1
|
Huang H, Hou J, Liao Y, Yu J, Xi B. Exposure to nanoplastics exacerbates light pollution hazards to mammalian. ENVIRONMENT INTERNATIONAL 2025; 197:109338. [PMID: 39983414 DOI: 10.1016/j.envint.2025.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Environmental light pollution adversely affects brain function, disturbing circadian rhythms and negatively impacting human health. Nanoplastics (NPs) pollution is pervasive in the human environment, and their minuscule size facilitates entry into the body, particularly invading brain and compromising its functionality. However, whether NPs infiltrate rhythm-regulated brain regions and disrupt circadian rhythms in organisms remains unclear. Our study demonstrates that exposure to NPs in mice perturbs normal circadian rhythms. Specifically, NPs invade the suprachiasmatic nucleus (SCN), affecting the circadian clock genes network and altering the regular oscillations of core clock genes. Exposure to NPs renders the intrinsic rhythms more susceptible to disruption by light pollution, resulting in more pronounced disorder to metabolism, immune regulation, and brain function. This work is the first to investigate the combined effects of ambient light pollution and NPs pollution on mammalian health, and our findings suggest that NPs amplify the health impacts of light pollution. These findings also highlight that efforts to mitigate human health risks from environmental pollutants should begin to consider the synergistic effects of various classes of pollutants.
Collapse
Affiliation(s)
- Haipeng Huang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 210061, China
| | - Jiaqi Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yilie Liao
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Republic of Singapore
| | - Jing Yu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 210061, China
| | - Beidou Xi
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Kaur K, Narang RK, Singh S. Neuroprotective potential of Betulinic acid against TIO 2NP induced neurotoxicity in zebrafish. Int Immunopharmacol 2024; 138:112604. [PMID: 38968863 DOI: 10.1016/j.intimp.2024.112604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Betulinic acid (BA) is a natural triterpenoid extracted from Bacopa monnieri. BA has been reported to be used as a neuroprotective agent, but their molecular mechanisms are still unknown. Therefore, in this study, we attempted to investigate the precise mechanism of BA for its protective effect against Titanium dioxide nanoparticles (TiO2NP) induced neurotoxicity in zebrafish. Hence, our study observation showed that 10 µg/ml dose of TiO2NP caused a rigorous behavioral deficit in zebrafish. Further, biochemical analysis revealed TiO2NP significantly decreased GSH, and SOD, and increased MDA, AChE, TNF-α, IL-1β, and IL-6 levels, suggesting it triggers oxidative stress and neuroinflammation. However, BA at doses of 2.5,5,10 mg/kg improved behavioral as well as biochemical changes in zebrafish brain. Moreover, BA also significantly raised the levels of DA, NE, 5-HT, and GABA and decreased glutamate levels in TiO2NP-treated zebrafish brain. Our histopathological analysis proved that TiO2NP causes morphological changes in the brain. These changes were expressed by increasing pyknotic neurons, which were dose-dependently reduced by Betulinic acid. Likewise, BA upregulated the levels of NRF-2 and HO-1, which can reduce oxidative stress and neuroinflammation. Thus, our study provides evidence for the molecular mechanism behind the neuroprotective effect of Betulinic acid. Rendering to the findings, we can consider BA as a suitable applicant for the treatment of AD-like symptoms.
Collapse
Affiliation(s)
- Karamjeet Kaur
- Research Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001; Research Scholar, I.K. Gujral Punjab Technical University, Jalandhar Punjab, India, 144603
| | - R K Narang
- Nanomedicine Research Centre, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001.
| |
Collapse
|
3
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
4
|
Khatoon N, Mallah MA, Yu Z, Qu Z, Ali M, Liu N. Recognition and detection technology for microplastic, its source and health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11428-11452. [PMID: 38183545 DOI: 10.1007/s11356-023-31655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/17/2023] [Indexed: 01/08/2024]
Abstract
Microplastic (MP) is ubiquitous in the environment which appeared as an immense intimidation to human and animal health. The plastic fragments significantly polluted the ocean, fresh water, food chain, and other food items. Inadequate maintenance, less knowledge of adverse influence along with inappropriate usage in addition throwing away of plastics items revolves present planet in to plastics planet. The present study aims to focus on the recognition and advance detection technologies for MPs and the adverse effects of micro- and nanoplastics on human health. MPs have rigorous adverse effect on human health that leads to condensed growth rates, lessened reproductive capability, ulcer, scrape, and oxidative nervous anxiety, in addition, also disturb circulatory and respiratory mechanism. The detection of MP particles has also placed emphasis on identification technologies such as scanning electron microscopy, Raman spectroscopy, optical detection, Fourier transform infrared spectroscopy, thermo-analytical techniques, flow cytometry, holography, and hyperspectral imaging. It suggests that further research should be explored to understand the source, distribution, and health impacts and evaluate numerous detection methodologies for the MPs along with purification techniques.
Collapse
Affiliation(s)
- Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Manthar Ali Mallah
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology (QUEST), Nawabshah, 67480, Sindh, Pakistan
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
- Health Science Center, South China Hospital, Shenzhen University, Shenzhen, 518116, People's Republic of China
| |
Collapse
|
5
|
Zhang X, Song Y, Gong H, Wu C, Wang B, Chen W, Hu J, Xiang H, Zhang K, Sun M. Neurotoxicity of Titanium Dioxide Nanoparticles: A Comprehensive Review. Int J Nanomedicine 2023; 18:7183-7204. [PMID: 38076727 PMCID: PMC10710240 DOI: 10.2147/ijn.s442801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The increasing use of titanium dioxide nanoparticles (TiO2 NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO2 NPs on both humans and the environment. Notably, TiO2 NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO2 NPs in different species and in vitro models. Following exposure, TiO2 NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO2 NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO2 NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO2 NPs. However, a systematic comparison of the neurotoxic effects of TiO2 NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO2 NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuanyuan Song
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongyang Gong
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chunyan Wu
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Binquan Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenxuan Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiawei Hu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanhui Xiang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ke Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingkuan Sun
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NANOIMPACT 2022; 25:100377. [PMID: 35559883 DOI: 10.1016/j.impact.2021.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most widely used nanomaterials. Due to an increasing scope of applications, the exposure of humans to TiO2 NP is inevitable, such as entering the body through the mouth with food additives or drugs, invading the damaged skin with cosmetics, and entering the body through the respiratory tract during the process of production and handling. Compared with TiO2 coarse particles, TiO2 NPs have stronger conductivity, reaction activity, photocatalysis, and permeability, which may lead to greater toxicity to organisms. Given that TiO2 was classified as a category 2B carcinogen (possibly carcinogenic to humans), the genotoxicity of TiO2 NPs has become the focus of attention. There have been a series of previous studies investigating the potential genotoxicity of TiO2 NPs, but the existing research results are still controversial and difficult to conclude. More than half of studies have shown that TiO2 NPs can cause genotoxicity, suggesting that TiO2 NPs are likely to be genotoxic to humans. And the genotoxicity of TiO2 NPs is closely related to the exposure concentration, mode and time, and experimental cells/animals as well as its physicochemical properties (crystal type, size, and shape). This review summarized the latest research progress of related genotoxic effects through in vivo studies and in vitro cell tests, hoping to provide ideas for the evaluation of TiO2 NPs genotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
7
|
Naima R, Imen M, Mustapha J, Hafedh A, Kamel K, Mohsen S, Salem A. Acute titanium dioxide nanoparticles exposure impaired spatial cognitive performance through neurotoxic and oxidative mechanisms in Wistar rats. Biomarkers 2021; 26:760-769. [PMID: 34704879 DOI: 10.1080/1354750x.2021.1999501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Titanium dioxide nanoparticles (TiO2-NPs) are used in many commercial products. However, their effects on human and animal organism remained to be clarified. OBJECTIVE The present study aimed to investigate the effects of TiO2-NPs on the behavioural performance, monoamine neurotransmitters and oxidative stress in the rat brain. MATERIAL AND METHODS Rats were injected intravenously with a single dose of TiO2-NPs (20 mg/kg body weight) and were subjected to cognitive and emotional tests using Morris water maze and elevated plus maze. RESULTS Cognitive capacity as well as the emotional reactivity were significantly disrupted, in TiO2-NPs-administered rats compared to control group. These behavioural effects were correlated with changes in brain neurotransmitter contents reflected by a significant increase in dopamine and a decrease in serotonin levels. TiO2-NPs also induced oxidative stress in the brain manifested by increased levels of H2O2 and malondialdehyde, associated with antioxidant enzymes activities disturbance, in particular, superoxide dismutase and catalase activities. Moreover, TiO2-NPs administration caused histological damages in the brain tissue with abundant lymphocytic clusters, capillary dilations, vascular congestion and oedema. CONCLUSIONS Acute intravenous injection of TiO2-NPs impaired behaviour performances through brain biochemical and structural changes and precautions should be taken to their usage in food additive and medical applications.
