1
|
Weise K, Beil S, Schwanebeck K, Ion AC, Berendonk TU, Jungmann D. An informative short-term study on the impacts of a triclocarban/weathered multi-walled carbon nanotube-adsorbed complex to benthic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19917-19926. [PMID: 38368298 PMCID: PMC10927771 DOI: 10.1007/s11356-024-32447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Freshwater organisms are suitable models to study the fate of environmental pollutants. Due to their versatile and everyday use, many environmental pollutants such as triclocarban (TCC) or multi-walled carbon nanotubes (MWCNTs) enter environmental compartments very easily. TCC is known as a disinfectant and is declared as a highly aquatic toxicant. Multi-walled carbon nanotubes are used, e.g., in the automotive industry to improve plastic properties. Both TCCs and MWCNTs can pose major pollution hazards to various organisms. In addition, these substances can bind to each other due to their tendency to interact via strong hydrophobic interactions. Therefore, a short-term test was conducted to investigate the effects of the individual chemicals TCC and weathered MWCNTs (wMWCNTs) on a benthic biofilm and a grazing organism, Lymnaea stagnalis. Furthermore, the two compounds were coupled by an adsorption experiment resulting in a coupled complex formation (TCC + wMWCNTs). L. stagnalis showed no effects in terms of mortality. For benthic biofilm, the coupling test (TCC + wMWCNTs) showed a decrease of 58% in chlorophyll a (Chl-a) concentration. The main effect could be attributed to the wMWCNTs' exposure alone (decrease of 82%), but not to presence of TCC. The concentration range of Chl-a upon TCC exposure alone was comparable to that in the control group (32 and 37 µg/cm2). With respect to the particulate organic carbon (POC) concentration, very similar results were found for the solvent control, the TCC, and also for the TCC + wMWCNTs group (3, 2.9, and 2.9 mg/cm2). In contrast to the control, a significant increase in POC concentration (100%) was observed for wMWCNTs, but no synergistic effect of TCC + wMWCNTs was detected.
Collapse
Affiliation(s)
- Katrin Weise
- Faculty of Environmental Sciences, Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, 01217, Dresden, Germany.
| | - Stephan Beil
- Faculty of Environmental Sciences, Institute of Water Chemistry, Technische Universität Dresden, Bergstraße 66, 01062, Dresden, Germany
| | - Klemens Schwanebeck
- Faculty of Environmental Sciences, Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, 01217, Dresden, Germany
| | - Alina Catrinel Ion
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., Sector 1, 011061, Bucharest, Romania
| | - Thomas Ulrich Berendonk
- Faculty of Environmental Sciences, Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, 01217, Dresden, Germany
| | - Dirk Jungmann
- Faculty of Environmental Sciences, Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, 01217, Dresden, Germany
| |
Collapse
|
2
|
The Influence of the Chemical Composition of Natural Waters about the Triclocarban Sorption on Pristine and Irradiated MWCNTs. SEPARATIONS 2023. [DOI: 10.3390/separations10010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The influence of the chemical composition of natural waters on triclocarban (TCC) sorption on pristine and irradiated multi-walled carbon nanotubes (MWCNTs) at different temperatures was studied. Natural waters have been characterized in terms of the concentrations of cations and anions, pH, and electric conductivity. The sorption process of TCC on MWCNTs is influenced by both the chemical composition of natural waters and the variation of the temperature. The adsorption capacity of TCC on pristine and irradiated MWCNTs in the studied natural waters increased by increasing the temperature. The increase of the concentration of monovalent cations (Na+ and K+) in natural waters determined a significant decrease of the adsorption capacity of TCC on both pristine and irradiated MWCNTs while the increase of the bivalent cations (Ca2+ and Mg2+) determined an easy increase adsorption capacity. Freundlich and Langmuir models were selected to describe the steady adsorption of the TCC on the pristine and irradiated MWCNTs.
Collapse
|
3
|
Guo M, Wang J, Zhang C, Zhang X, Xia C, Lin H, Lin CY, Lam SS. Cellulose-based thermosensitive supramolecular hydrogel for phenol removal from polluted water. ENVIRONMENTAL RESEARCH 2022; 214:113863. [PMID: 35841969 DOI: 10.1016/j.envres.2022.113863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Pollution of phenolic effluent from spice and plastics factories has become increasingly serious. Thus, developing a green and highly efficient adsorbent to remove phenolic compounds from wastewater is of urgent need. In this study, cellulose graft copolymer was synthesized through grafting 4-vinylpyridine monomer and polyethylene glycol methacrylate to a molecular skeleton of cellulose by free radical polymerization. The supramolecular hydrogel was successfully synthesized by physical cross-linking of cellulose graft copolymer and α-cyclodextrin. These supramolecular hydrogels were thoroughly characterized and the adsorption performance (adsorption isotherms and adsorption kinetics) of phenol on the supramolecular hydrogel were investigated in batch operation. The supramolecular hydrogel not only exhibited excellent adsorption of phenol, but also demonstrated increased mechanical strength due to the introduction of a modified cellulose base material. The adsorption kinetics of phenol on the supramolecular hydrogel followed a quasi-second-order reaction, with a correlation coefficient of 0.9909. The adsorption isotherm conformed to the Langmuir adsorption isotherm, and the maximum adsorption capacity of phenol can reach 80.71 mg g-1, which was 2-3 times higher than traditional carbon-based materials. The results demonstrate the great promise of the waste-derived supramolecular hydrogel to be used as an efficient adsorbent in wastewater treatment.
Collapse
Affiliation(s)
- Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
| | - Jue Wang
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Cheng Zhang
- College of Environmental and Resource Sciences, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Xinyu Zhang
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Hongfei Lin
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Chin Yik Lin
- Department of Geology, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Su Shiung Lam
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
4
|
Alves MO, Ortega PFR, Carvalho FS, Braga JP. Modelling the adsorption on oxidized carbon nanotubes using a statistical mechanics approach. J Mol Model 2022; 28:318. [DOI: 10.1007/s00894-022-05307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
5
|
Akpotu SO, Lawal IA, Diagboya PN, Mtunzi FM, Ofomaja AE. Engineered Geomedia Kaolin Clay-Reduced Graphene Oxide-Polymer Composite for the Remediation of Olaquindox from Water. ACS OMEGA 2022; 7:34054-34065. [PMID: 36188304 PMCID: PMC9520555 DOI: 10.1021/acsomega.2c03253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/23/2022] [Indexed: 05/04/2023]
Abstract
Globally, there is an upsurge in the use of unregulated veterinary pharmaceuticals with enhanced release into the environment, resulting in water pollution, which is difficult to remediate. To address this issue, we synthesized and characterized highly hydrophobic three-dimensional ordered engineered geomedia with multiple channels. Kaolin clay (K) was functionalized with either graphene oxide (GO) synthesized via Tour's method or reduced GO in situ with covalently linked methoxyether polyethylene glycol (GO-PEG) using a simple and easily scalable amidation reaction. This was done to enhance the adsorption of olaquindox, a veterinary antibiotic. The X-ray diffraction profile confirmed the grafting of GO and GO-PEG to kaolin. Morphological analysis revealed the architecture of thin films of GO/GO-PEG grafted on the kaolin surface with extensive porosity. Energy-dispersive X-ray mapping, infra-red spectra, and elemental analysis confirmed the successful synthesis of the engineered geomedia composite of K, GO/rGO, and PEG (KrGO-PEG). Due to multiple surface functional groups of polyamide and amido-carbonic groups on the KrGO-PEG composite, it was suitable for olaquindox adsorption. In batch sorption studies of 0.5XKrO-PEG, the effect of pH (2-10) was negligible but with fast equilibrium time (2-1440 min) at 30 min, while the kinetics and equilibrium data suited the pseudo-second order and Langmuir models, respectively. The maximum adsorption value obtained for the composite was 59.5 mg/g; the higher the GO content, the higher the adsorption. The sorption mechanism was majorly through hydrophobic and π-π interactions. Regenerated/reused adsorbents after 4 cycles had the same efficacy in remediating olaquindox from simulated/real water.
