1
|
Song Y, Zhao Y, Wu J, Deng D, Duan Y, Li Y, Wu M, Dong G. Crystal Transformation Synthesis of a Three-Dimensional Dual-Fold Building Block Derived from Metal-Organic Framework for Tetracycline Detection. ACS OMEGA 2025; 10:3165-3175. [PMID: 39895709 PMCID: PMC11780557 DOI: 10.1021/acsomega.4c10594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Metal-organic framework (MOF)-based sensors, which have garnered considerable focus for their potential to enhance environmental monitoring and improve water quality by accurately and consistently identifying antibiotic compounds in water, have gained considerable interest. With the help of pH value, an unusual instance of single-crystal-to-single-crystal (SCSC) transition from the three-dimensional (3D) Zn-framework {[Zn2(mbix)2(2,5-bda)2]·H2O} n (1) to the 3D 2-fold Zn-framework {[Zn4(mbix)4(2,5-bda)4]·H2O} n (2) has been observed under mild conditions. This transformation necessitates the replication of structure 1 while simultaneously modifying the angle between the planes of the imidazole and benzene rings. It is noteworthy that the detection capabilities of 2 for tetracyclines (TC) surpass those of other antibiotic analytes in water. Furthermore, the sensing results are in close consistency with the S-V model when TC concentrations fall within the range of 0-0.08 mM. Additionally, the limit of detection (LOD) of the sensor toward TC is estimated to be 0.59 nM. The stronger quenching impact seen for TC can be linked to a more significant overlap in the energy transfer process. The aforementioned proposition presents a viable strategy for the systematic fabrication of economically viable luminescent sensors, thereby enabling efficient and cost-effective modifications of properties.
Collapse
Affiliation(s)
- Yang Song
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Yangyang Zhao
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Jie Wu
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Dongli Deng
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Yiqin Duan
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Ying Li
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Mingzhu Wu
- Chemical
Pollution Control Chongqing Applied Technology Extension Center of
Higher Vocational Colleges, Chongqing Industry
Polytechnic College, Chongqing 401120, P. R. China
| | - Guohua Dong
- College
of Chemistry and Chemical Engineering, Qiqihar
University, Qiqihar 161006, P. R. China
| |
Collapse
|
2
|
Olenik J, Shvalya V, Modic M, Vengust D, Cvelbar U, Walsh JL. Microplasma Controlled Nanogold Sensor for SERS of Aliphatic and Aromatic Explosives with PCA-KNN Recognition. ACS Sens 2025; 10:387-397. [PMID: 39719049 PMCID: PMC11773561 DOI: 10.1021/acssensors.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Nanogold is an emerging material for enhancing surface-enhanced Raman scattering (SERS), which enables the detection of hazardous analytes at trace levels. This study presents a simple, single-step plasma synthesis method to control the size and yield of Au nanoparticles by using plasma-liquid redox chemistry. The pin-based argon plasma reduces the Au3+ precursor in under 5 min, synthesizing Au spherical particles ranging from ∼20 nm at 0.025 mM to ∼90 nm at 1.0 mM, in addition to plate-like particles occurring at concentrations of 0.25-1.0 mM. The enhanced SERS responses correlated with the UV-vis absorption and reflectance profiles, which can be attributed to synergistic plasmonic hotspots created by the sphere-sphere, plate-sphere, and plate-plate nanogold interactions. This nanogold mixture, combined with gold-plated CPU grid pin arrays, facilitated the detection of trace explosives, including aromatic (TNT, TNB, and TNP) and aliphatic (RDX, PETN, and HMX) compounds. We demonstrate that stabler aliphatic analytes, associated with lower vapor pressure (10-8-10-11 atm), exhibit smaller signal fluctuations (RSD ∼ 6-10%) compared to their more volatile (10-5 atm) aromatic (RSD ∼ 12-17%) counterparts at similar analyte concentrations. The calculated limit of detection (LoD) was found to be ∼2-6 nM and ∼600-900 pM for aromatic and aliphatic explosives, respectively. Finally, we show that the poorer performance of aromatic explosives under the same sensing conditions affects SERS-PCA separation, which can then be improved either by a machine learning approach (PCA with k-NN classification) or by consideration of a specific NO2 symmetric stretching fingerprint range.
Collapse
Affiliation(s)
- Jaka Olenik
- York
Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Vasyl Shvalya
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Martina Modic
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Damjan Vengust
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Uroš Cvelbar
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - James L. Walsh
- York
Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
- Department
for Gaseous Electronics F6, Jozef Stefan
Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Ilbeigi V, Valadbeigi Y, Zvaríková M, Fedor P, Matejčík Š. Rapid detection of volatile organic compounds emitted from plants by multicapillary column-ion mobility spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:485-492. [PMID: 39652317 DOI: 10.1039/d4ay01817f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This study presents a novel rapid analytical method for the detection of volatile organic compounds (VOCs) emitted from blueberry leaves using the Tenax adsorbent followed by separation using a multicapillary column (MCC) and Ion Mobility Spectrometry (IMS) detection. The emitted VOCs including caryophyllene, benzene acetonitrile, linalool, ocimene, and methyl salicylate initiated by different stress factors including mechanical damage (punching), herbivore attack (aphids) and methyl jasmonate (MeJA) spraying were detected and quantified. Limits of Detection (LODs) for the VOCs were determined in the range of 8 to 33 ng. This new cost-efficient method provided a simple and direct detection of the emitted VOCs from plants without any sample pretreatment.
Collapse
Affiliation(s)
- Vahideh Ilbeigi
- Department of Experimental Physics, Comenius University, Mlynská dolina F2, 84248 Bratislava, Slovakia.
| | - Younes Valadbeigi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818 Qazvin, Iran
| | - Martina Zvaríková
- Department of Environmental Ecology, and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Peter Fedor
- Department of Environmental Ecology, and Landscape Management, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Štefan Matejčík
- Department of Experimental Physics, Comenius University, Mlynská dolina F2, 84248 Bratislava, Slovakia.
| |
Collapse
|
4
|
Zhang X, Luo Y, Xia L, Song Y, Li W, Kong L, Liu Y, Shen C, Huang C, Chu Y. A study on the determination of the metabolites of 2,4,6-Trinitrotoluene using a dual-drift tube ion mobility spectrometer. Talanta 2025; 281:126857. [PMID: 39255620 DOI: 10.1016/j.talanta.2024.126857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
2,4,6-Trinitrotoluene (TNT) and its four metabolites, namely 2-ADNT, 4-ADNT, 2,4-DANT, and 2,6-DANT, are highly toxic substances. These metabolites also serve as biomarkers for assessing the health of individuals exposed to TNT. In this study, a homemade DDT-IMS apparatus was utilized to detect these metabolites. Under negative detection mode, the drift times of 2-ADNT and 4-ADNT showed subtle shifts within a drift tube temperature range of 100 °C-120 °C, aiding in their differentiation. In positive detection mode for 2,4-DANT and 2,6-DANT, significant variations were observed in both the number and drift time of their positive product ions across a drift tube temperature range of 80 °C-120 °C. Consequently, optimal analytical performance for these metabolites was achieved at approximately 100 °C. Evaluation of the instrumental response during the measurement of the four metabolites in both positive and negative modes revealed that negative detection mode offered greater advantages of detecting these compounds. The working ranges for measuring the four metabolites spanned two orders of magnitude, with detection limits for each metabolite nearly below 1 ng. Notably, clear identification of the signals for these metabolites was achieved even when samples were mixed in urine, highlighting the ability of the DDT-IMS in detecting TNT metabolites. The developed DDT-IMS detection method has significant potential for enhancing environmental risk assessment and biological hazard evaluation, particularly in relation to human exposure to TNT.
