1
|
Coelho DG, da Silva VM, Martins AO, de Araújo HH, de Souza Miranda R, Araújo EF, Uesugi VI, Dos Santos Farnese F, Araújo WL, de Oliveira JA. Unraveling the unique and associated physiological challenges of iron, manganese and arsenic on Pistia stratiotes L. for phytoremediation of multi-contaminated water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179517. [PMID: 40315547 DOI: 10.1016/j.scitotenv.2025.179517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
In contaminated environments, the interaction of multiple elements, such as iron (Fe), manganese (Mn), and arsenic (As), is common, particularly in areas affected by ore tailings dam failures. Understanding how these pollutants affect plant physiology is crucial for improving phytoremediation processes. We investigated the physiological responses and bioaccumulation of these elements in water lettuce (Pistia stratiotes). Plants were subjected to eight treatments, including (1) control (nutrient solution only); (2) Fe, (3) Mn, (4) As, (5) Fe + Mn, (6) Fe + As, (7) Mn + As, and (8) Fe + Mn + As, with five repetitions, and assessed after 10 days. Toxicity symptoms included necrosis, chlorosis, and root loss. Although the accumulation of pollutants in tissues was unaffected by element combinations, nutrient content in roots decreased, and structural changes were observed. Despite no significant photochemical changes, CO2 assimilation dropped in all but Mn-treated plants. Treatments also led to sugar and starch accumulation in shoots and reduced levels in roots, suggesting impaired sucrose transport. Antioxidant enzyme activities were significantly induced, particularly in Fe and Fe-associated treatments, helping maintain redox balance and mitigate oxidative stress. Our findings indicate that the combination of metallic elements does not pose an additional challenge to phytoremediation using water lettuce in aquatic environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Brazil
| | | |
Collapse
|
2
|
Xiao X, Li X, Zhang X, Wang C, Liu X, Bai J, Zhang R, Cao S, Hu J, Liu Z, Shen J. Optimization strategy for Cr(VI) removal in coke-based modular constructed wetlands: A comprehensive analysis of purification efficiency, removal mechanisms, and practical feasibility. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125231. [PMID: 40188748 DOI: 10.1016/j.jenvman.2025.125231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/27/2025]
Abstract
To address Cr(VI) contamination, this study designed a modular-filled constructed wetland (MFCW) by optimizing the sequence of coke, bio-ceramic, gravel and zeolite fillers. Results demonstrated that the "coke-bio-ceramic-gravel-zeolite" configuration achieved an average Cr(VI) removal efficiency of 90 %, with effluent concentrations stabilized at 0.16 mg/L (below China's discharge limit of 0.5 mg/L). The coke module contributed 52.1 % removal via adsorption (139.86 mg/kg capacity) and chemical reduction. Microbial analysis revealed Cr-resistant Proteobacteria dominance (30.4 % contribution), while plants (Acorus calamus) enhanced rhizosphere reduction (1.5 %). The system also removed NH4+-N (96.0 %), TP (63.0 %) and COD (71.0 %), with modular design reducing operational costs by 32.2 %. The study innovatively proposes a coke-dominated multi-fillers sequential synergistic mechanism, providing an efficient and low-cost ecological solution for industrial wastewater treatment.
Collapse
Affiliation(s)
- Xinlu Xiao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xuhao Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Chen Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoting Liu
- PowerChina Hubei Electric Engineering Co., Ltd, Wuhan, 430040, China
| | - Jing Bai
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Rong Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Shilong Cao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiezhou Hu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenchao Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Jun Shen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
3
|
Gómez-Ensastegui C, Avila-Pérez P, García-Rivas JL, Barrera-Díaz CE, Ortiz-Oliveros HB, Martínez-Gallegos S. Evaluation of an aquatic liverwort and terrestrial moss as biomonitors of heavy metals associated with particulate matter. Sci Rep 2025; 15:4127. [PMID: 39900995 PMCID: PMC11791086 DOI: 10.1038/s41598-025-88348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
In this study, the capacity of the aquatic liverwort Ricciocarpus natans L. and the terrestrial moss Entodon serrulatus Mitt. as biomonitors of heavy metals associated with particulate matter from a highly polluted urban area was evaluated, and concentrations in moss tissues were correlated with concentrations of PM10 and PM2.5 present in the atmosphere. The two species were exposed by the moss bag technique to the pollution of the Toluca Valley Metropolitan Area (TVMA) for two periods of 6 months, using the sites of the Automatic Atmospheric Monitoring Network of the Government of the State of Mexico, and were subsequently analyzed using elemental and structural characterization techniques. The results show that mainly the functional groups -OH and -NH, N-H and C-O on the surface of the liverwort and moss participate in the adsorption of heavy elements. The average enrichment factors of Cd and Pb show to be highly enriched (> 10) in the study area while chromium is not enriched (< 2). The statistical results indicate a temporary variation in the concentration of metals and particles in the atmosphere, where there is a lower concentration of these pollutants in the rainy and dry-cold season and a higher concentration in the dry-hot season and a possible association of Cr and Cd with PM10 and PM2.5. In addition, except for Cr, both species accumulate the metals associated with airborne particulate matter at equivalent levels. There is strong association between PM2.5 and PM10 particles and between the metals Cr-Pb-Fe in R. natans and between PM2.5-PM10 and Fe and between Cd-Cr-Pb in E. serrulatus and these pollutants are mainly associated with sampling sites with the highest concentrations of metals in the TVMA. Although terrestrial moss showed slightly better characteristics than aquatic liverwort as a biomonitor of heavy metals associated with atmospheric particles, these differences were not statistically significant for all metals, so both species could be useful for heavy metal biomonitoring in highly polluted urban areas.
Collapse
Affiliation(s)
- Clara Gómez-Ensastegui
- Division of Graduate Studies and Research, Technological Institute of Toluca, Metepec, C.P. 50120, México
| | - Pedro Avila-Pérez
- Joint Research Center on Sustainable Chemistry UAEM - UNAM, Estado de México, Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, Toluca, C.P. 50200, Mexico.
| | - José Luis García-Rivas
- Division of Graduate Studies and Research, Technological Institute of Toluca, Metepec, C.P. 50120, México
| | - Carlos Eduardo Barrera-Díaz
- Joint Research Center on Sustainable Chemistry UAEM - UNAM, Estado de México, Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, Toluca, C.P. 50200, Mexico
| | | | - Sonia Martínez-Gallegos
- Division of Graduate Studies and Research, Technological Institute of Toluca, Metepec, C.P. 50120, México
| |
Collapse
|
4
|
Marzi D, Valente F, Luche S, Caissutti C, Sabia A, Capitani I, Capobianco G, Serranti S, Masi A, Panozzo A, Ricci A, Bolla PK, Vamerali T, Brunetti P, Visioli G. Phytoremediation of perfluoroalkyl and polyfluoroalkyl substances (PFAS): Insights on plant uptake, omics analysis, contaminant detection and biomass disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178323. [PMID: 39756293 DOI: 10.1016/j.scitotenv.2024.178323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
The unique properties of per- and polyfluoroalkyl substances (PFAS) have driven their pervasive use in different industrial applications, leading to substantial environmental pollution and raising critical concerns about the long-term impacts on ecosystem and human health. To tackle the global challenge of PFAS contamination, there is an urgent need for sustainable and efficient remediation strategies. Phytoremediation has emerged as a promising eco-friendly approach with the potential to mitigate the spread of these persistent contaminants. However, addressing this complex issue requires interdisciplinary cutting-edge research to develop comprehensive and scalable solutions for effective PFAS management. This review highlights recent advancements in the detection, quantification, and monitoring of PFAS uptake by plants, providing a detailed description of PFAS accumulation in several plant species. Besides, the physiological and molecular responses elicited by these pollutants are described. Leveraging omic technologies, including genomics, transcriptomics, and proteomics, provides unprecedented insights into the plant-PFAS interaction. Novel approaches based on artificial intelligence to predict this interaction and up to date disposal and valorization methods for PFAS-contaminated plant biomass, are discussed here. This review offers an interdisciplinary approach to explore what has been discovered so far about PFAS phytoremediation, covering the entire process from contaminant uptake to sustainable disposal, providing a roadmap for future research.
