1
|
Li S, Yuan B, Zhang M, Du J, Hu X, Ning X, Duan Z, Wen Y. A review of multi-contaminant risks in textile dyeing sludge pyrolysis: Transformation mechanisms and mitigation strategies. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138632. [PMID: 40408964 DOI: 10.1016/j.jhazmat.2025.138632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025]
Abstract
Textile dyeing sludge (TDS), an industrial byproduct containing various pollutants like heavy metals, polycyclic aromatic hydrocarbons (PAHs), microplastics, per- and poly-fluoroalkyl substances (PFAS), necessitates efficient treatment to mitigate environmental risks. Pyrolysis has become an effective alternative for treating TDS due to its advantages in carbon mitigation and resource utilization compared to incineration and landfilling. However, a comprehensive understanding of the generation and transformation mechanisms of multi-contaminants during pyrolysis is still lacking, hindering its large-scale application. This review systematically analyzes the behavior of multi-contaminants during pyrolysis, with a special concern on the emerging contaminants, including PAH derivatives, microplastics, and PFAS. The potential application and environmental risks of TDS-derived biochar are also outlined, followed by a comprehensive investigation on the pollution mitigation of pyrolysis regulation strategies. The evaluation of risks posed by emerging contaminants and long-term application of biochar, as well as the source control of multi-contaminants is recognized as the dilemma, which stems from the limitations in quantifying method of emerging pollutants, the variability of biochar properties, complicated environmental influences over long-term application, and the tradeoffs among multi-contaminants during pyrolysis regulation. Future research is proposed to prioritize (1) quantitative risk assessment of emerging contaminants and long-term application of biochar, (2) elucidating pollutant formation and transformation pathways under pyrolysis regulation strategies for targeted control, and (3) multi-objective optimization to balance product valorization and integrated risk of multi-contaminants. This review aims to provide guidance for the research on pollution risk evaluation and control in the pyrolysis process of TDS.
Collapse
Affiliation(s)
- Shasha Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Bin Yuan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Mingyang Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Jianwei Du
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xiaoying Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xun'an Ning
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhan Duan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| | - Yong Wen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|
2
|
Liu H, Cao X, Gao Z, Wu Y, Sa Y, Yao Q, Han J, Yang J, Hou J, Xing T. Integrating spatial heterogeneity and speciation dynamics in source apportionment of toxic metal(loid)s at an abandoned hydrometallurgical zinc smelting site. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:177. [PMID: 40251334 DOI: 10.1007/s10653-025-02469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/20/2025]
Abstract
Zinc hydrometallurgy sites are critical hotspots for combined toxic metal(loid)s (TMs) pollution, yet the integration of spatial heterogeneity and migration dynamics into source apportionment remains underexplored. This study investigated the concentrations, speciation, and spatial distribution of nine TMs (As, Cd, Cu, Hg, Mn, Ni, Pb, Sb, Zn) in soils at an abandoned zinc smelter in southwest China. Multivariate statistical methods and the Positive matrix factorization (PMF) model were applied to disentangle primary sources and secondary redistribution. Spatial analysis revealed that As, Cd, Cu, Pb, Sb, and Zn shared similar contamination patterns, concentrated in slag storage and comprehensive recovery areas, whereas Hg and Mn exhibited distinct hotspots near sulfuric acid production and electrolysis zones. Vertical migration was most pronounced for Cd and Zn (> 8 m depth), followed by Hg and Mn (4-8 m), while As, Cu, Pb, and Sb were restricted to 0-4 m due to adsorption in clay-rich layers. Speciation analysis indicated high mobility of Cd and Zn (acid-soluble fraction: 66.96 and 52.10%, respectively), contrasting with reducible Pb and Mn (51.59 and 48.32%) and residual As, Hg, Ni, Sb (60.74-76.64%). The results from PMF model identified aqueous-phase (Cd, Zn, Mn) and solid-phase (As, Cu, Pb, Sb) migration pathways, validated by spatial correlations with topography and functional zones. Aqueous-phase contributions dominated low-lying areas, while solid-phase contributions aligned with elevated regions, reflecting topography-driven redistribution. This study advances source apportionment of TM in soil by unifying spatial heterogeneity, speciation dynamics, and receptor modeling, offering a framework for targeted risk assessment and remediation of industrial sites.
Collapse
Affiliation(s)
- Hengbo Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610227, China
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China
| | - Xu Cao
- Sichuan Xinchuan Testing Company, Chengdu, 610200, China
| | - Zhiyue Gao
- Sichuan Xinchuan Testing Company, Chengdu, 610200, China
| | - Yi Wu
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China
| | - Yongfang Sa
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China
| | - Qinying Yao
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China
| | - Jianzhou Han
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China
| | - Jinyan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610227, China.
| | - Jiang Hou
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China
| | - Tao Xing
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China
| |
Collapse
|
3
|
Feng J, Burke IT, Chen X, Stewart DI. Evolution of Cu and Zn speciation in agricultural soil amended by digested sludge over time and repeated crop growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54738-54752. [PMID: 39215926 DOI: 10.1007/s11356-024-34784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Metals such as Zn and Cu present in sewage sludge applied to agricultural land can accumulate in soils and potentially mobilise into crops. Sequential extractions and X-ray absorption spectroscopy results are presented that show the speciation changes of Cu and Zn sorbed to anaerobic digestion sludge after mixing with soils over three consecutive 6-week cropping cycles, with and without spring barley (Hordeum vulgare). Cu and Zn in digested sewage sludge are primarily in metal sulphide phases formed during anaerobic digestion. When Cu and Zn spiked sludge was mixed with the soil, about 40% of Cu(I)-S phases and all Zn(II)-S phases in the amended sludge were converted to other phases (mainly Cu(I)-O and outer sphere Zn(II)-O phases). Further transformations occurred over time, and with crop growth. After 18 weeks of crop growth, about 60% of Cu added as Cu(I)-S phases was converted to other phases, with an increase in organo-Cu(II) phases. As a result, Cu and Zn extractability in the sludge-amended soil decreased with time and crop growth. Over 18 weeks, the proportions of Cu and Zn in the exchangeable fraction decreased from 36% and 70%, respectively, in freshly amended soil, to 28% and 59% without crop growth, and to 24% and 53% with crop growth. Overall, while sewage sludge application to land will probably increase the overall metal concentrations, metal bioavailability tends to reduce over time. Therefore, safety assessments for sludge application in agriculture should be based on both metal concentrations present and their specific binding strength within the amended soil.
Collapse
Affiliation(s)
- Jianting Feng
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Ian T Burke
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaohui Chen
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Douglas I Stewart
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Lu Y, Xiao X, Liang Y, Li J, Guo C, Xu L, Liu Q, Xiao Y, Zhou S. Distribution and transformation of potentially toxic elements in cracks under coal mining disturbance in farmland. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:312. [PMID: 39001963 DOI: 10.1007/s10653-024-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
The ground cracks resulting from coal mining activities induce alterations in the physical and chemical characteristics of soil. However, limited knowledge exists regarding the impact of subsidence caused by coal mining on the distribution of potentially toxic elements (PTEs) fractions in farmland soil. In this study, we collected 19 soil profiles at varying depths from the soil surface and at horizontal distances of 0, 1, 2, and 5 m from the vertical crack. Using BCR extraction fractionation, we determined the geochemical fractions and total concentrations of Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) to investigate their ecological risk, spatial fraction distribution, and main influencing factors. Results showed that the E r i values of Cd appearing in 68.7% of the samples were higher than 40 and less than 80, presented a moderate ecological risk. Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) were mainly bound to residual fractions (> 60%) with lower mobility and Cd was dominated by F1 (acid-soluble fractions, 50%) and F2 (reducible fractions, 29%) in surface soil (0-20 cm). The geochemical fractionation revealed that the mobile fractions (F1-acid-soluble and F2-reducible) of PTEs were primarily located near the crack, influenced by available potassium. In contrast, the less mobile fractions (F3-oxidizable and F4-residual) exhibited higher concentrations at distances of 2 and 5 m from the crack, except for arsenic, influenced by the presence of clay particles and available phosphorus.
Collapse
Affiliation(s)
- Yin Lu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Xin Xiao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Yan Liang
- Beijing Invision Ruida Technology Co., Ltd, Huaxia Happiness Entrepreneurship Center, Beijing, 100000, China
| | - Junchi Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Chunying Guo
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Lili Xu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Qingfeng Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Yu Xiao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Shiyuan Zhou
- College of Architecture and Design, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
5
|
Huang X, Sun Z, Zhao Y, Wang H, Xue F, Hou H. Zero-carbon inertization processes of hazardous mine tailings: Mineral physicochemical properties, transformation mechanism, and long-term stability. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133882. [PMID: 38412646 DOI: 10.1016/j.jhazmat.2024.133882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Hazardous mine tailings (HMTs) dam failures can cause devastation to the ecology environment, people's lives and property, which require expensive and complicated remediation engineering systematacially. A cheap and sustainable inertization disposal is proposed for de-risking HMTs without any carbon emissions, stabilizing hazardous heavy metal cations within safety minerals and also sequestering CO2 in the process, simultaneously. Herein, lead-zinc tailings as target HMTs were inertized by using waste rice husk ashes (RHAs) and carbide slag (CS) with a certain ratio, and lead-zinc tailings hardened pastes (LZTHPs) were investigated based on the experimental performance, analytical characteristics, and simulation diffusion methods, to deeply unveil the minerals transformation mechanisms and long-term stability from the cation perspectives. Results revealed that LZTHPs' compressive strength ranged from 1.04-4.73 MPa and leaching toxicity concentrations of Pb, Zn, Cr, and Cd reached 0.03 mg/L, 1.78 mg/L, 0.01 mg/L, and 0.01 mg/L, respectively. C-S-H gels (Type I and II), cation hydroxides and CO2 mineralization carbonates were the hydrates in LZTHPs. Pb (86%), Zn (78%), Cr (76%), and Cd (65%) were immobilized as residual state, and CO2 mineralization capacity was 0.16 kg/kg. The diffusion coefficient of Pb, Zn, Cr, and Cd below 4.48 × 10-10 cm2/s, 1.39 × 10-10 cm2/s, 4.72 × 10-10 cm2/s, and 0.30 × 10-12 cm2/s, which would be sufficient in most scenarios to adequately stabilize tailings. Diffusion control is the leaching mechanism of cations. After 100 years of simulation diffusion, the diffusion areas of Pb, Zn, Cr, and Cd are 1.33 × 10-3∼1.49 cm2, 2.47 × 10-4∼0.48 cm2, 2.47-8.61 × 10-4 cm2, and 1.49 cm2, respectively, and the environmental impact of LZTHPs was negligible. This study provides promising solutions for alleviating hazardous tailings dangerous, achieving sustainable development with zero-carbon emission, implying the concept of eliminating waste by waste, synchronously.