Collapse
Affiliation(s)
- Samson O. Akpotu
- Wastewater
Treatment Research Laboratory, Faculty of Applied and Computer Sciences,
Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- . Tel.: +27 837136972
| | - Isiaka A. Lawal
- Chemistry
Department, Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa
| | - Paul N. Diagboya
- Wastewater
Treatment Research Laboratory, Faculty of Applied and Computer Sciences,
Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Fanyana M. Mtunzi
- Wastewater
Treatment Research Laboratory, Faculty of Applied and Computer Sciences,
Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Augustine E. Ofomaja
- Wastewater
Treatment Research Laboratory, Faculty of Applied and Computer Sciences,
Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
6
|
Lignite-Based N-Doped Porous Carbon as an Efficient Adsorbent for Phenol Adsorption. Processes (Basel) 2022. [DOI: 10.3390/pr10091746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The treatment of phenolic-containing wastewater has received increased attention in recent years. In this study, the N-doped porous carbons were prepared from lignite with tripolycyanamide as the N source, and their phenol adsorption behaviors were investigated. Results clearly showed that the addition of tripolycyanamide largely improved the surface area, micropore volume, N content and thus the phenol adsorption capacity of lignite-based carbons. The N-doped sample prepared at 700 °C showed a surface area of 1630 m2/g and a phenol adsorption capacity as high as 182.4 mg/g at 20 °C, which were 2.0 and 1.6 times that of the lignite-based carbon without N-doping. Pseudo-second order and Freundlich adsorption isotherm models could better explain the phenol adsorption behaviors over lignite-based N-doped porous carbon. Theoretical calculations demonstrated that phenol adsorption energies over graphitic-N (−72 kJ/mol) and pyrrolic-N (−74 kJ/mol) groups were slightly lower than that over the N-free graphite layer (−71 kJ/mol), supporting that these N-containing groups contribute to enhance the phenol adsorption capacity. The adsorption mechanism of phenol over porous carbon might be interpreted by the π–π dispersion interactions between aromatic-ring and carbon planes, which could be enhanced by N-doping through increasing π electron densities in the carbon plane.
Collapse
|
7
|
Anti-biofouling polyvinylidene fluoride/quaternized polyvinyl alcohol ultrafiltration membrane selectively separates aromatic contaminants from wastewater by host–guest interactions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Modification of Poly(vinylidene fluoride-co-hexafluoropropylene) Membranes with DES-Functionalized Carbon Nanospheres for Removal of Methyl Orange by Membrane Distillation. WATER 2022. [DOI: 10.3390/w14091396] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemical pollutants, such as methyl orange (MO), constitute the main ingredients in the textile industry wastewater, and specifically, the dyeing process. The use of such chemicals leads to huge quantities of unfixed dyes to make their way to the water effluent and consequently escalates the water pollution problem. This work investigates the incorporation of hydrophobic carbon nanospheres (CNS) prepared from the pyrolysis of acetylene using the chemical vapor deposition technique with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) in order to enhance its hydrophobicity. Moreover, a deep eutectic solvent (DES) was used to enhance the membrane’s porosity. The former was based on the quaternary ammonium salt (N,N-diethyl-ethanol-ammonium chloride) as a chemical addition throughout the membrane synthesis. Direct contact membrane distillation (DCMD) was employed to assess the performance of the modified membrane for treatment of MO contaminated water. The phase inversion method was used to embed various contents of CNS (i.e., 1.0, 3.0, and 5.0 wt.%) with 22:78 wt.% of PVDF-co-HFP/N-Methyl-2-pyrrolidone solution to prepare flat-sheet membranes. The membrane embedded with 5 wt.% CNS resulted in an increase in membrane hydrophobicity and presented considerable enhancement in DCMD permeation from 12 to 35 L/h.m2 with salt rejection >99.9%. Moreover, the composite membrane showed excellent anti-biofouling and mechanical characteristics as compared to the pristine counterpart. Using this membrane, a complete rejection of MO was achieved due to the synergistic contribution of the dye negative charge and the size exclusion effect.
Collapse
|
9
|
Revisiting the influence of chemical oxidation on the adsorption properties of carbonaceous materials with different structures: Non-dispersible versus dispersible structure. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Shi S, Cui Y, Jiang N, Jiang B. Fabrication of a Metal‐Organic Framework Composite Modified with Biomass Activated Carbon (BAC) and Functionalized with NH
2
for Efficient p‐Nitrophenol Adsorption. ChemistrySelect 2022. [DOI: 10.1002/slct.202104008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shunjie Shi
- Institute of Environmental and Municipal Engineering Qingdao University of Technology Qingdao 266000 Shandong China
- Innovation Institute for Sustainable Maritime Architecture Research and Technology Qingdao University of Technology Qingdao 266000 Shandong China
| | - Yanyan Cui
- Institute of Environmental and Municipal Engineering Qingdao University of Technology Qingdao 266000 Shandong China
- Innovation Institute for Sustainable Maritime Architecture Research and Technology Qingdao University of Technology Qingdao 266000 Shandong China
| | - Nan Jiang
- Innovation Institute for Sustainable Maritime Architecture Research and Technology Qingdao University of Technology Qingdao 266000 Shandong China
| | - Bolong Jiang
- Innovation Institute for Sustainable Maritime Architecture Research and Technology Qingdao University of Technology Qingdao 266000 Shandong China
| |
Collapse
|
11
|
Duan C, Wang J, Liu Q, Zhou Y, Zhou Y. Efficient removal of Salbutamol and Atenolol by an electronegative silanized β-cyclodextrin adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Ding YZ, Zhang YD, Shi YP. Polyaniline spinel particles with ultrahigh-performance liquid chromatography tandem mass spectrometry for rapid vitamin B 9 determination in rice. Talanta 2022; 241:123278. [PMID: 35123244 DOI: 10.1016/j.talanta.2022.123278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 01/02/2023]
Abstract
Rice is an important crop that provides energy and nutrients to humans, which undergoes the aging process, the quality decline is related to the exogenous storage conditions and the change of own enzyme activity. However, due to the complex composition of rice and serious matrix interference, the ageing identification of rice is still challenging. Hence, a novel spinel particles ZnFe2O4@PANI was designed and synthesized for adsorption and determination of vitamin B9, which can be used to distinguish rice in different years and analyze the degree of aging. The ZnFe2O4@PANI showed large specific surface area and fast mass transfer rate with good linear correlation coefficient (R2 = 0.9965), satisfactory recoveries (85.1%-99.9%) and relative standard deviations (RSD, 9.3%). Moreover, the π-π electron-donor-acceptor (EDA) and intermolecular hydrogen-bonding interactions of polyaniline coating provided selective adsorption on vitamin B9. Adsorption thermodynamics study suggested that the adsorption reactions were spontaneous, endothermic and thermodynamically favorable. Finally, ZnFe2O4@PANI was used to evaluate vitamin B9 in rice from different years, which laid a theoretical foundation for exploring the relationship between vitamin changes and the aging degree of the rice.