Collapse
Affiliation(s)
- Davide Marzi
- Research Institute on Terrestrial Ecosystems - National Research Council (IRET-CNR), 00015, Monterotondo Scalo, Rome, Italy; National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Francesco Valente
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Sophia Luche
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43100 Parma, Italy
| | - Cristina Caissutti
- Research Institute on Terrestrial Ecosystems - National Research Council (IRET-CNR), 00015, Monterotondo Scalo, Rome, Italy
| | - Andrea Sabia
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Ilaria Capitani
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Giuseppe Capobianco
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Silvia Serranti
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Anna Panozzo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Ada Ricci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43100 Parma, Italy
| | - Pranay Kumar Bolla
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Patrizia Brunetti
- Research Institute on Terrestrial Ecosystems - National Research Council (IRET-CNR), 00015, Monterotondo Scalo, Rome, Italy.
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43100 Parma, Italy
| |
Collapse
|
5
|
Cay S, Yayla B, Uyanik A. Performance of Persicaria amphibia (L.) for Phytoremediation of Heavy Metals Contaminated Water. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 114:13. [PMID: 39702821 DOI: 10.1007/s00128-024-03991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Fast-paced global industrialization due to population growth poses negative water implications, such as pollution by heavy metals. Phytoremediation is deemed as an efficient and environmentally friendly alternative which utilizes different types of hyperaccumulator plants known as macrophytes for the removal of heavy metal pollutants from contaminated water. In this study, the removal of Cu(II), Ni(II), Pb(II), and Cd(II) heavy metal ions contaminated water was studied by using an aquatic plant, Persicaria amphibia (L.) collected from Ladik Lake, Samsun, Turkiye. The experiments were carried out hydroponically in the laboratory conditions. Synthetic heavy metals contaminated water (5, 10, 25, 50, 100 mg kg- 1), and domestic and industrial water were used in the experiments. The domestic and industrial water samples were taken from Aksu and Batlama streams in Giresun province. All physical plant changes were noted, and pH, conductivity, and dissolved oxygen levels of the hydroponic system were measured regularly during the experiments. In order to determine the effects of heavy metals on the plant, the chlorophyll (a, b and total) and carotenoid contents as well as the biomass of the plant, were measured. According to the phytoremediation experiments the amounts of accumulated heavy metals in plants were found as Cd(II) > Ni(II) > Cu(II) > Pb(II) in single systems and as Cd(II) > Ni(II) > Pb(II) > Cu(II) in competitive systems. The maximum amounts of heavy metals accumulated in plants were determined as 171 ± 9 mg kg-1 for Cd(II), 143 ± 7 mg kg-1 for Ni(II), 134 ± 8 mg kg-1 for Cu(II) and 55 ± 4 mg kg-1 for Pb(II). In addition, bioconcentration factor (BCF) values were calculated to make comparisons with the phytoextraction potential of the plant. This study emphasizes the importance of P. amphibia with high bioaccumulation potential for phytoremediation and suggests that it could be employed to restore water in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Seydahmet Cay
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Güre, Giresun, 28200, Türkiye.
| | - Bahar Yayla
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Güre, Giresun, 28200, Türkiye
| | - Ahmet Uyanik
- Department of Chemistry, Faculty of Science, Ondokuz Mayıs University, Kurupelit, Samsun, 55139, Türkiye
| |
Collapse
|
6
|
Chen G, Pan T, Gao D, Liao H, Wang J. Enhanced competitiveness of Spirodela polyrhiza in co-culture with Salvinia natans under combined exposure to polystyrene nanoplastics and polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176870. [PMID: 39414046 DOI: 10.1016/j.scitotenv.2024.176870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Micro- and nanoplastics (MNPs) and polychlorinated biphenyls (PCBs) are prevalent in the environment and pose potential threats to ecosystems. However, studies on the phytotoxicity of MNPs and PCBs on primary producers are limited. This study investigated the effects of polystyrene nanoplastics (PS-NPs, 10 mg/L) and 2,2',5,5'-tetrachlorobiphenyl (PCB-52, 0.1 mg/L), on the growth of Spirodela polyrhiza and Salvinia natans, and their impact on plant competitive ability under co-culture conditions. Laser confocal microscopy images revealed that PS-NPs accumulated on the leaf and root surfaces of both species. Combined exposure to PS-NPs and PCB-52 significantly inhibited the average specific and relative growth rates (RGR) of both species, reduced chlorophyll a and b levels, and slightly increased carotenoid content, disrupting the photosynthetic system. PCB-52 exacerbated PS-NPs accumulation on plants, leading to increased hydrogen peroxide (H2O2) and superoxide anion (O2-) production in both roots and leaves. This affects the activity of superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and the soluble protein content. The combined treatment with PS-NPs and PCB-52 induced greater ecological stress in both species than the treatment with PS-NPs alone. In addition, the combined treatment with PS-NPs and PCB-52 significantly improved the relative yield and competition balance index of S. polyrhiza, indicating that PS-NPs + PCB-52 enhanced the competitive ability of S. polyrhiza when co-cultured with S. natans. This study confirmed the effects of co-exposure to PS-NPs and PCB-52 on aquatic plant growth and species competition, contributing to better insight into the ecological impacts of MNPs and organic pollutants.
Collapse
Affiliation(s)
- Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Riego DA, Sbarato VM, Leani JJ, Sánchez HJ, Carlomagno I, Perez RD. Characterization of copper speciation on waste biomass of phytofiltration systems using energy dispersive Inelastic X-ray scattering. Anal Chim Acta 2024; 1329:343201. [PMID: 39396285 DOI: 10.1016/j.aca.2024.343201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Remediation of heavy metal-contaminated water using phytoremediation with accumulator aquatic plants is a promising low-cost emerging technology that adapts very well to the surrounding ecosystem. For the system to work efficiently, metal-saturated plants must be replaced, producing a potentially toxic amount of biomass that is usually stored dry to reduce its volume. The speciation of the high metal content in this biomass is crucial to define its final destination. This work explores the application of synchrotron-based EDIXS (Energy Dispersive Inelastic X-ray Scattering) to monitor the speciation of copper in regional aquatic plants from a laboratory-scale phytoremediation system. RESULTS The phytofiltration system utilized Lemna minor L. and Salvinia biloba Raddi species grown under controlled conditions of light and nutrient availability. Both species are known hyperaccumulators of copper and are prevalent in lakes and rivers across South America. The validation of EDIXS was previously carried out by comparing the results of copper standard samples with those obtained by XANES. The findings revealed that both plant species retained copper in chemical complexes exhibiting octahedral coordination with a Cu valence of 2. Notably, differences emerged between the leaves and roots of Lemna minor L., suggesting a more pronounced adsorption of copper in its leaves, a trend that intensified with exposure. In opposite, for Salvinia the differences between leaves and roots suggests the presence of specific protective mechanisms to cope the copper exposure. Surprisingly, no significant dependence on copper concentration of the aqueous media was observed for either species. SIGNIFICANCE AND NOVELTY These promising results endorse the viability of the proposed methodology in identifying the most effective fate of biomass generated in phytoremediation systems. EDIXS provides a valid tool for performing local copper speciation in aquatic plants with sufficient selectivity to identify subtle differences in various biological tissues. The simplicity of this methodology renders it a valuable tool for advancing our comprehension of metal speciation within waste biomass, thereby holding significant implications for the development of environmental remediation strategies.