Collapse
Affiliation(s)
- Xu Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China; University of Science and Technology of China, 230026, Hefei, China
| | - Yuanjiang Luo
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China; University of Science and Technology of China, 230026, Hefei, China
| | - Lei Xia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
| | - Yu Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Wanjun Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Lingwen Kong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China; University of Science and Technology of China, 230026, Hefei, China
| | - Yawei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| |
Collapse
|
5
|
Daie-Naseri SM, Ghasemi S, Hosseini SR, Mousavi F. MOF-derived Co 2CuS 4 nanoparticles with gold-decorated reduced graphene oxide for electrochemical determination of chloramphenicol in real samples. Food Chem 2024; 457:140026. [PMID: 38924909 DOI: 10.1016/j.foodchem.2024.140026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Despite the beneficial effects of antibiotics such as chloramphenicol (CAP), they exert some destructive impacts on human health. We designed an electrochemical sensor based on reduced graphene oxide (rGO)/Au/Co2CuS4 nanohybrid for determination of CAP in food and biological samples. The Co2CuS4 was synthesized from binuclear metal-organic framework (CoCu-BDC) through a two-step process. Nanohybrid was characterized by X-ray photoelectron spectroscopy and transmission electron microscopy. The rGO/Au/Co2CuS4 provides more active sites and good electrical conductivity to reduce charge transfer resistance and improve the electrocatalytic activity for determination of CAP. The prepared sensor has a wide linear range from 7 to 141 nM with a limit of detection of 2.5 nM and a limit of quantification of 21.92 nM. It also provided high selectivity and repeatability with a relative standard deviation of 2.6%. Stability studies showed that the electrode has acceptable performance with efficiency of 95% after 33 days.
Collapse
Affiliation(s)
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | | | - Farimah Mousavi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
6
|
Nabeela, Hashmi MA, Saqib ANS, Kamran A, Lakhani A. Detection of nitro-aromatics using C 5N 2 as an electrochemical sensor: a DFT approach. RSC Adv 2024; 14:30116-30126. [PMID: 39315024 PMCID: PMC11417677 DOI: 10.1039/d4ra05600k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Nitroaromatics impose severe health problems and threats to the environment. Therefore, the detection of such hazardous substances is essential to save the whole ecosystem. Herein, the C5N2 sheet is used as an electrochemical sensor for the detection of 1,3-dinitrobenzene (1,3-DNB), trinitrotoluene (TNT), and picric acid (PA) using the PBE0/def2SVP level of theory as implemented in Gaussian 16. The highest interaction energy was observed for the picric acid@C5N2 complex. The trend in interaction energies for the studied system is PA@C5N2 >TNT@C5N2 >1,3-DNB@C5N2. The studied systems were further analysed by qualitative and quantitative analyses to determine the interactions between the nitroaromatic analytes and the C5N2 sheet. Electronic properties of all analytes@C5N2 complexes have been examined by NBO, EDD, FMO and DOS analysis. QTAIM analysis depicts the stronger non-covalent interactions for the PA@C5N2, which shows consistency with interaction energy and NCI analysis. Furthermore, NBO and FMO analyses show that the C5N2 substrate exhibits high sensitivity and selectivity towards the picric acid compared to TNT and 1,3-DNB nitroaromatics. EDD and DOS analyses are in agreement with NBO and FMO analyses. Furthermore, the recovery time of the studied system has been computed to determine the efficiency of C5N2 material as an electrochemical sensor. Overall, the results show that carbon nitride can be a good sensor for the detection of nitroaromatics.
Collapse
Affiliation(s)
- Nabeela
- Department of Chemistry, Division of Science & Technology, University of Education Lahore 54770 Pakistan
| | - Muhammad Ali Hashmi
- Department of Chemistry, Division of Science & Technology, University of Education Lahore 54770 Pakistan
- School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
| | - Ahmad Nauman Shah Saqib
- Department of Chemistry, Division of Science & Technology, University of Education Lahore 54770 Pakistan
| | - Aqsa Kamran
- Department of Chemistry, Division of Science & Technology, University of Education Lahore 54770 Pakistan
| | - Ahmed Lakhani
- Department of Biomedical and Health Sciences, Calumet College of St. Joseph 2400, New York Ave Whiting IN 46394 USA
| |
Collapse
|
7
|
Gao Y, Jin H, Zhang XW, Liu TS. Ultrahigh-Sensitivity and Damage-Free Detection of Single Nanometer-Sized Particle. ACS OMEGA 2024; 9:37672-37677. [PMID: 39281962 PMCID: PMC11391535 DOI: 10.1021/acsomega.4c02127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024]
Abstract
In the past decades, various methods, such as chemical sensing, X-ray screening, and spectroscopy, have been employed to detect explosives for environmental protection and national public security. However, achieving ultrahigh sensitivity for detection, which is crucial for some practical applications, remains challenging. This study employs scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS) to detect individual ∼200 nm explosive nanoparticles of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The vibrational modes of HMX were acquired for each single nanoparticle under the aloof STEM-EELS mode, which ensures damage-free detection. Detailed comparisons with Raman and infrared spectra validate the acquired data's origin. This work highlights STEM-EELS as an effective tool in explosives detection, offering ultrahigh sensitivity, damage-free, and nanometer spatial resolution, with potential applications in environmental protection, public security, and criminal investigations.
Collapse
Affiliation(s)
- Yan Gao
- School of Information and Network Security, People's Public Security University of China, Beijing 100038, China
| | - Hua Jin
- School of Information and Network Security, People's Public Security University of China, Beijing 100038, China
| | - Xiao-Wen Zhang
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Tian-Sheng Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
8
|
Shi L, Habib A, Bi L, Wen L. Dual Ambient Sampling Hollow Cathode Discharge Ionization-Mass Spectrometry System: An Approach for Detecting Explosives and Drugs of Abuse at Trace to Ultratrace Levels. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2209-2221. [PMID: 39164201 DOI: 10.1021/jasms.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Detection of illicit compounds like explosives and drugs of abuse at trace levels is crucial to provide public security and health safety. A dual ambient sampling system hollow cathode discharge (HCD) ion source was developed to investigate its performance. Here, trinitrotoluene (TNT), trinitrobenzene (TNB), hexamethylene triperoxide diamine (HMTD), and triacetone triperoxide (TATP) as explosives and methamphetamine (MA) as drugs of abuse were taken as model compounds. Two sample inlets, inlet-1 and inlet-2, are available for ambient sampling. In negative ion mode, N2 and air HCD plasmas are confined close to inlet-1, but in positive ion mode, they are confined close to inlet-2. Special design of the ion source makes it feasible to generate multiple ions from a single analyte, which assists in understanding the gas phase ionization mechanism. In negative ion mode, both TNT and TNB gave radical ions, [M]-•, as major ions for N2 HCD plasma as they were introduced via inlet-1 or inlet-2. TNB gave radical ions for air and N2 HCD plasmas, while TNT exhibited adduct ions, [TNT-H]-, by using air HCD plasma. In positive ion mode, HMTD gave [HMTD + H]+ m/z 209 ions, while TATP only produced adduct ions with ammonia, [TATP + NH4]+ m/z 240. Regardless of ion source inlet, MA showed protonated molecule ions, [MA + H]+ m/z 150. As analytes were introduced via inlet-1, the stability of the HCD background ion signal reduced, leading to a decrease in sensitivity. Unlike that in negative ion mode, introduction of ambient air in positive ion mode enhanced the sensitivity of the air HCD ion source through the formation of hydronium ions, which gave protonated molecule ions. Ionization mechanisms are also discussed.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, Shanghai China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, Zhejiang China
- China Innovation Instrument Co., Ltd., Ningbo 315000, Zhejiang China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, Zhejiang China
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Lei Bi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, Shanghai China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, Zhejiang China
- China Innovation Instrument Co., Ltd., Ningbo 315000, Zhejiang China
| | - Luhong Wen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, Shanghai China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, Zhejiang China
- China Innovation Instrument Co., Ltd., Ningbo 315000, Zhejiang China
| |
Collapse
|
9
|
Gao X, Liu M, Lei M, Kong Y, Xu X, Zhang Q. A Zn-MOF-based mixed matrix membrane as an ultrastable luminescent sensor for selective and visual detection of antibiotics and pesticides in food samples. Talanta 2024; 277:126303. [PMID: 38796929 DOI: 10.1016/j.talanta.2024.126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The detection of antibiotics and pesticides are of great significance since their residues threaten the health of human beings by accumulation. However, most traditional solid chemical sensors are suffer from the limitations of low sensitivity and economic practicability because of the aggregating nature and unstable of solid sensors. Herein, a new luminescent sensor 1@PMMA (1, [(ZnL)·H2O]n (H2L = 5-(4-(pyridin-4-yl)benzamido)benzene-1,3-dioic acid); PMMA = poly(methyl methacrylate)) was successfully prepared. Notably, the polymer matrix provided the chemical protection for MOF particles. The as fabricated 1@PMMA was stable in milk, honey and egg as well as exhibited strong blue emission under ultraviolet light irradiation, which can act as luminescent probe for detecting antibiotics and pesticides. More interestingly, 1@PMMA exhibited visual, real-time and recyclable detection of antibiotics ornidazole (ODZ) and pesticides 2,6-dichloro-4-nitrobenzenamine (DCN) in real food samples. This work shows that the luminescent MOF-based mixed matrix membranes could be applied as good candidates for sensing analytes in practical application.