Collapse
Affiliation(s)
- Yu-Zhu Ding
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China.
| |
Collapse
|
13
|
Saad H, Nour El-Dien FA, El-Gamel NEA, Abo Dena AS. Matrix-dispersed magnetic molecularly-imprinted polyaniline for the effective removal of chlorpyrifos pesticide from contaminated water. RSC Adv 2021; 11:39768-39780. [PMID: 35494104 PMCID: PMC9044561 DOI: 10.1039/d1ra07833j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
We report a new adsorbent nanocomposite material based on matrix-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) in molecularly-imprinted polyaniline for the removal of chlorpyrifos (CPF), a hazardous organophosphate pesticide, from water. The synthesized magnetic molecularly-imprinted polymer (MMIP) was characterized by FTIR spectroscopy, XRD, magnetic susceptibility, DLS, zeta potential measurement, SEM and high-resolution TEM imaging. The average size of the naked SPIONs ranges from 15 to 30 nm according to the high-resolution TEM analysis. Moreover, the adsorption kinetics, thermodynamic parameters (ΔG, ΔH and ΔS), adsorption isotherms and rebinding conditions were investigated in detail. The proposed MMIP has an imprinting factor of 1.64. In addition, it showed a high experimental adsorption capacity of 1.77 mg g-1 and a removal efficiency of nearly 80%. The fabricated MMIP material demonstrated excellent magnetic susceptibility allowing for easy separation using an external magnetic field. The adsorption mechanism of CPF onto the MMIP adsorbent followed the second-order kinetics model and fitted to the Temkin adsorption isotherm. By studying the adsorption thermodynamics, negative ΔG values (-1.955 kJ mol-1 at room temperature) were obtained revealing that the adsorption process is spontaneous. Furthermore, the maximum adsorption capacity was obtained at room temperature (ca. 303 K), neutral pH and using a high CPF concentration.
Collapse
Affiliation(s)
- Hadeel Saad
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - F A Nour El-Dien
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Nadia E A El-Gamel
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR) Giza Egypt
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
| |
Collapse
|
14
|
Ajith MP, Aswathi M, Priyadarshini E, Rajamani P. Recent innovations of nanotechnology in water treatment: A comprehensive review. BIORESOURCE TECHNOLOGY 2021; 342:126000. [PMID: 34587582 DOI: 10.1016/j.biortech.2021.126000] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution from organic and inorganic pollutants poses a threat to the ecosystem. Pollutant's prevalence and persistence have increased significantly in recent years. In order to enhance the quality of naturally accessible water to a level suitable for human consumption, a number of techniques have been employed. In this context, the use of cutting-edge nanotechnology to classical process engineering paves the way for technical encroachments in advanced water and wastewater technology. Nanotechnology has the potential to ameliorate the quality, availability, and viability of water supplies in the long run by facilitating reuse, recycling and remediation of water. The promising role of nanotechnology in wastewater remediation is highlighted in this paper, which also covers current advancements in nanotechnology-mediated remediation systems. Moreover, nano-based materials such as nano-adsorbents, photocatalysts, nano-metals and nanomembranes are discussed in this review of recent breakthroughs in nanotechnologies for water contaminant remediation.
Collapse
Affiliation(s)
- M P Ajith
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - M Aswathi
- Department of Biomedical Engineering, Indian Institute of Technology -Hyderabad, Hyderabad 502285, India
| | - Eepsita Priyadarshini
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
15
|
Comparative adsorption of polycylic aromatic compounds on organo-vermiculites modified by imidazolium- and pyridinium-based gemini surfactants. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Song T, Tian W, Zhao J, Qiao K, Zou M, Chu M. N-doped Reduced Graphene Oxide nanocomposites encapsulated sodium alginate/polyvinyl alcohol microspheres for anthracene and its oxygenated-PAH removal in aqueous solution. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Foroush MP, Ahmadi R, Yousefi M, Najafpour J. In Silico study of adsorption of penicillin antibiotic on the surface of single walled nitride boron nanotubes(SBNNT). SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Zhang H, Wang P, Shi L, Xue J, Liang A, Zhang D. Opposite impacts of chemical oxidation for ofloxacin adsorption on activated carbon and carbon nanotubes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145455. [PMID: 33736146 DOI: 10.1016/j.scitotenv.2021.145455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The adsorption of ofloxacin (OFL) on oxidized activated carbon (AC) and carbon nanotube (CNT) are compared, focusing on the differences in carbon structures. Chemical oxidation of carbonaceous materials inhibited OFL adsorption to AC, but enhanced their adsorption to CNT. The higher number of oxygen-containing functional groups facilitated the interaction of the material with water molecules, causing the blockage of AC inner pore. However, the dispersion of oxidized CNT enhanced due to its increased hydrophilicity, resulting in the exposure of some new adsorption sites, as identified by the 1H NMR relaxometry measurement. The adsorption kinetics of OFL on AC indicated that the contributions of slow adsorption and equilibrium time increased after AC oxidation. However, the equilibrium time of the fast adsorption of OFL on CNT shortened after CNT oxidation. These results indicated that the pore of AC was blocked by water cluster and the accessibility of adsorption sites on oxidized CNT was enhanced due to dispersion. This study emphasizes that the structural differences among carbonaceous materials control the oxidation effects on their adsorption characteristics for OFL.