Collapse
Affiliation(s)
- Xuquan Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, PR China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, PR China
| | - Zhenghua Sun
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, PR China
| | - Yanhui Zhao
- Ecology and Environment Monitoring and Scientific Research Center, Yangtze Basin Ecology and Environment Administration, Ministry of Ecological and Environment, Wuhan 430010, PR China
| | - Haojie Wang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, PR China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, PR China; School of Resource and Environment Science, Wuhan University, Wuhan 430072, PR China.
| | - Fei Xue
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, PR China; College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, PR China
| | - Haobo Hou
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
6
|
Xia Y, Liu Y, Chen T, Xu Y, Qi M, Sun G, Wu X, Chen M, Xu W, Liu C. Combining Cd and Pb isotope analyses for heavy metal source apportionment in facility agricultural soils around typical urban and industrial areas. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133568. [PMID: 38262321 DOI: 10.1016/j.jhazmat.2024.133568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Facility agriculture enhances food production capabilities. However, concerns persist regarding heavy metal accumulation resulting from extensive operation of this type of farming. This study integrated the total content, five fractions, and isotope composition of Cd and Pb in intensively farmed soils in regions characterized by industrialization (Shaoguan, SG) and urbanization (Guangzhou, GZ), to assess the sources and mechanisms causing metals accumulation. We found significantly more severe Cd/Pb accumulation and potential mobility in SG than GZ. Cd displayed higher accumulation levels and potential mobility than Pb. The distinct isotopic signals in SG (-0.54 to 0.47‰ for δ114/110Cd and 1.1755 to 1.1867 for 206Pb/207Pb) and GZ (-0.86 to 0.12‰ for δ114/110Cd and 1.1914 to 1.2012 for 206Pb/207Pb) indicated significant differences in Cd/Pb sources. The Bayesian model revealed that industrial activities and related transportation accounted for over 40% and approximately 30%, respectively, of the average contributions of Cd/Pb in SG. While urban-related (26.6%) and agricultural-related (26.3%) activities primarily contributed to Cd in GZ. The integration of δ114/110Cd and 208Pb/206Pb has further enhanced the regional contrast in sources. The present study established a comprehensive tracing system for Cd-Pb, providing crucial insights into the accumulation and distribution of these metals in facility agricultural soils.
Collapse
Affiliation(s)
- Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Tao Chen
- South China Normal University, School of Environment, Guangzhou 510631, PR China
| | - Yudi Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Xian Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Wenpo Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
7
|
Zhong S, Hu M, Zhang L, Qin X, Zhang Q, Ru X, Wang LA. Toxic metals and the risks of sludge from the treatment of wastewater from beryllium smelting. CHEMOSPHERE 2023; 326:138439. [PMID: 36935057 DOI: 10.1016/j.chemosphere.2023.138439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
The release of highly toxic beryllium in sludge (BCS) produced by physico-chemical treatment of beryllium-containing wastewater from Be smelting production has become a growing concern with the widespread use of Be in the defense industry. This work investigated the potential mobility of Be in BCS. The toxicity characteristic leaching procedure (TCLP) of BCS showed that the amount of leached Be was up to 202 mg L-1, which exceeded the regulated limit by nearly 10,000 times. The chemical fractionation analysis further revealed that the excessive amount of Be leached from BCS was contributed to the high content of acid-soluble fraction and reducible fraction of Be, which accounted for over 70% of the Be content. The results obtained from mineralogical automatic analyzer (MLA) showed that gypsum (23.23%) and epidote (19.55%) were the two major mineralogical phases of BCS. Both were small and loosely structured agglomerated particles with a D50 of 6.61 μm and 3.31 μm. ToF-SIMS results revealed that the Be distribution on the surface of BCS particles was relatively dispersed, with no aggregation or encapsulation. Be co-precipitated with gypsum and chlorite in the form of unstable Be(OH)2, which attached to the surface of these small particles. The unstable state of Be and the small size, loose structure and high liberation of the host material phases are the main reasons for the high leaching mobility of Be. The results of the risk assessment indicated that BCS posed an extremely high potential ecological risk, with Be being the most significant contributor.
Collapse
Affiliation(s)
- Shan Zhong
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Min Hu
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Lishan Zhang
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Xiaoqi Qin
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Qian Zhang
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Xuan Ru
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Li Ao Wang
- School of Resource and Safety Engineeing, Chongqing University, Chongqing, 40044, PR China.
| |
Collapse
|
8
|
Liu X, Deng Q, Du M, Lu Q, Zhou W, Wang D. Microplastics decrease the toxicity of cadmium to methane production from anaerobic digestion of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161780. [PMID: 36706993 DOI: 10.1016/j.scitotenv.2023.161780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and Cd have been proven to inhibit methane production from anaerobic digestion of sewage sludge. However, the published studies mainly focused on their single inhibition. This cannot reflect the real-world situations where MPs and Cd co-exist. This study therefore aims to reveal the combined effect of MPs and Cd on anaerobic digestion of sewage sludge. Experimental results showed that PVC-MPs at environmentally relevant levels (e.g., 1, 10 particles/g total solids (TS)) did not affect methane yield but decrease the toxicity of Cd. When PVC-MPs were 30 particles/g TS, the cumulative methane production recovered from 58.8 % (in the presence of 5 mg Cd/g TS) to 89.7 % of the control. Organic fluxes were significantly increased compared with the control, particularly affecting the content of dissolved substances and short-chain fatty acids during anaerobic digestion. Mechanistic exploration showed that the adsorption of Cd by PVC-MPs was higher than that of sludge-substrate, which reduced the bioavailability of Cd by anaerobes, as evidenced by the increased anaerobes driven carbon flux from solid-phase to bio-methane during anaerobic digestion. Overall, these findings identified important factors in determining the toxicity of pollutants on anaerobic digestion process, providing precise data for toxicity evaluation of MPs and metals in anaerobic environment.
Collapse
Affiliation(s)
- Xuran Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenneng Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
9
|
Chen Q, Zhao B, Zhang Y, Zhu F, Wang H, Wang J, Fu X. The function of "Cambi® thermal hydrolysis + anaerobic digestion" on heavy metal behavior and risks in a full-scale sludge treatment plant based on four seasons investigation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130579. [PMID: 37055984 DOI: 10.1016/j.jhazmat.2022.130579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
The environmental risk of heavy metals in sewage sludge from a full-scale "Cambi® thermal hydrolysis + anaerobic digestion" sludge treatment plant was discussed based on four seasons' data. Results showed that the order of heavy metal concentration in sludge was Zn > Cu > Cr > Ni > As > Pb > Hg > Cd, which all increased significantly due to the "enrichment effect" caused by the degradation of organics. Nevertheless, the mass of heavy metals except for Cd decreased. Chemical fractions of different heavy metals in raw sludge varied greatly. The proportion of their residual fraction all increased slightly after treatment. Thermal hydrolysis and anaerobic digestion led to the transformation of some heavy metal fractions. Deep dehydration process reduced the mass of heavy metals from sludge (less than 10%). Potential ecological risk of heavy metals was low (RI <150) when sludge is applied 0.75 kg/m2 to soil according to GB 4284-2018, in which the risk of Hg and Cd was highest. Furthermore, the accumulation amounts of heavy metals in test soil and rural soil with the annual sludge application amount of 0.75 kg/m2 for 15 years were calculated, which did not exceed GB 36600-2018 and GB 15618-2018 respectively.
Collapse
Affiliation(s)
- Qian Chen
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Bing Zhao
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yuhui Zhang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Fenfen Zhu
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Huan Wang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Jiawei Wang
- Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xingmin Fu
- Beijing Drainage Group Co. Ltd., Beijing 100124, China
| |
Collapse
|
10
|
Islam MS, Phoungthong K, Ismail Z, Othman IK, Shahid S, Ishak DSM, Abu Bakar A, Kasiman EH, Ali MM, Kabir MH, Ezewudo BI, Idris AM. Trace element speciation in sludge: a preliminary study to assess contamination levels in the sewage network. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 57:1073-1083. [PMID: 36644961 DOI: 10.1080/10934529.2022.2148811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
The spreading of sewage sludge from wastewater treatment plants and various industries arouses the growing interest due to the contamination by trace elements. Sludges were collected from one sewage treatment plant and two industries in Dhaka City, Bangladesh to assess physicochemical parameters and total and fraction content of trace elements like Cr, Ni, Cu, As, Cd, Pb, Fe, Mn and Zn in sludges. We evaluated the bioavailability of theses metals by determining their speciation by sequential extraction, each metal being distributed among five fractions: exchangeable fraction, bound to carbonate fraction, Fe-Mn oxide bound fraction, organic matter bound fraction and residual fractions. We found that all the analyzed sludges had satisfactory properties from an agronomic quality point of view. The average concentration (mg/kg) of trace metals in sludge samples were in the following decreasing order Fe (12807) > Cr (200) > Mn (158) > Zn (132) > Cu (68.2) > Ni (42.5) > Pb (36.4) > As (35.1) > Cd (3.7). The results of the sequential extraction showed that Cr, Ni, Cu, Fe and Mn were largely associated with the residual fraction where As, Cd and Pb was dominantly associated with the exchangeable and carbonate bound fractions and Zn showed a considerable proportion in carbonate bound fraction. These results showed that regulations must take into account the bioavailability with regard to the characteristics of the agricultural soils on which sludge will be spread.
Collapse
Affiliation(s)
- Md Saiful Islam
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Khamphe Phoungthong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Ilya Khairanis Othman
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Shamsuddin Shahid
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Daeng Siti Maimunah Ishak
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Amyrhul Abu Bakar
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Erwan Hafizi Kasiman
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Humayun Kabir
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Bede Izuchukwu Ezewudo
- Department of Zoology and Environmental Biology (Hydrobiology/aquatic Sciences Research Unit), Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Zoology (Hydrobiology and Fisheries Research Unit), Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Shao Y, Tian C, Yang Y, Shao Y, Zhang T, Shi X, Zhang W, Zhu Y. Carbothermal Synthesis of Sludge Biochar Supported Nanoscale Zero-Valent Iron for the Removal of Cd 2+ and Cu 2+: Preparation, Performance, and Safety Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16041. [PMID: 36498112 PMCID: PMC9740856 DOI: 10.3390/ijerph192316041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The practical application of nanoscale zero-valent iron (NZVI) is restricted by its easy oxidation and aggregation. Here, sludge biochar (SB) was used as a carrier to stabilize NZVI for Cd2+ and Cu2+ removal. SB supported NZVI (SB-NZVI) was synthesized using the carbothermic method. The superior preparation conditions, structural characteristics, and performance and mechanisms of the SB-NZVI composites for the removal of Cd2+ and Cu2+ were investigated via batch experiments and characterization analysis. The optimal removal capacities of 55.94 mg/g for Cd2+ and 97.68 mg/g for Cu2+ were achieved at a Fe/sludge mass ratio of 1:4 and pyrolysis temperature of 900 °C. Batch experiments showed that the SB-NZVI (1:4-900) composite had an excellent elimination capacity over a broad pH range, and that weakly acidic to neutral solutions were optimal for removal. The XPS results indicated that the Cd2+ removal was mainly dependent on the adsorption and precipitation/coprecipitation, while reduction and adsorption were the mechanisms that play a decisive role in Cu2+ removal. The presence of Cd2+ had an opposite effect on the Cu2+ removal. Moreover, the SB-NZVI composites made of municipal sludge greatly reduces the leaching toxicity and bio-availability of heavy metals in the municipal sludge, which can be identified as an environmentally-friendly material.
Collapse
Affiliation(s)
- Yingying Shao
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Chao Tian
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Yanfeng Yang
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Yanqiu Shao
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Tao Zhang
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xinhua Shi
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Weiyi Zhang
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ying Zhu
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
12
|
Hu A, Li L, Huang Y, Fu QL, Wang D, Zhang W. Photochemical transformation mechanisms of dissolved organic matters (DOM) derived from different bio-stabilization sludge. ENVIRONMENT INTERNATIONAL 2022; 169:107534. [PMID: 36152361 DOI: 10.1016/j.envint.2022.107534] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Bio-stabilization sludge contains numerous dissolved organic matter (DOM) that could enter aquatic environments by soil leaching after sludge land use, but a clear understanding of their photochemical behavior is still lacking. In this study, we systematically investigated the photoactivity and photochemical transformation of aerobic composting sludge-derived DOM (DOMACS) and anaerobic digestion sludge-derived DOM (DOMADS) by using multispectral analysis coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results indicated that DOMACS and DOMADS have a higher proportion of highly unsaturated and phenolic compounds (HuPh)with high DBEwa, but the different polyphenols (Polyph) abundance of them, causing the different photoactivity between them. DOMACS had much higher apparent quantum yields (AQY) for triplet states of dissolved natural organic matter (3DOM*) and hydroxyl radical (•OH) but slightly lower AQY for singlet oxygen (1O2) than DOMADS under simulated sunlight conditions. As the irradiation time increased, HuPh and Polyph (associated with humic-like substances) contained in DOMACS (DOMADS) decreased by 12.0% (14.1%) and 3.0% (0.2%), respectively, with concurrent decrease in average molecular weight and aromaticity moieties, resulting in more generation of aliphatic compounds. Furthermore, based on 27 types of photochemical transformation reactions, DOMACS containing higher fractions of O10-15 and N1-3Oy class preferred dealkyl group and carboxylic acid reactions, whereas DOMADS composed of more N4Oy and S2Oy fragments preferred oxygen addition and anmine reactions. Consequently, photochemical transformations reduced the Cd (II) ion activity in the presence of DOMACS (DOMADS). This study is believed to unveil the photochemical transformation of bio-stabilization sludge-derived DOM and its impact on pollutants' fate in the aquatic environment.