Collapse
Affiliation(s)
- Xiuting Gao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Mengying Liu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Mingyuan Lei
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, Shandong 250014, China
| | - Yuxia Kong
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xinjiang Xu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Qingfu Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
10
|
Anttalainen O, Karjalainen M, Lattouf E, Hecht O, Vanninen P, Hakulinen H, Kotiaho T, Thomas C, Eiceman G. Time-Resolved Ion Mobility Spectrometry with a Stop Flow Confined Volume Reaction Region. Anal Chem 2024; 96:10182-10192. [PMID: 38857882 PMCID: PMC11209659 DOI: 10.1021/acs.analchem.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
An ion source concept is described where the sample flow is stopped in a confined volume of an ion mobility spectrometer creating time-dependent patterns of ion patterns of signal intensities for ions from mixtures of volatile organic compounds and improved signal-to-noise rate compared to conventional unidirectional drift gas flow. Hydrated protons from a corona discharge were introduced continuously into the confined volume with the sample in air at ambient pressure, and product ions were extracted continuously using an electric field for subsequent mobility analysis. Ion signal intensities for protonated monomers and proton bound dimers were measured and computationally extracted using mobilities from mobility spectra and exhibited distinct times of appearance over 30 s or more after sample injection. Models, and experimental findings with a ternary mixture, suggest that the separation of vapors as ions over time was consistent with differences in the reaction rate for reactions between primary ions from hydrated protons and constituents and from cross-reactions that follow the initial step of ionization. The findings suggest that the concept of stopped flow, introduced here for the first time, may provide a method for the temporal separation of atmospheric pressure ions. This separation relies on ion kinetics and does not require chromatographic technology.
Collapse
Affiliation(s)
- Osmo Anttalainen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Markus Karjalainen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Elie Lattouf
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Oliver Hecht
- Airsense
Analytics GmbH, Hagenower
Straße 73, Schwerin 19061, Germany
| | - Paula Vanninen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Hanna Hakulinen
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Tapio Kotiaho
- Drug
Research Program and Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki FI-00014, Finland
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O.Box 55, Helsinki FIN-00014, Finland
| | - Charles Thomas
- Department
of Chemistry, Loughborough University, Leicestershire LE11 3TU, U.K.
| | - Gary Eiceman
- VERIFIN,
Finnish Institute for Verification of the Chemical Weapons Convention,
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
- New
Mexico
State University, 1175 N Horseshoe Dr., Las Cruces, New Mexico 88003, United States
| |
Collapse
|
11
|
Chaudhary MY, Kanzariya DB, Das A, Pal TK. A fluorescent MOF and its synthesized MOF@cotton composite: Ratiometric sensing of vitamin B 2 and antibiotic drug molecule. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124194. [PMID: 38569387 DOI: 10.1016/j.saa.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Here, we demonstrated the synthesis of a zinc based luminescent MOF, 1 (NDC = 2,6- naphthalenedicarboxylate) for the ratiometric detection of biomarker riboflavin (RBF; vitamin B2) in water dispersed medium. Further, this MOF detected two other antibiotic drug molecules, nitrofurantoin (NFT) and nitrofurazone (NZF). The detection of these analytes is very quick (∼seconds), and the limit of detection (LOD) for RBF, NZF and NFT are calculated as 16.58 ppm, 47.63 ppb and 56.96 ppb, respectively. The detection of these analytes was also comprehended by solid, solution, cost-effective paper strip method i.e., triphasic identification capabilities. The sensor is reusable without losing its detection efficacy. The sensor further showed the recognition abilities of these antibiotics in real field samples (river water, urine and tablet) and RBF in vitamin B2 pills and food samples (milk and cold drinks). The sensing merit of 1 urged us to fabricate of 1@cotton fabric composite, which exhibited the colorimetric detection of these analytes. In-depth experimental analysis suggested that the occurrence of photo-induced electron transfer (PET), fluorescence resonance energy transfer (FRET), and the inner filter effect (IFE) are the possible sensing mechanisms for the recognition of the antibiotics drug. The FRET mechanism is responsible for the recognition of RBF. The sensing mechanism is further supported by the theoretical analysis and the excited lifetime measurement.
Collapse
Affiliation(s)
- Meetkumar Y Chaudhary
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | | | - Anirban Das
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| | - Tapan K Pal
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India; Department of Chemistry, Bajkul Milani Mahavidalaya, Bajkul 721655, West Bengal, India.
| |
Collapse
|
12
|
Li B, Peng L, Cao Y, Liu S, Zhu Y, Dou J, Yang Z, Zhou C. Insights into Cold Plasma Treatment on the Cereal and Legume Proteins Modification: Principle, Mechanism, and Application. Foods 2024; 13:1522. [PMID: 38790822 PMCID: PMC11120358 DOI: 10.3390/foods13101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cereal and legume proteins, pivotal for human health, significantly influence the quality and stability of processed foods. Despite their importance, the inherent limited functional properties of these natural proteins constrain their utility across various sectors, including the food, packaging, and pharmaceutical industries. Enhancing functional attributes of cereal and legume proteins through scientific and technological interventions is essential to broadening their application. Cold plasma (CP) technology, characterized by its non-toxic, non-thermal nature, presents numerous benefits such as low operational temperatures, lack of external chemical reagents, and cost-effectiveness. It holds the promise of improving proteins' functionality while maximally retaining their nutritional content. This review delves into the pros and cons of different cold plasma generation techniques, elucidates the underlying mechanisms of protein modification via CP, and thoroughly examines research on the application of cold plasma in augmenting the functional properties of proteins. The aim is to furnish theoretical foundations for leveraging CP technology in the modification of cereal and legume proteins, thereby enhancing their practical applicability in diverse industries.
Collapse
Affiliation(s)
- Bin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Yanan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuchen Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianguo Dou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenguang Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Desai V, Modi K, Panjwani F, Seth BK, Vora M, Parikh J, Jain VK. Design and Synthesis of an Efficient Fluorescent Probe Based on Oxacalix[4]arene for the Selective Detection of Trinitrophenol (TNP) Explosives in Aqueous System. J Fluoresc 2024; 34:1219-1228. [PMID: 37515663 DOI: 10.1007/s10895-023-03352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
We present the synthesis of a new oxacalix[4]arene system, DMANSOC, wherein two 5-(dimethylamino)-1-naphthalene sulfonamide subunits are attached to the lower rims of the basic oxacalix[4]arene platform. Extensive spectrophotometric studies were conducted to investigate the selectivity and sensitivity of DMANSOC towards nitroaromatic explosives. Detailed analysis of spectrophotometric data, utilizing techniques such as Stern-Volmer, Benesi-Hildebrand, Job's plot, and interference study, unequivocally demonstrated the effectiveness of DMANSOC as a highly efficient fluorescent sensor for 2,4,6-trinitrophenol explosive (TNP) detection in an aqueous medium. The sensor exhibited a linear concentration range of 7.5 μM to 50 μM, with a low detection limit of 4.64 μM and a high binding affinity of 2.45 × 104 M towards TNP. Furthermore, the efficiency of the sensor in environmental samples contaminated with TNP was evaluated, yielding excellent recovery rates. Complementary DFT calculations and molecular dynamics simulations were performed to elucidate the mechanism behind the selective fluorescence quenching of DMANSOC in the presence of TNP.