Collapse
Affiliation(s)
- Huang Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Wang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Lin Shi
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Aiping Liang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Di Zhang
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
19
|
Bocanegra-Rodríguez S, Molins-Legua C, Campíns-Falcó P, Giroud F, Gross AJ, Cosnier S. Monofunctional pyrenes at carbon nanotube electrodes for direct electron transfer H 2O 2 reduction with HRP and HRP-bacterial nanocellulose. Biosens Bioelectron 2021; 187:113304. [PMID: 34020225 DOI: 10.1016/j.bios.2021.113304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
The non-covalent modification of carbon nanotube electrodes with pyrene derivatives is a versatile approach to enhance the electrical wiring of enzymes for biosensors and biofuel cells. We report here a comparative study of five pyrene derivatives adsorbed at multi-walled carbon nanotube electrodes to shed light on their ability to promote direct electron transfer with horseradish peroxidase (HRP) for H2O2 reduction. In all cases, pyrene-modified electrodes enhanced catalytic reduction compared to the unmodified electrodes. The pyrene N-hydroxysuccinimide (NHS) ester derivative provided access to the highest catalytic current of 1.4 mA cm-2 at 6 mmol L-1 H2O2, high onset potential of 0.61 V vs. Ag/AgCl, insensitivity to parasitic H2O2 oxidation, and a large linear dynamic range that benefits from insensitivity to HRP "suicide inactivation" at 4-6 mmol L-1 H2O2. Pyrene-aliphatic carboxylic acid groups offer better sensor sensitivity and higher catalytic currents at ≤ 1 mmol L-1 H2O2 concentrations. The butyric acid and NHS ester derivatives gave high analytical sensitivities of 5.63 A M-1 cm-2 and 2.96 A M-1 cm-2, respectively, over a wide range (0.25-4 mmol-1) compared to existing carbon-based HRP biosensor electrodes. A bacterial nanocellulose pyrene-NHS HRP bioelectrode was subsequently elaborated via "one-pot" and "layer-by-layer" strategies. The optimised bioelectrode exhibited slightly weaker voltage output, further enhanced catalytic currents, and a major enhancement in 1-week stability with 67% activity remaining compared to 39% at the equivalent electrode without nanocellulose, thus offering excellent prospects for biosensing and biofuel cell applications.
Collapse
Affiliation(s)
- Sara Bocanegra-Rodríguez
- Departamento de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Carmen Molins-Legua
- Departamento de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Pilar Campíns-Falcó
- Departamento de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Fabien Giroud
- Département de Chimie Moléculaire (DCM), Univ. Grenoble Alpes - CNRS, 570 Rue de La Chimie, 38041, Grenoble, France
| | - Andrew J Gross
- Département de Chimie Moléculaire (DCM), Univ. Grenoble Alpes - CNRS, 570 Rue de La Chimie, 38041, Grenoble, France.
| | - Serge Cosnier
- Département de Chimie Moléculaire (DCM), Univ. Grenoble Alpes - CNRS, 570 Rue de La Chimie, 38041, Grenoble, France.
| |
Collapse
|
20
|
Zhao R, Li Y, Ji J, Wang Q, Li G, Wu T, Zhang B. Efficient removal of phenol and p-nitrophenol using nitrogen-doped reduced graphene oxide. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG, Durkin DP, Fairbrother DH. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem Rev 2020; 120:11651-11697. [DOI: 10.1021/acs.chemrev.0c00351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alyssa R. Deline
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Benjamin P. Frank
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Casey L. Smith
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leslie R. Sigmon
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexa N. Wallace
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David G. Goodwin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Durkin
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - D. Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Li WK, Ren P, Zhou YW, Feng JT, Ma ZQ. Europium(III) functionalized 3D covalent organic framework for quinones adsorption and sensing investigation. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121740. [PMID: 31796351 DOI: 10.1016/j.jhazmat.2019.121740] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Chemical functionalization is essential for tuning the physical-chemical characters and broadening the potential applications of covalent organic frameworks (COFs). Based on the multistep postsynthetic modification strategy, Eu (III)-functionalized 3D COF (Eu-3D-COF) was prepared by grafting of Eu (III) onto the carboxyl-funtionalized 3D-COF (COOH-3D-COF). With micropores dominated microspheres structure, Eu-3D-COF exhibited superior adsorption affinity to multi-rings contained quinones based on the π-π interaction, coordination and hydrogen-bonding interactions, especially to 9,10-phenanthrenequinone (PQ) whose adjacent carbonyl oxygens resulting preferable synergistic chelation interaction with Eu(III) was responsible for the maximum adsorption capacity, which was confirmed by instrumental characterizations. The adsorptivity of Eu-3D-COF was apparently improved in comparison with COOH-3D-COF. More importantly, grafting of Eu(III) turned on the fluorescence of the COF, making Eu-3D-COF also a superior chemosensor for sensing application. Its fluorescent can be selectively quenched by quinones, especially by PQ based on the PQ-Eu and PQ-COF interactions co-dominated energy transfer. Therefore, both as an adsorbent and a chemosensor, the multi-functional COF was explored for quinones adsorption and sensing detection investigation in detail. Eu-3D-COF has promising application potentials for hazardous quinones adsorption and sensing detection, which also opens new perspectives for inorganic-organic 3D-COF construction and multi-functional applications.
Collapse
Affiliation(s)
- Wen-Kui Li
- Engineering and Research Center of Biological Pesticides of Shaanxi Province; College of Plant Protection, Northwest A & F University, Yangling, 712100, PR China.
| | - Peng Ren
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, PR China
| | - Yi-Wan Zhou
- Engineering and Research Center of Biological Pesticides of Shaanxi Province; College of Plant Protection, Northwest A & F University, Yangling, 712100, PR China
| | - Jun-Tao Feng
- Engineering and Research Center of Biological Pesticides of Shaanxi Province; College of Plant Protection, Northwest A & F University, Yangling, 712100, PR China
| | - Zhi-Qing Ma
- Engineering and Research Center of Biological Pesticides of Shaanxi Province; College of Plant Protection, Northwest A & F University, Yangling, 712100, PR China.
| |
Collapse
|
24
|
Sigmund G, Gharasoo M, Hüffer T, Hofmann T. Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4583-4591. [PMID: 32124609 PMCID: PMC7205386 DOI: 10.1021/acs.est.9b06287] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log KF and n (R2 > 0.98 for log KF, and R2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.
Collapse
Affiliation(s)
- Gabriel Sigmund
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
- Agroscope,
Environmental Analytics, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland
- Ithaka
Institute, Ancienne Eglise
9, 1974 Arbaz, Switzerland
| | - Mehdi Gharasoo
- Department
of Earth and Environmental Sciences, Ecohydrology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Thorsten Hüffer
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
| | - Thilo Hofmann
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
| |
Collapse
|
25
|
Khalil I, Thomas K, Jabraoui H, Bazin P, Maugé F. Selective elimination of phenol from hydrocarbons by zeolites and silica-based adsorbents-Impact of the textural and acidic properties. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121397. [PMID: 31640934 DOI: 10.1016/j.jhazmat.2019.121397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
This paper investigates the parameters that influence the selective adsorption of phenol, toxic molecule, from a semi-model biofuel mixture containing alkanes and different proportions of aromatic compounds. The adsorption capacity, selectivity and regeneration ability of different adsorbents, i.e. zeolites, silica-based solids, alumina and activated carbon, were related to their textural properties and the nature, strength or location of their acidic sites. This work demonstrates that phenol differently adsorbs in the micropores and mesopores. In the micropores of faujasites, phenol is condensed into the supercages. Otherwise, in the mesopores of the zeolite, phenol interacts with the silanol groups. On purely siliceous adsorbents, a ratio of one phenol adsorbed on one silanol group could be established. As for selectivity, the strong acidic sites of the faujasites are necessary to favor phenol adsorption compared to toluene. By contrast, the amount of strong Brønsted and Lewis acid sites limits regeneration. Hence, a compromise has to be found and the best performances were obtained using a slightly dealuminated zeolitic adsorbent presenting both micro and mesopores.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen Normandie, CNRS, 6, bd du Maréchal Juin, 14050 Caen, France
| | - Karine Thomas
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen Normandie, CNRS, 6, bd du Maréchal Juin, 14050 Caen, France.