Collapse
Affiliation(s)
- Rihane Naima
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Mrad Imen
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Jeljeli Mustapha
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
- Human Sciences Institute, University El Manar, Tunis, Tunisia
| | - Abdelmalek Hafedh
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Kacem Kamel
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Sakly Mohsen
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Amara Salem
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
- Department of Natural and Applied Sciences, Faculty of Sciences and Humanities, Shaqra University, Afif, Saudi Arabia
| |
Collapse
|
8
|
Shelly S, Liraz Zaltsman S, Ben-Gal O, Dayan A, Ganmore I, Shemesh C, Atrakchi D, Garra S, Ravid O, Rand D, Israelov H, Alon T, Lichtenstein G, Sharabi S, Last D, Gosselet F, Rosen V, Burstein G, Friedlander A, Harel R, Vogel G, Schnaider Beeri M, Mardor Y, Lampl Y, Fleminger G, Cooper I. Potential neurotoxicity of titanium implants: Prospective, in-vivo and in-vitro study. Biomaterials 2021; 276:121039. [PMID: 34352627 DOI: 10.1016/j.biomaterials.2021.121039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Titanium dioxide (TiO2) is a frequently used biomaterial, particularly in orthopedic and dental implants, and it is considered an inert and benign compound. This has resulted in toxicological scrutiny for TiO2 in the past decade, with numerus studies showing potential pathologic downstream effects. Herein we describe case report of a 77-year-old male with subacute CNS dysfunction, secondary to breakdown of a titanium-based carotid stent and leading to blood levels 1000 times higher (3 ppm) than the reported normal. We prospectively collected tissues adjacent to orthopedic implants and found a positive correlation between titanium concentration and time of implant in the body (r = 0.67, p < 0.02). Rats bearing titanium implants or intravascularly treated with TiO2 nanoparticles (TiNP) exhibited memory impairments. A human blood-brain barrier (BBB) in-vitro model exposed to TiNP showed paracellular leakiness, which was corroborated in-vivo with the decrease of key BBB transcripts in isolated blood vessels from hippocampi harvested from TiNP-treated mice. Titanium particles rapidly internalized into brain-like endothelial cells via caveolae-mediated endocytosis and macropinocytosis and induced pro-inflammatory reaction with increased expression of pro-inflammatory genes and proteins. Immune reaction was mediated partially by IL-1R and IL-6. In summary, we show that high levels of titanium accumulate in humans adjacent to orthopedic implants, and our in-vivo and in-vitro studies suggest it may be neurotoxic.
Collapse
Affiliation(s)
- Shahar Shelly
- Department of Neurology, College of Medicine, Mayo Clinic Rochester, Minnesota, USA
| | - Sigal Liraz Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel; Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel
| | - Ofir Ben-Gal
- Department of Orthopedic, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Avraham Dayan
- The Shmunis School of Biomedicine and Cancer Research, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Sharif Garra
- Department of Orthopedic, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hila Israelov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Tayir Alon
- Neurology Department, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel
| | | | - Shirley Sharabi
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Fabien Gosselet
- Univ. Artois, UR 2465, Blood-brain Barrier Laboratory (LBHE), F-62300 Lens, France
| | - Vasiliy Rosen
- The ICP Unit, The Core Facility of the Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | | | - Alon Friedlander
- Spine Surgery Division, Department of Orthopedics, Sheba Medical Center, Israel
| | - Ran Harel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Spine Surgery Division, Department of Neurosurgery, Sheba Medical Center, Israel
| | - Guy Vogel
- Department of Orthopedic, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel; Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yael Mardor
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Yair Lampl
- Department of Neurology, Wolfson Medical Center, Holon, Israel
| | - Gideon Fleminger
- The Shmunis School of Biomedicine and Cancer Research, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel; The Nehemia Rubin Excellence in Biomedical Research - The TELEM Program, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
9
|
Hong F, Mu X, Ze Y, Li W, Zhou Y, Ji J. Damage to the Blood Brain Barrier Structure and Function from Nano Titanium Dioxide Exposure Involves the Destruction of Key Tight Junction Proteins in the Mouse Brain. J Biomed Nanotechnol 2021; 17:1068-1078. [PMID: 34167621 DOI: 10.1166/jbn.2021.3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous studies have proven that nano titanium dioxide (nano TiO₂) can accumulate in animal brains, where it damages the blood brain barrier (BBB); however, whether this process involves destruction of tight junction proteins in the mouse brain has not been adequately investigated. In this study, mice were exposed to nano TiO₂ for 30 consecutive days, and then we used transmission electron microscopy to observe the BBB ultrastructure and the Evans blue assay to evaluate the permeability of the BBB. Our data suggested that nano TiO₂ damaged the BBB ultrastructure and increased BBB permeability. Furthermore, we used immunofluorescence and Western blotting to examine the expression of key tight junction proteins, including Occludin, ZO-1, and Claudin-5 in the mouse brain. Our data showed that nano TiO₂ reduced Occludin, ZO-1 and Claudin-5 expression. Taken together, nano TiO₂-induced damage to the BBB structure and function may involve the destruction of key tight junction proteins.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Xu Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Wuyan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yingjun Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Jianhui Ji
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
10
|
Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, Sarfraz RM, Farooq MA. Nano-scaled materials may induce severe neurotoxicity upon chronic exposure to brain tissues: A critical appraisal and recent updates on predisposing factors, underlying mechanism, and future prospects. J Control Release 2020; 328:873-894. [PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hnin Ei Thu
- Innoscience Research Sdn. Bhd., Suites B-5-7, Level 5, Skypark@ One City, Jalan Ust 25/1, Subang Jaya 47650, Selangor, Malaysia; Department of Pharmacology, Faculty of Medicine, Lincoln University College, Selangor, Malaysia.
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy & Thumbay Research Institute for Precision Medicine Gulf Medical University, United Arab Emirates
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, 2409 West University Avenue, PHR 4.116, Austin TX78712, USA; Department of Pharmacy, University of Malakand, Dir Lower, Chakdara, KPK, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | | | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| |
Collapse
|
11
|
Papp A, Horváth T, Igaz N, Gopisetty MK, Kiricsi M, Berkesi DS, Kozma G, Kónya Z, Wilhelm I, Patai R, Polgár TF, Bellák T, Tiszlavicz L, Razga Z, Vezér T. Presence of Titanium and Toxic Effects Observed in Rat Lungs, Kidneys, and Central Nervous System in vivo and in Cultured Astrocytes in vitro on Exposure by Titanium Dioxide Nanorods. Int J Nanomedicine 2020; 15:9939-9960. [PMID: 33376320 PMCID: PMC7765755 DOI: 10.2147/ijn.s275937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Non-spherical titanium dioxide (TiO2) nanoparticles have been increasingly applied in various biomedical and technological fields. Their toxicological characterization is, however, less complete than that of roundish nanoparticles. MATERIALS AND METHODS Anatase form TiO2 nanorods, ca. 15x65 nm in size, were applied to cultured astrocytes in vitro and to the airways of young adult Wistar rats in vivo in 5, 10, and 8 mg/kg BW dose for altogether 28 days. Presence of nanorods and cellular damage was investigated in the astrocytes and in rat lungs and kidneys. Functional damage of the nervous system was studied by electrophysiological methods. RESULTS The treated astrocytes showed loss of viability without detectable apoptosis. In rats, TiO2 nanorods applied to the airways reached the blood and various organs including the lungs, kidneys, and the central nervous system. In lung and kidney samples, nanorods were observed within (partly damaged) phagolysosomes and attached to organelles, and apoptotic cell death was also detected. In cortical and peripheral electrophysiological activity, alterations corresponding to energy shortage (resulting possibly from mitochondrial damage) and astrocytic dysfunction were detected. Local titanium levels and relative weight of the investigated organs, apoptotic cell death in the lungs and kidneys, and changes in the central and peripheral nervous activity were mostly proportional to the applied doses, and viability loss of the cultured astrocytes was also dose-dependent, suggesting causal relationship of treatments and effects. CONCLUSION Based on localization of the visualized nanorods, on neuro-functional changes, and on literature data, the toxic mechanism involved mitochondrial damage, oxidative stress, and apoptotic cell death. These indicate potential human toxicity and occupational risk in case of exposure to rod-shaped TiO2 nanoparticles.