Collapse
Affiliation(s)
- Vishv Desai
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Krunal Modi
- Department of Humanities and Science, School of Engineering, Indrashil University, Mehsana, Gujarat, 382740, India.
| | - Falak Panjwani
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Banabithi Koley Seth
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Manoj Vora
- Chemical Engineering Department, Institute of Technology, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Jaymin Parikh
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Gujarat, 384012, India
| | - Vinod Kumar Jain
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
14
|
Das C, Patel VD, Gupta D, Mahata P. Isolation of a Cd-Based Coordination Polymer Containing Mixed Ligands: Time- and Temperature-Dependent Synthesis, Sulfonamide Antibiotics Detection, and Schottky Diode Fabrication. Inorg Chem 2024; 63:3656-3666. [PMID: 38344834 DOI: 10.1021/acs.inorgchem.3c03086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, we present a new cadmium(II)-based two-dimensional coordination polymer [Cd (L)(NA)(H2O)] (L = Iminol form of N-nicotinoyl glycinate, NA = nicotinate), 1, containing two linkers generated from N-nicotinoyl glycine. A comprehensive investigation was carried out during the synthesis of the coordination polymers by varying the reaction time interval and temperature, and it revealed the formation of three distinct phases, of which two phases were previously reported and one was a new compound (1). The structure of compound 1 was determined by single-crystal X-ray diffraction, and it shows a corrugated layer structure with hydrogen bond interactions leading to three-dimensional supramolecular arrangements. Compound 1 exhibited strong emission at 420 nm when excited at 260 nm in an aqueous medium. The emission behavior of this compound was used for the detection of various sulfonamide antibiotics, sulfadiazine, sulfamethazine, sulfachloropyridazine, sulfameter, sulfaquinoxaline, and sulfathiazole, in the presence of common water pollutants. The luminescence quenching response of compound 1 to sulfonamide antibiotics was significant, ranging from 81 to 94%, and the detection sensitivity reached parts per billion (ppb) levels (226-726 ppb). Compound 1 also used for the fabrication of Schottky diode devices with a barrier height of 0.86 eV along with an excellent ideality factor of 1.24.
Collapse
Affiliation(s)
- Chhatan Das
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Vishwas D Patel
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Dhritiman Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, West Bengal, India
| |
Collapse
|
15
|
Sainaba AB, Saha R, Venkateswarulu M, Zangrando E, Mukherjee PS. Pt(II) Tetrafacial Barrel with Aggregation-Induced Emission for Sensing. Inorg Chem 2024; 63:508-517. [PMID: 38117135 DOI: 10.1021/acs.inorgchem.3c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A new tetraphenylpyrazine-based tetraimidazole ligand (L) was synthesized and used for subcomponent self-assembly with cis-(tmeda)Pd(NO3)2 and cis-Pt(PEt3)2(OTf)2, leading to the formation of two tetrafacial barrels [Pd8L4(tmeda)8](NO3)16 (1) and [Pt8L4(PEt3)16](OTf)16 (2), respectively. Although ligand L is aggregation-induced emission (AIE) active, barrel 2 showed a magnificently higher AIE activity than ligand L, while 1 failed to retain the AIE properties of the ligand. Pd(II) barrel 1, undergoing an aggregation-caused quenching (ACQ) phenomenon, nullified the AIE activity of the ligand to be used in the photophysical application. The enhanced emission in the aggregated state of Pt(II) barrel 2 was used for the recognition of picric acid (PA), which is explosive in nature and one of the groundwater contaminants in landmine areas. The recognition of picric acid was found to be selective in comparison with that of other nitroaromatic compounds (NACs), which could be attributed to ground-state complex formation and resonance energy transfer between picric acid and barrel 2. The use of new AIE-active assembly 2 for selective detection of PA with a low detection limit is noteworthy.
Collapse
Affiliation(s)
- Arppitha Baby Sainaba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127 Trieste, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Son CE, Choi HR, Choi SS. Test method for vapor collection and ion mobility detection of explosives with low vapor pressure. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9645. [PMID: 37942691 DOI: 10.1002/rcm.9645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
RATIONALE Ion mobility spectrometry (IMS) has been widely used for on-site detection of explosives. Air sampling method is applicable only when the concentration of explosive vapor is considerably high in the air, but vapor pressures of common explosives such as 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), and pentaerythritol tetranitrate (PETN) are very low. A test method for analyzing the vapor detection efficiency of explosives with low vapor pressure via IMS was developed using artificial vapor and collection matrices. METHODS Artificial explosive vapor was produced by spraying an explosive solution in acetone. Fifteen collection matrices of various materials with woven or nonwoven structures were tested. Two arrangements of horizontal and vertical positions of the collection matrices were employed. Explosive vapor collected in the matrix was analyzed using IMS. RESULTS Only three collection matrices of stainless steel mesh (SSM), polytetrafluoroethylene sheet (PFS), and lens cleansing paper (LCP) showed the TNT and/or RDX ion peaks at an explosive vapor concentration of 49 ng/L. There was no collection matrix to detect PETN vapor at or lower than 49 ng/L. For the PFS, TNT and RDX were detected at a vapor concentration of 49 ng/L. For the LCP, TNT and RDX were detected at vapor concentrations of 14 and 49 ng/L, irrespectively. CONCLUSIONS The difference in the explosive vapor detection efficiencies could be explained by the adsorption and desorption capabilities of the collection matrices. The proposed method can be used for evaluating the vapor detection efficiency of hazardous materials with low vapor pressure.
Collapse
Affiliation(s)
- Chae Eun Son
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - He-Ryun Choi
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - Sung-Seen Choi
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Sharma B, Gadi R. Analytical Tools and Methods for Explosive Analysis in Forensics: A Critical Review. Crit Rev Anal Chem 2023; 55:251-277. [PMID: 37934616 DOI: 10.1080/10408347.2023.2274927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
This review summarizes (i) compositions and types of improvised explosive devices; (ii) the process of collection, extraction and analysis of explosive evidence encountered in explosive and related cases; (iii) inter-comparison of analytical techniques; (iv) the challenges and prospects of explosive detection technology. The highlights of this study include extensive information regarding the National & International standards specified by USEPA, ASTM, and so on, for explosives detection. The holistic development of analytical tools for explosive analysis ranging from conventional methods to advanced analytical tools is also covered in this article. The most important aspect of this review is to make forensic scientists familiar with the challenges during explosive analysis and the steps to avoid them. The problems during analysis can be analyte-based, that is, interferences due to matrix or added molding/stabilizing agents, trace amount of parent explosives in post-blast samples and many more. Others are techniques-based challenges viz. specificity, selectivity, and sensitivity of the technique. Thus, it has become a primary concern to adopt rapid, field deployable, and highly sensitive techniques.