Collapse
Affiliation(s)
- Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Liqing Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yao Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Qing-Long Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Dongsheng Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China.
| |
Collapse
|
13
|
Cherfouh R, Lucas Y, Derridj A, Merdy P. Metal speciation in sludges: a tool to evaluate risks of land application and to track heavy metal contamination in sewage network. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70396-70407. [PMID: 35589893 DOI: 10.1007/s11356-022-20868-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The agricultural spreading of dehydrated sewage sludge from urban sewage treatment plants is economically profitable provided that the soil agronomic quality and the absence of contamination, in particular of heavy metals, are maintained. We evaluated the variability of sludge between five treatment plants in northern Algeria. We determined parameters that account for their agronomic quality and total content of Ag, Cd, Co, Cr, Cu, Ni, Pb, Ti and Zn. The speciation of metals, which determines their bioavailability, was characterized by sequential extraction into five fractions: easily exchangeable, acid-soluble, bound to carbonates and Fe-sulphides, bound to Fe-Mn oxides, bound to organic matter or sulphides, residual. All the sludges analysed showed satisfactory properties for plant growth. High total Ni contents for three of the sludges indicated that they were not landfillable under French or Chinese regulations. Ni, however, was contained in poorly bioavailable fractions and therefore presented a low risk to soils. In contrast, the total Cu was lower than the regulatory limit values, but mainly contained in very bioavailable fractions whose accumulation over time could reach toxic levels for plants over a period of 3 to 11 years depending on the sludges. These results showed that regulations are not adapted and must take into account the bioavailability with regard to the characteristics of the soils on which to spread. The speciation of metals in the sludge has also, on the one hand, made it possible to identify the zone of the sewerage network in which the sources of contamination must be sought and, on the other hand, has given indications on the possible nature of these sources.
Collapse
Affiliation(s)
- Rabia Cherfouh
- Laboratoire Production, Amélioration Et Protection Des Végétaux Et Des Denrées Alimentaires (LPAPVDA), Université Mouloud Mammeri, BP 17 RP, 15000, Tizi Ouzou, Algeria
| | - Yves Lucas
- Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, Cedex 9, 83041, Toulon, France
| | - Arezki Derridj
- Laboratoire Production, Amélioration Et Protection Des Végétaux Et Des Denrées Alimentaires (LPAPVDA), Université Mouloud Mammeri, BP 17 RP, 15000, Tizi Ouzou, Algeria
| | - Patricia Merdy
- Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, Cedex 9, 83041, Toulon, France.
| |
Collapse
|
14
|
Zheng X, Zou D, Wu Q, Wang H, Li S, Liu F, Xiao Z. Review on fate and bioavailability of heavy metals during anaerobic digestion and composting of animal manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:75-89. [PMID: 35809372 DOI: 10.1016/j.wasman.2022.06.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion and composting are attracting increasing attention due to the increased production of animal manure. It is essential to know about the fate and bioavailability of heavy metals (HMs) for further utilisation of animal manure. This review has systematically summarised the migration of HMs and the transformation of several typical HMs (Cu, Zn, Cd, As, and Pb) during anaerobic digestion and composting. The results showed that organic matter degradation increased the HMs content in biogas residue and compost (with the exception of As in compost). HMs migrated into biogas residue during anaerobic digestion through various mechanisms. Most of HMs in biogas residue and compost exceeded relevant standards. Then, anaerobic digestion increased the bioavailable fractions proportion in Zn and Cd, decreased the F4 proportion, and raised them more than moderate environmental risks. As (III) was the main species in the digester, which extremely increased As toxicity. The increase of F3 proportion in Cu and Pb was due to sulphide formation in biogas residue. Whereas, the high humus content in compost greatly increased the F3 proportion in Cu. The F1 proportion in Zn decreased, but the plant availability of Zn in compost did not reduce significantly. Cd and As mainly converted the bioavailable fractions into stable fractions during composting, but As (V) toxicity needs to be concerned. Moreover, additives are only suitable for animal manure treated with slightly HM contaminated. Therefore, it is necessary to combine more comprehensive methods to improve the manure treatment and make product utilisation safer.
Collapse
Affiliation(s)
- Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Hua Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Shuhui Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
15
|
Peng B, Chen H, Fang X, Xie S, Wu S, Jiang C, Dai Y. Distribution of Pb isotopes in different chemical fractions in bed sediments from lower reaches of the Xiangjiang River, Hunan province of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154394. [PMID: 35276153 DOI: 10.1016/j.scitotenv.2022.154394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
This paper reports Pb isotopes in different fractions following the three step BCR and 1 M HCl extractions on river sediments from lower reaches of the Xiangjiang river in China, and highlights the importance of Pb isotopes in heavy metal contamination assessment. Lead concentrations and Pb isotopes in bulk sediments and sediment fractions (leachates and residues) from the river were analysed using ICP-MS techniques. Results showed that sediments were highly enriched with Pb with enrichment factors >5.5, while Pb in sediments was dominated by reducible and residual Pb fractions, residing mainly in Fe-oxide and silicate minerals. Pb isotopes in sediments was characterized by radiogenic Pb produced from the decay of uranium and thorium with 206Pb/207Pb ratios of 1.1744 for less radiogenic Pb and 1.1816 for more radiogenic Pb. The leachates and residues from BCR extraction generally had similar Pb isotope compositions, of which the 206Pb/207Pb ratios were 1.1798 ± 0.002 and 1.1844 ± 0.008 respectively. Differentiation of Pb isotopes between BCR leachates and residues was insignificant. However, differentiation between leachates and residues using 1 M HCl extraction was significant, as shown by average 206Pb/207Pb ratios of 1.1746 ± 0.005 and 1.1858 ± 0.008 for leachates and residues respectively. Pb isotopic tracing suggests that Pb in sediments from Zhuzhou section arose from the mixing of anthropogenic Pb from coal combustion (39%) and mining-smelting for Pb-Zn ores (58%); while Pb in sediments from Xiangtan, Changsha and Xiangyin sections arose from the mixing of anthropogenic Pb from mining-smelting for Pb-Zn ores (54%), and lithologically inherited Pb from granite weathering (35%) with a small amount of contribution from coal combustion (10%). The present study suggests that the BCR extraction scheme was not appropriate for ecological risk assessment of heavy metal contamination in mining-impacted (ore-Pb dominated) river sediments.
Collapse
Affiliation(s)
- Bo Peng
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, People's Republic of China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, People's Republic of China.
| | - Haisheng Chen
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, People's Republic of China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaohong Fang
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, People's Republic of China; College of Geographic Sciences and Tourism, Hengyang Normal University, Hengyang 421002, People's Republic of China.
| | - Shurong Xie
- School of Earth Sciences, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Sicheng Wu
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, People's Republic of China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Chunxia Jiang
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, People's Republic of China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yanan Dai
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, People's Republic of China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, People's Republic of China
| |
Collapse
|
16
|
Chen C, Li H, Cui F, Wang Z, Liu X, Jiang G, Cheng T, Bai R, Song L. Novel combination of bioleaching and persulfate for the removal of heavy metals from metallurgical industry sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33751-33763. [PMID: 35028841 DOI: 10.1007/s11356-021-18068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The objective of this study was to remove heavy metals from metallurgical industry sludge by bioleaching alone and bioleaching combined with persulfate (PDS). The results showed that the removal of Cu, Zn, Pb, and Mn reached 70%, 83.8%, 25.2%, and 76.9% by bioleaching alone after 18 days, respectively. The experiment of bioleaching combined with PDS was carried out in which the optimal additive dosage of K2S2O8, 8 g/L, was added to bioleaching after 6 d. After 1 h, the removal of four heavy metals reached 75.1, 84.3, 36.7, and 81.6%, respectively. Compared with bioleaching alone, although the increase in removal efficiency was only slightly increased, the treatment cycle was distinctly shortened from 18 to 6 days + 1 h. The scanning electron microscopy (SEM) results showed that the surface morphology of the sludge was changed significantly by the combined treatment. The content of heavy metals was significantly reduced after bioleaching combined with PDS by energy dispersive X-ray spectroscopy (EDX). Through electron paramagnetic resonance (EPR) and free radical quenching experiments, it was indicated that sulfate radicals [Formula: see text] plays a leading role in the combined treatment. The treated sludge mainly existed in a stable form, and the bioavailability was reduced with European Community Bureau of Reference (BCR) morphology analysis. This study proved that the combination of bioleaching and PDS could not only shorten the treatment cycle but also further improve the efficiency of heavy metal leaching. It provides a novel treatment method for the removal of heavy metals from metallurgical industry sludge.
Collapse
Affiliation(s)
- Chen Chen
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| | - Huidong Li
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China.
| | - Fengjiao Cui
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| | - Zhixia Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| | - Xinxin Liu
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| | - Gang Jiang
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| | - Tianjia Cheng
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| | - Runying Bai
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
| |
Collapse
|
17
|
Wang H, Ju C, Zhou M, Chen J, Dong Y, Hou H. Sustainable and efficient stabilization/solidification of Pb, Cr, and Cd in lead-zinc tailings by using highly reactive pozzolanic solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114473. [PMID: 35026710 DOI: 10.1016/j.jenvman.2022.114473] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Lead-zinc tailings (LZTs) are industrial by-products containing a large number of heavy metals that seriously harm the ecological environment and human health. This study was performed to propose a sustainable and efficient method for immobilizing Pb, Cr, and Cd in LZTs by using solid waste. To better assess the immobilization performance and mechanism, the leaching toxicity, fraction distribution, unconfined compressive strength, environmental risk assessment, and hydration products were explored. The LZTs were mixed and molded with different constituents of ground granulated blast furnace slag (GGBFS) and rice husk ashes (RHAs) at different curing temperatures. Results suggest that ≥99% of the Pb, Cr, and Cd were immobilized mainly in the form of residual fractions in the LZTs. The amounts of Pb, Cr, and Cd in the bioavailable fractions notably decreased by approximately 99.83%, 99.58%, and 97.05%, respectively. After stabilization/solidification (S/S) disposal, Pb, Cr, and Cd showed low to even no risk. The RHAs were effective to stabilize Pb, and GGBFS was effective to stabilize Cr. However, both materials showed almost equal effects to Cd. Ettringite, C-S-H gel, and portlandite were the main hydration products to immobilize Pb, Cr, and Cd, and these hydration products provided a source of strength. Honey-comb or reticular network C-S-H gel possessed higher specific surface area, higher pore volume, and bigger pore size than the other materials. The proposed method could explain the sustainability and efficiency of the S/S of Pb, Cr, and Cd in LZTs by using RHAs. This study opens up new perspectives for disposing heavy metal by using accessible agricultural solid waste (i.e., RHAs) in rural areas, and the solidified block shows certain economic benefits.