Collapse
Affiliation(s)
- Daniela A Riego
- IFEG (Physics Institute Enrique Gaviola), CONICET (National Research Council Scientific and Technical) Córdoba, Argentina
| | - Viviana M Sbarato
- Faculty of Agronomy. National University of Córdoba. Córdoba, Argentina
| | - Juan José Leani
- IFEG (Physics Institute Enrique Gaviola), CONICET (National Research Council Scientific and Technical) Córdoba, Argentina; Faculty of Mathematics, Physics, Astronomy and Computation. National University of Córdoba. Córdoba, Argentina
| | - Héctor J Sánchez
- IFEG (Physics Institute Enrique Gaviola), CONICET (National Research Council Scientific and Technical) Córdoba, Argentina; Faculty of Mathematics, Physics, Astronomy and Computation. National University of Córdoba. Córdoba, Argentina
| | | | - Roberto Daniel Perez
- IFEG (Physics Institute Enrique Gaviola), CONICET (National Research Council Scientific and Technical) Córdoba, Argentina; Faculty of Mathematics, Physics, Astronomy and Computation. National University of Córdoba. Córdoba, Argentina.
| |
Collapse
|
8
|
Zhang X, Lin Y, Lin H, Yan J. Constructed wetlands and hyperaccumulators for the removal of heavy metal and metalloids: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135643. [PMID: 39191019 DOI: 10.1016/j.jhazmat.2024.135643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Water pollutions of heavy metal and metalloids (HMMs), typically including As, Cd, Cu, Cr, Mn, Ni, Pb, and Zn, are becoming a severe environmental problem to be controlled. Constructed wetlands (CWs) have been intensively investigated and applied for the removal of HMMs. By analyzing a mass of data from the existing literatures, this review found that the HMM removals in CWs varied from 12.35 % to 91.01 %, depending upon the HMM species and CW conditions. Nonetheless, 88.50 % of the influent HMMs were eventually immobilized in the CW sediments, while the common wetland plants are inefficient (i.e., accounting for 4.64 %) to uptake and accumulate the HMMs. It was also found that the concentrations of certain HMMs in the CW sediments have already exceeded up to 100 % of various environmental standards, indicating the urgency of introducing HMM hyperaccumulators in the systems. Through comparison, both the aboveground and belowground HMM accumulating capacities of reported hyperaccumulators were higher by magnitudes than common wetland plants. Following this, the efficacies and mechanisms of candidate hyperaccumulators were provided for the various scenarios of HMM control in CWs. Further, the selection principals, culture methods, and harvest strategies of hyperaccumulator in CWs were discussed. Finally, several perspectives were suggested for the future research. Overall, this review provided guiding information for the utilization of hyperaccumulators in CWs, which can improve the efficiency and sustainability of HMM removal in the CW systems.
Collapse
Affiliation(s)
- Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Yue Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Jun Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
9
|
de Campos Júnior EO, de Campos JMS, Dias RJP, Barros NO. Novelties on tradescantia: Perspectives on water quality monitoring. CHEMOSPHERE 2024; 368:143732. [PMID: 39566690 DOI: 10.1016/j.chemosphere.2024.143732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/26/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
In the face of intense urban expansion, the assessment of water quality plays a crucial role in environmental preservation. Here, we evaluated aquatic genotoxicity in three locations with different degrees of urbanization using Tradescantia pallida var. purpurea and Daphnia magna as bioindicators. The objective was to investigate the influence of urbanization on water quality and the efficiency of the TRAD-MCN biological test in monitoring aquatic genotoxicity. Therefore, we established the genotoxic potential by evaluating micronucleus frequency in T. pallida and immobilization and DNA damage in the standard test with D. magna during two seasons of the year (dry and rainy). Our results showed that the frequency of micronuclei in T. pallida (TRAD-MCN) was significantly higher in the locations with a higher degree of urbanization, independently of the seasons. The tests with D. magna revealed a higher rate of immobilization and DNA damage in the location most impacted by residential and industrial effluents (especially mining activities). Additionally, the TRAD-MCN proved to be equivalent to the standard test for genotoxicity assessment, supporting its potential applicability in environmental monitoring. Finally, we observed that urbanization significantly influences water quality, and among the evaluated physicochemical parameters, dissolved oxygen was shown to be the most important driver of the water quality index (WQI). Our findings have significant implications for water resource management, underlining the need for policies that consider the specificities of different regions. This highlights the robustness, flexibility, and reliability of T. pallida as an environmental monitoring tool.
Collapse
Affiliation(s)
| | | | - Roberto Júnio Pedroso Dias
- Department of Biology, ICB, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Nathan Oliveira Barros
- Department of Biology, ICB, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
10
|
Basit A, Andleeb S, Liaqat I, Ashraf N, Ali S, Naseer A, Nazir A, Kiyani F. Characterization of heavy metal-associated bacteria from petroleum-contaminated soil and their resistogram and antibiogram analysis. Folia Microbiol (Praha) 2024; 69:975-991. [PMID: 38319458 DOI: 10.1007/s12223-024-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
The aim of the current study was to screen and identify heavy metal (chromium, cadmium, and lead) associated bacteria from petroleum-contaminated soil of district Muzaffarabad, Azad Jammu and Kashmir, Pakistan to develop ecofriendly technology for contaminated soil remediation. The petroleum-contaminated soil was collected from 99 different localities of district Muzaffarabad and the detection of heavy metals via an atomic absorption spectrometer. The isolation and identification of heavy metals-associated bacteria were done via traditional and molecular methods. Resistogram and antibiogram analysis were also performed using agar well diffusion and agar disc diffusion methods. The isolated bacteria were classified into species, i.e., B. paramycoides, B. albus, B. thuringiensis, B. velezensis, B. anthracis, B. pacificus Burkholderia arboris, Burkholderia reimsis, Burkholderia aenigmatica, and Streptococcus agalactiae. All heavy metals-associated bacteria showed resistance against both high and low concentrations of chromium while sensitive towards high and low concentrations of lead in the range of 3.0 ± 0.0 mm to 13.0 ± 0.0 mm and maximum inhibition was recorded when cadmium was used. Results revealed that some bacteria showed sensitivity towards Sulphonamides, Norfloxacin, Erythromycin, and Tobramycin. It was concluded that chromium-resistant bacteria could be used as a favorable source for chromium remediation from contaminated areas and could be used as a potential microbial filter.
Collapse
Affiliation(s)
- Abdul Basit
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan.
| | - Iram Liaqat
- Department of Zoology, GC University, Lahore, Pakistan
| | - Nasra Ashraf
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| | - Shaukat Ali
- Department of Zoology, GC University, Lahore, Pakistan
| | - Anum Naseer
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Fahad Kiyani
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| |
Collapse
|
11
|
Ullah MH, Rahman MJ. Adsorptive removal of toxic heavy metals from wastewater using water hyacinth and its biochar: A review. Heliyon 2024; 10:e36869. [PMID: 39281482 PMCID: PMC11400981 DOI: 10.1016/j.heliyon.2024.e36869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Heavy metal contamination in aquatic ecosystems worsens due to rapid industrial expansion. Biochar, an efficient and economical adsorbent, has attracted much interest in environmental science, particularly in removing heavy metals (HMs). The paper covers basic details on biochar, its preparation, and potential chemical and inorganic modifications. Possible adsorption mechanisms of HMs on biochar, which include electrostatic attraction, ion exchange, surface complexation, chemical precipitation, and hydrogen bonding, are also discussed. These mechanisms are affected by the type of biochar used and the species of HMs present. Research findings suggest that while biochar effectively removes HMs, modifications to the carbon-rich hybrid can enhance surface properties such as surface area, pore size, functional groups, etc., and magnetic properties in a few cases, making them more efficient in HM removal. The choice of feedstock materials is one of the key parameters influencing the sorption capacity of biochars. This review aims to investigate the use of various forms of water hyacinth (WH), including aquatic plants, biomass, biochar, and modified biochar, as effective adsorbents for removing HMs from aqueous solutions and industrial effluents through a comparative analysis of their adsorption processes. However, further studies on the diverse effects of functional groups of modified biochar on HMs adsorption are necessary for future research.