Collapse
Affiliation(s)
- Bhumika Sharma
- Department of Applied Sciences & Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, India
| | - Ranu Gadi
- Department of Applied Sciences & Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, India
| |
Collapse
|
18
|
Li T, Chen Z, Zhao Z, Liu Z. A portable test strip fabricated of luminescent lanthanide-functionalized metal-organic frameworks for rapid and visual detection of tetracycline antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4459-4466. [PMID: 37642116 DOI: 10.1039/d3ay01169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tetracycline antibiotics (TCs) are commonly used antibiotics in the treatment of infections, but their overuse has a negative impact on human health and ecosystems. Thus, the development of a facile and on-site visualization method for TC detection is necessary. Here, we propose the potential of using lanthanide-functionalized metal-organic framework (MOF) composites (Ag+/Tb3+@UiO-66-(COOH)2, ATUC) as a probe for the rapid detection of tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC), and doxycycline (DOX) residues, in which UiO-66-(COOH)2 (UC) could be utilized to provide an interaction microenvironment, Tb3+ as recognition units and Ag+ as a fluorescence enhancer. Upon exposure to TCs, significant luminescence quenching of ATUC excited at 255 nm was observed due to the inner filter effect (IFE) and photo-induced electron transfer (PET), and the established strategy has a detection limit (LOD) of 11.0, 20.1, 9.1, and 22.5 nM for TC, CTC, OTC, and DOX, respectively. More importantly, given its portability and conspicuous luminescence color gradation variation, a portable test strip based on ATUC was manufactured and the results could be distinguished immediately by the naked eye and smartphone analysis, allowing for on-site rapid quantitative assay of TCs, not only in the laboratory but also in a point-of-care setting.
Collapse
Affiliation(s)
- Tingxia Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongxiu Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongshuai Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
19
|
Ilbeigi V, Valadbeigi Y, Moravsky L, Matejčík Š. Formic Acid as a Dopant for Atmospheric Pressure Chemical Ionization for Negative Polarity of Ion Mobility Spectrometry and Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2051-2060. [PMID: 37498108 DOI: 10.1021/jasms.3c00225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Formic acid (FA) is introduced as a potent dopant for atmospheric pressure chemical ionization (APCI) for ion mobility spectrometry (IMS) and mass spectrometry (MS). The mechanism of chemical ionization with the FA dopant was studied in the negative polarity using a corona discharge (CD)-IMS-MS technique in air. Standard reactant ions of the negative polarity present in air are O2-·(CO2)n·(H2O)m (m = 0, 1 and n = 1, 2) clusters. Introduction of the FA dopant resulted in the production of HCOO-·FA reactant ions. The effect of the FA dopant on the APCI of different classes of compounds was investigated, including plant hormones, pesticides, acidic drugs, and explosives. FA dopant APCI resulted in deprotonation and/or adduct ion formation, [M - H]- and [M + HCOO]-, respectively. Supporting density functional theory (DFT) calculations showed that the ionization mechanism depended on the gas-phase acidity of the compounds. FA dopant APCI led to the improvement of detection sensitivity, suppression of fragmentation, and changes in the ion mobilities of the analyte ions for analytes with suitable molecular structures and gas acidity.
Collapse
Affiliation(s)
- Vahideh Ilbeigi
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia
| | - Younes Valadbeigi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818 Qazvin, Iran
| | - Ladislav Moravsky
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia
| | - Štefan Matejčík
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia
| |
Collapse
|
20
|
Shamsi F, Sheibani A, Shishehbore MR. Determination of bupropion by off-line coupling Fe 3O 4@CuO&GO nanocomposite and ion mobility spectrometry with application to biological samples. ANAL SCI 2023; 39:1521-1529. [PMID: 37243968 DOI: 10.1007/s44211-023-00371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
In this study, an off-line coupling of dispersive solid-phase extraction (DSPE) and ion mobility spectrometry (IMS) was introduced to extract and determine bupropion (BUP). A magnetic nanocomposite adsorbent (Fe3O4@CuO&GO) was fabricated by combining graphene oxide (GO) sheets with Fe3O4 and CuO through coprecipitation method. The synthesized adsorbent was characterized and analyzed using the analytical techniques. The effect of extraction parameters including desorption solvent (type and volume), pH, adsorbent amount, contact time, temperature, and the volume of analyte solution on the extraction efficiency was investigated and optimized. The operational parameters of IMS method were also investigated. Under the optimum conditions (DSPE-IMS), the proposed method provided a linear range 4.0-24.0 ng for BUP with a determination coefficient R2 ≥ 0.98. LOD and LOQ values were 0.7 and 2.2 ng for BUP. The repeatability of proposed method was evaluated and reported as relative standard deviation (RSD% ≤ 5.5). The developed method was applied to determine BUP in different biological samples, in which satisfactory results were obtained (93.0-98.0%).
Collapse
Affiliation(s)
- Farideh Shamsi
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Ali Sheibani
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - M Reza Shishehbore
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
21
|
Rawat A, Kanzariya DB, Lama P, Pal TK. A Zn(II) coordination polymer as a dual sensor for ppb level detection of antibiotics and organo-toxins in a green solvent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122579. [PMID: 36898324 DOI: 10.1016/j.saa.2023.122579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Herein, we describe the synthesis of a new fluorescent d10 coordination polymer, [Zn2(CFDA)2(BPEP)]n·nDMF (CP-1) under solvothermal reaction condition using zinc metal ion. In CP-1, Zn(II) ion along with CFDA and BPED ligand forms a 2-fold self-interpenetrated 3D coordination polymers. This CP-1 is characterized by the single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), infrared spectra, optical microscope image and thermogravimetric analysis and the framework is found to maintain its structural stability in different solvents. The framework (CP-1) detected antibiotics (NFT (nitrofurantoin) and NZF (nitrofurazone)) and organo-toxin trinitrophenol in aqueous dispersed medium. Apart from the fast responsive (10 s), the detection limit for them was found at ppb level. The detection of these organo-aromatics were also comprehended by the colorimetric response through solid, solution and low cost paper strip technique i.e., triple mode recognition capability. The probe is re-usable without changing in its sensing efficiency and in addition, it has been applied for the detection of these analytes in the real field specimens (soil, river water, human urine and commercial tablet). The sensing ability is established by in-depth experimental analysis and the life time measurement where mechanism such as photo induced electron transfer (PET), fluorescence resonance energy transfer (FRET), inner filter effect (IFE) was recognized. The presence of guest interaction sites on the linker backbone in CP-1 induces diverse supramolecular interaction with the targeted analytes results to bring them in proximity for the occurrence of these sensing mechanism. The Stern-Volmer quenching constant values of CP-1 for the targeted analytes are admirable and the low detection limit (LOD) values for NFT, NZF and TNP are found to be 34.54, 67.79 and 43.93 ppb respectively. Further, the DFT theory is carried out in details to justify the sensing mechanism.
Collapse
Affiliation(s)
- Ashutosh Rawat
- CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
| | | | - Prem Lama
- CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India.
| | - Tapan K Pal
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
22
|
Bai X, Liu S, Huang W, Wang W, Li D, Wang A, Chen Y, Zhang Y, Cang H, Li H. Real-time monitoring of atmospheric ammonia based on modifier-enhanced vacuum ultraviolet photoionization ion mobility spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2191-2198. [PMID: 37114921 DOI: 10.1039/d3ay00257h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ammonia (NH3) plays an important role in the atmospheric environment such as the formation of PM2.5, the concentration monitoring of which could hence help in the air quality assessment. In this study, a method for quantitative monitoring of atmospheric NH3 was developed based on modifier-enhanced selectivity detection using a homemade vacuum ultraviolet photoionization ion mobility spectrometry (VUV-PI-IMS). To enhance the resolution and sensitivity of measuring NH3, 2-butanone as the gas modifier was introduced into the drift tube with the drift gas. Atmospheric NH3 can be selectively detected, where the peak-to-peak resolution (RP-P) of 7.69 was obtained. The product ions were identified to be [C4H8O]2NH4+ by using a homemade time-of-flight mass spectrometer. The calculated limit of detection (LOD) was 0.39 ppbv improving about 10 times. For the most common concentration variation of atmospheric NH3 in the range of 10-100 ppbv, the linear curve was obtained with R2 of 0.997. Lastly, the VUV-PI-IMS was used to monitor the evolution of atmospheric NH3 near our laboratory and mounted on a car for monitoring the regional distribution of atmospheric NH3 in Dalian, China. The results also showed that VUV-PI-IMS has a promising application prospect in monitoring the concentration of atmospheric NH3 and supporting the air quality assessment.