| | - Hicham Jabraoui
- Laboratoire Physique et Chimie Théoriques (LPCT) UMR 7019 CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Philippe Bazin
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen Normandie, CNRS, 6, bd du Maréchal Juin, 14050 Caen, France
| | - Francoise Maugé
- Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen Normandie, CNRS, 6, bd du Maréchal Juin, 14050 Caen, France
| |
Collapse
|
26
|
Carbon nanotubes modified with 5,7-dinitro-8-quinolinol as potentially applicable tool for efficient removal of industrial wastewater pollutants. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Li P, Zhang H, Xia M, Wang F, Zhu S, Lei W. The synergistic effect and microscopic mechanism of co-adsorption of three emerging contaminants and copper ion on gemini surfactant modified montmorillonite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109610. [PMID: 31522058 DOI: 10.1016/j.ecoenv.2019.109610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Montmorillonite (G-Mt) modified by a gemini quaternary ammonium cationic surfactant (Propyl bis (hexadecyl dimethyl ammonium) chloride, 16-3-16) was used to remove emerging contaminants (ECs) (such as 1H-Benzotriazole (BTA), 5-Methyl-1H-benzotriazole (TTA) and 1-Hydroxybenzotriazole (HOBT)) and Cu2+ from wastewater. Based on the adsorption of the above three ECs in our previous studies, single adsorption of Cu2+ and the simultaneous adsorption of three ECs with Cu2+ on G-Mt were also investigated. G-Mt showed much lower adsorption amount on Cu2+ comparing with original montmorillonite (Ca-Mt) in single adsorption system due to the difficulty of ion-exchange property of G-Mt. In co-adsorption system, three organic pollutants and Cu2+ played a synergistic effect and the adsorption capacity of G-Mt on them increased, the influence sequence of Cu2+ on the adsorption of three ECs or the effect of ECs on the adsorption of Cu2+ both followed as: TTA > BTA > HOBT. The results of FT-IR, EDS and XPS revealed that the complex of Cu2+ and ECs were adsorbed onto G-Mt via forming complexes and hydrophobic interaction in co-adsorption system. The pH experiment showed that the optimum pH of the co-adsorption of ECs and Cu2+ on G-Mt was 5. Molecular dynamics (MD) simulations showed that three ECs or ECs combining with Cu2+ were dominantly adsorbed in the interlayer space of G-Mt, which resulted in the arrangement manner of 16-3-16 between the layer of G-Mt before and after adsorption of three organic pollutants was different. Furthermore, by quantitatively analyzing electrostatic potential (ESP) distribution, average local ionization energy (ALIE) distribution and their minimum points on three ECs molecules surfaces, Multiwfn program has been applied to probe the microscopic mechanism. The synergistic effect of co-adsorption will promote enrichment of copper ions and ECs to remove them more efficiently in polluted waters.
Collapse
Affiliation(s)
- Pingping Li
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Hongling Zhang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Mingzhu Xia
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Fengyun Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Sidi Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
28
|
Akinpelu AA, Ali ME, Johan MR, Saidur R, Chowdhury ZZ, Shemsi AM, Saleh TA. Effect of the oxidation process on the molecular interaction of polyaromatic hydrocarbons (PAH) with carbon nanotubes: Adsorption kinetic and isotherm study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Shi J, Xing C, Chen Y, Xu Z, Du Q, Cui Y. Pb 2+ adsorption on TiO 2 @HF-waste building bricks: Kinetics, thermodynamics, and mechanisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:788-796. [PMID: 30929294 DOI: 10.1002/wer.1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Pb2+ pollution poses severe threats to human health and ecosystem. In this study, based on the waste building bricks (WBB), the TiO2 @HF-WBB was prepared for Pb2+ adsorption removal from wastewater. The adsorption of Pb2+ on TiO2 @HF-WBB followed the pseudo-second-order kinetics and the Freundlich isotherm model. The thermodynamic parameters indicated that the adsorption process was endothermic, spontaneous, and irreversible, and also included physical adsorption and chemical adsorption simultaneously. Ca2+ and Mg2+ had little effect on Pb2+ adsorption. The effluent of fixed-bed was below 3 μg/L within 1,000 BV. The desorption rate could reach 90% by simple operation. The possible mechanisms included the electrostatic interaction and the complexation. PRACTITIONER POINTS: Waste building bricks were utilized for Pb2+ removal from wastewater. The effluent of fixed-bed was below 3 μg/L within 1,000 BV. TiO2 @HF-WBB has excellent adsorption property and desorption property. Possible mechanisms are electrostatic interaction and the complexation.
Collapse
Affiliation(s)
- Jing Shi
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chao Xing
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yating Chen
- School of Environmental Science & Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zhengwen Xu
- School of Environmental Science & Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Qiong Du
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yixin Cui
- School of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Ersan G, Kaya Y, Ersan MS, Apul OG, Karanfil T. Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter. CHEMOSPHERE 2019; 229:515-524. [PMID: 31100622 DOI: 10.1016/j.chemosphere.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
In this study, adsorption kinetics of phenanthrene (PNT) and trichloroethylene (TCE) by a graphene nanosheet (GNS), a graphene oxide nanosheet (GO), a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based activated carbons (ACs) (F400 and HD3000) were examined in distilled and deionized water (DDW) and under natural organic matter (NOM) preloading conditions. The results showed the times needed for the adsorption of PNT and TCE to reach apparent equilibrium (i.e., ≤3% change per day) followed the order of GO ≥ MWCNT > GNS > SWCNT ∼ HD3000∼F400 and SWCNT > GNS ∼ HD3000 > F400 ∼ MWCNT > GO, respectively. The pseudo second order model successfully represented kinetics data for three classes of carbonaceous adsorbents. The Weber-Morris intraparticle diffusion model indicated three steps adsorption process for PNT and two step adsorption for TCE. In addition, the times needed to reach apparent equilibrium for the adsorption of PNT and TCE in the presence of hydrophobic (HPO) and hydrophilic (HPI) NOM solutions increased for all adsorbents (except for GO). In general, both NOM showed similar impacts on the adsorption rates of PNT and TCE. Aggregation of both GNS and CNTs rapidly occurred during initial couple hours of contact time during preloading, and spiking both PNT and TCE further increased their aggregation.