Collapse
Affiliation(s)
- Haojie Wang
- School of Resource and Environment Science, Wuhan University, Wuhan, 430072, PR China
| | - Chenxuan Ju
- School of Resource and Environment Science, Wuhan University, Wuhan, 430072, PR China
| | - Min Zhou
- School of Resource and Environment Science, Wuhan University, Wuhan, 430072, PR China; Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan, 430072, PR China
| | - Jiaao Chen
- School of Resource and Environment Science, Wuhan University, Wuhan, 430072, PR China
| | - Yiqie Dong
- School of Resource and Environment Science, Wuhan University, Wuhan, 430072, PR China
| | - Haobo Hou
- School of Resource and Environment Science, Wuhan University, Wuhan, 430072, PR China; Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan, 430072, PR China.
| |
Collapse
|
18
|
Wang N, Jiang Y, Xia T, Xu F, Zhang C, Zhang D, Wu Z. Antimony Immobilization in Primary-Explosives-Contaminated Soils by Fe-Al-Based Amendments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1979. [PMID: 35206172 PMCID: PMC8872522 DOI: 10.3390/ijerph19041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023]
Abstract
Soils at primary explosives sites have been contaminated by high concentrations of antimony (Sb) and co-occurring heavy metals (Cu and Zn), and are largely overlooked and neglected. In this study, we investigated Sb concentrations and species and studied the effect of combined Fe- and Fe-Al-based sorbent application on the mobility of Sb and co-occurring metals. The content of Sb in soil samples varied from 26.7 to 4255.0 mg/kg. In batch experiments, FeSO4 showed ideal Sb sorption (up to 97% sorption with 10% FeSO4·7H2O), whereas the sorptions of 10% Fe0 and 10% goethite were 72% and 41%, respectively. However, Fe-based sorbents enhanced the mobility of co-occurring Cu and Zn to varying levels, especially FeSO4·7H2O. Al(OH)3 was required to prevent Cu and Zn mobilization. In this study, 5% FeSO4·7H2O and 4% Al(OH)3 mixed with soil was the optimal combination to solve this problem, with Sb, Zn, and Cu stabilizations of 94.6%, 74.2%, and 82.2%, respectively. Column tests spiked with 5% FeSO4·7H2O, and 4% Al(OH)3 showed significant Sb (85.85%), Zn (83.9%), and Cu (94.8%) retention. The pH-regulated results indicated that acid conditioning improved Sb retention under alkaline conditions. However, no significant difference was found between the acidification sets and those without pH regulation. The experimental results showed that 5% FeSO4·7H2O + 4% Al(OH)3 without pH regulation was effective for the stabilization of Sb and co-occurring metals in primary explosive soils.
Collapse
Affiliation(s)
- Ningning Wang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| | - Yucong Jiang
- Beijing Institute of Mineral Resources and Geology, Beijing 101500, China;
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| | - Feng Xu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China;
| | - Chengjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Dan Zhang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| | - Zhiyuan Wu
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| |
Collapse
|
19
|
Lu J, Watson J, Liu Z, Wu Y. Elemental migration and transformation during hydrothermal liquefaction of biomass. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126961. [PMID: 34461542 DOI: 10.1016/j.jhazmat.2021.126961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Over the past few decades, energy and environmental crises have worsened due to the excessive consumption of fossil fuels. Hydrothermal liquefaction (HTL) is a promising technology for sustainable biocrude production from biomass. However, elemental migration and transformation during HTL of biomass have only received scant attention to date. Understanding the transformation mechanism is beneficial for downstream biocrude upgrading and by-products utilization for the future industrialization of HTL. In this paper, biomass is grouped into six categories: microalgae, macroalgae, lignocellulose, food waste, manure, and sludge. The biochemical composition and HTL product distribution of six kinds of biomass are compared. The conversion process of the biomacromolecules (including lipids, proteins, cellulose, hemicellulose, and lignin) and the interactions between them are also reported. Furthermore, the distribution of carbon, nitrogen, sulfur, and inorganic elements (Na, K, Ca, Mg, Al, Fe, Zn, Cu, Pb, Cd, etc.) in the HTL products is summarized, and the transformation of the organic and inorganic elements during HTL of biomass is explored. Finally, outlooks for the HTL of biomass are proposed.
Collapse
Affiliation(s)
- Jianwen Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jamison Watson
- Department of Agricultural and Biological Engineering University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China; School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| |
Collapse
|
20
|
Zhang X, Chen S, Ai F, Jin L, Zhu N, Meng XZ. Identification of industrial sewage sludge based on heavy metal profiles: a case study of printing and dyeing industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12377-12386. [PMID: 34564814 DOI: 10.1007/s11356-021-16569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/12/2021] [Indexed: 05/14/2023]
Abstract
The illegal disposal of industrial sewage sludge has caused serious environmental pollution. To develop identification technology of industrial sewage sludge based on the characteristic fingerprints is a promising method that is helpful to clarify the responsibility of illegal enterprises. In this study, heavy metal profiles of sewage sludge from industries (including printing and dyeing industry and other industries) and municipal sewage treatment plant located in eastern China were determined, and their performance of classification was evaluated by principal component analysis (PCA) and linear discrimination analysis (LDA). Results showed that heavy metal composition can be an effective tool for distinguishing sewage sludge between printing and dyeing industry and other industries, with an accuracy rate of 82.9%. Meanwhile, heavy metal speciation may be a promising method for identification of printing and dyeing sludge from municipal sewage sludge, the accuracy rate of which reached 100%. Moreover, antimony (Sb) and zinc (Zn) are two indicators, which can be used to identify sewage sludge between printing and dyeing sub-industries, and the accuracy rate was 90%. We concluded that heavy metal profiles may be a precise and promising tool for identification of printing and dyeing sludge. This study developed a potential method for tracing the source of industrial sewage sludge and establishing the identification database of industrial sewage sludge and provided technical support for the government to supervise the illegal dumping and disposal of industrial sewage sludge.
Collapse
Affiliation(s)
- Xufeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Shuyu Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fangting Ai
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Limin Jin
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Ningzheng Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
21
|
Zhu H, Liu X, Xu C, Zhang L, Chen H, Shi F, Li Y, Liu Y, Zhang B. The health risk assessment of Heavy Metals (HMs) in road dust based on Monte Carlo simulation and bio-toxicity: a case study in Zhengzhou, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:5135-5156. [PMID: 33847866 DOI: 10.1007/s10653-021-00922-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals (HMs) in road dust pose a significant threat to human health. The analysis of human health risks of HMs is an important theoretical basis for risk screening and management. The chemical forms and characteristics of HMs in road dust were analyzed. Based on the bio-toxicity of the different fractions of the HMs and Monte Carlo, three assessment models, including the health risk assessment based on bio-toxicity, the health risk assessment based on the Monte Carlo simulation, and the health risk assessment based on the Monte Carlo simulation and bio-toxicity, were established. Under the Traditional Model, the non-carcinogenic risks were only harmful to children, while the carcinogenic risks were not harmful to adults and children. Under the M-Traditional Model, the probability of non-carcinogenic risks being harmful to children's health was 83.17%. The probability that carcinogenic risks pose a threat to children's health was 28.61%. Considering the bio-toxicity of HMs in different chemical forms, non-carcinogenic risks and carcinogenic risks under the B-Traditional Model were all less than the corresponding critical values, indicating that the HMs in the road dust did no harm to both the adults and children. Based on the MB-Traditional Model, the chance of non-carcinogenic risks being harmful to children's health is 15.43%. Among different HMs, the non-carcinogenic risks of As are highest and the carcinogenic risks of Cr were the highest, so As and Cr should be listed as priority control contamination. MB-Traditional Model established in this study simultaneously considered bio-toxicity and random simulation and obtained more accurate results, which could provide a theoretical basis for risk analysis and management.
Collapse
Affiliation(s)
- Huina Zhu
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China.
| | - Xiaolong Liu
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Chunhong Xu
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Liangbo Zhang
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Hanyu Chen
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Fan Shi
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Ying Li
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Yongzhi Liu
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China
| | - Baozhong Zhang
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Liu T, Wu C, Wang Y, Xue G, Zhang M, Liu C, Zheng Y. Enhanced Deep Utilization of Low-Organic Content Sludge by Processing Time-Extended Low-Temperature Thermal Pretreatment. ACS OMEGA 2021; 6:28946-28954. [PMID: 34746586 PMCID: PMC8567354 DOI: 10.1021/acsomega.1c04006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion is an important way for maintaining sewage sludge stability, reduction, and resource recovery. However, the low organic content generally limits methane production. Recently, thermal hydrolysis has been widely used for sludge pretreatment to improve the anaerobic digestion efficiency. Generally, an increased temperature is preferred to enhance the solubility of organic matters in the sludge. However, high energy requirement comes with increased temperature. Application of low-temperature thermal treatment could overcome this drawback. However, the appropriate low-temperature pretreatment time is still uncertain. In this study, an extended contact time with low thermal pretreatment (90 °C) was chosen to realize a more efficient and economical digestion process of low-organic content sludge. The results demonstrated that the solubilization of proteins and carbohydrates was significantly promoted by the contact time-extended thermal hydrolysis pretreatment. The following anaerobic digestion efficiency of low-organic content sludge was also dramatically improved with the prolonged contact time. The maximum methane production could reach around 294.73 mL/gVS after 36 h of 90 °C treatment, which was 5.56 times that of the untreated groups. Additionally, based on the energy balance calculation, extending the thermal hydrolysis time resulted in a more economically feasible anaerobic digestion than increasing the temperature. The dewatering properties and the stability of the heavy metals were also reinforced, implying the advanced deep utilization of the digested low-organic content sludge. In conclusion, sludge pretreated by low-temperature thermal hydrolysis with a prolonged contact time could be more effective for low-organic content sludge treatment and disposal.
Collapse
Affiliation(s)
- Tingjiao Liu
- College
of Environmental Science and Engineering and Key Laboratory of Pollution
Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou 350007, China
| | - Chunshan Wu
- College
of Environmental Science and Engineering and Key Laboratory of Pollution
Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou 350007, China
| | - Yulan Wang
- Fuzhou
Planning and Design Research Institute Group Co., Ltd, Fuzhou 350000, China
| | - Guoyi Xue
- College
of Environmental Science and Engineering and Key Laboratory of Pollution
Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou 350007, China
| | - Menglu Zhang
- College
of Environmental Science and Engineering and Key Laboratory of Pollution
Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou 350007, China
| | - Changqing Liu
- School
of Geographical Science, Fujian Normal University, Fuzhou 350007, China
| | - Yuyi Zheng
- College
of Environmental Science and Engineering and Key Laboratory of Pollution
Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
23
|
Wang X, Zhang C, Wang C, Zhu Y, Cui Y. Probabilistic-fuzzy risk assessment and source analysis of heavy metals in soil considering uncertainty: A case study of Jinling Reservoir in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112537. [PMID: 34293583 DOI: 10.1016/j.ecoenv.2021.112537] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/03/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Considering the uncertainty caused by the random error of the sample measurement, the heterogeneity of spatial and temporal distribution of pollutants, and the traditional method of selecting a single parameter for evaluation, based on fuzzy theory, Hakanson potential ecological risk index (considering heavy metal enrichment, ecotoxicity and bioavailability) and United States Environmental Protection Agency health risk assessment system, the fuzzy ecological risk and health risk assessment methods for of heavy metals in soil were established. In the soil of the Jinling Reservoir area, Cd, which has high bioavailability, had the highest average contribution rate to RI, and thus was, regarded as a priority metal for ecological risk. Sites JL9 and JL11 were the priority areas. The heavy metals did not pose a clear hazard to human health, but children had a higher health risk. Pb and As were regarded as the priority metals for health risk. Fuzzy evaluation provided the risk interval and membership degree, contained more parameter information, quantified and reduced the uncertainty of parameters, provided more comprehensive results, and compensated for the deficiency of deterministic evaluation. As the main source of heavy metals, the intensity of agricultural activities in the study area must be controlled to avoid excessive input and accumulation of heavy metals, which may damage the ecological environment and endanger human health.