Collapse
Affiliation(s)
- Xueying Bai
- Dalian Jiaotong University, School of Materials Science and Engineering, Dalian 116028, China.
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Shimin Liu
- Dalian Jiaotong University, School of Materials Science and Engineering, Dalian 116028, China.
| | - Wei Huang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Dongming Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Aibo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yi Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yuanzhi Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Huaiwen Cang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
23
|
Schlottmann F, Schaefer C, Kirk AT, Bohnhorst A, Zimmermann S. A High Kinetic Energy Ion Mobility Spectrometer for Operation at Higher Pressures of up to 60 mbar. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:893-904. [PMID: 36999893 PMCID: PMC10161227 DOI: 10.1021/jasms.2c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) are usually operated at absolute pressures around 20 mbar in order to reach high reduced electric field strengths of up to 120 Td for influencing reaction kinetics in the reaction region. Such operating points significantly increase the linear range and limit chemical cross sensitivities. Furthermore, HiKE-IMS enables ionization of compounds normally not detectable in ambient pressure IMS, such as benzene, due to additional reaction pathways and fewer clustering reactions. However, operation at higher pressures promises increased sensitivity and smaller instrument size. In this work, we therefore study the theoretical requirements to prevent dielectric breakdown while maintaining high reduced electric field strengths at higher pressures. Furthermore, we experimentally investigate influences of the pressure, discharge currents and applied voltages on the corona ionization source. Based on these results, we present a HiKE-IMS that operates at a pressure of 60 mbar and reduced electric field strengths of up to 105 Td. The corona experiments show shark fin shaped curves for the total charge at the detector with a distinct optimum operating point in the glow discharge region at a corona discharge current of 5 μA. Here, the available charge is maximized while the generation of less-reactive ion species like NOx+ is minimized. With these settings, the reactant ion population, H3O+ and O2+, for ionizing and detecting nonpolar substances like n-hexane is still available even at 60 mbar, achieving a limit of detection of just 5 ppbV for n-hexane.
Collapse
Affiliation(s)
- Florian Schlottmann
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Christoph Schaefer
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| |
Collapse
|
24
|
Saccomandi P. Design Considerations of an ITO-Coated U-Shaped Fiber Optic LMR Biosensor for the Detection of Antibiotic Ciprofloxacin. BIOSENSORS 2023; 13:362. [PMID: 36979574 PMCID: PMC10046811 DOI: 10.3390/bios13030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The extensive use of antibiotics has become a serious concern due to certain deficiencies in wastewater facilities, their resistance to removal, and their toxic effects on the natural environment. Therefore, substantial attention has been given to the detection of antibiotics because of their potential detriment to the ecosystem and human health. In the present study, a novel design of indium tin oxide (ITO) coated U-shaped fiber optic lossy mode resonance (LMR) biosensor is presented for the sensitive detection of the antibiotic ciprofloxacin (CIP). The performance of the designed U-shaped LMR sensor is characterized in terms of its sensitivity, full width at half maximum (FWHM), the figure of merit (FOM), and the limit of detection (LOD). For the proposed U-shaped LMR sensing probe, the various crucial factors such as the thickness (d) of the ITO layer, sensing region length (L), and bending radius (R) are optimized. The thickness of the ITO layer is optimized in such a way that two LMR curves are observed in the transmission spectrum and, thereafter, the performance parameters are evaluated for each LMR. It is observed that the designed U-shaped LMR sensor with optimized parameters shows an approximately seven-fold enhancement in sensitivity compared to the straight-core fiber optic LMR sensor. The numerical results revealed that the designed U-shaped fiber optic LMR biosensor can provide a maximum sensitivity of 17,209.9 nm/RIU with the highest FOM of 91.42 RIU-1, and LOD of 6.3 × 10-5 RIU for the detection of CIP hydrochloride in the concentration range of 0.001 to 0.029 mol∙dm-3. Thus, it is believed that the designed LMR biosensor can practically explore its potential use in environmental monitoring and biomedical applications and hence, opens a new window of opportunity for the researchers working in the field of U-shaped fiber optic LMR biosensing.
Collapse
|
25
|
Three metal organic frameworks based on mixed ligands: synthesis, crystal structures and luminescent sensing of nitro explosives. TRANSIT METAL CHEM 2023. [DOI: 10.1007/s11243-023-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
26
|
Bhuvaneswari C, Elangovan A, Sharmila C, Sudha K, Arivazhagan G. Fabrication of cobalt tungstate/N-rGO nanocomposite: Application towards the detection of antibiotic drug-Furazolidone. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Wang GL, Lu Y, Wang R, Srivastava D, Kumar A, Sakiyama H, Muddassir M, Guo J, Jin JC. A highly stable 2D Zn-based coordination polymer exhibiting efficiently luminescent sensing towards sulfasalazine. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Xie HH, Han L, Tang SF. Functionalized Zirconium Organic Frameworks as Fluorescent Probes for the Detection of Tetracyclines in Water and Pork. Inorg Chem 2022; 61:17322-17329. [PMID: 36260292 DOI: 10.1021/acs.inorgchem.2c02940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The overuse of tetracyclines (TCs) in livestock breeding may cause a series of health and environmental problems. It is necessary to develop more accurate, convenient, and rapid sensing methods toward TCs, but it is still very challenging. In this work, three isostructural zirconium organic frameworks (Zr-MOFs) have been investigated as probes for the fluorescent sensing of TCs in water. By varying the functional group at the central benzene core, their sensing performances toward TCs can be modified. Under optimized conditions, the limit of detection can be as low as 0.08 nM in a wide detection range of 0-147 μM with high sensitivity and selectivity. These Zr-MOFs can also be applied in the detection of TCs in real pork samples with satisfying reliabilities and correctness. This work provides a new method for the design and optimization of fluorescent sensors toward TCs.
Collapse
Affiliation(s)
- Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| |
Collapse
|
29
|
Han X, Wang S, Liu M, Liu L. A Cucurbit[6]uril-Based Supramolecular Assembly as a Multifunctional Material for the Detection and Removal of Organic Explosives and Antibiotics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaodong Han
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. China
| | - Shuo Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. China
| | - Mei Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. China
| | - Lihui Liu
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, P. R. China
| |
Collapse
|
30
|
Shi L, Habib A, Bi L, Hong H, Begum R, Wen L. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit Rev Anal Chem 2022; 54:1584-1633. [PMID: 36206159 DOI: 10.1080/10408347.2022.2124840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface. They also have the ability to analyze explosives, illicit drugs, disease diagnostics, drugs in biological samples, adulterants in food and agricultural products, reaction progress, and environmental monitoring. The development of novel ambient ionization techniques, such as probe electrospray ionization, paper spray ionization, and fiber spray ionization, employed even at picolitre to femtolitre solution levels to provide femtogram to attogram levels of the target analytes. The special characteristic of this ambient ion source, which has been extensively used, is the noninvasive property of PESI of examination of biological real samples. The results in the current review supports the idea that AIMS has emerged as a pioneer in MS-based approaches and that methods will continue to be developed along with improvements to existing ones in the near future.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Huanhuan Hong
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Rockshana Begum
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Luhong Wen
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
31
|
Zhang XY, Wang K, Chang Y, Hu XL, Su ZM, Zhou EL. Three Cd-MOFs with water stability act as novel fluorescent probes for detecting nitrofuran, nitrofurantoin and Fe3+. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Shi CC, Zhao L, Jia-Jia X, Lu L, Singh A, Prakash O, Kumar A. New Three-dimensional Supramolecular Cd(II)-Coordination Polymer as a Luminescent Sensor for Sulfamethazine Detection. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Liang Y, Li J, Yang S, Wu S, Zhu M, Fedin VP, Zhang Y, Gao E. Self-calibrated FRET fluorescent probe with Metal-organic framework for proportional detection of nitrofuran antibiotics. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Li L, Zhang T, Ge W, He X, Zhang Y, Wang X, Li P. Detection of Trace Explosives Using a Novel Sample Introduction and Ionization Method. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144551. [PMID: 35889424 PMCID: PMC9320169 DOI: 10.3390/molecules27144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
A novel sample introduction and ionization method for trace explosives detection is proposed and investigated herein, taking into consideration real-world application requirements. A thermal desorption sampling method and dielectric barrier discharge ionization (DBDI) source, with air as the discharge gas, were developed. The counter flow method was adopted firstly into the DBDI source to remove the interference of ozone and other reactive nitrogen oxides. A separated reaction region with an ion guiding electric field was developed for ionization of the sample molecules. Coupled with a homemade miniature digital linear ion trap mass spectrometer, this compact and robust design, with further optimization, has the advantages of soft ionization, a low detection limit, is free of reagent and consumable gas, and is an easy sample introduction. A range of common nitro-based explosives including TNT, 2,4-DNT, NG, RDX, PETN, and HMX has been studied. A linear response in the range of two orders of magnitude with a limit of detection (LOD) of 0.01 ng for TNT has been demonstrated. Application to the detection of real explosives and simulated mixed samples has also been explored. The work paves the path to developing next generation mass spectrometry (MS) based explosive trace detectors (ETDs).
