Ke-Ke Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Shen Ren
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wei Li
- Department of Chinese Medicine, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
47
|
Samra YA, Hamed MF, El-Sheakh AR. Hepatoprotective effect of allicin against acetaminophen-induced liver injury: Role of inflammasome pathway, apoptosis, and liver regeneration. J Biochem Mol Toxicol 2020; 34:e22470. [PMID: 32040233 DOI: 10.1002/jbt.22470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/02/2019] [Accepted: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Acetaminophen (APAP) overdose leads to liver injury. NLRP3 inflammasome is a key player in APAP-induced inflammation. Also, apoptosis and liver regeneration play an important role in liver injury. Therefore, we assessed allicin's protective effect on APAP-induced hepatotoxicity and studied its effect on NLRP3 inflammasome and apoptosis. Mice in the APAP group were injected by APAP (250 mg/kg, intraperitoneal). The allicin-treated group received allicin orally (10 mg/kg/d) during 7 days before APAP injection. Serum and hepatic tissues were separated 24 hours after APAP injection. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, alkaline phosphatase (ALP), and hepatic malondialdehyde (MDA) were assessed using the colorimetric method. Hepatic NLRP3 inflammasome, caspase-1, and interleukin-1β (IL-1β) were estimated using enzyme-linked immunosorbent assay. Hepatic Bcl-2 and Ki-67 were investigated by immunohistochemistry. APAP significantly increased AST, ALT, and ALP, whereas allicin significantly decreased their levels. Also, APAP significantly decreased albumin and allicin significantly improved it. APAP produced changes in liver morphology, including inflammation and massive coagulative necrosis. Allicin protected the liver from APAP-induced necrosis, apoptosis, and hepatocellular degeneration via increasing Bcl-2 and Ki-67 levels. APAP significantly increased the hepatic MDA, whereas allicin significantly prevented this increase. APAP markedly activated the NLRP3 inflammasome pathway and consequently increased the production of caspase-1 and IL-1β. Interestingly, we found that allicin significantly inhibited NLRP3 inflammasome activation, which resulted in decreased caspase-1 and IL-1β levels. Allicin has a hepatoprotective effect against APAP-induced liver injury via the decline of oxidative stress and inhibition of the inflammasome pathway and apoptosis. Therefore, allicin might be a novel tool to halt the progression of APAP-stimulated hepatotoxicity.
Collapse
Affiliation(s)
- Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
48
|
A novel acidic polysaccharide from the residue of Panax notoginseng and its hepatoprotective effect on alcoholic liver damage in mice. Int J Biol Macromol 2020; 149:1084-1097. [PMID: 32035151 DOI: 10.1016/j.ijbiomac.2020.02.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
This study presented the first purification and characterization of a hepatoprotective polysaccharide (PNPS-0.5 M) from the residue of Panax notoginseng (Burk.) F.H. Chen. This polysaccharide included a backbone of (4 → 1)-linked GalA and branches of (1→)-linked Araf, (1→)-linked Rhap, and (5 → 1)-linked Araf and had an extremely high molecular weight (2600 kDa). We investigated the hepatoprotective effects of PNPS-0.5 M on mice with alcoholic liver damage (ALD). After administration of PNPS-0.5 M, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), and hepatic malondialdehyde (MDA) were reduced to normal. In contrast, hepatic levels of alcohol dehydrogenase (ADH) and the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were elevated to normal. Further investigations indicated that PNPS-0.5 M activated Nrf2 signaling as a protective mechanism against Cyp2e1 toxicity in ALD mice. Meanwhile, it strengthened the ADH pathway and suppressed the CAT pathway of alcohol metabolism to prevent peroxide accumulation, thereby ameliorating ALD. In the present study, we describe a novel acidic polysaccharide from P. notoginseng with hepatoprotective activity that facilitates the development and utilization of P. notoginseng resources.
Collapse
|
49
|
Ren S, Leng J, Xu XY, Jiang S, Wang YP, Yan XT, Liu Z, Chen C, Wang Z, Li W. Ginsenoside Rb1, A Major Saponin from Panax ginseng, Exerts Protective Effects Against Acetaminophen-Induced Hepatotoxicity in Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1815-1831. [PMID: 31786947 DOI: 10.1142/s0192415x19500927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute liver injury (ALI) induced by acetaminophen (APAP) is the main cause of drug-induced liver injury. Previous reports indicated liver failure could be alleviated by saponins (ginsenosides) from Panax ginseng against APAP-induced inflammatory responses in vivo. However, validation towards ginsenoside Rb1 as a major and marker saponin may protect liver from APAP-induced ALI and its mechanisms are poorly elucidated. In this study, the protective effects and the latent mechanisms of Rb1 action against APAP-induced hepatotoxicity were investigated. Rb1 was administered orally with 10mg/kg and 20mg/kg daily for 1 week before a single injection of APAP (250mg/kg, i.p.) 1h after the last treatment of Rb1. Serum alanine/aspartate aminotransferases (ALT/AST), liver glutathione (GSH) depletion, as well as the inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were analyzed to indicate the underlying protective effects of Rb1 against APAP-induced hepatotoxicity with significant inflammatory responses. Histological examination further proved Rb1's protective effects. Importantly, Rb1 mitigated the changes in the phosphorylation of MAPK and PI3K/Akt, as well as its downstream factor NF-κB. In conclusion, experimental data clearly demonstrated that Rb1 exhibited a remarkable liver protective effect against APAP-induced ALI, partly through regulating MAPK and PI3K/Akt signaling pathways-mediated inflammatory responses.
Collapse
Affiliation(s)
- Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Jing Leng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xing-Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Xiao-Tong Yan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| |
Collapse
|
50
|
Jing Y, Yang D, Fu Y, Wang W, Yang G, Yuan F, Chen H, Ding J, Chen S, Tian H. Neuroprotective Effects of Serpina3k in Traumatic Brain Injury. Front Neurol 2019; 10:1215. [PMID: 31803133 PMCID: PMC6873821 DOI: 10.3389/fneur.2019.01215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, in part resulting from secondary apoptosis of neurons in peri-contusion areas. Serpina3k, a serine protease inhibitor, has been shown to inhibit apoptosis in injury models. In this study, we investigated the anti-apoptotic function of serpina3k in vivo using a mouse model of TBI, as well as the underlying neuroprotective mechanism in vitro using the SH-SY5Y human neuroblastoma cell line. TBI was induced in adult male C57BL/6 mice using controlled cortical impact. Serpina3k protein was intravenously administered at a concentration of 0.5 mg/kg twice daily for up to 14 days. SH-SY5Y cells were subjected to biaxial stretch injury and then treated with different concentrations of serpina3k. We found that endogenous serpina3k protein levels were elevated in peri-contusion areas of the mouse brain following TBI. Serpina3k-treated mice had fewer apoptotic neurons, lower levels of oxidative stress, and showed greater recovery of neurological deficits relative to vehicle-treated mice. Meanwhile, in the SH-SY5Y cell injury model, serpina3k at an optimal concentration (150 nM) inhibited the generation of intracellular reactive oxygen species, abrogated changes of the mitochondrial membrane potential, and reduced the phospho-extracellular regulated protein kinases (p-ERK)/ERK, phospho-P38 (p-P38)/P38, B cell lymphoma (Bcl)-2-associated X protein/Bcl-2, and cleaved caspase-3/caspase-3 ratios, thereby reducing the apoptosis rate. These results demonstrate that serpina3k exerts a neuroprotective function following TBI and thus has therapeutic potential.
Collapse
Affiliation(s)
- Yao Jing
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dianxu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yimu Fu
- Department of Emergency, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoyuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hao Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|