Collapse
Affiliation(s)
- Xuedong Wang
- College of Mining, Liaoning Technical University, Fuxin 123000, China.
| | - Chaobiao Zhang
- College of Mining, Liaoning Technical University, Fuxin 123000, China
| | - Cui Wang
- College of Mining, Liaoning Technical University, Fuxin 123000, China
| | - Yongdong Zhu
- College of Mining, Liaoning Technical University, Fuxin 123000, China
| | - Yunhao Cui
- College of Mining, Liaoning Technical University, Fuxin 123000, China
| |
Collapse
|
24
|
Niu ZS, Yan J, Guo XP, Xu M, Sun Y, Tou FY, Yin GY, Hou LJ, Liu M, Yang Y. Human activities can drive sulfate-reducing bacteria community in Chinese intertidal sediments by affecting metal distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147490. [PMID: 33975107 DOI: 10.1016/j.scitotenv.2021.147490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Sulfate-reducing bacteria (SRB), which are ubiquitous in intertidal sediments, play an important role in global sulfur and carbon cycles, and in the bioremediation of toxic metalloids/metals. Pollution from human activities is now a major challenge to the sustainable development of the intertidal zone, but little is known about how and to what extent various anthropic and/or natural factors affect the SRB community. In the current study, based on the dsrB gene, we investigated the SRB community in intertidal sediment along China's coastline. The results showed that dsrB gene abundances varied among different sampling sites, with the highest average abundance of SRB at XHR (near the Bohai Sea). The SRB community structures showed obvious spatial distribution patterns with latitude along the coastal areas of China, with Desulfobulbus generally being the dominant genus. Correlation analysis and redundancy discriminant analysis revealed that total organic carbon (TOC) and pH were significantly correlated with the richness of the SRB community, and salinity, pH, sulfate and climatic parameters could be the important natural factors influencing the composition of the SRB community. Moreover, metals, especially bioavailable metals, could regulate the diversity and composition of the SRB communities. Importantly, according to structural equation model (SEM) analysis, anthropic factors (e.g., population, economy and industrial activities) could drive SRB community diversity directly or by significantly affecting the concentrations of metals. This study provides the first comprehensive investigation of the direct and indirect anthropic factors on the SRB community in intertidal sediments on a continental scale.
Collapse
Affiliation(s)
- Zuo-Shun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xing-Pan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuan Sun
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fei-Yun Tou
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guo-Yu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
25
|
Geng Y, Zhang C, Zhang Y, Huang D, Yan S, Sun T, Wang J, Mao Y. Heavy metal(loid)s in sewage sludge in China: concentrations and spatial-temporal variations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29146-29156. [PMID: 33550558 DOI: 10.1007/s11356-021-12762-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge (SS) production in China has increased rapidly, accompanying the fast expansion of its sewage treatment capacity. Heavy metals (HMs) in SS have been a great concern, hampering the utilization and disposal of SS. In this study, heavy metal (HM) contents in SS from throughout China were determined. The median values of HMs in SS decreased in the order Zn > Cu > Cr > Pb > Ni > As > Hg > Cd. The general attainment rates of HMs in SS are satisfying (> 90%). Combining the present data with those obtained from references, spatial distributions and temporal trends of HMs in SS were analyzed. Depending on the specific HM element, the spatial variation trend might be decreasing trends from south to north and from east to west of China. The element-specific hot spots of SS with relatively high HM contents were identified. Analysis of the historical data in different time intervals reviewed obvious decreasing trends in HM contents of SS in China, indicating the well implementation of more and more stringent environmental regulations.
Collapse
Affiliation(s)
- Yuanmeng Geng
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Chuanbing Zhang
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou, 450008, China
| | - Yong Zhang
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou, 450008, China
| | - Doudou Huang
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou, 450008, China
| | - Shuxiao Yan
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou, 450008, China
| | - Tengfei Sun
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou, 450008, China
| | - Jing Wang
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yuxiang Mao
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
26
|
Chen Y, Wu H, Sun P, Liu J, Qiao S, Zhang D, Zhang Z. Remediation of Chromium-Contaminated Soil Based on Bacillus cereus WHX-1 Immobilized on Biochar: Cr(VI) Transformation and Functional Microbial Enrichment. Front Microbiol 2021; 12:641913. [PMID: 33841363 PMCID: PMC8027096 DOI: 10.3389/fmicb.2021.641913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 11/14/2022] Open
Abstract
Microorganisms are applied to remediate chromium (Cr)-contaminated soil extensively. Nevertheless, the microbial loss and growth inhibition in the soil environment restrain the application of this technology. In this study, a Cr(VI)-reducing strain named Bacillus cereus WHX-1 was screened, and the microbial aggregates system was established via immobilizing the strain on Enteromorpha prolifera biochar to enhance the Cr(VI)-reducing activity of this strain. The mechanism of the system on Cr(VI) transformation in Cr-contaminated soil was illuminated. Pot experiments indicated that the microbial aggregates system improved the physicochemical characteristics of Cr-contaminated soil obviously by increasing organic carbon content and cation exchange capacity, as well as decreasing redox potential and bulk density of soil. Moreover, 94.22% of Cr(VI) was transformed into Cr(III) in the pot, and the content of residue fraction Cr increased by 63.38% compared with control check (CK). Correspondingly, the physiological property of Ryegrass planted on the Cr-contaminated soil was improved markedly and the main Cr(VI)-reducing microbes, Bacillus spp., were enriched in the soil with a relative abundance of 28.43% in the microbial aggregates system. Considering more active sites of biochar for microbial aggregation, it was inferred that B. cereus WHX-1 could be immobilized by E. prolifera biochar, and more Cr(VI) was transformed into residue fraction. Cr stress was decreased and the growth of plants was enhanced. This study would provide a new perspective for Cr-contaminated soil remediation.
Collapse
Affiliation(s)
- Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China
| | - Haixia Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Ping Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Shixuan Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Dakuan Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiming Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
27
|
Zhang Q, Zou D, Zeng X, Li L, Wang A, Liu F, Wang H, Zeng Q, Xiao Z. Effect of the direct use of biomass in agricultural soil on heavy metals __ activation or immobilization? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115989. [PMID: 33190985 DOI: 10.1016/j.envpol.2020.115989] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
In recent years, the biomass was directly used extensively in agriculture due to its low cost and convenience. Increasingly serious soil pollution of heavy metals may pose threats and risks to human health. Directly addition of biomass to soil may affect the bioavailability and content of heavy metals. Here, we reviewed the impact of direct application of oil cake, manure, sewage sludge, straw and municipal waste to soil on the form and concentration of heavy metals in soil, and also emphasized the role of biomass in soil heavy metals remediation. Heavy metals can be activated in a short term by the content of heavy metals in biomass, the production of low-molecular-weight organic acids by biomass application, and the oxidation of sulfides (except for ammoniation). However, heavy metals in soil can be immobilized by humic substances. These can be produced by biomass during a long-term application to soil. Moreover, the degree of immobilization depended on the kind of biomass. Biomass contaminated by heavy metals cannot be returned to the field directly. Therefore, Mitigating the activation of heavy metals in the early stage of biomass application is meaningful, especially for application of these biomass such as straw, sewage sludge and municipal waste. Future researches should focus on the heavy metal control on direct use of biomass in agricultural.
Collapse
Affiliation(s)
- Qiuguo Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Xinyi Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Longcheng Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Andong Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Hua Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, China.
| |
Collapse
|
28
|
Zhang J, Wu S, Xu J, Liang P, Wang M, Naidu R, Liu Y, Man YB, Wong MH, Wu S. Comparison of ashing and pyrolysis treatment on cadmium/zinc hyperaccumulator plant: Effects on bioavailability and metal speciation in solid residues and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116039. [PMID: 33261971 DOI: 10.1016/j.envpol.2020.116039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Phytoremediation of metal(loid)s contaminated sites is widely used, while there is scarce of investigation on the metal-enriched biomass waste safely disposal which resulted in risks of causing secondary pollution to the soil and water bodies and even to human health. Thus, this study compared the effects of ashing and pyrolysis treatments on cadmium (Cd) and zinc (Zn) hyperaccumulation plant Sedum plumbizincicola. Chemical speciation, the Toxicity Characteristic Leaching Procedure (TCLP), and diethylenetriamine pentaacetic acid (DTPA) extraction were employed to characterize the bioavailability and leachability of Cd and Zn in the solid residues after pyrolysis and ashing. The risk assessment code (RAC) and potential ecological risk index (RI) were subsequently used to evaluate the risk of the solid residues to the environment. The results showed that both ashing and pyrolysis treatments could transform the bioavailable Cd and Zn in S. plumbizincicola into a more stable form, and the higher the temperature the greater the stablility. Pyrolysis converted a maximum of 80.0% of Cd and 70.3% of Zn in S. plumbizincicola to the oxidisable and residual fractions, compared with ashing which achieved only a ∼42% reduction. The pyrolysis process minimised the risk level of Cd and Zn to the environment based on the RAC and RI assessments. The results of the TCLP test, and DTPA extraction confirmed that the leaching rate and the bioavailable portion of Cd and Zn in the biochars produced by pyrolysis were invariably significantly (p < 0.05) lower than the solid residues produced by ashing, and reached the lowest at 650 °C. In other words, pyrolysis was better than ashing for thermal treatment of the metal-enriched hyperaccumulator plant, in view of minimising the bioavailability and leachability of Cd and Zn from the solid residues to the environment. This study provides fundamental data on the choice of treatments for the disposal of metal-enriched plant biomass.
Collapse
Affiliation(s)
- Jin Zhang
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China; School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China; Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shuai Wu
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Jialin Xu
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Peng Liang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Minyan Wang
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, 311800, China; Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong SAR, China; School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| | - Shengchun Wu
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China.
| |
Collapse
|
29
|
Ma S, Poon S, Mulchandani A, Jassby D. The evolution of metal size and partitioning throughout the wastewater treatment train. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123761. [PMID: 33254774 DOI: 10.1016/j.jhazmat.2020.123761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Accepted: 08/18/2020] [Indexed: 06/12/2023]
Abstract
Understanding the behavior of heavy metals in wastewater is critical for the development of metal removal and detection techniques. In this study, we characterize the dynamic and evolving size and partitioning behavior of lead (Pb), cadmium (Cd), and arsenite (As(III)) throughout the wastewater treatment train (WWTT). Metal concentrations were determined in three size fractions (>0.45 μm, 0.45 μm - 5 kDa, and <5 kDa), and the partitioning/complexation of the metals was quantified for the <0.45 μm fraction. Cd was found to be highly mobile, with the fraction of dissolved Cd gradually increasing throughout the WWTT. As(III) was also highly mobile, with its size distribution and partitioning remaining largely steady, except when FeCl3 was used as a flocculation agent, which led to the formation of arsenic/iron complexes. However, Pb was found primarily in complex forms or adsorbed onto inorganic particulates. The WWTT had little impact on the size and partitioning of Pb, except that the formation of the Pb/iron complex occurred after flocculation with FeCl3. An increase of water hardness slightly increased the metals in the dissolved fraction. Overall, this study provides insight into the evolution of metals throughout the WWTT, offering guidance to users and researchers regarding their treatment and detection.