Collapse
Affiliation(s)
- András Papp
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamara Horváth
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mohana Krishna Gopisetty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dániel Simon Berkesi
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Szeged, Hungary
| | - Tamás Ferenc Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Szeged, Hungary
| | - Tamás Bellák
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Razga
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tünde Vezér
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Lv S, Zhang X, Zhou Y, Feng Y, Yang Y, Wang X. Intrathecally Administered Apelin-13 Alleviated Complete Freund's Adjuvant-Induced Inflammatory Pain in Mice. Front Pharmacol 2020; 11:1335. [PMID: 32982745 PMCID: PMC7485460 DOI: 10.3389/fphar.2020.01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Apelin is the endogenous ligand for APJ, a G-protein-coupled receptor. Apelin gene and protein are widely distributed in the central nervous system and peripheral tissues. The role of apelin in chronic inflammatory pain is still unclear. In the present study, a mouse model of complete Freund’s adjuvant (CFA)-induced inflammatory pain was utilized, and the paw withdrawal latency/threshold in response to thermal stimulation and Von Frey filament stimulation were recorded after intrathecal (i.t.) injection of apelin-13 (0.1, 1, and 10 nmol/mouse). The mRNA and protein expression, concentration of glutamic acid (Glu), and number of c-Fos immunol staining in lumbar spinal cord (L4/5) were determined. The results demonstrated that Apln gene expression in the lumbar spinal cord was down-regulated in the CFA pain model. Apelin-13 (10 nmol/mouse, i.t.) alleviated CFA-induced inflammatory pain, and it exhibited a more potent antinociceptive effect than apelin-36 and (pyr)apelin-13. The antinociception of apelin-13 could be blocked by APJ antagonist apelin-13(F13A). I.T. apelin-13 attenuated the increased levels of Aplnr, Grin2b, Camk2d, and c-Fos genes expression, Glu concentration, and NMDA receptor 2B (GluN2B) protein expression caused by CFA. Apelin-13 significantly reduced the number of Fos-positive cells in laminae III and IV/V of the dorsal horn. This study indicated that i.t. apelin-13 exerted an analgesic effect against inflammatory pain, which was mediated by activation of APJ, and inhibition of Glu/GluN2B function and neural activity of the spinal dorsal horn.
Collapse
Affiliation(s)
- Shuangyu Lv
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaomei Zhang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuchen Zhou
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yu Feng
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yanjie Yang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinchun Wang
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
13
|
Mu X, Li W, Ze X, Li L, Wang G, Hong F, Ze Y. Molecular mechanism of nanoparticulate TiO 2 induction of axonal development inhibition in rat primary cultured hippocampal neurons. ENVIRONMENTAL TOXICOLOGY 2020; 35:895-905. [PMID: 32329576 DOI: 10.1002/tox.22926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies have demonstrated the in vitro and in vivo neurotoxicity of nanoparticulate titanium dioxide (nano-TiO2 ), a mass-produced material for a large number of commercial and industrial applications. The mechanism of nano-TiO2 -induced inhibition of axonal development, however, is still unclear. In our study, primary cultured hippocampal neurons of 24-hour-old fetal Sprague-Dawley rats were exposed to 5, 15, or 30 μg/mL nano-TiO2 for 6, 12, and 24 hours, and the toxic effects of nano-TiO2 exposure on the axons development were detected and its molecular mechanism investigated. Nano-TiO2 accumulated in hippocampal neurons and inhibited the development of axons as nano-TiO2 concentrations increased. Increasing time in culture resulted in decreasing axon length by 32.5%, 36.6%, and 53.8% at 6 hours, by 49.4%, 53.8%, and 69.5% at 12 hours, and by 44.5%, 58.2%, and 63.6% at 24 hours, for 5, 15, and 30 μg/mL nano-TiO2 , respectively. Furthermore, nano-TiO2 downregulated expression of Netrin-1, growth-associated protein-43, and Neuropilin-1, and promoted an increase of semaphorin type 3A and Nogo-A. These studies suggest that nano-TiO2 inhibited axonal development in rat primary cultured hippocampal neurons and this phenomenon is related to changes in the expression of axon growth-related factors.
Collapse
Affiliation(s)
- Xu Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Wuyan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Xiao Ze
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Guoqing Wang
- Department of Physiology and Neurobiology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
- Department of Biotechnology, School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Prüst M, Meijer J, Westerink RHS. The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol 2020; 17:24. [PMID: 32513186 PMCID: PMC7282048 DOI: 10.1186/s12989-020-00358-y] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Given the global abundance and environmental persistence, exposure of humans and (aquatic) animals to micro- and nanoplastics is unavoidable. Current evidence indicates that micro- and nanoplastics can be taken up by aquatic organism as well as by mammals. Upon uptake, micro- and nanoplastics can reach the brain, although there is limited information regarding the number of particles that reaches the brain and the potential neurotoxicity of these small plastic particles. Earlier studies indicated that metal and metal-oxide nanoparticles, such as gold (Au) and titanium dioxide (TiO2) nanoparticles, can also reach the brain to exert a range of neurotoxic effects. Given the similarities between these chemically inert metal(oxide) nanoparticles and plastic particles, this review aims to provide an overview of the reported neurotoxic effects of micro- and nanoplastics in different species and in vitro. The combined data, although fragmentary, indicate that exposure to micro- and nanoplastics can induce oxidative stress, potentially resulting in cellular damage and an increased vulnerability to develop neuronal disorders. Additionally, exposure to micro- and nanoplastics can result in inhibition of acetylcholinesterase activity and altered neurotransmitter levels, which both may contribute to the reported behavioral changes. Currently, a systematic comparison of the neurotoxic effects of different particle types, shapes, sizes at different exposure concentrations and durations is lacking, but urgently needed to further elucidate the neurotoxic hazard and risk of exposure to micro- and nanoplastics.
Collapse
Affiliation(s)
- Minne Prüst
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD, Utrecht, The Netherlands
| | - Jonelle Meijer
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
15
|
The mTOR/GCLc/GSH Pathway Mediates the Dose-Dependent Bidirectional Regulation of ROS Induced by TiO 2NPs in Neurogenic Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019. [DOI: 10.1155/2019/7621561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective. The effect of TiO2NP exposure on the nervous system and the underlying mechanism remain unclear. The antioxidant effect of TiO2NPs at a low dose was newly found in our study, which was different from the effect at high dose. This study is aimed at exploring the mechanism underlying the antioxidant effects of TiO2NPs at low dose and the induction of ROS accumulation by TiO2NPs at high dose in neurogenic cell lines.Methods. We measured the changes in key molecules in the ROS regulation pathway by western blotting, flow cytometry, and commercial assay kits, and these key molecules were further evaluated to verify their interactions and roles using SH-SY5Y, U251, and SK-N-SH cell lines treated with TiO2NPs.Results. Our results showed that the weak antioxidant effect at low dose was caused by mTOR/GCLc-induced GSH overproduction and GSH-Px activity impairment. ROS accumulation at high dose was caused by a mTOR/GCLc-mediated decrease in GSH production, GSH-Px activity impairment, and dramatic ROS production. Furthermore, we found that the ROS species were mainly O2-⋅, and that SOD played a crucial role in reducing O2-⋅levels before the mTOR protein was activated.Conclusion. We revealed the mechanism underlying the bidirectional regulation of ROS induced by TiO2NPs at different doses in neurogenic cell lines. Our study emphasized the potential neurotoxic effects of NPs at low dose, which should arouse concern about their safety.
Collapse
|
16
|
In deep evaluation of the neurotoxicity of orally administered TiO 2 nanoparticles. Brain Res Bull 2019; 155:119-128. [PMID: 31715315 DOI: 10.1016/j.brainresbull.2019.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 11/20/2022]
Abstract
Titanium dioxide nanoparticles were widely used in food as dietary supplements, in drugs, in toothpaste, ect. Few numbers of studies were interested to the neurotoxicity of TiO2 NPs through oral pathway. The present study aims firstly to understand the connection between the physicochemical properties of TiO2 NPs and their associated toxicological oral pathway by evaluation the colloidal stability of TiO2 NPs over time in different media simulating physiological gastric, intestinal and serum conditions at 37 °C to be close to the oral administraton. Secondly, this study aims to evaluate the neurotoxicity of a subchronic intragastric administration of TiO2 NPs to rats. Different doses of anatase TiO2 NPs were administrated to Wistar rats every day for consecutives eight weeks. Titanium (Ti) content in brain, oxidative antioxidant biomarkers, lipid peroxidation, nitric oxide (NO) levels, tumor necrosis factor-alpha (TNF-α) levels, histophatological changes, degenerated and apoptosis neurons were investigated. Results suggested that TiO2 NPs can reach the brain and cross the brain blood barrier (BBB) to been accumulated in the brain of rats causing cerebral oxidative stress damage, increasing NO levels and histopathological injury. At higher dose, we observed the most cerebral injury by the highest accumulation of Ti and by the remarkable increase of TNF-α besides to the most increase of degenerated and apoptosis neurons in the brain of exposed rats. TiO2 NPs led to a neurotoxic damage accompanied by the increase of degenerated and apoptotic neurons in cerebral cortex.