Collapse
Affiliation(s)
- Gamze Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA; Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey
| | - Yasemin Kaya
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey
| | - Mahmut S Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA.
| |
Collapse
|
31
|
Moon SM, Min H, Park S, Zhexembekova A, Suh JK, Lee CY. Packaging vertically aligned carbon nanotubes into a heat-shrink tubing for efficient removal of phenolic pollutants. RSC Adv 2019; 9:22205-22210. [PMID: 35519454 PMCID: PMC9066656 DOI: 10.1039/c9ra03948a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/12/2019] [Indexed: 11/28/2022] Open
Abstract
Owing to their extremely high surface-to-volume ratio, carbon nanotubes (CNTs) are excellent adsorbents for the removal of organic pollutants. However, retrieval or collection of the CNTs after adsorption in existing approaches, which utilize CNTs dispersed in a solution of pollutants, is often more challenging than the removal of pollutants. In this study, we address this challenge by packaging vertically aligned CNTs into a PTFE heat-shrink tubing. Insertion of CNTs into the tubing and subsequent thermal shrinkage densified the CNTs radially by 35% and also reduced wrinkles in the nanotubes. The CNT-based adsorption tube with a circular cross-section enabled both easy functionalization of CNTs and facile connection to a source of polluted water, which we demonstrated for the removal of phenolic compounds. We purified and carboxylated CNTs, by flowing a solution of nitric acid through the tubing, and obtained adsorption capacities of 115, 124, and 81.2 mg g−1 for 0.5 g L−1 of phenol, m-cresol, 2-chlorophenol, respectively. We attribute the high adsorption capacity of our platform to efficient adsorbate-CNT interaction within the narrow interstitial channels between the aligned nanotubes. The CNT-based adsorption tubes are highly promising for the simple and efficient removal of phenolic and other types of organic pollutants. An adsorption tube prepared by heat-shrinkage of vertically aligned carbon nanotubes provides high adsorption capacity for phenolic compounds.![]()
Collapse
Affiliation(s)
- Seung Min Moon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Hyegi Min
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Sanghwan Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Anar Zhexembekova
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jung Ki Suh
- Center for Analytical Chemistry, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science (KRISS) Daejeon 34113 Republic of Korea
| | - Chang Young Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea .,School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
32
|
Garba ZN, Zhou W, Lawan I, Xiao W, Zhang M, Wang L, Chen L, Yuan Z. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:59-75. [PMID: 30981144 DOI: 10.1016/j.jenvman.2019.04.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
In this review article, a significant number of published articles (over three decades) were consulted in order to provide comprehensive literature information about chlorophenols, their sources into the environment, classification, and toxicity, various wastewater treatment methods for their removal as well as the characteristics of their adsorption by various adsorbents. Organizing the scattered available information on a wide range of potentially effective adsorbents in the removal of chlorophenols is the principal objective of this article. Various adsorbents such as natural materials, waste materials from industries, agricultural by-products and biomass-based activated carbon in the removal of various chlorophenols have been compiled and discussed here. Crucial factors like temperature, solution pH, contact time and initial solution concentration are also reported and discussed here. The π-π dispersion interaction mechanism, hydrogen bonding formation mechanism, and the electron donor-acceptor complex mechanism were proposed for the chlorophenols adsorption onto various adsorbents with the help of current literature. Conclusions have been drawn proposing a few suggestions for future research on mitigating the effect of chlorophenols in the environment.
Collapse
Affiliation(s)
- Zaharaddeen N Garba
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China; Department of Chemistry, Ahmadu Bello University Zaria, Nigeria.
| | - Weiming Zhou
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Ibrahim Lawan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Wei Xiao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Mingxi Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Liwei Wang
- Chemistry and Chemical Engineering Department, Minjiang University, Fuzhou, Fujian province, 350108, China
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China.
| |
Collapse
|
33
|
Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Zhang Z, Sun D, Li G, Zhang B, Zhang B, Qiu S, Li Y, Wu T. Calcined products of Mg–Al layered double hydroxides/single-walled carbon nanotubes nanocomposites for expeditious removal of phenol and 4-chlorophenol from aqueous solutions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Tizro N, Moniri E, Saeb K, Panahi HA, Ardakani SS. Preparation and application of grafted β‑cyclodextrin/thermo-sensitive polymer onto modified Fe3O4@SiO2 nano-particles for fenitrothion elimination from aqueous solution. Microchem J 2019. [DOI: 10.1016/j.microc.2018.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Wang Z, Wang X, Li S, Jiang Z, Guo X. Magnetic solid‐phase extraction based on carbon nanosphere@Fe3O4for enantioselective determination of eight triazole fungicides in water samples. Electrophoresis 2019; 40:1306-1313. [DOI: 10.1002/elps.201800530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Zhaokun Wang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Xia Wang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Shuang Li
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Zhen Jiang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Xingjie Guo
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| |
Collapse
|
37
|
Lawagon CP, Nisola GM, Cuevas RAI, Kim H, Lee SP, Chung WJ. Development of high capacity Li+ adsorbents from H2TiO3/polymer nanofiber composites: Systematic polymer screening, characterization and evaluation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Malakootian M, Ehrampoush MH, Mahdizadeh H, Golpayegani A. Comparison Studies of Raw and Oxidized Multi-Walled Carbon Nanotubes H2SO4/HNO3 to Remove p-Nitroaniline from Aqueous Solution. J WATER CHEM TECHNO+ 2019. [DOI: 10.3103/s1063455x18060036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Kim S, Park CM, Jang M, Son A, Her N, Yu M, Snyder S, Kim DH, Yoon Y. Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: A review. CHEMOSPHERE 2018; 212:1104-1124. [PMID: 30286540 DOI: 10.1016/j.chemosphere.2018.09.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 05/14/2023]
Abstract
Various graphene-based nanoadsorbents, including graphenes, graphene oxides, reduced graphene oxides, and their nanocomposites, have been widely studied as potential adsorbents due to their unique physicochemical properties, such as structural variability, chemical strength, low density, and the possibility of large scale fabrication. Adsorption mechanisms are governed largely by the physicochemical properties of contaminants, the characteristics of nanoadsorbents, and background water quality conditions. This review summarizes recent comprehensive studies on the removal of various inorganic (mainly heavy metals) and organic contaminants by graphene-based nanoadsorbents, and also discusses valuable information for applications of these nanoadsorbents in water and wastewater treatment. In particular, the aqueous removal of various contaminants was reviewed to (i) summarize the general adsorption capacities of various graphene-based nanoadsorbents for the removal of different inorganic and organic contaminants, (ii) evaluate the effects of key water quality parameters such as pH, temperature, background major ions/ionic strength, and natural organic matter on adsorption, (iii) provide a comprehensive discussion of the mechanisms that influence adsorption on these nanoadsorbents, and (iv) discuss the potential regeneration and reusability of nanoadsorbents. In addition, current challenges and future research needs for the removal of contaminants by graphene-based nanoadsorbents in water treatment processes are discussed briefly.