Collapse
Affiliation(s)
- Shengcun Ma
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| | - Sidney Poon
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Risk Assessment of Soil Contamination with Heavy Metals from Municipal Sewage Sludge. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020548] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sewage sludge (SS) is a by-product of processes conducted during the treatment of wastewater. It can be used in many different ways. One of them is the use of SS in agriculture as an organic fertiliser, but the main criterion for such use is the heavy metals (HMs) content. Knowledge of the total content of HMs in SS does not translate into the danger it may pose. The toxicity of metals is largely dependent on their mobility. The mobility of SS from three different wastewater treatment plants (WWTP) of the Świętokrzyskie Voivodeship, which were characterised by an increased zinc content, was examined in this study. The aim of the study was to prove whether the high level of zinc in SS actually disqualifies the possibility of its natural use. Calculations were made for five environmental hazard indicators: the geoaccumulation index of heavy metals in soil (Igeo), potential environmental risk indicator (PERI), risk assessment code (RAC), environmental risk factor (ERF), and the authors’ own environmental risk determinant (ERD) indicator. The obtained results show how important mobility analysis is when assessing the possibility of natural use of SS.
Collapse
|
31
|
Xu Q, Huang QS, Wei W, Sun J, Dai X, Ni BJ. Improving the treatment of waste activated sludge using calcium peroxide. WATER RESEARCH 2020; 187:116440. [PMID: 32980604 DOI: 10.1016/j.watres.2020.116440] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
The treatment and disposal of waste activated sludge (WAS) has become one of the major challenges for the wastewater treatment plants (WWTPs) due to large output, high treatment costs and enriched substantial emerging contaminants (ECs). Therefore, reducing sludge volume, recovering energy and resource from WAS, and removing ECs and decreasing environmental risk have gained increasing attentions. Calcium peroxide (CaO2), a versatile and safe peroxide, has been widely applied in terms of WAS treatment including sludge dewatering, anaerobic sludge digestion and anaerobic sludge fermentation due to its specific properties such as generating free radicals and alkali, etc., providing supports for sludge reduction, recycling, and risk mitigation. This review outlines comprehensively the recent progresses and breakthroughs of CaO2 in the fields of sludge treatment. In particular, the relevant mechanisms of CaO2 enhancing WAS dewaterability, methane production from anaerobic digestion, short-chain fatty acids (SCFA) and hydrogen production from anaerobic fermentation, and the removal of ECs in WAS and role of experiment parameters are systematically elucidated and discussed, respectively. Finally, the knowledge gaps and opportunities in CaO2-based sludge treatment technologies that need to be focused in the future are prospected. The review presented can supply a theoretical basis and technical reference for the application of CaO2 for improving the treatment of WAS.
Collapse
Affiliation(s)
- Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China.
| | - Qi-Su Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China.
| |
Collapse
|
32
|
Zhang J, Jin J, Wang M, Naidu R, Liu Y, Man YB, Liang X, Wong MH, Christie P, Zhang Y, Song C, Shan S. Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility. ENVIRONMENTAL RESEARCH 2020; 191:110034. [PMID: 32827522 DOI: 10.1016/j.envres.2020.110034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Blending waste biomass for co-pyrolysis is generally regarded as a promising method for reduced-volume, value-added, and hazard-free treatment of sewage sludge. Hence, a comparison was made of the co-pyrolysis of sewage sludge with rice husk and with bamboo sawdust (1:1, w/w) at 400 and 700 °C and the properties and behaviors of selected metals in the corresponding biochars. Biochar produced by co-pyrolysis with both biomass wastes had larger (5 × 5 rectangle) aromatic clusters than did the sewage sludge biochar (4 × 4 rectangle) using the rectangle-like model on the basis of biochar molar H/C ratio, indicating increased aromaticity of the co-pyrolyzed biochars. Moreover, the molar O/C ratio of the sewage sludge-bamboo biochar was much lower than that of the sewage sludge-husk biochar, especially after pyrolysis at 700 °C (0.02 vs 0.27), suggesting greater recalcitrance to ageing. Co-pyrolysis of sewage sludge with husk invariably resulted in a higher percentage of metals studied in the residual fraction than co-pyrolysis with sawdust at the same temperature, leading to a lower risk index (14.2) because of the maximum metal encapsulation in the sewage sludge-husk biochar at 700 °C. Overall, co-pyrolysis of sewage sludge with husk provided higher metal immobilization but apparently lower biochar stability than co-pyrolysis with sawdust. These results provide an alternatively practical strategy for the safe disposal of sewage sludge and biomass wastes.
Collapse
Affiliation(s)
- Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China; School of Environmental and Resource Sciences, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang, 311300, China; Global Centre for Environmental Remediation, Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Junwei Jin
- School of Environmental and Resource Sciences, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Environmental Protection, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, 310058, China
| | - Minyan Wang
- Global Centre for Environmental Remediation, Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia; Jiyang College, Zhejiang A&F University, 77 Puyang Road, Zhuji, Zhejiang, 311800, China.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Xinqiang Liang
- Institute of Environmental Protection, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, 310058, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Peter Christie
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| | - Yan Zhang
- School of Environmental and Resource Sciences, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang, 311300, China
| | - Chengfang Song
- School of Environmental and Resource Sciences, Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang, 311300, China.
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, 318 Liuhe Road, Xihu District, Hangzhou, Zhejiang, 310023, China
| |
Collapse
|
33
|
The Ecological Risk Assessment and the Chemical Speciation of Heavy Metals in Ash after the Incineration of Municipal Sewage Sludge. SUSTAINABILITY 2020. [DOI: 10.3390/su12166517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Popular incineration of sewage sludge results in the increase in heavy metals content in ash. The knowledge of the total content of heavy metals in sewage sludge ash does not demonstrate a potential hazard. The toxicity of heavy metals in great measure depends on the form of their occurrence. The prevailing norms do not require the ecological risk assessment of the environmental burden with heavy metals for the choice of the method of the utilization of sewage sludge ash. The paper presents the research results on the mobility of heavy metals in sewage sludge ash after its incineration. The geo-accumulation index (IGAI), the potential ecological risk index (PERI) and the risk assessment code (RAC) were used for the evaluation of the potential soil contamination with heavy metals. The authors also suggested a new formula, which took into consideration more factors influencing the risk of the contamination of a water-soil environment with heavy metals—the water and soil environment risk index (WSERI). The calculated indices for sewage sludge ash indicate the risk of soil contamination with heavy metals.
Collapse
|
34
|
Zheng G, Wang X, Chen T, Yang J, Yang J, Liu J, Shi X. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments. ENVIRONMENTAL RESEARCH 2020; 185:109431. [PMID: 32222626 DOI: 10.1016/j.envres.2020.109431] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 06/10/2023]
Abstract
As an efficient and cost-effective biological treatment method for sewage sludge, composting has been widely used worldwide. To passivate heavy metals and enhance the nutrient content in compost, in the present study, phosphate rock, calcium magnesium phosphate, and monopotassium phosphate were added to the composting substrate. According to the Community Bureau of Reference sequential extraction procedure, phosphate rock and monopotassium phosphate amendments exhibit a good passivation effect on Cd and Pb. The X-ray diffraction patterns proved the formation of Pb3(PO4)2 and Cd5(PO4)2SiO4 crystals, and X-ray absorption near-edge structure spectroscopy illustrated the change in P speciation after phosphate amendment. Furthermore, phosphate amendment increased the contents of total P and available P, and it reduced the loss of N during sewage sludge composting. The germination index showed that the target phosphate amendments in sewage sludge compost had no negative effects on seed germination, and this method has great potential to be used as a soil amendment.
Collapse
Affiliation(s)
- Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiankai Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junwan Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Shi
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Wang Z, Shu X, Zhu H, Xie L, Cheng S, Zhang Y. Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments. ENVIRONMENTAL TECHNOLOGY 2020; 41:1347-1357. [PMID: 30300096 DOI: 10.1080/09593330.2018.1534891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
The safe disposal and utilisation of sewage sludge can be challenging because of the potential environmental risks posed by heavy metals in the sludge. Conversion of sewage sludge and agriculture biomass into biochars that can be used to improve or remediate contaminated soils is a promising solution to this problem. In this study, biochars were produced via co-pyrolysis of sewage sludge and cotton stalk (1:1, w/w) at temperatures ranging from 300°C to 600°C. Then, the potential environmental risks of heavy metals and properties of the biochars were investigated. The addition of cotton stalk promoted the migration and transformation of heavy metals from bioavailable to stable fractions, which significantly reduced the potential environmental risks of heavy metals in biochars. Moreover, compared with biochars obtained via pyrolysis of sewage sludge alone, the pH values, C contents, and adsorption capacities of biochars increased, while the yields, ash contents, specific surface areas and molar H/C ratios decreased. In summary, co-pyrolysis of sewage sludge and cotton stalk is a feasible method for alleviating the potential environmental risks of heavy metals in biochars used to treat soils.
Collapse
Affiliation(s)
- Zhipu Wang
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, People's Republic of China
| | - Xinqian Shu
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, People's Republic of China
| | - Henan Zhu
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, People's Republic of China
| | - Like Xie
- Experimental Testing institute of Petro China Xinjiang Oilfield Company, Karamay, People's Republic of China
| | - Shenhang Cheng
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, People's Republic of China
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, People's Republic of China
| |
Collapse
|
36
|
Zhang Y, Chen Z, Xu W, Liao Q, Zhang H, Hao S, Chen S. Pyrolysis of various phytoremediation residues for biochars: Chemical forms and environmental risk of Cd in biochar. BIORESOURCE TECHNOLOGY 2020; 299:122581. [PMID: 31855659 DOI: 10.1016/j.biortech.2019.122581] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 05/24/2023]
Abstract
Various phytoremediation residues (PMRs), including Brassica napus L. (BN), Pennisetum sinese (PS) and Lolium perenne L.(LP), were pyrolyzed at 400, 500, 600 and 700 °C, respectively. A series of sequential and single extractions were employed to analyze the chemical speciation and potential environmental risk of Cadmium (Cd) in different phytoremediation residues-derived biochars (PMBs). The results showed that the exchangeable Cd fraction decreased but the residual Cd fraction increased, indicating the inhibition of bioavailability of Cd and low potential ecological risk index of PMBs. When the temperature was over 600 °C, the Cd in biochar was acceptable to the environment and the leaching concentration of Cd extracted by the three extraction methods (distilled water, SPLP and TCLP) were all under the standard limit. Findings from this study illustrated that the treatment of pyrolysis was feasible for the three kinds of PMRs at 600 °C with acceptable environment risk.
Collapse
Affiliation(s)
- Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Zhenyan Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Weiwei Xu
- Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Qilin Liao
- Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Shefeng Hao
- Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Sihui Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
37
|
Qiu Z, Tang J, Chen J, Zhang Q. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar's recalcitrance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113436. [PMID: 31672351 DOI: 10.1016/j.envpol.2019.113436] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/22/2023]
Abstract
Biochar sequesters cadmium (Cd) by immobilisation, but the process is often less effective in field trials than in the laboratory. Therefore, the involvement of soil components should be considered for predicting field conditions that could potentially improve this process. Here, we used biochar derived from Spartina alterniflora as the amendment for Cd-contaminated soil. In simulation trials, a mixture of kaolin, a representative soil model component, and S. alterniflora-derived biochar immobilised Cd by forming silicon-aluminium-Cd-containing complexes. Interestingly, the biochar recalcitrance index value increased from 48% to 53%-56% because of the formation of physical barriers consisting of kaolinite minerals and Cd complexes. Pot trials were performed using Brassica chinensis for evaluating the effect of S. alterniflora-derived biochar on plant growth in Cd-contaminated soil. The bio-concentration factor values in B. chinensis were 24%-31% after soil remediation with biochar than in control plants. In summary, these results indicated that soil minerals facilitated Cd sequestration by biochar, which reduced Cd bioavailability and improved the recalcitrance of this soil amendment. Thus, mechanisms for effective Cd remediation should include biochar-soil interactions.