Collapse
|
17
|
Mu X, Liu J, Yuan L, Yang K, Huang Y, Wang C, Yang W, Shen G, Li Y. The mechanisms underlying the developmental effects of bisphenol F on zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:877-884. [PMID: 31412491 DOI: 10.1016/j.scitotenv.2019.05.489] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
With the increasing use of bisphenol F (BPF) as BPA alternative, BPF are widely distributed in multiple environment media. Our previous study demonstrated that BPF possess equivalent toxicity towards zebrafish as BPA, while its toxic mechanism remains largely unknown. To investigate the mechanisms mediating the developmental effects of BPF, zebrafish embryos were exposed to 0.0005, 0.5, and 5.0 mg/L BPF. Morphological examination indicated that BPF exposure led to depigmentation, decreased heart rate, inhibited spontaneous movement, hatch inhibition, and spinal deformation. Motor neuron-green fluorescence zebrafish assay indicated that exposure to 0.5 or 5.0 mg/L BPF affected embryonic motor neuron development, which is consistent with the spinal defect and spontaneous movement inhibition. Transcriptomic analysis showed that genes associated with the observed symptoms, including neuron development (ngln2a, socs3a, fosb), cardiac development (klf2a), and spinal deformation (ngs, col8a1a, egr2a), were down-regulated after exposure to either 0.0005 (environmental relevant concentration) or 0.5 mg/L BPF. This partially explained the mechanisms underlying the effects of BPF. In conclusion, BPF had the potential to affect zebrafish development even at environmental level through down-regulating associated genes.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ke Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| |
Collapse
|
18
|
Dréno B, Alexis A, Chuberre B, Marinovich M. Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol 2019; 33 Suppl 7:34-46. [DOI: 10.1111/jdv.15943] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- B. Dréno
- Onco‐Dermatology Department CHU Nantes CRCINA University Nantes Nantes France
| | - A. Alexis
- Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
| | - B. Chuberre
- L'Oréal Cosmetique Active International Levallois‐Perret France
| | - M. Marinovich
- Department of Pharmacological and Biomolecular Sciences University of Milan Milan Italy
| |
Collapse
|
19
|
Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev 2019; 144:112-132. [PMID: 31295521 PMCID: PMC6745262 DOI: 10.1016/j.addr.2019.07.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022]
Abstract
Inorganic nanoparticles provide the opportunity to localize bioactive agents to the target sites and protect them from degradation. In many cases, acute toxicities of inorganic nanoparticles used for delivery applications have been investigated. However, little information is available regarding the long-term toxicity of such materials. This review focuses on the importance of subchronic and chronic toxicity assessment of inorganic nanoparticles investigated for delivery applications. We have attempted to provide a comprehensive review of the available literature for chronic toxicity assessment of inorganic nanoparticles. Where possible correlations are made between particle composition, physiochemical properties, duration, frequency and route of administration, as well as the sex of animals, with tissue and blood toxicity, immunotoxicity and genotoxicity. A critical gap analysis is provided and important factors that need to be considered for long-term toxicology of inorganic nanoparticles are discussed.
Collapse
Affiliation(s)
- Raziye Mohammadpour
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Darwin L Cheney
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA
| | - Khaled F Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain; Nanomedicine Research Unit, Princess Al-Jawhara Centre for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama 329, Bahrain
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
20
|
Zhou Y, Ji J, Chen C, Hong F. Retardation of Axonal and Dendritic Outgrowth Is Associated with the MAPK Signaling Pathway in Offspring Mice Following Maternal Exposure to Nanosized Titanium Dioxide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2709-2715. [PMID: 30701967 DOI: 10.1021/acs.jafc.8b06992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exposure to nanosized titanium oxide (nano-TiO2) has been proven to suppress brain growth in mouse offspring; however, whether retardation of axonal or dendritic outgrowth is associated with activation of the mitogen-activated protein kinase (MAPK) pathway remains unclear. In the present study, pregnant mice were exposed to nano-TiO2 at 1.25, 2.5, and 5 mg/kg body weight, and the molecular mechanism of axonal or dendritic outgrowth retardation was investigated. The results suggested that nano-TiO2 crossed the blood-fetal barrier and blood-brain barrier and deposited in the brain of offspring, which retarded axonal and dendritic outgrowth, including the absence of axonal outgrowth, and decreased dendritic filament length, dendritic branching number, and dendritic spine density. Importantly, maternal exposure to nano-TiO2 increased phosphorylated (p)-extracellular signal-regulated kinase1/2 (ERK1/2, +24.35% to +59.4%), p-p38 (+60.82% to 181.85%), and p-c-jun N-terminal kinase (JNK, +28.28% to 97.28%) expression in the hippocampus of the offspring. These findings suggested that retardation of axonal and dendritic outgrowth in mouse offspring caused by maternal exposure to nano-TiO2 may be related to excessive activation of the ERK1/2/MAPK signaling pathway. Therefore, the potential toxicity of nano-TiO2 is a concern, especially in pregnant woman or children who are exposed to nano-TiO2.
Collapse
Affiliation(s)
- Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Chunmei Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation , Huaiyin Normal University , Huaian 223300 , China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| |
Collapse
|
21
|
Hong F, Zhou Y, Ji J, Zhuang J, Sheng L, Wang L. Nano-TiO 2 Inhibits Development of the Central Nervous System and Its Mechanism in Offspring Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11767-11774. [PMID: 30269504 DOI: 10.1021/acs.jafc.8b02952] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nano titanium dioxide (Nano-TiO2) has been applied in food packaging systems and food additives, but it may cause potential neurotoxicity for human and animals. In our study, the effects of nano-TiO2 exposure during pregnancy/lactation on the development of the central nervous system in offspring mice were examined and its molecular mechanism involving Rho family was investigated. Our findings showed that pregnancy/lactation exposure to nano-TiO2 resulted in thinning of cerebral and cerebellar cortex, decrease in number of neurons per unit area of cerebrum, edema and nuclear condensation, dysplasia of neurites in hippocampal pyramidal cells, thinning in pyramidal cell layer in hippocampus, and decrease in learning and memory of offspring mice. Furthermore, expressions of Rac1 and Cdc42 involved in axon and dendritic development were decreased, whereas RhoA expression and ratio of RhoA/Rac1 were increased in offspring brain. It implies that exposure to nano-TiO2 during pregnancy/lactation could result in brain retardation and cognitive impairment in offspring mice, which was closely related to alterations in the expression of Rho protein family. Therefore, application of nano-TiO2 in daily life should be performed with caution.
Collapse
Affiliation(s)
| | | | | | | | - Lei Sheng
- Medical College , Soochow University , Suzhou 215123 , China
| | - Ling Wang
- Library of Soochow University , Suzhou 215123 , China
| |
Collapse
|
22
|
He Q, Zhou X, Liu Y, Gou W, Cui J, Li Z, Wu Y, Zuo D. Titanium dioxide nanoparticles induce mouse hippocampal neuron apoptosis via oxidative stress- and calcium imbalance-mediated endoplasmic reticulum stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:6-15. [PMID: 30114659 DOI: 10.1016/j.etap.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to explore the potential neurotoxicity and the underlying mechanism of titanium dioxide nanoparticles (TiO2-NPs) to mouse hippocampal neuron HT22 cells. We found that TiO2-NPs had concentration-dependent and time-dependent cytotoxicities to HT22 cells by the MTT assay. Propidium iodide (PI) staining with FACScan flow cytometry proved that TiO2-NPs dose-dependently increased the apoptosis rate in HT22 cells, and the apoptotic features were observed by Hochest 33258 and AO/EB staining. The levels of calcium (Ca2+) and reactive oxygen species (ROS) were significantly increased in TiO2-NPs-treated cells. Further studies by western blot and real-time QPCR proved that the protein and mRNA levels of GRP78, IRE-1α, ATF6, CHOP and caspase-12 were up-regulated after TiO2-NPs treatment, which indicates that TiO2-NPs-induced cytotoxicity is related to endoplasmic reticulum stress (ERS). Apoptosis-related protein cleaved caspase-3 and pro-apoptotic protein Bax expression levels were up-regulated, and the anti-apoptotic protein Bcl-2 expression level was down-regulated in TiO2-NPs-treated cells. The antioxidant N-acetyl-L-cysteine (NAC) can significantly reduce TiO2-NPs-induced ERS characterized by the down-regulation of GRP78 and cleaved caspase-12 levels, which indicates that oxidative stress is participated in TiO2-NPs-induced ERS. Our study suggests that TiO2-NPs-induced apoptosis in HT22 cells is through oxidative stress- and calcium imbalance-mediated ERS.