Collapse
Affiliation(s)
- M Hedayet Ullah
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Mohammad Jellur Rahman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
12
|
Marques RZ, Oliveira PGD, Barbato ML, Kitamura RSA, Maranho LT, Brito JCM, Nogueira KDS, Juneau P, Gomes MP. Green solutions for antibiotic pollution: Assessing the phytoremediation potential of aquatic macrophytes in wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124376. [PMID: 38897277 DOI: 10.1016/j.envpol.2024.124376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
We compared the ability of one emergent (Sagittaria montevidensis), two floating (Salvinia minima and Lemna gibba), and one heterophyllous species (Myriophyllum aquaticum) to simultaneously remove sulfamethoxazole, sulfadiazine, ciprofloxacin, enrofloxacin, norfloxacin, levofloxacin, oxytetracycline, tetracycline, doxycycline, azithromycin, amoxicillin, and meropenem from wastewater in a mesocosm-scale constructed wetland over 28 days. Antibiotic concentrations in plants and effluent were analyzed using an LC-MS/MS to assess the removal rates and phytoremediation capacities. M. aquaticum did not effectively mitigate contamination due to poor tolerance and survival in effluent conditions. S. minima and L. gibba demonstrated superior efficiency, reducing the antibiotic concentrations to undetectable levels within 14 days, while S. montevidensis achieved this result by day 28. Floating macrophytes emerge as the preferable choice for remediation of antibiotics compared to emergent and heterophyllous species. Antibiotics were detected in plant tissues at concentrations ranging from 0.32 to 29.32 ng g-1 fresh weight, highlighting macrophytes' ability to uptake and accumulate these contaminants. Conversely, non-planted systems exhibited a maximum removal rate of 65%, underscoring the persistence of these molecules in natural environments, even after the entire experimental period. Additionally, macrophytes improved effluent quality regardless of species by reducing total soluble solids and phosphate concentrations and mitigating ecotoxicological effects. This study underscores the potential of using macrophytes in wastewater treatment plants to enhance overall efficiency and prevent environmental contamination by antibiotics, thereby mitigating the harmful impact on biota and antibiotic resistance. Selecting appropriate plant species is crucial for successful phytoremediation in constructed wetlands, and actual implementation is essential to validate their effectiveness and practical applicability.
Collapse
Affiliation(s)
- Raizza Zorman Marques
- Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | | | - Marcello Locatelli Barbato
- Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Leila Teresinha Maranho
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Julio Cesar Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, 30510-010, Belo Horizonte, Minas Gerais, Brazil
| | - Keite da Silva Nogueira
- Programa de Pós-Graduação em Microbiologia Parasitologia e Patologia, Laboratório de Microbiologia Médica, Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Philippe Juneau
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Succ. Centre-ville, C.P.8888, H3C 3P8, Québec, Canada
| | - Marcelo Pedrosa Gomes
- Programa de Pós-Graduação em Ciência dos Solo, Universidade Federal do Paraná, Rua dos Funcionários, 140, Juvevê, 80035-050, Curitiba, Paraná, Brazil; Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
13
|
Pandey A, Behera SK, Dwivedi S, Singh VK, Pandey V. Assessment of phytodiversity and phytoremediation potential of plants in the vicinity of a thermal power plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1863-1872. [PMID: 38832563 DOI: 10.1080/15226514.2024.2358377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A study was carried out to evaluate phytodiversity along with the metal accumulation potential of native plants growing in the vicinity of a thermal power plant (TPP). We documented 26 tree species, six shrubs, and 35 herbs. Importance value index (IVI), which measures the extent to which a species dominates in an area, was found highest for Senna siamea (95.7) followed by Tectona grandis (56.5), and Pithecellobium dulce (19.6). Soil was acidic (pH 5.4) in nature with higher concentrations of Al and Fe. The pH of ground water was found acidic while pH of nearby river was found slightly alkaline. Values of PM2.5 and PM10 were slightly higher than NAAQS standards for industrial areas. The concentration of metals was found higher in aquatic plants than in terrestrial plants. In general, herbs and shrubs showed more metal accumulation potential than trees. Our results suggest that Senna siamea could be used for revegetation purposes in FA landfills. Further, terrestrial and aquatic plants such as Ageratina adenophora and Stuckenia pectinata could be used for reclamation of Mn, Zn, Al, and Fe from contaminated soils. Hydrilla verticillata (Ni and Mn), Nelumbo nucifera, and Ipomoea aquatica (Cr) can be used for metal removal from contaminated water.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Botany, K.S. Saket P.G. College Ayodhya, Ayodhya, India
| | - Soumit Kumar Behera
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Dwivedi
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vinay Kumar Singh
- Department of Botany, K.S. Saket P.G. College Ayodhya, Ayodhya, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Wu D, Zhang Z, Wang Z. Impact of manganese mining on potentially toxic elements pollution and bioaccumulation in Spirogyra varians and Hydrilla verticillata in the Xiaojiang River. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:381. [PMID: 39167155 DOI: 10.1007/s10653-024-02171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Potentially toxic elements (PTEs) pose a significant threat to aquatic ecosystems. This study investigated the content and potential sources of PTEs (Cr, Mn, Ni, Cu, Zn, Cd, Pb) in water, sediment, and dominant aquatic plants (Hydrilla verticillata and Spirogyra varians) in the Xiaojiang River, located near the Zhaiying manganese mine in Guizhou Province, China. Correlation analysis, principal component analysis (PCA), and cluster analysis were employed to assess PTE distribution and potential sources. Water PTE concentrations complied with the Class II standard (GB3838-2002), indicating no water pollution. However, sediment PTE levels exceeded background values, particularly Mn, which exhibited moderate to strong contamination. Cd also showed moderate contamination, posing a considerable ecological risk. Cd was the main potential pollutant with the highest contribution rate. Mn and Cd were therefore identified as priority pollutants requiring targeted abatement strategies. Mining activities likely represent the primary source, but combined pollution from vehicle traffic and agriculture might also contribute. Hydrilla verticillata demonstrated a higher capacity for PTE enrichment from sediment compared to Spirogyra varians, suggesting its potential for sediment remediation (except for Cu). A significant correlation existed between both plant species and sediment PTE content. PCA supported the association between S. varians and sediment PTEs. Linear regression analyses revealed better correlations between S. varians and sediment Mn, Ni, Cu, and Zn (0.77, 0.68, 0.82, and 0.79, respectively). Taken together, these findings suggest that S. varians serves as an effective bioindicator for monitoring sediment contamination with PTEs.
Collapse
Affiliation(s)
- Dongyi Wu
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China
| | - Zhaohui Zhang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China.
| | - Zhihui Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
| |
Collapse
|
15
|
Haider FU, Zulfiqar U, Ain NU, Mehmood T, Ali U, Ramos Aguila LC, Li Y, Siddique KHM, Farooq M. Managing antimony pollution: Insights into Soil-Plant system dynamics and remediation Strategies. CHEMOSPHERE 2024; 362:142694. [PMID: 38925521 DOI: 10.1016/j.chemosphere.2024.142694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Researchers are increasingly concerned about antimony (Sb) in ecosystems and the environment. Sb primarily enters the environment through anthropogenic (urbanization, industries, coal mining, cars, and biosolid wastes) and geological (natural and chemical weathering of parent material, leaching, and wet deposition) processes. Sb is a hazardous metal that can potentially harm human health. However, no comprehensive information is available on its sources, how it behaves in soil, and its bioaccumulation. Thus, this study reviews more than 160 peer-reviewed studies examining Sb's origins, geochemical distribution and speciation in soil, biogeochemical mechanisms regulating Sb mobilization, bioavailability, and plant phytotoxicity. In addition, Sb exposure effects plant physio-morphological and biochemical attributes were investigated. The toxicity of Sb has a pronounced impact on various aspects of plant life, including a reduction in seed germination and impeding plant growth and development, resulting from restricted essential nutrient uptake, oxidative damages, disruption of photosynthetic system, and amino acid and protein synthesis. Various widely employed methods for Sb remediation, such as organic manure and compost, coal fly ash, biochar, phytoremediation, microbial-based bioremediation, micronutrients, clay minerals, and nanoremediation, are reviewed with a critical assessment of their effectiveness, cost-efficiency, and suitability for use in agricultural soils. This review shows how plants deal with Sb stress, providing insights into lowering Sb levels in the environment and lessening risks to ecosystems and human health along the food chain. Examining different methods like bioaccumulation, bio-sorption, electrostatic attraction, and complexation actively works to reduce toxicity in contaminated agricultural soil caused by Sb. In the end, the exploration of recent advancements in genetics and molecular biology techniques are highlighted, which offers valuable insights into combating Sb toxicity. In conclusion, the findings of this comprehensive review should help develop innovative and useful strategies for minimizing Sb absorption and contamination and thus successfully managing Sb-polluted soil and plants to reduce environmental and public health risks.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Tariq Mehmood
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Sensors and Modeling, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Umed Ali
- Department of Agriculture, Mir Chakar Khan Rind University, Sibi 82000, Balochistan, Pakistan
| | - Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
16
|
Sojitra R, Gadhvi K, Gamit S, Dudhagara D, Vyas S. Phytoremediation potential of monocotyledonous plants in the sediments of the Uben River, Gujarat, India. Sci Rep 2024; 14:16938. [PMID: 39043749 PMCID: PMC11266409 DOI: 10.1038/s41598-024-65458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Phytoremediation is a basic eco-friendly technique that uses to treat contaminated water and soil. The plants that remediate the water and soil by their absorption process and improve the water and sediment fertility or decrease the contamination. Form this experiment our finding suggest that the contamination decrease in majority from starting point to end point, it means plants plays the most important role in clean-up the environment and its cost-efficient method to improve the quality of water and soil. This study was carried out on Uben River which is around 50kms long and we covered around 41.88kms of area which divided into six locations. in soil minerals (Ca2+, Mg2+, Na+ and K+) from Up-stream to Down-stream the concentration of minerals is in decreasing order but in heavy metals (Cu2+, Zn2+, Fe2+ and Mn2+) the concentration data is varying. We selected plants that grow around riverbanks belongs to family Cyperaceae, Poaceae, Typhaceae. Most of the plants accumulate high Fe2+ concentrations in their root while in the shoots have low concentration observed from our data. For the statistical validation of data, we perform Grouped Component Analysis (GCA) and Radial Cluster Hierarchy (RCH) analysis. Further we included pollution indices: Contamination factor (CF), Degree of contamination (Cd), Geo accumulation index (Igeo).