Collapse
Affiliation(s)
- Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Nauguk Her
- Department of Civil and Environmental Engineering, Korea Army Academy at Young-cheon, 495 Hogook-ro, Kokyungmeon, Young-Cheon, Gyeongbuk 38900, Republic of Korea
| | - Miao Yu
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shane Snyder
- School of Civil & Environmental Engineering, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Do-Hyung Kim
- Korea Environmental Industry & Technology Institute, 215 Jinheungno, Eunpyeong-gu, Seoul, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA.
| |
Collapse
|
40
|
Feng M, Luo ZH, Yi S, Lu H, Lu C, Li CY, Zhao JL, Cao GP. Palladium Supported on Carbon Nanotubes Decorated Nickel Foam as the Catalytic Stirrer in Heterogeneous Hydrogenation of Polystyrene. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Farokhi M, Parvareh A, Moraveji MK. Performance of ceria/iron oxide nano-composites based on chitosan as an effective adsorbent for removal of Cr(VI) and Co(II) ions from aqueous systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27059-27073. [PMID: 30019133 DOI: 10.1007/s11356-018-2594-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/18/2018] [Indexed: 05/21/2023]
Abstract
A novel chitosan/ceria/iron oxide (CS/ceria/Fe3O4) nano-composite adsorbent was synthesized for removal of Cr(VI) and Co(II) ions from aqueous systems in a batch system. The adsorbents were characterized by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and Brunauer- Emmett-Teller (BET) analyses. The behavior of swelling kinetics was also studied. The effect of several adsorption parameters including CeO2 and Fe3O4 contents, initial pH, contact time, initial Cr(VI) and Co(II) concentration, and temperature on the adsorption capacity was studied. The double exponential model revealed a better fit with the kinetic data of Cr(VI) and Co(II) ions. The Cr(VI) and Co(II) adsorption process well fitted the Langmuir model. The maximum adsorption capacities estimated from Langmuir isotherm model were 315.4 and 260.6 mg/g for Cr(VI) and Co(II) ions, respectively. Also, thermodynamic parameters were used to distinguish the nature of Cr(VI) and Co(II) adsorption. The reusability of CS/ceria/Fe3O4 nano-composite was evaluated with stripping agents of 0.1 M NaOH and 0.1 M HNO3. Finally, the evaluation of Cr(VI)-Co(II) coexisting system confirmed that the presence of Co(II) ions played an inhibitor role on the Cr(VI) adsorption.
Collapse
Affiliation(s)
- Morshed Farokhi
- Department of Chemical Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Arsalan Parvareh
- Department of Chemical Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran
- Chemical Engineering and Petroleum Faculty, Razi University, Kermanshah, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran.
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 242 Hafez Avenue, Tehran, 15875-4413, Iran.
| |
Collapse
|
42
|
Catherine HN, Ou MH, Manu B, Shih YH. Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:629-638. [PMID: 29679835 DOI: 10.1016/j.scitotenv.2018.03.389] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
Emerging contaminants (ECs) such as bisphenol A (BPA), 4-nonylphenol (4-NP) and tetrabromobisphenol A (TBBPA) have gained immense attention worldwide due to their potential threat to humans and environment. Graphene oxide (GO) nanomaterial is considered as an important sorbent due to its exceptional range of environmental application owing to its unique properties. GO was also considered as one of ECs because of its potential hazard. The adsorption of organic contaminants such as phenolic ECs on GO affects the stability of GO nanoflakes in water and the fate of organic contaminants, which would cause further environmental risk. Therefore, the adsorption behaviors of emerging and common phenolic compounds (PCs) including phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 4-NP, BPA and TBBPA on GO nanoflakes and their stability in water were studied. The adsorption equilibrium for all the compounds was reached <10h and was fitted with Langmuir and Freundlich isotherms. In addition to hydrophobic effect, adsorption mechanisms included π-π bonding and hydrogen bonding interactions between the adsorbate and GO, especially the electrostatic interactions were observed. Phenol has the highest adsorption affinity due to the formation of hydrogen bond. GO has a good stability in water even after the adsorption of PCs in the presence of a common electrolyte, which could affect its transport with organic contaminants in the environment. These better understandings illustrate the mechanism of emerging and common PC interaction with GO nanoflakes and facilitate the prediction of the contaminant fate in the aquatic environment.
Collapse
Affiliation(s)
- Hepsiba Niruba Catherine
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India; Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Han Ou
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Basavaraju Manu
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
43
|
Pandiarajan A, Kamaraj R, Vasudevan S, Vasudevan S. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. BIORESOURCE TECHNOLOGY 2018; 261:329-341. [PMID: 29677661 DOI: 10.1016/j.biortech.2018.04.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 05/09/2023]
Abstract
This study presents the orange peel activated carbon (OPAC), derived from biowaste precursor (orange peel) by single step pyrolysis method and its application for the adsorption of chlorophenoxyacetic acid herbicides from the water. The OPAC exhibited the surface area of 592.471 m2 g-1, pore volume and pore diameter of 0.242 cc g-1 and 1.301 nm respectively. The adsorption kinetics and thermodynamic equilibrium modelling for all chlorophenoxyacetic acid herbicides were investigated. The various parametric effects such as pH and temperature were evaluated. A pseudo-second-order kinetic model was well fitted for all the herbicides. The Langmuir isotherm was obeyed for all the herbicides and the maximum Langmuir capacity of 574.71 mg g-1 was achieved. The thermodynamic studies revealed that the adsorption increases with increase in temperature. The results shows that the orange peel derived carbon (OPAC) as effective and efficient adsorbent material for the removal of chlorophenoxyacid herbicides from the water.
Collapse
Affiliation(s)
- Aarthi Pandiarajan
- CSIR-Central Electrochemical Research Institute, Karaikudi 630006, India
| | - Ramakrishnan Kamaraj
- CSIR-Central Electrochemical Research Institute, Karaikudi 630006, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Sudharshan Vasudevan
- Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai 625015, India
| | - Subramanyan Vasudevan
- CSIR-Central Electrochemical Research Institute, Karaikudi 630006, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| |
Collapse
|
44
|
Yang F, Gao Y, Sun L, Zhang S, Li J, Zhang Y. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18528-18539. [PMID: 29700748 DOI: 10.1007/s11356-018-2077-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Biochar has attracted much attention, which owns many environmental and agronomic benefits, including carbon sequestration, improvement of soil quality, and immobilization of environmental contaminants. Biochar has been also investigated as an effective sorbent in recent publications. Generally, biochar particles can be divided into colloids and residues according to particle sizes, while understanding of adsorption capacities towards organic pollutants in each section is largely unknown, representing a critical knowledge gap in evaluations on the effectiveness of biochar for water treatment application. Scanning electron microscopy (SEM) images, X-ray diffraction (XRD), Raman spectra, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) method are used to examine the structures and surface properties of biochar colloids and residues derived from corn straws prepared at different pyrolysis temperatures. Also, their roles in atrazine (a typical organic pollutant) removal are investigated by batch adsorption experiments and fitted by different kinetic and thermodynamic models, respectively. The adsorption capacities of biochar colloids are much more than those of residues, resulting from the colloids containing abundant oxygen functional groups and mineral substances, and the adsorption capacities of biochar colloids and residues increase with the increase of pyrolysis temperatures. The highest adsorption performance of 139.33 mg g-1 can be obtained in biochar colloids prepared at 700 °C, suggesting the important functions of biochar colloids in the application of atrazine removal by biochar.