Collapse
Affiliation(s)
- Qiong He
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xuejiao Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Wenfeng Gou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiahui Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
23
|
Zhang L, Chen ZW, Yang SF, Shaer M, Wang Y, Dong JJ, Jiapaer B. MicroRNA-219 decreases hippocampal long-term potentiation inhibition and hippocampal neuronal cell apoptosis in type 2 diabetes mellitus mice by suppressing the NMDAR signaling pathway. CNS Neurosci Ther 2018; 25:69-77. [PMID: 29804319 DOI: 10.1111/cns.12981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a complex polygenic disease that causes hyperglycemia and accounts for 90%-95% of all diabetes mellitus cases. Hence, this study aimed to examine the effects of microRNA-219 (miR-219) on inhibition of long-term potentiation (LTP) and apoptosis of hippocampal neuronal cells in T2DM mice through the N-methyl-d-aspartate receptor (NMDAR) signaling pathway regulation. METHODS The T2DM mouse models were established, after which LTP in vivo was recorded by means of electrical biology, and the fasting blood glucose of mice was measured. Next, the density of pyramidal neurons in each group was calculated. Additionally, the expression levels of miR-219, the NMDAR signaling pathway [NMDAR1 (NR) 1, NR2A, and NR2B), downstream target proteins [calmodulin-dependent protein kinase-II (CaMK-II) and cAMP response element binding protein (CREB)], and apoptosis-related factors [Bcl2-associated X protein (Bax), c-caspase-9 and c-caspase-3] in the hippocampal tissues were determined. Finally, immunohistochemistry was applied to detect and measure the positive expression of Bax, caspase-9, and caspase-3 proteins. RESULTS The results showed that upregulation of miR-219 increases LTP and density of pyramidal neurons in the hippocampal tissues of mice, while it decreases blood glucose of db/db mice. In addition, miR-219 upregulation also leads to decreased mRNA levels of NR1, NR2A, NR2B, CaMK-II, and CREB and protein levels of NR1, NR2A, NR2B, CaMK-II, CREB, p-CREB, Bax, c-caspase-9, and c-caspase-3. Furthermore, upregulation of miR-219 inhibits positive expression of Bax, caspase-9, and caspase-3 proteins, leading to the suppression of hippocampal neuronal cell apoptosis. CONCLUSION The findings from this study indicated that the upregulation of miR-219 decreases LTP inhibition and hippocampal neuronal cell apoptosis in T2DM mice by downregulating the NMDAR signaling pathway, therefore suggesting that MiR-219 might be a future therapeutic strategy for T2DM.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Zheng-Wen Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Xinjiang Medical University, Urumchi, China
| | - Shu-Fen Yang
- Department of Nephrology, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Muyasi Shaer
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Ying Wang
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Jun-Jie Dong
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| | - Beili Jiapaer
- Department of Cadre Health Care, the Xinjiang Uygur Autonomous Region People's Hospital, Urumchi, China
| |
Collapse
|
24
|
Brain Inflammation, Blood Brain Barrier dysfunction and Neuronal Synaptophysin Decrease after Inhalation Exposure to Titanium Dioxide Nano-aerosol in Aging Rats. Sci Rep 2017; 7:12196. [PMID: 28939873 PMCID: PMC5610323 DOI: 10.1038/s41598-017-12404-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022] Open
Abstract
Notwithstanding potential neurotoxicity of inhaled titanium dioxide nanoparticles (TiO2 NPs), the toxicokinetics and consequences on blood-brain barrier (BBB) function remain poorly characterized. To improve risk assessment, we need to evaluate the impact on BBB under realistic environmental conditions and take into account vulnerability status such as age. 12-13 week and 19-month-old male rats were exposed by inhalation to 10 mg/m3 of TiO2 nano-aerosol (6 hrs/day, 5 day/week, for 4 weeks). We showed an age-dependent modulation of BBB integrity parameters suggesting increased BBB permeability in aging rats. This alteration was associated with a significant increase of cytokines/chemokines in the brain, including interleukin-1β, interferon-γ, and fractalkine as well as a decreased expression of synaptophysin, a neuronal activity marker. These observations, in absence of detectable titanium in the brain suggest that CNS-related effects are mediated by systemic-pathway. Moreover, observations in terms of BBB permeability and brain inflammation underline age susceptibility. Even if TiO2 NPs were not evidenced in the brain, we observed an association between the exposure to TiO2 NPs and the dysregulation of BBB physiology associated with neuroinflammation and decreased expression of neuronal activity marker, which was further exacerbated in the brain of aged animal's.
Collapse
|
25
|
Grissa I, Ezzi L, Chakroun S, Mabrouk A, Saleh AB, Braham H, Haouas Z, Cheikh HB. Rosmarinus officinalis L. ameliorates titanium dioxide nanoparticles and induced some toxic effects in rats' blood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12474-12483. [PMID: 28361401 DOI: 10.1007/s11356-017-8848-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/16/2017] [Indexed: 05/20/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used as a white pigment in food and drugs. The most important route of human exposure to TiO2 is through food and drug products containing TiO2 additives. This study investigates the efficacy of an oral traditional use of rosemary extract in ameliorating some toxic effects induced on blood of TiO2 NP-intoxicated rats. Rats were given rosemary extract via intragastric administration 1 h before the intragastric administration of 100 mg/kg/day TiO2 NPs (10 nm) for 60 days. TiO2 NPs significantly increased serum cholesterol, glucose, and triglyceride levels of rats. They also induced significant oxidative stress and inflammatory and caused DNA damage in peripheral blood leukocytes. The rosemary extract appears to have a significant protective effect by lowering glucose level properties, restoring the lipid profile and showing an antioxidative, anti-inflammatory, and antigenotoxic properties against TiO2 NPs toxicity. In conclusion, this study gives an encouraging scientific basis for consumers of rosemary leaves to keep on with this culinary habit.
Collapse
Affiliation(s)
- Intissar Grissa
- Laboratory of Histology and Cytogenetics (Research unit of Genetic, Genotoxicity and Childhood Illness UR12ES10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia.
| | - Lobna Ezzi
- Laboratory of Histology and Cytogenetics (Research unit of Genetic, Genotoxicity and Childhood Illness UR12ES10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Sana Chakroun
- Laboratory of Histology and Cytogenetics (Research unit of Genetic, Genotoxicity and Childhood Illness UR12ES10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Abir Mabrouk
- Laboratory of Histology and Cytogenetics (Research unit of Genetic, Genotoxicity and Childhood Illness UR12ES10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Azer Ben Saleh
- Department of Hematology, Centre Hospitalier Universitaire Taher Sfar, Mahdia, Tunisia
| | - Hamadi Braham
- Department of Hematology, Centre Hospitalier Universitaire Taher Sfar, Mahdia, Tunisia
| | - Zohra Haouas
- Laboratory of Histology and Cytogenetics (Research unit of Genetic, Genotoxicity and Childhood Illness UR12ES10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| | - Hassen Ben Cheikh
- Laboratory of Histology and Cytogenetics (Research unit of Genetic, Genotoxicity and Childhood Illness UR12ES10), Faculty of Medicine, University of Monastir, Street Avicenne, 5019, Monastir, Tunisia
| |
Collapse
|
26
|
Sun Y, Zhan L, Cheng X, Zhang L, Hu J, Gao Z. The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System. Cell Mol Neurobiol 2017; 37:389-403. [PMID: 27255970 PMCID: PMC11482088 DOI: 10.1007/s10571-016-0388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/25/2016] [Indexed: 12/25/2022]
Abstract
The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Liying Zhan
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
| | - Xiaokun Cheng
- North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, 050015, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jie Hu
- School of Nursing, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China.
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
27
|
Hong F, Yu X, Wu N, Zhang YQ. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res (Camb) 2017; 6:115-133. [PMID: 30090482 PMCID: PMC6061230 DOI: 10.1039/c6tx00338a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/09/2016] [Indexed: 01/29/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are inorganic materials with a diameter of 1-100 nm. In recent years, TiO2 NPs have been used in a wide range of products, including food, toothpaste, cosmetics, medicine, paints and printing materials, due to their unique properties (high stability, anti-corrosion, and efficient photocatalysis). Following exposure via various routes including inhalation, injection, dermal deposition and gastrointestinal tract absorption, NPs can be found in various organs in the body potentially inducing toxic effects. Thus more attention to the safety of TiO2 NPs is necessary. Therefore, the present review aims to provide a comprehensive evaluation of the toxic effects induced by TiO2 NPs in the lung, liver, stomach, intestine, kidney, spleen, brain, hippocampus, heart, blood vessels, ovary and testis of mice and rats in in vivo experiments, and evaluate their potential toxic mechanisms. The findings will provide an important reference for human risk evaluation and management following TiO2 NP exposure.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Xiaohong Yu
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| | - Nan Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Yu-Qing Zhang
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| |
Collapse
|
28
|
Yu X, Hong F, Zhang YQ. Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:68-77. [PMID: 27054666 DOI: 10.1016/j.jhazmat.2016.03.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
The evaluation of toxicological effects of nanoparticles (NPs) is increasingly important due to their growing occupational use and presence as compounds in consumer products. Recent researches have demonstrated that long-term exposure to air particulate matter can induce cardiovascular events, but whether cardiovascular disease, such as cardiac damage, is induced by NP exposure and its toxic mechanisms is rarely evaluated. In the present study, when mice were continuously exposed to TiO2 NPs at 2.5, 5 or 10mg/kg BW by intragastric administration for 90days, obvious histopathological changes, and great alterations of NF-κB and its inhibitor I-κB, as well as TNF-α, IL-1β, IL-6 and IFN-α expression were induced. The NPs significantly decreased Ca(2+)-ATPase, Ca(2+)/Mg(2+)-ATPase and Na(+)/K(+)-ATPase activities and enhanced NCX-1 content. The NPs also considerably increased CAMK II and α1/β1-AR expression and up-regulated p-PKCε and p-ERK1/2 in a dose-dependent manner in the mouse heart. These data suggest that low-dose and long-term exposure to TiO2 NPs may cause cardiac damage such as cardiac fragmentation or disordered myocardial fibre arrangement, tissue necrosis, myocardial haemorrhage, swelling or cardiomyocyte hypertrophy, and the inflammatory response was potentially mediated by NF-κB activation via the PKCε or ERK1/2 signalling cascades in mice.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China.