Collapse
Affiliation(s)
- Rasik Sojitra
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Junagadh, Gujarat, India
| | - Kamlesh Gadhvi
- Gujarat Forestry Research Foundation, Gandhinagar, Gujarat, India
| | - Sandip Gamit
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Junagadh, Gujarat, India
| | - Dushyant Dudhagara
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Junagadh, Gujarat, India
| | - Suhas Vyas
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Junagadh, Gujarat, India.
| |
Collapse
|
17
|
Thegarathah P, Jewaratnam J, Simarani K, Elgharbawy AA. Aspergillus niger as an efficient biological agent for separator sludge remediation: two-level factorial design for optimal fermentation. PeerJ 2024; 12:e17151. [PMID: 39026538 PMCID: PMC11257062 DOI: 10.7717/peerj.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/03/2024] [Indexed: 07/20/2024] Open
Abstract
Background The booming palm oil industry is in line with the growing population worldwide and surge in demand. This leads to a massive generation of palm oil mill effluent (POME). POME is composed of sterilizer condensate (SC), separator sludge (SS), and hydro-cyclone wastewater (HCW). Comparatively, SS exhibits the highest organic content, resulting in various environmental impacts. However, past studies mainly focused on treating the final effluent. Therefore, this pioneering research investigated the optimization of pollutant removal in SS via different aspects of bioremediation, including experimental conditions, treatment efficiencies, mechanisms, and degradation pathways. Methods A two-level factorial design was employed to optimize the removal of chemical oxygen demand (COD) and turbidity using Aspergillus niger. Bioremediation of SS was performed through submerged fermentation (SmF) under several independent variables, including temperature (20-40 °C), agitation speed (100-200 RPM), fermentation duration (72-240 h), and initial sample concentration (20-100%). The characteristics of the treated SS were then compared to that of raw sludge. Results Optimal COD and turbidity removal were achieved at 37 °C 100 RPM, 156 h, and 100% sludge. The analysis of variance (ANOVA) revealed a significant effect of selective individual and interacting variables (p < 0.05). The highest COD and turbidity removal were 97.43% and 95.11%, respectively, with less than 5% error from the predicted values. Remarkably, the selected optimized conditions also reduced other polluting attributes, namely, biological oxygen demand (BOD), oil and grease (OG), color, and carbon content. In short, this study demonstrated the effectiveness of A. niger in treating SS through the application of a two-level factorial design.
Collapse
Affiliation(s)
| | | | - Khanom Simarani
- Division of Microbiology, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amal A.M. Elgharbawy
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur, Malaysia
- Department of Chemical Engineering and Sustainability, International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Andleeb S, Naseer A, Liaqat I, Sirajuddin M, Utami M, Alarifi S, Ahamed A, Chang SW, Ravindran B. Assessment of growth, reproduction, and vermi-remediation potentials of Eisenia fetida on heavy metal exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:290. [PMID: 38976075 DOI: 10.1007/s10653-024-02055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.
Collapse
Affiliation(s)
- Saiqa Andleeb
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Muzaffarabad, 13100, Pakistan.
| | - Anum Naseer
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Muzaffarabad, 13100, Pakistan
| | - Iram Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science and Technology, Bannu, KPK, Pakistan
| | - Maisari Utami
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do, 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do, 16227, Republic of Korea.
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India.
| |
Collapse
|
19
|
Nedaee Ziabari SZ, Sedaghathoor S, Kaviani B, Baniasad M. Phytoremediation ability of three succulent ornamental plants; cactus (Opuntia humifusa), kalanchoe (Kalanchoe blossfeldiana) and bryophyllum (Bryophyllum delagoensis) under heavy metals pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174579. [PMID: 38981535 DOI: 10.1016/j.scitotenv.2024.174579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
The current status of environmental pollution by heavy metals (HMs) will affect the entire ecosystem components. The results obtained so far indicate that some plants can be effective in removing toxic metals from the soil. For this purpose, the phytoremediation ability of three fleshy ornamental plants; cactus (Opuntia humifusa), kalanchoe (Kalanchoe blossfeldiana) and bryophyllum (Bryophyllum delagoensis), was evaluated under the stress of HMs. These succulents are known for their remarkable adaptive capabilities, allowing them to thrive in harsh environmental conditions, including those with high levels of contaminants. Their robust nature, efficient water-use strategies, and proven potential for heavy metal accumulation made them viable candidates for investigating their phytoremediation potential. This experiment was performed as factorial based on completely randomized block design with two factors; the first factor included the type of plant in 3 levels (cactus, kalanchoe and bryophyllum) and the second one included the type of metal in 5 levels (control, silver, cadmium, lead and nickel) in 3 repetitions. The concentration of each salt used was 100 ppm. The measured parameters included stem height, relative growth, diameter, dry matter percentage of root and shoot, chlorophyll a, b and total chlorophyll, carotenoid, anthocyanin, proline, and elements of nickel, silver, lead and cadmium, as well biological concentration factor. The results showed that the highest amount of final stem height, relative growth, dry matter percentage of shoot and the highest amount of chlorophyll a and b, carotenoid and anthocyanin were obtained in bryophyllum. Also, the results of mean comparison of the data related to the effect of metal type on the plants showed that the highest amount of carotenoid, anthocyanin and biological concentration factor were induced by cadmium. On the other hand, the highest and lowest amount of proline as well anthocyanin and proline were induced by silver and lead, respectively. Totally, bryophyllum had a high resistance to HMs and the examined HMs had less effect on the growth of this plant. Cactus, among trial species, exhibited superior potential for HM absorption compared to kalanchoe and bryophyllum. The study underscores cactus as an excellent phytoremediator.
Collapse
Affiliation(s)
| | - Shahram Sedaghathoor
- Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Behzad Kaviani
- Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Masoumeh Baniasad
- Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
20
|
Dey P, Osborne JW, Lincy KB. An insight on the plausible biological and non-biological detoxification of heavy metals in tannery waste: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 258:119451. [PMID: 38906443 DOI: 10.1016/j.envres.2024.119451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
A key challenge for the tannery industries is the volume of tannery waste water (TWW) generated during the processing of leather, releasing various forms of toxic heavy metals resulting in uncontrolled discharge of tannery waste (TW) into the environment leading to pollution. The pollutants in TW includes heavy metals such as chromium (Cr), cadmium (Cd), lead (Pb) etc, when discharged above the permissible limit causes ill effects on humans. Therefore, several researchers have reported the application of biological and non-biological methods for the removal of pollutants in TW. This review provides insights on the global scenario of tannery industries and the harmful effects of heavy metal generated by tannery industry on micro and macroorganisms of the various ecological niches. It also provides information on the process, advantages and disadvantages of non-biological methods such as electrochemical oxidation, advanced oxidation processes, photon assisted catalytic remediation, adsorption and membrane technology. The various biological methods emphasised includes strategies such as constructed wetland, vermitechnology, phytoremediation, bioaugmentation, quorum sensing and biofilm in the remediation of heavy metals from tannery wastewater (TWW) with special emphasize on chromium.