Collapse
Affiliation(s)
- Lingfeng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Tianyi Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Wei Ge
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Xingli He
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Yunjing Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
- Correspondence: ; Tel.: +86-13656249881
| |
Collapse
|
35
|
Zeng Y, Chang F, Liu Q, Duan L, Li D, Zhang H. Recent Advances and Perspectives on the Sources and Detection of Antibiotics in Aquatic Environments. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5091181. [PMID: 35663459 PMCID: PMC9159860 DOI: 10.1155/2022/5091181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 05/31/2023]
Abstract
Water quality and safety are vital to the ecological environment, social development, and ecological susceptibility. The extensive use and continuous discharge of antibiotics have caused serious water pollution; antibiotics are widely found in freshwater, drinking water, and reservoirs; and this pollution has become a common phenomenon and challenge in global water ecosystems, as water polluted by antibiotics poses serious risks to human health and the ecological environment. Therefore, the antibiotic content in water should be identified, monitored, and eliminated. Nevertheless, there is no single method that can detect all different types of antibiotics, so various techniques are often combined to produce reliable results. This review summarizes the sources of antibiotic pollution in water, covering three main aspects: (1) wastewater discharges from domestic sewage, (2) medical wastewater, and (3) animal physiology and aquaculture. The existing analytical techniques, including extraction techniques, conventional detection methods, and biosensors, are reviewed. The electrochemical biosensors have become a research hotspot in recent years because of their rapid detection, high efficiency, and portability, and the use of nanoparticles contributes to these outstanding qualities. Additionally, the comprehensive quality evaluation of various detection methods, including the linear detection range, detection limit (LOD), and recovery rate, is discussed, and the future of this research field is also prospected.
Collapse
Affiliation(s)
- Yanbo Zeng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| |
Collapse
|
36
|
Zhu GS, Cheng SL, Zhou ZD, Du B, Shen YY, Yu BY. Bisligand-coordinated cadmium organic frameworks as fluorescent sensors to detect Ions, antibiotics and pesticides in aqueous solutions. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Guo ZH, Zhang PF, Ma LL, Deng YX, Yang GP, Wang YY. Lanthanide-Organic Frameworks with Uncoordinated Lewis Base Sites: Tunable Luminescence, Antibiotic Detection, and Anticounterfeiting. Inorg Chem 2022; 61:6101-6109. [PMID: 35420789 DOI: 10.1021/acs.inorgchem.2c00224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several new isostructural lanthanide metal-organic frameworks (Ln-MOFs), {[Ln2(L)3DMA4]·2DMA}n (1-Ln, where Ln = Eu, Tb, or EuxTb1-x), were first constructed via the solvothermal reactions of 4,6-di(4-carboxyphenyl)pyrimidine and Ln3+ ions. 1-Ln exhibits a 4-connected two-dimensional framework endowed with uncoordinated Lewis base sites. An exploration of luminescence sensing demonstrated 1-Eu can be used for the selectivity detection of dimetridazole and metronidazole antibiotics in other antibiotics, blood plasma, and urine, acting as an exceptional recyclable luminescent probe. More importantly, the luminescent inks of 1-Ln are invisible, color adjustable, and stabilized, which may greatly improve their anticounterfeiting applications.
Collapse
Affiliation(s)
- Zhen-Hua Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Peng-Feng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lu-Lu Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yu-Xin Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
38
|
Sarfaraz S, Yar M, Ali Khan A, Ahmad R, Ayub K. DFT investigation of adsorption of nitro-explosives over C2N surface: Highly selective towards trinitro benzene. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Zhou ZD, Li SQ, Liu Y, Du B, Shen YY, Yu BY, Wang CC. Two bis-ligand-coordinated Zn(ii)-MOFs for luminescent sensing of ions, antibiotics and pesticides in aqueous solutions. RSC Adv 2022; 12:7780-7788. [PMID: 35424721 PMCID: PMC8982467 DOI: 10.1039/d2ra00376g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Two organometallic complexes with two and three-dimensional architectures were constructed by using multiple ligands and Zn(ii) ions: [Zn3(BTC)2(DTP)4(H2O)2]·(H2O)4 (Zn-1) (BTC = benzene-1,3,5-tricarboxylic acid and DTP = 3,5-di(1,2,4-triazol-1-yl)pyridine) and [Zn2(NTD)2(DTP)] (Zn-2) (NTD = 1,4-naphthalenedicarboxylic acid). The as-prepared complexes were characterized by single-crystal X-ray diffraction (SCXRD), elemental analysis, powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and fluorescence analysis. Fluorescence sensing tests revealed that the two complexes are effective, sensitive and selective toward cationic Fe3+ and anionic MnO4 - and Cr2O7 2-. During the antibiotic sensing process, cefixime (CFX) for Zn-1 and nitrofurantoin (NFT) for Zn-2 exhibited the highest quenching efficiencies. For sensing pesticides, the highest quenching efficiencies were exhibited by imidacloprid (IMI) toward Zn-1 and Zn-2. The fluorescence quenching of the complexes that was induced by antibiotics, pesticides and MnO4 - was attributed to both the inner filter effect (IFE) and the fluorescence resonance energy transfer (FRET) effect.
Collapse
Affiliation(s)
- Zhao-Di Zhou
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture Beijing 102206 P.R. China
| | - Shi-Qi Li
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture Beijing 102206 P.R. China
| | - Yin Liu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture Beijing 102206 P.R. China
| | - Bin Du
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture Beijing Beijing 102206 P.R. China
| | - Yuan-Yue Shen
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture Beijing 102206 P.R. China
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture Beijing 102206 P.R. China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture Beijing 100044 P.R. China
| |
Collapse
|
40
|
Zhou ZD, Wang CY, Zhu GS, Du B, Yu BY, Wang CC. Water-stable europium(III) and terbium(III)-metal organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
A water-stable 3-fold parallel interpenetrated Cd(II) coordination polymer as multi-responsive luminescent sensor for detecting Fe3+, Cr2O72− and FZD in aqueous media. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Wang LB, Wang JJ, Yue EL, Tang L, Wang X, Hou XY, Zhang Y, Ren YX, Chen XL. Highly selective detecting Aspartic acid, detecting Ornidazole and information encryption and decryption supported by a heterometallic anionic Cd (II)-K (I)-MOF. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120340. [PMID: 34492511 DOI: 10.1016/j.saa.2021.120340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
A highly stable heterometallic MOF, {[(Me2NH2)2]·[Cd2K2(L)2(H2O)]}n (H4L = terphenyl-2, 2', 4, 4'-tetracarboxylic acid) (1), was synthesized. 1 featuring one-dimensional channels can efficiently detect Aspartic acid with a low limit of detection (LOD) value (2.5 μM). More interestingly, 1 can encapsulate Eu3+ and sensitize the visible-emitting characteristic fluorescence of Eu3+ in aqueous solution. Then, Eu3+@CdK-MOF is found to be an excellent fluorescence sensor for the detection of Ornidazole (ODZ) and the portable ODZ test paper is also successfully designed. Eu3+@CdK-MOF can also be used as fluorescent ink to write some words. The words can be hidden when treated with acid vapor and then the words can be restored when treated with alkaline vapor. More importantly, the hidden information can be read repeatedly. Therefore, this reversible light-emitting and reusable property have great potential for development in information encryption and decryption and information storage.