| |
Collapse
|
29
|
Ze X, Su M, Zhao X, Jiang H, Hong J, Yu X, Liu D, Xu B, Sheng L, Zhou Q, Zhou J, Cui J, Li K, Wang L, Ze Y, Hong F. TiO2 nanoparticle-induced neurotoxicity may be involved in dysfunction of glutamate metabolism and its receptor expression in mice. ENVIRONMENTAL TOXICOLOGY 2016; 31:655-662. [PMID: 25411160 DOI: 10.1002/tox.22077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been used in environmental management, food, medicine, and industry. But TiO2 NPs have been demonstrated to cross the blood-brain barrier and store up in the brain organization, leading to glutamate-mediated neurotoxicity. However, the neurotoxicity in the brain is not well understood. In this study, mice were exposed to 1.25, 2.5, or 5 mg/kg body weight TiO2 NPs for 9 months, and the glutamate-glutamine cyclic pathway and expressions of glutamate receptors associated with the hippocampal neurotoxicity were investigated. Our findings showed elevations of glutamate release and phosphate-activated glutaminase activity, and reductions in glutamine and glutamine synthetase in the hippocampus following exposure to TiO2 NPs. Furthermore, TiO2 NPs significantly inhibited the expression of N-methyl-d-aspartate receptor subunits (including NR1, NR2A, and NR2B) and metabotropic glutamate receptor 2 in mouse hippocampus. These findings suggest that the imbalance of glutamate metabolism triggered inhibitions of glutamate receptor expression in the TiO2 NP-exposed hippocampus. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 655-662, 2016.
Collapse
Affiliation(s)
- Xiao Ze
- Medical College of Soochow University, Suzhou, 215123, China
| | - Mingyu Su
- Suzhou Environmental Monitor Center, Suzhou, 215004, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou, 215123, China
| | - Hao Jiang
- Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Sheng
- Medical College of Soochow University, Suzhou, 215123, China
| | - Qiuping Zhou
- Medical College of Soochow University, Suzhou, 215123, China
| | - Junling Zhou
- Medical College of Soochow University, Suzhou, 215123, China
| | - Jingwen Cui
- Medical College of Soochow University, Suzhou, 215123, China
| | - Kai Li
- Medical College of Soochow University, Suzhou, 215123, China
| | - Ling Wang
- Library of Soochow University, Suzhou, 215021, China
| | - Yuguan Ze
- Medical College of Soochow University, Suzhou, 215123, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou, 215123, China
| |
Collapse
|
30
|
Devoy J, Brun E, Cosnefroy A, Disdier C, Melczer M, Antoine G, Chalansonnet M, Mabondzo A. Mineralization of TiO2 nanoparticles for the determination of titanium in rat tissues. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816040043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Sheng L, Wang L, Su M, Zhao X, Hu R, Yu X, Hong J, Liu D, Xu B, Zhu Y, Wang H, Hong F. Mechanism of TiO2 nanoparticle-induced neurotoxicity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2016; 31:163-175. [PMID: 25059219 DOI: 10.1002/tox.22031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/07/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish (Danio rerio) has been used historically for evaluating the toxicity of environmental and aqueous toxicants, and there is an emerging literature reporting toxic effects of manufactured nanoparticles (NPs) in zebrafish embryos. Few researches, however, are focused on the neurotoxicity on adult zebrafish after subchronic exposure to TiO2 NPs. This study was designed to evaluate the morphological changes, alterations of neurochemical contents, and expressions of memory behavior-related genes in zebrafish brains caused by exposures to 5, 10, 20, and 40 μg/L TiO2 NPs for 45 consecutive days. Our data indicated that spatial recognition memory and levels of norepinephrine, dopamine, and 5-hydroxytryptamine were significantly decreased and NO levels were markedly elevated, and over proliferation of glial cells, neuron apoptosis, and TiO2 NP aggregation were observed after low dose exposures of TiO2 NPs. Furthermore, the low dose exposures of TiO2 NPs significantly activated expressions of C-fos, C-jun, and BDNF genes, and suppressed expressions of p38, NGF, CREB, NR1, NR2ab, and GluR2 genes. These findings imply that low dose exposures of TiO2 NPs may result in the brain damages in zebrafish, provide a developmental basis for evaluating the neurotoxicity of subchronic exposure, and raise the caution of aquatic application of TiO2 NPs.
Collapse
Affiliation(s)
- Lei Sheng
- Medical College of Soochow University, Suzhou, 215123, China
| | - Ling Wang
- Libary of Soochow University, Suzhou, 215021, China
| | - Mingyu Su
- Medical College of Soochow University, Suzhou, 215123, China
- Suzhou Environmental Monitor Center, Suzhou, 215004, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou, 215123, China
| | - Renping Hu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou, 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Yunting Zhu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Han Wang
- Medical College of Soochow University, Suzhou, 215123, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou, 215123, China
| |
Collapse
|
32
|
Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:645-54. [PMID: 27335754 PMCID: PMC4901937 DOI: 10.3762/bjnano.7.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/21/2016] [Indexed: 05/09/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.
Collapse
Affiliation(s)
- Bin Song
- Guizhou Provincial People’s Hospital, Guiyang 550002, China
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Zhou
- Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
33
|
Hong F, Zhao X, Si W, Ze Y, Wang L, Zhou Y, Hong J, Yu X, Sheng L, Liu D, Xu B, Zhang J. Decreased spermatogenesis led to alterations of testis-specific gene expression in male mice following nano-TiO2 exposure. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:718-728. [PMID: 26296075 DOI: 10.1016/j.jhazmat.2015.08.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 05/28/2023]
Abstract
Although TiO2 nanoparticles (NPs) exposure has been demonstrated to cross blood-testis barrier and accumulate in the testis resulting in the reduction of sperm numbers, limited data with respect to the molecular mechanism of decreased spermatogenesis caused by TiO2 NP exposure. In this research, testicular damage, sperm number and alterations in testis-specific gene expressions in male mice induced by intragastric administration with TiO2 NPs for six months were investigated. It was found out that TiO2 NPs could migrate to cells, deposit in the testis and epididymis and thus cause damages to relevant organs, which are, to be more specific, the reductions of total sperm concentrations and sperm motility and an enhancement in the number of abnormal sperms in the cauda epididymis. Furthermore, the individual expression regarding to the mRNAs and proteins of testis-specific genes, including Cdc2, Cyclin B1, Dmcl, TERT, Tesmin, TESP-1, XPD and XRCCI, were significantly declined, whereas Gsk3-β and PGAM4 expressions were greatly elevated in mouse testis due to the exposures, which in fact implied that the reduced spermatogenesis may be involved in the alternated testis-specific gene expressions in those exposed male mice.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China; School of Life Sciences, Huaiyin Normal University, Huaian 223300, China.
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou 215123, China
| | - Wenhui Si
- Key Laboratory of Agricultural and Animal Products Processing and Quality Control, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Yuguan Ze
- Medical College of Soochow University, Suzhou 215123, China
| | - Ling Wang
- Library of Soochow University, Suzhou 215123, China
| | - Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China; School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou 215123, China
| | - Lei Sheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou 215123, China
| | - Jianhao Zhang
- Key Laboratory of Agricultural and Animal Products Processing and Quality Control, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Song B, Liu J, Feng X, Wei L, Shao L. A review on potential neurotoxicity of titanium dioxide nanoparticles. NANOSCALE RESEARCH LETTERS 2015; 10:1042. [PMID: 26306536 PMCID: PMC4549355 DOI: 10.1186/s11671-015-1042-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/27/2015] [Indexed: 05/24/2023]
Abstract
As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.