Collapse
Affiliation(s)
- Parry Dey
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez W Osborne
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL) Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Kirubhadharsini B Lincy
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
21
|
Mohan I, Joshi B, Pathania D, Dhar S, Bhau BS. Phytobial remediation advances and application of omics and artificial intelligence: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37988-38021. [PMID: 38780844 DOI: 10.1007/s11356-024-33690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Industrialization and urbanization increased the use of chemicals in agriculture, vehicular emissions, etc., and spoiled all environmental sectors. It causes various problems among living beings at multiple levels and concentrations. Phytoremediation and microbial association are emerging as a potential method for removing heavy metals and other contaminants from soil. The treatment uses plant physiology and metabolism to remove or clean up various soil contaminants efficiently. In recent years, omics and artificial intelligence have been seen as powerful techniques for phytobial remediation. Recently, AI and modeling are used to analyze large data generated by omics technologies. Machine learning algorithms can be used to develop predictive models that can help guide the selection of the most appropriate plant and plant growth-promoting rhizobacteria combination that is most effective at remediation. In this review, emphasis is given to the phytoremediation techniques being explored worldwide in soil contamination.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., 226001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
22
|
Guimarães GDA, Pereira SA, de Moraes BR, Ando RA, Martinelli Filho JE, Perotti GF, Sant'Anna BS, Hattori GY. The retention of plastic particles by macrophytes in the Amazon River, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42750-42765. [PMID: 38877194 DOI: 10.1007/s11356-024-33961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
This study evaluated the presence of plastics and microplastics in macrophytes in an urbanized sector of the Amazon River. A total of 77 quadrats in 23 macrophyte banks were sampled during the dry (September 2020) and rainy (June 2021) season. Five species were identified: Paspalum repens, Pontederia rotundifolia, Pistia stratiotes, Salvinia auriculata and Limnobium laevigatum, with P. repens being dominant during the dry season (47.54%) and P. rotundifolia during the rainy season (78.96%). Most of the plastic particles accumulated in Paspalum repens (49.3%) and P. rotundifolia (32.4%), likely due to their morphological structure and volume. The dry season showed a higher accumulation of plastic particles than the rainy season. Microplastics were found in most samples, during both the dry (75.98%) and rainy seasons (74.03%). The upstream macrophyte banks retained more plastic particles compared to the downstream banks. A moderate positive correlation was observed between the presence of plastic particles and macrophyte biomass, and a weak positive correlation between the occurrence of microplastics and mesoplastics. White and blue fragments, ranging from 1 to 5 mm were the most common microplastics found in the macrophyte banks. Green fragments and green and blue fibers were identified as polypropylene, blue and red fragments as polyethylene, and white fragments as polystyrene. Therefore, the results of this study highlight the first evidence of the retention of plastic particles in macrophytes of the Amazon and highlight a significant risk due to the harmful effects that this type of plastic can cause to the fauna and flora of aquatic ecosystems.
Collapse
Affiliation(s)
- Gabriel Dos Anjos Guimarães
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil.
- Laboratório de Oceanografia Biológica e Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa S/N, Guamá, Belém, PA, 66075-110, Brazil.
| | - Samantha Aquino Pereira
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Beatriz Rocha de Moraes
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, Av. Professor Lineu Prestes, 748 - B4T, Butantã, São Paulo, SP, 05508000, Brazil
| | - Rômulo Augusto Ando
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, Av. Professor Lineu Prestes, 748 - B4T, Butantã, São Paulo, SP, 05508000, Brazil
| | - José Eduardo Martinelli Filho
- Laboratório de Oceanografia Biológica e Centro de Estudos Avançados da Biodiversidade, Universidade Federal do Pará, Av. Augusto Corrêa S/N, Guamá, Belém, PA, 66075-110, Brazil
| | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Bruno Sampaio Sant'Anna
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| | - Gustavo Yomar Hattori
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, AM, 69103-128, Brazil
| |
Collapse
|
23
|
Sharma P, Chandra R. Phytoremediation mechanism and role of plant growth promoting rhizobacteria in weed plants for eco-restoration of hazardous industrial waste polluted site: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42495-42520. [PMID: 38872037 DOI: 10.1007/s11356-024-33910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Plants have numerous strategies for phytoremediation depending upon the characteristic of pollutants. Plant growth promoting rhizobacteria (PGPR) are essential to the process of phytoremediation and play a key part in it. The mechanism of PGPR for phytoremediation is mediated by two methods; under the direct method there is phytohormone production, nitrogen fixation, nutrient mineral solubilization, and siderophore production while the indirect method includes quorum quenching, antibiosis, production of lytic enzyme, biofilm formation, and hydrogen cyanide production. Due to their economic and environmental viability, most researchers have recently concentrated on the potential of weed plants for phytoremediation. Although weed plants are considered unwanted and noxious, they have a high growth rate and adaptability which opens a high scope for its role in phytoremediation of contaminated site. The interaction of plant with rhizobacteria starts from root exudates containing various organic acids and peptides which act as nutrients essential for colonization and siderophore production by the rhizospheric bacteria. The rhizobacteria, while colonizing, tend to promote plant growth and health either directly by providing phytohormones and minerals or indirectly by suppressing growth of possible phytopathogens. Recently, several weed plants have been reported for phytoextraction of heavy metals (Ni, Pb, Zn, Hg, Cd, Cu, As, Fe, and Cr) contaminants from various agro-based industries. These potential native weed plants have high prospect of eco-restoration of polluted site with complex organo-metallic waste for sustainable development.
Collapse
Affiliation(s)
- Pratishtha Sharma
- Department of Environmental Microbiology, School of Earth and Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
24
|
Zhang X, Wang H, Zhang W, Lv H, Lin X. Study on the purification mechanism for ammonia nitrogen in micro-polluted rivers by herbaceous plant - Rumex japonicus Houtt. CHEMOSPHERE 2024; 358:142154. [PMID: 38679183 DOI: 10.1016/j.chemosphere.2024.142154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Water eutrophication caused by nitrogen pollution is an urgent global issue that requires attention. The Qingyi River is a typical micro-polluted river in China. In this study, we took this river as the research object to investigate the nitrogen pollution purification capacity of a herbaceous plant, Rumex japonicus Houtt. (RJH). Compared to nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N), RJH showed better purification performance on total nitrogen (TN), total phosphorus (TP) and ammonia nitrogen (NH4+-N), with a highest removal rate of 37.22%, 52.13%, and 100%, respectively. RJH could completely remove ammonia nitrogen and exhibit excellent resistance to pollutant interference when the initial concentration of ammonia nitrogen in the cultivation devices increased from 1 mg/L to 10 mg/L or in the actual river. This indicated the great application potential of RJH in ammonia nitrogen removal from natural micro-polluted rivers. In addition, combined effects of nitrification of roots, absorption of self-growth, stripping, and others contributed to nitrogen removal by RJH. Particularly, the nitrification of roots played a dominant role, accounting for 73.85% ± 8.79%. High-throughput sequencing results indicate that nitrifying bacteria accounted for over 75% of all bacterial species in RJH. Furthermore, RJH showed good growth status and strong adaptability. The correlation coefficients of its relative growth rate with chlorophyll A and the degradation rate of absorption were 0.9677 and 0.9594, respectively. Our research demonstrates that RJH is one of the excellent varieties for ammonia removal. This provides a very promising and sustainable method for purifying micro-polluted rivers.