Collapse
Affiliation(s)
- Zhen Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China.
| | - Jiawen Tang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China.
| | - Jinhuan Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China.
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming, No. 20 Cuiniao Road, Chen Jiazhen, Shanghai 200062, China.
| |
Collapse
|
38
|
Ge D, Zhang W, Bian C, Yuan H, Zhu N. Insight into a new two-step approach of ozonation and chitosan conditioning for sludge deep-dewatering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134032. [PMID: 31473549 DOI: 10.1016/j.scitotenv.2019.134032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Sludge deep-dewatering, capable of reducing water content (Wc) of sludge cake under 60%, is one of the current hot topics in sludge treatment. In this study, a new environmentally friendly two-step approach of ozonation and chitosan (CT) conditioning was proposed and examined to be practicable for sludge deep-dewatering. With 60 mg/gTS ozone and 20 mg/gTS CT conditioning, sludge capillary suction time (CST) and Wc of the dewatered sludge cake decreased from 196.3 s and 84.7% of raw sludge to 15.8 s and 57.5%, respectively. Ozonation treatment could efficiently crack sludge flocs and cells, and release biopolymers, causing the decreases in viscosity, zeta potential and particle size. Subsequently, CT ameliorated the sludge dewaterability successfully by neutralizing negative charges and flocculating colloids to promote the spread of interstitial water. Furthermore, the contents of heavy metals (As, Cd, Cr, Ni, Pb and Zn) in conditioned sludge cake decreased obviously except Cu, but all detected heavy metals contents satisfied the A level of agricultural land (GB4284-2018). For chemical speciation of heavy metals, the proportions of the acid soluble/exchangeable state and the reductive state increased apparently, implying higher toxicity and bioavailability, except Pb. Hence, pretreatments were required to reduce the environmental risk of heavy metals in conditioned sludge cake prior to a further utilization.
Collapse
Affiliation(s)
- Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenrui Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Bian
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
39
|
Wang A, Zou D, Zhang L, Zeng X, Wang H, Li L, Liu F, Ren B, Xiao Z. Environmental risk assessment in livestock manure derived biochars. RSC Adv 2019; 9:40536-40545. [PMID: 35542644 PMCID: PMC9076269 DOI: 10.1039/c9ra08186k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
Livestock-manure-derived biochar is one of major products obtained from the pyrolysis of livestock manure. This study quantitatively assesses the pollution level and ecological risks associated with heavy metals in livestock manure and the biochar produced by its pyrolysis. The geo-accumulation index (GAI) values of heavy metals in livestock manure were significantly decreased (P < 0.05) and indicated to be at the grade of uncontaminated expected for Zn in pig-manure-derived biochar (PMB, 0.94, 800 °C) via pyrolysis. Therefore, Zn should be paid more attention in PMB. The risk factors (E r i ) result shows that heavy metals in biochars were significantly decreased (P < 0.05) with increasing pyrolysis temperature. Potential ecological risk index values revealed that the integrated risks from the heavy metals were significantly decreased (P < 0.05) after pyrolysis. Similarly, the risk assessment code values indicated that the risks from the heavy metals in livestock-manure-derived biochars were significantly decreased (P < 0.05) after pyrolysis. In summary, pyrolysis represents an effective treatment method for livestock manure and can provide an effective method to reduce the risks of environmental pollution.
Collapse
Affiliation(s)
- Andong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University Changsha Hunan 410128 P. R. China +86-731-84673603 +86-731-84673603
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province Changsha Hunan 410128 P. R. China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production Changsha 410128 P. R. China
| | - Dongsheng Zou
- College of Bioscience and Biotechnology, Hunan Agricultural University Changsha Hunan 410128 P. R. China +86-731-84673603 +86-731-84673603
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province Changsha Hunan 410128 P. R. China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production Changsha 410128 P. R. China
| | - Liqing Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University Changsha Hunan 410128 P. R. China +86-731-84673603 +86-731-84673603
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province Changsha Hunan 410128 P. R. China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production Changsha 410128 P. R. China
| | - Xinyi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University Changsha Hunan 410128 P. R. China +86-731-84673603 +86-731-84673603
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province Changsha Hunan 410128 P. R. China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production Changsha 410128 P. R. China
| | - Hua Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University Changsha Hunan 410128 P. R. China +86-731-84673603 +86-731-84673603
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province Changsha Hunan 410128 P. R. China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production Changsha 410128 P. R. China
| | - Longcheng Li
- College of Bioscience and Biotechnology, Hunan Agricultural University Changsha Hunan 410128 P. R. China +86-731-84673603 +86-731-84673603
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province Changsha Hunan 410128 P. R. China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production Changsha 410128 P. R. China
| | - Fen Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University Changsha Hunan 410128 P. R. China +86-731-84673603 +86-731-84673603
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province Changsha Hunan 410128 P. R. China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production Changsha 410128 P. R. China
| | - Bo Ren
- College of Bioscience and Biotechnology, Hunan Agricultural University Changsha Hunan 410128 P. R. China +86-731-84673603 +86-731-84673603
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province Changsha Hunan 410128 P. R. China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production Changsha 410128 P. R. China
| | - Zhihua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University Changsha Hunan 410128 P. R. China +86-731-84673603 +86-731-84673603
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province Changsha Hunan 410128 P. R. China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production Changsha 410128 P. R. China
| |
Collapse
|
40
|
Fang X, Peng B, Wang X, Song Z, Zhou D, Wang Q, Qin Z, Tan C. Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:557-570. [PMID: 31279202 DOI: 10.1016/j.scitotenv.2019.06.330] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/01/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Concentrations of heavy metals Ba, Sc, V, Cr, Mn, Co, Ni, Th, U, Cu, Pb, Zn, and Cd in sediments from the lower reaches of the Xiangjiang River were analyzed using inductively coupled plasma mass spectrometry. The results suggest that there are two metal distribution patterns in these sediments: (1) Ba, Sc, V, Cr, Mn, Th, and U are relatively homogeneously distributed and (2) Cd, Pb, Zn Cu, Co and Ni are heterogeneously distributed. The heterogeneously distributed metals are significantly enriched in these sediments and, thereby, contribute to contamination. Assessments of heavy metal contamination using the Geoaccumulation index, Pollution load index, and potential ecological risk index suggest that the levels of contamination from Cd and Mn are extremely high and moderately high, respectively, in all the sediments from the lower river. In comparison, the levels of contamination by Cu, Zn, and Pb varied spatially, decreasing progressively downriver. The level of contamination by Pb, Zn, and Cu in sediments from the Zhuzhou reach is extremely high, and is moderate to significant high for the Xiangtan, Changsha, and Xiangyin reaches. The ecological potential risks posed heavy metals are ranked, in descending order, as Cd > Pb > Cu > Zn > Cr > Ni > Co > Mn for sediments from the Zhuzhou reach and Cd > Pb > Cu > Ni > Cr > Co > Zn > Mn for sediments from the Xiangtan, Changsha, and Xiangyin reaches. Principal component analysis and enrichment factor calculations suggest that Ba, Sc, V, Cr, Th, and U mostly originate from natural processes. While, Cd, Pb, Zn, Cu, Co, Ni, and Mn are derived from both natural processes and anthropogenic activities. Therefore, strategies for environmental protection in this watershed should focus on contamination by Cd, Pb, Zn, and Cu, with Cd requiring particular attention.
Collapse
Affiliation(s)
- Xiaohong Fang
- Faculty of Resource and Environment Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, PR China
| | - Bo Peng
- Faculty of Resource and Environment Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, PR China.
| | - Xin Wang
- Faculty of Resource and Environment Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, PR China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, PR China
| | - Dongxiao Zhou
- Faculty of Resource and Environment Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, PR China
| | - Qin Wang
- Faculty of Resource and Environment Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, PR China
| | - Zhilian Qin
- Faculty of Resource and Environment Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, PR China
| | - Changyin Tan
- Faculty of Resource and Environment Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
41
|
Xu Q, Wang H, Wang Q, Zhang W, Wang D. Characterization of changes in extracellular polymeric substances and heavy metal speciation of waste activated sludge during typical oxidation solubilization processes. J Environ Sci (China) 2019; 80:146-158. [PMID: 30952333 DOI: 10.1016/j.jes.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Biopolymer solubilization is considered to be the rate-limiting stage of anaerobic digestion of waste activated sludge (WAS). Oxidation processes have been proven to be effective in disrupting sludge flocs and causing solubilization of the solid biopolymers. In this study, WAS was treated by NaNO2 or H2O2 oxidation at pH of 2. The changes in extracellular polymeric substances properties and the speciation of heavy metals were investigated. The results revealed that both NaNO2 and H2O2 treatments were effective in solubilizing organics in WAS, while the conversion of biopolymers in the two treatment processes was different. Free nitrous acid destroyed the gel network structure of EPS, and organic materials were released from the solid phase to the supernatant. Indigenous peroxidase catalyzed H2O2 to produce hydroxyl radicals which caused significant solubilization of biopolymers, and the protein-like substances were further degraded into micro-molecule polypeptides or amino acids at high dosages of H2O2. During the oxidation processes, Zn, Cd and Cu, with excellent mobility, tended to migrate to the supernatant, and thus were easy to remove through the liquid-solid separation process. Ni and As showed moderate migration ability, of which the residual fraction tended to transform into reducible and soluble fractions. With poor mobility, Cr and Pb mainly existed in the forms of residual and oxidizable fractions, which were difficult to dissolve and remove from WAS. Both NaNO2 and H2O2 treatment resulted in the enhancement of sludge solubilization efficiency and heavy metal mobility in WAS, but different heavy metals showed distinct migration and transformation behaviors.
Collapse
Affiliation(s)
- Qiongying Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huidi Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qiandi Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, Wuhan 430074, China.
| | - Dongsheng Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
42
|
Du J, Zhang L, Ali A, Li R, Xiao R, Guo D, Liu X, Zhang Z, Ren C, Zhang Z. Research on thermal disposal of phytoremediation plant waste: Stability of potentially toxic metals (PTMs) and oxidation resistance of biochars. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2019; 125:260-268. [DOI: 10.1016/j.psep.2019.03.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
43
|
Liu HT, Guo XX. Hydroxyapatite reduces potential Cadmium risk by amendment of sludge compost to turf-grass grown soil in a consecutive two-year study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:48-54. [PMID: 30665131 DOI: 10.1016/j.scitotenv.2019.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Recycling of sludge compost to soil as conditioner is generally regarded as the best means of disposal. However, concerns regarding heavy metal residues and sludge toxicity have recently received increasing public attention. Cadmium (Cd) is a mobile metal commonly found in sludge; therefore, the risk posed by Cd contaminated sludge should be carefully assessed. In this report, the effects of addition of hydroxyapatite (HAP) with sludge compost amendment on potential Cd risk were investigated. The results of consecutive two years showed that exchangeable Cd content in treatment of sludge compost with 1.5% HAP decreased by 6.0% compared with single sludge compost treatment, and residual Cd increased by 7.6%. Compared with single sludge compost, the incremental rate of exchangeable Cd dropped by 38.3% and the reductive rate of residual Cd increased by 37.7% in response to 1.5% HAP addition, indicating that HAP played a role of decreasing Cd phytoavailability. The HAP reduced the amount of Cd uptaken by turf-grass in both root and leaf. Moreover, HAP remarkably improved the quality of turf grass grown in amended soil, including leaf greenness, green maintainable period and root strength. However, HAP did not attenuate the downward mobility of Cd. Taken these together, these findings indicated that HAP can be used as a potential candidate to control surface Cd risk of sludge compost amended soil rather than that from leachate.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiao-Xia Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Li J, Zheng B, Hu R, Liu Y, Jing Y, Xiao Y, Sun M, Chen W, Zhou Q. Pseudomonas species isolated from tobacco seed promote root growth and reduce lead contents in Nicotiana tobacum K326. Can J Microbiol 2019; 65:214-223. [PMID: 30457895 DOI: 10.1139/cjm-2018-0434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Endophytic bacteria are generally helpful for plant growth and protection. We isolated from tobacco seeds three Pseudomonas strains (K03, Y04, and N05) that could produce siderophores, indole-3-acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase, fix nitrogen, dissolve phosphorus and potassium, and tolerate heavy metals. In pot experiments, the three isolated strains significantly promoted root growth and increased the root enzyme activity in Nicotiana tobacum K326. Furthermore, bacterial inoculations increased the proportion of residual lead (Pb) by 8.36%-51.63% and decreased the total Pb content by 3.28%-6.38% in the contaminated soil during tobacco planting, compared with uninoculated soils. An effective decrease in Pb content was also found in tobacco leaves with bacterial inoculations. K03 inoculation decreased the Pb content in the upper leaves by 49.80%, and Y04 inoculation had the best effect, decreasing the Pb content in the middle leaves by 70.12%. Additionally, soil pH and root activity had significant effects on transformation and translocation of Pb. The study suggested that in response to Pb pollution in soil, a reasonable application of endophytes (e.g., Pseudomonas) might be a promising approach in promoting tobacco growth and reducing Pb content in tobacco, while simultaneously enhancing Pb stabilization in soils.