Collapse
Affiliation(s)
- Bin Song
- />Guizhou Provincial People’s Hospital, Guiyang, 550002 China
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoli Feng
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Limin Wei
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Longquan Shao
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
35
|
Strickland JD, Lefew WR, Crooks J, Hall D, Ortenzio JNR, Dreher K, Shafer TJ. In vitroscreening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays. Nanotoxicology 2015; 10:619-28. [DOI: 10.3109/17435390.2015.1107142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Krawczyńska A, Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Herman AP, Oczkowski M, Królikowski T, Wilczak J, Wojewódzka M, Kruszewski M. Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin–angiotensin system in brain. Food Chem Toxicol 2015; 85:96-105. [DOI: 10.1016/j.fct.2015.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022]
|
37
|
Hong F, Si W, Zhao X, Wang L, Zhou Y, Chen M, Ge Y, Zhang Q, Wang Y, Zhang J. TiO2 Nanoparticle Exposure Decreases Spermatogenesis via Biochemical Dysfunctions in the Testis of Male Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7084-92. [PMID: 26145168 DOI: 10.1021/acs.jafc.5b02652] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
TiO2 nanoparticles (NPs) have been demonstrated to suppress spermatogenesis in animals, while there is little data related to the biochemical dysfunctions during spermatogenesis due to exposure to TiO2 NPs. In this study, male mice have been exposed to TiO2 NPs via intragastric administration for 60 consecutive days. The findings showed that TiO2 NP exposure resulted in lesions of testis and epididymis, deductions in sperm concentration and sperm motility, and an increase of the number of abnormal sperm in mice. Furthermore, TiO2 NP exposure with 2.5, 5, or 10 mg/kgbw decreased activities of lactate dehydrogenase (-11.59% to -39.84%), sorbitol dehydrogenase (-23.56% to -57.33%), succinate dehydrogenase (-27.04% to -57.85%), glucose-6-phosphate dehydrogenase (-28.3% to -56.42%), Na(+)/K(+)-ATPase (-15.59% to -53.11%), Ca(2+)-ATPase (-12.44% to -55.41%), and Ca(2+)/Mg(2+)-ATPase (-28.25% to -65.72%), and elevated activities of acid phosphatase (+10.48% to +40.0%), alkaline phosphatase (+20.65% to +64.07%), and total nitric oxide synthase (+0.68- to +2.3-fold) in the testes of mice, respectively. In addition, TiO2 NP exposure caused excessive production of reactive oxygen species (+16.15% to +110.62%), and increased malondialdehyde of lipid peroxidation product (+38.96% to +118.07%), carbonyl of protein oxidative product (+20.98% to +108.1%), and 8-hydroxydeoxyguanosine of DNA oxidative product (+0.9- to +1.83-fold) in the testes, respectively. It implied that spermatogenesis suppression caused by TiO2 NP exposure may be associated with alterations of testicular marked enzymes and oxidative stress in the testes.
Collapse
Affiliation(s)
| | - Wenhui Si
- ⊥Key Laboratory of Agricultural and Animal Products Processing and Quality Control, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- #Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Xiaoyang Zhao
- ▽Medical College of Soochow University, Suzhou 215123, China
| | - Ling Wang
- ¶Library of Soochow University, Suzhou, China, Suzhou 215123, China
| | | | | | | | | | | | - Jianhao Zhang
- ⊥Key Laboratory of Agricultural and Animal Products Processing and Quality Control, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
38
|
Czajka M, Sawicki K, Sikorska K, Popek S, Kruszewski M, Kapka-Skrzypczak L. Toxicity of titanium dioxide nanoparticles in central nervous system. Toxicol In Vitro 2015; 29:1042-52. [PMID: 25900359 DOI: 10.1016/j.tiv.2015.04.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/25/2015] [Accepted: 04/02/2015] [Indexed: 11/19/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have found many practical applications in industry and daily life. A widespread application of TiO2 NPs rises the question about safety of their use in the context of potential occupational, environmental and intentional exposure of humans and biota. TiO2 NPs easily enter the body through inhalation, cross blood-brain barrier and accumulate in the brain, especially in the cortex and hippocampus. Toxicity of these NPs and the molecular mechanisms of their action have been studied extensively in recent years. Studies showed that TiO2 NPs exposure resulted in microglia activation, reactive oxygen species production, activation of signaling pathways involved in inflammation and cell death, both in vitro and in vivo. Consequently, such action led to neuroinflammation, further brain injury. A spatial recognition memory and locomotor activity impairment has been also observed.
Collapse
Affiliation(s)
- Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Katarzyna Sikorska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Sylwia Popek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland; Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland; Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, Rzeszów, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland; Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, Rzeszów, Poland
| |
Collapse
|
39
|
Hong F, Sheng L, Ze Y, Hong J, Zhou Y, Wang L, Liu D, Yu X, Xu B, Zhao X, Ze X. Suppression of neurite outgrowth of primary cultured hippocampal neurons is involved in impairment of glutamate metabolism and NMDA receptor function caused by nanoparticulate TiO2. Biomaterials 2015; 53:76-85. [PMID: 25890708 DOI: 10.1016/j.biomaterials.2015.02.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 12/17/2022]
Abstract
Numerous studies have indicated that nano-titanium dioxide (TiO2) can induce neurotoxicity in vitro and in vivo, however, it is unclear whether nano-TiO2 affects neurite outgrowth of hippocampal neurons. In order to investigate the mechanism of neurotoxicity, rat primary cultured hippocampal neurons on the fourth day of culture were exposed to 5, 15, and 30 μg/mL nano-TiO2 for 24 h, and nano-TiO2 internalization, dendritic growth, glutamate metabolism, expression of N-methyl-D-aspartate (NMDA) receptor subunits (NR1, NR2A and NR2B), calcium homeostasis, sodium current (INa) and potassium current (IK) were examined. Our findings demonstrated that nano-TiO2 crossed the membrane into the cytoplasm or nucleus, and significantly suppressed dendritic growth of primary cultured hippocampal neurons in a concentration-dependent manner. Furthermore, nano-TiO2 induced a marked release of glutamate to the extracellular region, decreased glutamine synthetase activity and increased phosphate-activated glutaminase activity, elevated intracellular calcium ([Ca(2+)]i), down-regulated protein expression of NR1, NR2A and NR2B, and increased the amplitudes of the INa and IK. In addition, nano-TiO2 increased nitric oxide and nitrice synthase, attenuated the activities of Ca(2+)-ATPase and Na(+)/K(+)-ATPase, and increased the ADP/ATP ratio in the primary neurons. Taken together, these findings indicate that nano-TiO2 inhibits neurite outgrowth of hippocampal neurons by interfering with glutamate metabolism and impairing NMDA receptor function.
Collapse
Affiliation(s)
- Fashui Hong
- School of Life Science, Huaiyin Normal University, Huaian 223300, China.
| | - Lei Sheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Yuguan Ze
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou 215123, China
| | - Yingjun Zhou
- School of Life Science, Huaiyin Normal University, Huaian 223300, China
| | - Ling Wang
- Library of Soochow University, Suzhou 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiao Ze
- Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
40
|
PEGylated carbon nanotubes impair retrieval of contextual fear memory and alter oxidative stress parameters in the rat hippocampus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:104135. [PMID: 25738149 PMCID: PMC4337111 DOI: 10.1155/2015/104135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 11/17/2022]
Abstract
Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.
Collapse
|
41
|
Savabieasfahani M, Alaani S, Tafash M, Dastgiri S, Al-Sabbak M. Elevated titanium levels in Iraqi children with neurodevelopmental disorders echo findings in occupation soldiers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:4127. [PMID: 25446717 PMCID: PMC4250563 DOI: 10.1007/s10661-014-4127-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Anthropogenic release of pollutants into the environment is especially harmful to growing fetuses and young children. These populations are at an increased risk of damage because exposure to pollutants during critical periods of development can cause many impairments. Children's exposure to mixtures of metals could be responsible for the rising numbers of neurological disorders surfacing in Iraqi children. Titanium (Ti) and magnesium (Mg) are heavily used in war industries. Exposure to Ti and Mg has been linked to the dust in occupation soldiers' lungs. Hair samples of children in Hawija, Iraq (n = 13) contained significantly higher levels of Ti compared to Iranian children (n = 13) living near the Iraqi border (2080 ± 940 vs 707 ± 421 μg/kg, p < 0.0001). Magnesium was 1.7 times higher in Hawija children compared to Iranian children (115,763 ± 118,155 vs 67,650 ± 46,729 μg/kg). In samples from Hawija, Ti was 1.3 times higher in children with neurodevelopmental disorders (2198 ± 1108 vs 1942 ± 779 μg/kg), and Mg was 1.9 times higher in children without neurodevelopmental disorders (155,618 ± 140,791 vs 81,602 ± 91,940 μg/kg). Lead, arsenic, and cadmium in Hawija children with neurodevelopmental disorders (n = 6) were 2.5, 2.2, and 1.37 times higher compared to non-disabled children (n = 7). To get a clear understanding of the current status of neurodevelopmental disorders in Iraqi children and to determine the magnitude of this suspected global health issue, registries should be set up to compile and aggregate data from hospitals, clinics, and health centers across the country. Functional registries can develop collaborations with researchers toward finding causes of these disorders in Iraqi children and toward preventing them.