Collapse
Affiliation(s)
- Xiangyang Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Henan, 450001, China
| | - Huiliang Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Henan, 450001, China
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, Henan, 450001, China
| | - Hong Lv
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, China
| | - Xiaoying Lin
- School of Water Conservancy and Transportation, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
25
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
26
|
Augustynowicz J, Kowalczyk A, Latowski D, Kołton A, Sitek E, Kostecka-Gugała A. Do chromium-resistant bacterial symbionts of hyperaccumulator Callitriche cophocarpa support their host in phytobial remediation of water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171327. [PMID: 38428606 DOI: 10.1016/j.scitotenv.2024.171327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Callitriche cophocarpa Sendtn. is a macrophyte widely distributed in aquatic systems of the temperate climate zone and a known hyperaccumulator of chromium. Ten pure symbiotic bacterial isolates of C. cophocarpa were obtained and identified. Three of the isolates showed the highest resistance to Cr(VI): Microbacterium sp. (Ct1), Aeromonas sp. (Ct3) and Acinetobacter sp. (Ct6). Acinetobacter sp. (Ct6) was able to survive up to a concentration of 104 mg/L (2 mM). The isolates were also able to effectively detoxify Cr(VI) by reducing it to Cr(III). We tested whether inoculation of plants with a consortium consisting of Ct1, Ct3 and Ct6 affects: (1) the phytoextraction of chromium from leachates, (2) the physiological state of plants after Cr(VI) treatment. The solutions were landfill leachates and contained 10.7 mg/L of Cr(VI) - an amount 530 times exceeding the legal limits. We influenced the plants with Cr in two steps, each lasting for 10 days, first using mature shoots and then apical ones. The highest Cr content concomitant with the highest bioconcentration factor (BCF) were found in the inoculated plants: 1274 and 119 mg/kg dry mass (d.m.), respectively. The physiological status of the plants was assessed by biometric tests and advanced chlorophyll fluorescence analyses. The photosynthetic activity of mature shoots was influenced by Cr(VI) more negatively than that of young apical shoots. The inoculation with the bacterial consortium significantly reduced the negative effect of Cr(VI) on mature organs. In some cases the inoculated mature plants exhibited photosynthetic activity that was even higher than in the control plants. The results unequivocally show a beneficial effect of C. cophocarpa inoculation with the tested isolates resulting in a significant improvement of the phytoremediation properties of this aquatic chromium hyperaccumulator.
Collapse
Affiliation(s)
- Joanna Augustynowicz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland.
| | - Anna Kowalczyk
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Gronostajowa 7, 30-387 Kraków, Poland
| | - Dariusz Latowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Kołton
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Ewa Sitek
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
27
|
Akhter N, Aqeel M, Shazia, Irshad MK, Shehnaz MM, Lee SS, Noman A, Syed A, Bokhari A, Bahkali AH, Wong LS. Differential capacity of phragmites ecotypes in remediation of inorganic contaminants in coastal ecosystems: Implications for climate change. ENVIRONMENTAL RESEARCH 2024; 247:118127. [PMID: 38220075 DOI: 10.1016/j.envres.2024.118127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Remediating inorganic pollutants is an important part of protecting coastal ecosystems, which are especially at risk from the effects of climate change. Different Phragmites karka (Retz) Trin. ex Steud ecotypes were gathered from a variety of environments, and their abilities to remove inorganic contaminants from coastal wetlands were assessed. The goal is to learn how these ecotypes process innovation might help reduce the negative impacts of climate change on coastal environments. The Phragmites karka ecotype E1, found in a coastal environment in Ichkera that was impacted by residential wastewater, has higher biomass production and photosynthetic pigment content than the Phragmites karka ecotypes E2 (Kalsh) and E3 (Gatwala). Osmoprotectant accumulation was similar across ecotypes, suggesting that all were able to successfully adapt to polluted marine environments. The levels of both total soluble sugars and proteins were highest in E2. The amount of glycine betaine (GB) rose across the board, with the highest levels being found in the E3 ecotype. The study also demonstrated that differing coastal habitats significantly influenced the antioxidant activity of all ecotypes, with E1 displaying the lowest superoxide dismutase (SOD) activity, while E2 exhibited the lowest peroxidase (POD) and catalase (CAT) activities. Significant morphological changes were evident in E3, such as an expansion of the phloem, vascular bundle, and metaxylem cell areas. When compared to the E3 ecotype, the E1 and E2 ecotypes showed striking improvements across the board in leaf anatomy. Mechanistic links between architectural and physio-biochemical alterations are crucial to the ecological survival of different ecotypes of Phragmites karka in coastal environments affected by climate change. Their robustness and capacity to reduce pollution can help coastal ecosystems endure in the face of persistent climate change.
Collapse
Affiliation(s)
- Noreen Akhter
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Shazia
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | | | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - A Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defence Road Off Rawind Road, Lahore, Punjab, 54000, Pakistan; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
28
|
Liu L, Lu Y, Du M, Chen Q, Yan H, Lin Y. Nano La(OH) 3 modified lotus seedpod biochar: A novel solution for effective phosphorus removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120502. [PMID: 38479281 DOI: 10.1016/j.jenvman.2024.120502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 04/07/2024]
Abstract
Effective removal of phosphorus from water is crucial for controlling eutrophication. Meanwhile, the post-disposal of wetland plants is also an urgent problem that needs to be solved. In this study, seedpods of the common wetland plant lotus were used as a new raw material to prepare biochar, which were further modified by loading nano La(OH)3 particles (LBC-La). The adsorption performance of the modified biochar for phosphate was evaluated through batch adsorption and column adsorption experiments. Adsorption performance of lotus seedpod biochar was significantly improved by La(OH)3 modification, with adsorption equilibrium time shortened from 24 to 4 h and a theoretical maximum adsorption capacity increased from 19.43 to 52.23 mg/g. Moreover, LBC-La maintained a removal rate above 99% for phosphate solutions with concentrations below 20 mg/L. The LBC-La exhibited strong anti-interference ability in pH (3-9) and coexisting ion experiments, with the removal ratio remaining above 99%. The characterization analysis indicated that the main mechanism is the formation of monodentate or bidentate lanthanum phosphate complexes through inner sphere complexation. Electrostatic adsorption and ligand exchange are also the mechanisms of LBC-La adsorption of phosphate. In the dynamic adsorption experiment of simulated wastewater treatment plant effluent, the breakthrough point of the adsorption column was 1620 min, reaching exhaustion point at 6480 min, with a theoretical phosphorus saturation adsorption capacity of 6050 mg/kg. The process was well described by the Thomas and Yoon-Nelson models, which indicated that this is a surface adsorption process, without the internal participation of the adsorbent.
Collapse
Affiliation(s)
- Lingyan Liu
- The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing, 210029, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Yifeng Lu
- School of earth science, Yunnan University, Kunming, 650091, China
| | - Mingcheng Du
- The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing, 210029, China; Yangtze Institute for Conservation and Development, Nanjing, 210029, China
| | - Qiuwen Chen
- The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing, 210029, China; Yangtze Institute for Conservation and Development, Nanjing, 210029, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China.
| | - Hanlu Yan
- The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing, 210029, China; Yangtze Institute for Conservation and Development, Nanjing, 210029, China
| | - Yuqing Lin
- The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing, 210029, China; Yangtze Institute for Conservation and Development, Nanjing, 210029, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| |
Collapse
|
29
|
Singh J, Alhag SK, Al-Shahari EA, Al-Shuraym LA, Alsudays IM, Ahmed MT, Eid EM, Fayssal SA, Kumar P, Malyan SK, Singh O, Kumar V. An experimental and prediction modeling study on water lettuce (Pistia stratiotes L.) assisted heavy metals removal from glass industry effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28090-28104. [PMID: 38530520 DOI: 10.1007/s11356-024-32664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
The glass manufacturing industry produces hazardous effluent that is difficult to manage and causes numerous environmental problems when disposed of in the open. In this study, an attempt was made to study the phytoremediation feasibility of water lettuce (Pistia stratiotes L.), a free-floating aquatic macrophyte, for the removal of six heavy metals from glass industry effluent (GIE) at varying concentrations (0, 25, 50, 75, and 100%). After a 40-day experiment, the results showed that 25% GIE dilution showed maximum removal of heavy metals i.e., Cu (91.74%), Cr (95.29%), Fe (86.47%), Mn (92.95%), Pb (87.10%), and Zn (91.34%), respectively. The bioaccumulation, translocation, and Pearson correlation studies showed that the amount of heavy metals absorbed by vegetative parts of P. stratiotes was significantly correlated with concentrations. The highest biomass production, chlorophyll content, relative growth rate, and biomass productivity were also noted in the 25% GIE treatment. Moreover, the multiple linear regression models developed for the prediction of heavy metal uptake by P. stratiotes also showed good performance in determining the impact of GIE properties. The models showed a high coefficient of determination (R2 > 0.99), low mean average normalizing error (MANE = 0.01), and high model efficiency (ME > 0.99) supporting the robustness of the developed equations. This study outlined an efficient method for the biological treatment of GIE using P. stratiotes to reduce risks associated with its unsafe disposal.