Collapse
Affiliation(s)
- Juan Li
- a College of Agronomy, College of Bioscience and Biotechnology, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Bufan Zheng
- a College of Agronomy, College of Bioscience and Biotechnology, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Ruiwen Hu
- a College of Agronomy, College of Bioscience and Biotechnology, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Yongjun Liu
- b Institute of Hunan Provincial Tobacco Science Research, Changsha 410004, P.R. China
| | - Yongfeng Jing
- c China Tobacco Hunan Industrial Co., Ltd., Changsha 410019, P.R. China
| | - Yunhua Xiao
- a College of Agronomy, College of Bioscience and Biotechnology, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Min Sun
- a College of Agronomy, College of Bioscience and Biotechnology, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Wu Chen
- a College of Agronomy, College of Bioscience and Biotechnology, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Qingming Zhou
- a College of Agronomy, College of Bioscience and Biotechnology, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| |
Collapse
|
45
|
Wang X, Chi Q, Liu X, Wang Y. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge. CHEMOSPHERE 2019; 216:698-706. [PMID: 30391891 DOI: 10.1016/j.chemosphere.2018.10.189] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
A novel approach was used to prepare sewage sludge (SS)-derived biochar via coupling of hydrothermal pretreatment with pyrolysis (HTP) process at 300-700 °C. The influence of the pyrolysis temperature on the characteristics and environmental risk of heavy metals (HMs) in biochar derived from SS were investigated. The HTP process at higher pyrolysis temperature (≥500 °C) resulting in a higher quality of SS-derived biochar and in HMs of lower toxicity and environmental risk, compared with direct SS pyrolysis. Surface characterization and micromorphology analysis indicate that the N2 adsorption capacity and BET surface area in biochar (SRC220-500) obtained from hydrothermally treated SS at 220 °C (SR220) pyrolysis at 500 °C, significantly increased the BET surface area and achieved its maximum value (47.04 m2/g). Moreover, the HTP process can promote the HMs in SS be transformed from bioavailable fractions to more stable fractions. This increases with the pyrolysis temperature, resulting in a remarkable reduction in the potential environmental risk of HMs from the biochar obtained from the HTP process.
Collapse
Affiliation(s)
- Xingdong Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiaoqiao Chi
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xuejiao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
46
|
Du J, Zhang L, Liu T, Xiao R, Li R, Guo D, Qiu L, Yang X, Zhang Z. Thermal conversion of a promising phytoremediation plant (Symphytum officinale L.) into biochar: Dynamic of potentially toxic elements and environmental acceptability assessment of the biochar. BIORESOURCE TECHNOLOGY 2019; 274:73-82. [PMID: 30500766 DOI: 10.1016/j.biortech.2018.11.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 05/25/2023]
Abstract
Symphytum officinale L., as a hyperaccumulator, was pyrolyzed into biochar at 350, 550, and 750 °C, respectively. PTEs could be enriched in biochars except Cd volatilized greatly at 750 °C. In order to evaluate the environmental acceptability of biochars, a series of sequential and single extractions and biochar oxidation procedures were performed for simulating different environmental conditions. There was a sharp decline in PTEs release under various conditions when the temperature above 550 °C, indicating PTEs might transform into more stable forms at higher temperature. Thus, increasing the pyrolysis temperature is helpful for reducing biochar phytotoxicity, suppressing biochar leaching and improving biochar environmental safety. Moreover, the economic feasibility analysis of the biochar confirmed the practicability of it. Findings from this work illustrated that biochars pyrolyzed from Symphytum officinale L. at the temperature higher than 550 °C might be environmental acceptable, which is beneficial for biochar application.
Collapse
Affiliation(s)
- Juan Du
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- State Key Laboratory of Coal-Based Clean Energy, Xi'an Thermal Power Research Institute Co. Ltd., Xi'an, Shaanxi 710054, China
| | - Tao Liu
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Xiao
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Qiu
- The West Scientific Observing and Experimental Station of Rural Renewable Energy Exploitation and Utilization of the Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuanmin Yang
- The West Scientific Observing and Experimental Station of Rural Renewable Energy Exploitation and Utilization of the Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
47
|
Wang X, Li C, Li Z, Yu G, Wang Y. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:45-52. [PMID: 30384166 DOI: 10.1016/j.ecoenv.2018.10.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Textile dyeing sludge (TDS) was pyrolyzed at temperature ranging from 300 to 700 °C to investigate characteristics and to evaluate the risk of heavy metals (Zn, Cu, Cr, Ni, Cd, and Mn) in biochar derived from the TDS. The analyzation of characteristics and potential environmental risk evaluation of heavy metals were conducted by the BET-N2, FTIR, and BCR sequential extraction procedure. The results showed that the pyrolysis treatment of the TDS contributed to the improvement of the pH value and specific surface areas with increasing pyrolysis temperature. Conversion of the TDS to biochar significantly decreased the H/C and O/C ratios, resulting in a far stronger carbonization and a higher aromatic condensation for the TDS derived biochar. The total contents of Zn, Cu, Cr, Ni and Mn in biochar increased with pyrolysis temperature owing to the thermal decomposition of organic matter in the TDS; but for Cd, the portion distributed in the biochars decreased significantly when the temperature increased up to 600 °C. However, using BCR sequential extraction procedure and analysis, it was found that pyrolysis process promoted changes in the chemical speciation and biochar matrix characteristics, leading to reduce bio-available fractions of heavy metals in the biochars. The potential environmental risk of heavy metals decreased from considerable risk in the TDS to low risk or no risk in biochar after pyrolysis above 400 °C. This work demonstrated that the pyrolysis process was a promising method for disposing of the TDS with acceptable environment risk.
Collapse
Affiliation(s)
- Xingdong Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chunxing Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhiwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guangwei Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
48
|
Li F, Zhang J, Liu W, Liu J, Huang J, Zeng G. An exploration of an integrated stochastic-fuzzy pollution assessment for heavy metals in urban topsoil based on metal enrichment and bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:649-660. [PMID: 29990913 DOI: 10.1016/j.scitotenv.2018.06.366] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/23/2018] [Accepted: 06/29/2018] [Indexed: 05/17/2023]
Abstract
An integrated stochastic-fuzzy pollution assessment method (ISFPAM) for soil heavy metal was established based on geo-accumulation index (Igeo), stochastic-fuzzy theory and double weight system under synthetical consideration of metal ecotoxicity and bioaccessibility. The pollution characteristics of the topsoil heavy metals (Cu, Zn, Cd, Pb and Cr) in Xiangjiang New District were evaluated by the widely-used Single factor index (SF), Nemerow index (NI), Igeo, Potential ecological index (PERI), Risk assessment code (RAC) and the ISFPAM. The results of SF, NI, Igeo, RI and RAC of the studied metals revealed the following orders: Cd > Zn > Cr > Cu > Pb, Cd > Zn > Pb > Cr > Cu, Cd > Cr > Cu > Zn > Pb, Cd > Cu > Pb > Cr > Zn, and Cd > Pb > Cr > Zn > Cu, respectively. The different pollution assessment methods outputted the differentiated conclusions to some extent except the judgment for Cd. Results based on ISFPAM indicated that metal pollution degrees decreased in the order of Cd (5.91, Grade 6) > Cu (2.81, Grade 3) > Pb (2.66, Grade 3) > Cr (1.58, Grade 2) > Zn (0.69, Grade 1). By detailed comparison analysis, the double weight system and stochastic-fuzzy theory made ISFPAM better resolving ability to find out priority heavy metals and areas with relatively higher enrichment, ecotoxicity and bioaccessibility under efficient parameter uncertainty control. Cd, Cu and Pb were regarded as the priority control metals, especially Cd. Simultaneously, the reliabilities of heavy metal pollution corresponding to adjacent pollution grades were quite close in some sites, which recommend recheck for avoid misleading the decision-makers.
Collapse
Affiliation(s)
- Fei Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Jingdong Zhang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Wenchu Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Jiaan Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
49
|
Guo XP, Liu X, Niu ZS, Lu DP, Zhao S, Sun XL, Wu JY, Chen YR, Tou FY, Hou L, Liu M, Yang Y. Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:576-584. [PMID: 30014935 DOI: 10.1016/j.envpol.2018.06.099] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 05/26/2023]
Abstract
Antibiotics resistance genes (ARGs) are considered as an emerging pollutant among various environments. As a sink of ARGs, a comprehensive study on the spatial and temporal distribution of ARGs in the estuarine sediments is needed. In the present study, six ARGs were determined in sediments taken along the Yangtze Estuary temporally and spatially. The sulfonamides, tetracyclines and fluoroquinolones resistance genes including sul1, sul2, tetA, tetW, aac(6')-Ib, and qnrS, were ubiquitous, and the average abundances of most ARGs showed significant seasonal differences, with relative low abundances in winter and high abundances in summer. Moreover, the relative high abundances of ARGs were found at Shidongkou (SDK) and Wusongkou (WSK), which indicated that the effluents from the wastewater treatment plant upstream and inland river discharge could influence the abundance of ARGs in sediments. The positive correlation between intI1 and sul1 implied intI1 may be related to the occurrence and propagation of sulfonamides resistance genes. Correlation analysis and redundancy discriminant analysis showed that antibiotic concentrations had no significant correlation to their corresponding ARGs, while the total extractable metal, especially the bioavailable metals, as well as other environmental factors including temperature, clay, total organic carbon and total nitrogen, could regulate the occurrence and distribution of ARGs temporally and spatially. Our findings suggested the comprehensive effects of multiple pressures on the distribution of ARGs in the sediments, providing new insight into the distribution and dissemination of ARGs in estuarine sediments, spatially and temporally.
Collapse
Affiliation(s)
- Xing-Pan Guo
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xinran Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Da-Pei Lu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Sai Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiao-Li Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia-Yuan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yu-Ru Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fei-Yun Tou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
50
|
Simon RG, Stöckl M, Becker D, Steinkamp AD, Abt C, Jungfer C, Weidlich C, Track T, Mangold KM. Current to Clean Water - Electrochemical Solutions for Groundwater, Water, and Wastewater Treatment. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ramona G. Simon
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Markus Stöckl
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Dennis Becker
- DECHEMA e.V.; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | | | - Christian Abt
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Christina Jungfer
- DECHEMA e.V.; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Claudia Weidlich
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Thomas Track
- DECHEMA e.V.; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | | |
Collapse
|