Collapse
Affiliation(s)
- Fan Yang
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Gao
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lili Sun
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shuaishuai Zhang
- College of Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Jiaojiao Li
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
45
|
Li WK, Zhang HX, Shi YP. Simultaneous determination of bifenox, dichlobenil and diclofop methyl by hollow carbon nanospheres enhanced magnetic carboxylic multi-walled carbon nanotubes. Anal Chim Acta 2018; 1011:40-49. [DOI: 10.1016/j.aca.2018.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 01/27/2023]
|
46
|
Li WK, Lin P, Dai S, Sun XQ, Shen YL. Preparation of a mesocellular siliceous foam supported lanthanide-sensitive polymer for the selective adsorption of lanthanides. Dalton Trans 2018. [PMID: 29541714 DOI: 10.1039/c7dt04255h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ship in bottle nanocomposite was fabricated as a novel adsorbent for lanthanides by immobilizing a lanthanide-sensitive polymer into mesocellular siliceous foam (MCF). The MCF was used as a novel carrier for immobilization of the polymer, and the polymer was synthesized via in situ ring-opening polymerization of 2-methyl-2-oxazoline (MOL) and divinylbenzene (DVB) in the presence of MCFs. The substantially physically modified MCF-based composite exhibited superior adsorptivity and selectivity to lanthanides due to its exceptional properties, which was employed for lanthanide adsorption from aqueous solution by a facile solid-liquid separation procedure. The adsorption of lanthanides by the composite was systematically studied including adsorption parameter investigation and adsorption mechanism evaluation. The adsorption isotherms and kinetics were also investigated and proved to follow the Langmuir model and the pseudo-second-order model. The adsorption thermodynamics study indicated that the adsorption process was thermodynamically favorable, endothermic and spontaneous. The prepared inorganic-organic hybrid composite has superior selectivity and specificity to lanthanides, which can be used for lanthanide enrichment and separation of lanthanides from actinides.
Collapse
Affiliation(s)
- Wen-Kui Li
- Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, PR China.
| | | | | | | | | |
Collapse
|
47
|
Wang Z, Zhang X, Jiang S, Guo X. Magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the simultaneous enantiomeric analysis of five β-blockers in the environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry. Talanta 2018; 180:98-107. [DOI: 10.1016/j.talanta.2017.12.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
|
48
|
He L, Liu FF, Zhao M, Qi Z, Sun X, Afzal MZ, Sun X, Li Y, Hao J, Wang S. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution. J Environ Sci (China) 2018; 66:286-294. [PMID: 29628096 DOI: 10.1016/j.jes.2017.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 06/08/2023]
Abstract
Understanding the interactions between graphene nanomaterials (GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide (GO) and reduced graphene oxide (RGO) was examined with multi-walled carbon nanotubes (MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO>RGO>MWCNTs>graphite. Upon normalization by surface area, graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory (DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different pH indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface.
Collapse
Affiliation(s)
- Lin He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Fei-Fei Liu
- Insistute of Marine Science and Technology, Shandong University, Jinan 250100, China
| | - Mengyao Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Zhen Qi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xuefei Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Muhammad Zaheer Afzal
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Yanhui Li
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
49
|
Moghaddari M, Yousefi F, Ghaedi M, Dashtian K. A simple approach for the sonochemical loading of Au, Ag and Pd nanoparticle on functionalized MWCNT and subsequent dispersion studies for removal of organic dyes: Artificial neural network and response surface methodology studies. ULTRASONICS SONOCHEMISTRY 2018; 42:422-433. [PMID: 29429688 DOI: 10.1016/j.ultsonch.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/02/2017] [Accepted: 12/03/2017] [Indexed: 06/08/2023]
Abstract
In this study, the artificial neural network (ANN) and response surface methodology (RSM) based on central composite design (CCD) were applied for modeling and optimization of the simultaneous ultrasound-assisted removal of quinoline yellow (QY) and eosin B (EB). The MWCNT-NH2 and its composites were prepared by sonochemistry method and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis's. Initial dyes concentrations, adsorbent mass, sonication time and pH contribution on QY and EB removal percentage were investigated by CCD and replication of experiments at conditions suggested by model has results which statistically are close to experimented data. The ultrasound irradiation is associated with raising mass transfer of process so that small amount of the adsorbent (0.025 g) is able to remove high percentage (88.00% and 91.00%) of QY and EB, respectively in short time (6.0 min) at pH = 6. Analysis of experimental data by conventional models is good indication of Langmuir efficiency for fitting and explanation of experimented data. The ANN based on the Levenberg-Marquardt algorithm (LMA) combined of linear transfer function at output layer and tangent sigmoid transfer function at hidden layer with 20 hidden neurons supply best operation conditions for good prediction of adsorption data. Accurate and efficient artificial neural network was obtained by changing the number of neurons in the hidden layer, while data was divided into training, test and validation sets which contained 70, 15 and 15% of data points respectively. The Average absolute deviation (AAD)% of a collection of 128 data points for MWCNT-NH2 and composites is 0.58%.for EB and 0.55 for YQ.
Collapse
Affiliation(s)
- Mitra Moghaddari
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Fakhri Yousefi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
50
|
Li H, Cao Y, Zhang D, Pan B. pH-dependent K OW provides new insights in understanding the adsorption mechanism of ionizable organic chemicals on carbonaceous materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:269-275. [PMID: 29131994 DOI: 10.1016/j.scitotenv.2017.11.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
The dominant adsorption mechanism of ionizable organic chemicals (IOCs) on carbonaceous materials is still unclear. This study used benzoic acid (BA), o-chlorobenzoic acid (2-CBA) and p-chlorobenzoic acid (4-CBA) as representatives of IOCs to investigate the dominant adsorption mechanism on graphene oxide (GO) and graphite (GP), with a specific emphasis on the impact of pH-dependent KOW. The order of apparent adsorption of the investigated chemicals changed with pH, which could not be explained by their constant KOW. According to our measurement, KOW varied greatly with pH. The pH-dependent adsorption of BA, 2-CBA and 4-CBA were significantly correlated with pH-dependent KOW for both GO and GP. Our observations indicated that the hydrophobic effects may dominate the apparent adsorption of BA, 2-CBA and 4-CBA on GO and GP. Electrostatic repulsion played a minor role in their reduced adsorption at high pH. Negative charge-assisted H-bond and π-π interactions may explain the adsorption of negatively charged BA, 2-CBA and 4-CBA on negatively charged GO. This study implied that pH-dependent KOW rather than constant KOW should be incorporated to understand IOC adsorption as affected by pH.
Collapse
Affiliation(s)
- Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, PR China
| | - Yanbei Cao
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, PR China
| | - Di Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, PR China.
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, PR China
| |
Collapse
|