Collapse
Affiliation(s)
- Lao-Bang Wang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Ji-Jiang Wang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Er-Lin Yue
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Long Tang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiao Wang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiang-Yang Hou
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yuqi Zhang
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yi-Xia Ren
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiao-Li Chen
- Yan'an City Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
43
|
Wang JJ, Li LQ, Zhu ZH, Zheng TF, Xu H, Peng Y, Chen JL, Liu SJ, Wen HR. Facile fabrication and luminescence properties of a new Zn II coordination polymer-based fluorescent sensor toward antibiotics. NEW J CHEM 2022. [DOI: 10.1039/d2nj03797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new ZnII-based coordination polymer could selectively and sensitively recognize NFT and DCN via turn-off effect. Interestingly, a mixed matrix film for visualizable sensing has been successfully developed.
Collapse
Affiliation(s)
- Jin-Jin Wang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Le-Qian Li
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
44
|
Hong H, Habib A, Bi L, Wen L. Gas phase ion-molecule reactions of nitroaromatic explosive compounds studied by hollow cathode discharge ionization-mass spectrometry. Talanta 2022; 236:122834. [PMID: 34635224 DOI: 10.1016/j.talanta.2021.122834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
In this study, we have developed a variable pressure operating hollow cathode discharge (HCD) ion source to investigate the gas phase ion-molecule reactions of nitroaromatic explosive compounds. The developed HCD ion source coupled MS system has also been validated as an analytical method to analyze explosives at trace levels. The ion source was designed in such a way that the plasma can be generated alternatively at high pressure (~30 Torr), medium pressure (~5 Torr) and low pressure (~1 Torr) regions. The plasma contains a sufficient amount of reactant ions, electrons and excited species, thus the gaseous analyte molecules were efficiently ionized when they passed through the plasma. In the ion-molecule reactions of the nitroaromatic explosives, the discharge products of NOx- (x = 2,3), O3 and HNO3 originating from the plasma-excited air were suggested to contribute to the formation of mostly [M - H]-, [M - NO]-, [M+NO3-HNO2]- and [M-NO+HNO3]- adduct ions at the higher ion source pressures (~5 and 28 Torr) while the electron rich plasma leads to the formation of molecular ion, M-•, at the lower ion source pressure (~1 Torr). Formation of the hydride-adduct ions of the nitroaromatic compounds reveals the surface-assisted Birch type reduction in the HCD plasma. The variety of spectral patterns in the air-assisted glow discharge would be useful for high through-put detection of TNT and TNT-related explosives. An ambient helium dielectric barrier discharge (DBD) ion source was also used and gave identical mass spectra of the nitroaromatic explosive compounds to those observed by the HCD ion source, but did not give any hydride-adduct ions of the explosive compounds. Ion formation mechanism of these ions is also discussed.
Collapse
Affiliation(s)
- Huanhuan Hong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, Zhejiang, China; China Innovation Instrument Co., Ltd, Ningbo, 315000, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, Zhejiang, China; Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, Zhejiang, China; China Innovation Instrument Co., Ltd, Ningbo, 315000, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, Zhejiang, China; China Innovation Instrument Co., Ltd, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
45
|
Ding J, Li N, Sun DL, Zhu Y, Cheng WW, Chen XR, Xue YS. Three coordination polymers as a multi-responsive luminescent probe for the detection of Fe3+, Cr2O72− and antibiotic in aqueous media. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Asadi S, Maddah B. Rapid screening of chemical warfare agents (nerve agents) using dimethyl methylphosphonate as simulant substances in beverages by hollow fiber membrane-protected solid phase microextraction followed by corona discharge ion mobility spectrometry. J Chromatogr A 2021; 1661:462704. [PMID: 34871940 DOI: 10.1016/j.chroma.2021.462704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
The following work presents a new, rapid, potential to be portable, convenient, and low-cost method using hollow fiber membrane-protected solid phase microextraction followed by corona discharge ion mobility spectrometry which was used for determining dimethyl methylphosphonate in beverages. Response surface methodology based on the design of Box-Behnken was implemented for optimizing the different factors influencing the proposed method for obtaining the best results. Optimal extractions were calculated with 65 µm polydimethylsiloxane-divinylbenzene fiber, fiber equilibration time of 10 min, stirring rate of the sample solution at 750 rpm, and extraction temperature of 50 °C. The proposed technique provided linear range (0.5-50 µg mL-1), good linearity (>0.991), and repeatability (the relative standard deviations of 5.42% and 8.37% of intra- and inter-day analyses, respectively) under the optimized extraction conditions. Finally, the developed method was successfully used for determining dimethyl methylphosphonate in beverages such as coffee mix, fruit juice, tap water, milk, and tea.
Collapse
Affiliation(s)
- Sajad Asadi
- Department of Chemistry, Faculty of Sciences, Imam Hossein University, Tehran, Iran
| | - Bozorgmehr Maddah
- Department of Chemistry, Faculty of Sciences, Imam Hossein University, Tehran, Iran.
| |
Collapse
|
47
|
Komaru S, Matsuo S, Iwamatsu T, Taneda A, Negishi H. Monitoring the Yogurt Fermentation Process and Analysis of Flavor Compounds using a Novel Ion Mobility Spectrometer. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Gu S, Zhang J, Wang J, Wang X, Du D. Recent development of HS-GC-IMS technology in rapid and non-destructive detection of quality and contamination in agri-food products. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Liu JM, Ren YB, Xu HY, Li LJ, Mu YJ, Du JL. Construction of a stable Zn(II)-MOF based on mixed ligand strategy for fluorescence detection of antibiotics and Fe3+ ions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Thoben C, Raddatz CR, Lippmann M, Salehimoghaddam Z, Zimmermann S. Electrospray ionization ion mobility spectrometer with new tristate ion gating for improved sensitivity for compounds with lower ion mobility. Talanta 2021; 233:122579. [PMID: 34215071 DOI: 10.1016/j.talanta.2021.122579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022]
Abstract
An electrospray is a dispersed nebula of charged droplets produced under the influence of a strong electric field. The charged droplets subsequently result in ions in the gas phase. Therefore, electrospray is a commonly used method for transferring liquids to the gas phase while ionizing its constituents at the same time. In this work, we investigate the performance of an electrospray ionization ion mobility spectrometer by varying the electric field strength in the desolvation region. In particular, we investigate a new tristate ion shutter with increased sensitivity for ions with higher molecular mass and lower ion mobility that are usually suppressed by classical Bradbury-Nielsen or Tyndall-Powell ion shutters when using short gating times as required for high resolving power. The electric field in the tristate ion shutter affects the optimal ratio of the electric field strengths in the drift and desolvation region. Furthermore, the solvent flow rate needs to be considered when setting the field strengths in the desolvation region. However, a higher electric field strength in the desolvation region affects the field at the emitter tip. For this reason, a smaller ratio of the drift field strength and the desolvation field strength is beneficial, especially since higher solvent flow rates require higher fields to initiate an electrospray. In this work, we use tetraoctylammonium bromide as an instrument standard and the fungicide metalaxyl, the herbicide isoproturon and the antibiotic cefuroxime as model compounds.
Collapse
Affiliation(s)
- C Thoben
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstr. 9A, 30167, Hannover, Germany.
| | - C-R Raddatz
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstr. 9A, 30167, Hannover, Germany
| | - M Lippmann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstr. 9A, 30167, Hannover, Germany
| | - Z Salehimoghaddam
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstr. 9A, 30167, Hannover, Germany
| | - S Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstr. 9A, 30167, Hannover, Germany
| |
Collapse
|