Collapse
Affiliation(s)
| | - S. Alaani
- Fallujah General Hospital, Althubbadh District, Fallujah, 00964 Iraq
| | - M. Tafash
- Medical College, Al-Anbar University, Fallujah, 00964 Iraq
| | - S. Dastgiri
- Department of Community and Family Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166615739 Iran
| | - M. Al-Sabbak
- Department of Obstetrics and Gynecology, Basra Maternity Hospital, Basra Medical School, P.O. Box 1633, Basra, Iraq
| |
Collapse
|
42
|
Su M, Sheng L, Zhao X, Wang L, Yu X, Hong J, Xu B, Liu D, Jiang H, Ze X, Zhu Y, Long Y, Zhou J, Cui J, Li K, Ze Y, Hong F. Involvement of neurotrophins and related signaling genes in TiO2 nanoparticle – induced inflammation in the hippocampus of mice. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00106k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in industry and daily life; their potential neurotoxic effects are of great concern.
Collapse
|
43
|
Abstract
Research links air pollution mostly to respiratory and cardiovascular disease. The effects of air pollution on the central nervous system (CNS) are not broadly recognized. Urban outdoor pollution is a global public health problem particularly severe in megacities and in underdeveloped countries, but large and small cities in the United States and the United Kingom are not spared. Fine and ultrafine particulate matter (UFPM) defined by aerodynamic diameter (<2.5-μm fine particles, PM2.5, and <100-nm UFPM) pose a special interest for the brain effects given the capability of very small particles to reach the brain. In adults, ambient pollution is associated to stroke and depression, whereas the emerging picture in children show significant systemic inflammation, immunodysregulation at systemic, intratechal and brain levels, neuroinflammation and brain oxidative stress, along with the main hallmarks of Alzheimer and Parkinson's diseases: hyperphosphorilated tau, amyloid plaques and misfolded α-synuclein. Animal models exposed to particulate matter components show markers of both neuroinflammation and neurodegeneration. Epidemiological, cognitive, behavioral and mechanistic studies into the association between air pollution exposures and the development of CNS damage particularly in children are of pressing importance for public health and quality of life. Primary health providers have to include a complete prenatal and postnatal environmental and occupational history to indoor and outdoor toxic hazards and measures should be taken to prevent or reduce further exposures.
Collapse
|
44
|
Sheng L, Wang L, Sang X, Zhao X, Hong J, Cheng S, Yu X, Liu D, Xu B, Hu R, Sun Q, Cheng J, Cheng Z, Gui S, Hong F. Nano-sized titanium dioxide-induced splenic toxicity: a biological pathway explored using microarray technology. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:180-188. [PMID: 24968254 DOI: 10.1016/j.jhazmat.2014.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 06/01/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various areas, and its potential toxicity has gained wide attention. However, the molecular mechanisms of multiple genes working together in the TiO2 NP-induced splenic injury are not well understood. In the present study, 2.5, 5, or 10mg/kg body weight TiO2 NPs were administered to the mice by intragastric administration for 90 consecutive days, their immune capacity in the spleen as well as the gene-expressed characteristics in the mouse damaged spleen were investigated using microarray assay. The findings showed that with increased dose, TiO2 NP exposure resulted in the increases of spleen indices, immune dysfunction, and severe macrophage infiltration as well as apoptosis in the spleen. Importantly, microarray data showed significant alterations in the expressions of 1041 genes involved in immune/inflammatory responses, apoptosis, oxidative stress, stress responses, metabolic processes, ion transport, signal transduction, cell proliferation/division, cytoskeleton and translation in the 10 mg/kg TiO2 NP-exposed spleen. Specifically, Cyp2e1, Sod3, Mt1, Mt2, Atf4, Chac1, H2-k1, Cxcl13, Ccl24, Cd14, Lbp, Cd80, Cd86, Cd28, Il7r, Il12a, Cfd, and Fcnb may be potential biomarkers of spleen toxicity following exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Lei Sheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Ling Wang
- Library of Soochow University, Suzhou 215123, China
| | - Xuezi Sang
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou 215123, China
| | - Shen Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou 215123, China
| | - Renping Hu
- Medical College of Soochow University, Suzhou 215123, China
| | - Qingqing Sun
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Zhe Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Suxin Gui
- Medical College of Soochow University, Suzhou 215123, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
45
|
Sheng L, Ze Y, Wang L, Yu X, Hong J, Zhao X, Ze X, Liu D, Xu B, Zhu Y, Long Y, Lin A, Zhang C, Zhao Y, Hong F. Mechanisms of TiO2 nanoparticle-induced neuronal apoptosis in rat primary cultured hippocampal neurons. J Biomed Mater Res A 2014; 103:1141-9. [PMID: 25045142 DOI: 10.1002/jbm.a.35263] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 01/26/2023]
Abstract
Exposure to titanium dioxide nanoparticles (TiO2 NPs) has been demonstrated to decrease learning and memory of animals. However, whether the impacts of these NPs on the recognition function are involved in hippocamal neuron damages is poorly understood. In this study, primary cultured hippocampal neurons from one-day-old fetal Sprague-Dawley rats were exposed to 5, 15, or 30 µg/mL TiO2 NPs for 24 h, we investigated cell viability, ultrastructure, and mitochondrial membrane potential (MMP), calcium homeostasis, oxidative stress, antioxidant capacity, apoptotic signaling pathway associated with the primary cultured hippocamal neuron apoptosis. Our findings showed that TiO2 NP treatment resulted in reduction of cell viability, promoted lactate dehydrogenase release, apoptosis, and increased neuron apoptotic rate in a dose-dependent manner. Furthermore, TiO2 NPs led to [Ca(2+)]i elevation, and MMP reduction, up-regulated protein expression of cytochrome c, Bax, caspase-3, glucose-regulated protein 78, C/EBP homologous protein and caspase-12, and down-regulated bcl-2 expression in the primary cultured hippocampal neurons. These findings suggested that hippocampal neuron apoptosis caused by TiO2 NPs may be associated with mitochondria-mediated signal pathway and endoplasmic reticulum-mediated signal pathway.
Collapse
Affiliation(s)
- Lei Sheng
- Medical College of Soochow University, Suzhou, 215123, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ze Y, Sheng L, Zhao X, Hong J, Ze X, Yu X, Pan X, Lin A, Zhao Y, Zhang C, Zhou Q, Wang L, Hong F. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS One 2014; 9:e92230. [PMID: 24658543 PMCID: PMC3962383 DOI: 10.1371/journal.pone.0092230] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/19/2014] [Indexed: 12/11/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been used in various medical and industrial areas. However, the impacts of these nanoparticles on neuroinflammation in the brain are poorly understood. In this study, mice were exposed to 2.5, 5, or 10 mg/kg body weight TiO2 NPs for 90 consecutive days, and the TLRs/TNF-α/NF-κB signaling pathway associated with the hippocampal neuroinflammation was investigated. Our findings showed titanium accumulation in the hippocampus, neuroinflammation and impairment of spatial memory in mice following exposure to TiO2 NPs. Furthermore, TiO2 NPs significantly activated the expression of Toll-like receptors (TLR2, TLR4), tumor necrosis factor-α, nucleic IκB kinase, NF-κB-inducible kinase, nucleic factor-κB, NF-κB2(p52), RelA(p65), and significantly suppressed the expression of IκB and interleukin-2. These findings suggest that neuroinflammation may be involved in TiO2 NP-induced alterations of cytokine expression in mouse hippocampus. Therefore, more attention should be focused on the application of TiO2 NPs in the food industry and their long-term exposure effects, especially in the human central nervous system.
Collapse
Affiliation(s)
- Yuguan Ze
- Medical College of Soochow University, Suzhou, China
| | - Lei Sheng
- Medical College of Soochow University, Suzhou, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou, China
| | - Xiao Ze
- Medical College of Soochow University, Suzhou, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou, China
| | - Xiaoyu Pan
- Medical College of Soochow University, Suzhou, China
| | - Anan Lin
- Medical College of Soochow University, Suzhou, China
| | - Yue Zhao
- Medical College of Soochow University, Suzhou, China
| | - Chi Zhang
- Medical College of Soochow University, Suzhou, China
| | - Qiuping Zhou
- Medical College of Soochow University, Suzhou, China
| | - Ling Wang
- Medical College of Soochow University, Suzhou, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou, China
- Jiangsu Province Key Laboratory of Stem Cell Research, Soochow University, Suzhou, China
- Cultivation Base of State Key Laboratory of Stem Cell and Biomaterials Built Together by Ministry of Science and Technology and Jiangsu Province, Suzhou, China
| |
Collapse
|