Collapse
Affiliation(s)
- Jogendra Singh
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Sadeq K Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser, 61913, Saudi Arabia
| | - Eman A Al-Shahari
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser, 61913, Saudi Arabia
| | - Laila A Al-Shuraym
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ibtisam M Alsudays
- Department of Biology, College of Science and Arts, Qassim University, Unaizah, 56452, Saudi Arabia
| | - Mohamed T Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61321, Saudi Arabia
| | - Ebrahem M Eid
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Sami Abou Fayssal
- Department of Agronomy, Faculty of Agronomy, University of Forestry, 10 Kliment Ohridski Blvd, 1797, Sofia, Bulgaria
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, 1302, Lebanon
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Sandeep Kumar Malyan
- Department of Environmental Studies, Dyal Singh Evening College, University of Delhi, New Delhi, 110003, India
| | - Om Singh
- Department of Chemistry, COER University, Roorkee, 247667, India
| | - Vinod Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India.
| |
Collapse
|
30
|
Nawaz M, Hussain I, Mahmood-ur-Rehman, Ashraf MA, Rasheed R. Salicylic Acid and Gemma-Aminobutyric Acid Mediated Regulation of Growth, Metabolites, Antioxidant Defense System and Nutrient Uptake in Sunflower ( Helianthus annuus L.) Under Arsenic Stress. Dose Response 2024; 22:15593258241258407. [PMID: 38803513 PMCID: PMC11129579 DOI: 10.1177/15593258241258407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Background Arsenic (As) is a highly toxic and carcinogenic pollutant commonly found in soil and water, posing significant risks to human health and plant growth. Objective The objectives of this study to evaluate morphological, biochemical, and physiological markers, as well as ion homeostasis, to alleviate the toxic effects of As in sunflowers through the exogenous application of salicylic acid (SA), γ-aminobutyric acid (GABA), and their combination. Methods A pot experiment was conducted using two sunflower genotypes, FH-779 and FH-773, subjected to As stress (60 mg kg-1) to evaluate the effects of SA at 100 mg L-1, GABA at 200 mg L-1, and their combination on growth and related physiological and biochemical attributes under As stress. Results The study revealed that As toxicity had a detrimental effect on various growth parameters, chlorophyll pigments, relative water content, total proteins, and nutrient uptake in sunflower plants. It also led to increased oxidative stress, as indicated by higher levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2), along with As accumulation in the roots and leaves. However, the application of SA and GABA protected against As-induced damage by enhancing the enzymatic antioxidant defense system. This was achieved through the activation of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as an increase in osmolytes. They also improved nutrient acquisition and plant growth under As toxicity. Conclusions We investigated the regulatory roles of SA and GABA in mitigating arsenic-induced phytotoxic effects on sunflower. Our results revealed a significant interaction between SA and GABA in regulating growth, photosynthesis, metabolites, antioxidant defense systems, and nutrient uptake in sunflower under As stress. These findings provide valuable insights into plant defense mechanisms and strategies to enhance stress tolerance in contaminated environments. In the future, SA and GABA could be valuable tools for managing stress in other important crops facing abiotic stress conditions.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Mahmood-ur-Rehman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad A. Ashraf
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
31
|
Wang Y, Zhang P, Yang C, Guo Y, Gao P, Wang T, Liu Y, Xu L, Zhou G. Responses in Plant Growth and Root Exudates of Pistia stratiotes under Zn and Cu Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:736. [PMID: 38475582 PMCID: PMC10934204 DOI: 10.3390/plants13050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
At present, the situation regarding heavy metal pollution in aquatic environments is becoming more and more serious. The bioaccumulation of heavy metals in aquatic plants causes obvious phytotoxicity, which can also induce secondary pollution in the aquatic environment. Zinc and copper, as indispensable elements for plant growth, are also prominent heavy metals in water pollution in China, and their concentrations play a crucial role in plant growth. In this study, we investigated the response of Pistia stratiotes (P. stratiotes) to different concentrations of Zn and Cu, and the results showed that plant growth and photosynthesis were inhibited under both Zn (1, 2, 4, and 8 mg/L) and Cu (0.2, 0.4, 0.8, and 1 mg/L) stresses. The relative growth rates of P. stratiotes under 8 mg/L Zn or 1 mg/L Cu stress were 6.33% and 6.90%, which were much lower than those in the control group (10.86%). Meanwhile, Zn and Cu stress caused insignificant change in the relative water contents of plants. The decrease in phlorophyll fluorescence parameters and chlorophyll contents suggested the significant photoinhibition of Zn and Cu stress. Chemical analysis of plant root exudates showed that the root secretion species obtained by gas chromatography-mass spectrometry (GC-MS) mainly included amino acids, alkanes, aldehydes, ketones, phenols, and more. Compared with the control group, the influence of Zn or Cu on the reduction in relative amounts of exudates was greater than that on the increase. The results of this study provide important data for the utilization of P. stratiotes in heavy metal-polluted water environments.
Collapse
Affiliation(s)
- Yujie Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Pan Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Canhua Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Yibai Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Panpan Gao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Yu Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| | - Lina Xu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256600, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (P.Z.); (C.Y.); (Y.G.); (P.G.); (T.W.); (G.Z.)
| |
Collapse
|
32
|
Rai PK, Nongtri ES. Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): coupling with biorefinery prospects for sustainable phytotechnologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16216-16240. [PMID: 38334920 DOI: 10.1007/s11356-024-32177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Heavy metals/-metalloids can result in serious human health hazards. Phytoremediation is green bioresource technology for the remediation of heavy metals and arsenic (As). However, there exists a knowledge gap and systematic information on duckweed-based metal phytoremediation in an eco-sustainable way. Therefore, the present review offers a critical discussion on the effective use of duckweeds (genera Landoltia and Lemna)-based phytoremediation to decontaminate metallic contaminants from wastewater. Phytoextraction and rhizofiltration were the major mechanism in 'duckweed bioreactors' that can be dependent on physico-chemical factors and plant-microbe interactions. The biotechnological advances such as gene manipulations can accelerate the duckweed-based phytoremediation process. High starch and protein contents of the metal-loaded duckweed biomass facilitate their use as feedstock in biorefinery. Biorefinery prospects such as bioenergy production, value-added products, and biofertilizers can augment the circular economy approach. Coupling duckweed-based phytoremediation with biorefinery can help achieve Sustainable Development Goals (SDGs) and human well-being.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University (A Central University), Aizawl, 796004, India.
| | - Emacaree S Nongtri
- Department of Environmental Science, Mizoram University (A Central University), Aizawl, 796004, India
| |
Collapse
|
33
|
Luo S, Chen R, Han J, Zhang W, Petropoulos E, Liu Y, Feng Y. Urban green space area mitigates the accumulation of heavy metals in urban soils. CHEMOSPHERE 2024; 352:141266. [PMID: 38316278 DOI: 10.1016/j.chemosphere.2024.141266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Despite that the heavy metals in urban soils pose a threat to public health, the critical factors that influence their concentrations in urban soils are not well understood. In this study, we conducted a survey of surface soil samples from urban green spaces in Shanghai, to analyze the concentrations of the key heavy metals. The results showed that Zn was the most abundant metal with an average concentration of 122.99 mg kg-1, followed by Pb (32.72 mg kg-1) and Cd (0.23 mg kg-1). All concentrations were found to be below the risk screening values defined by the National Environmental Quality Standards for soils of development land in China (GB36600-2018), indicating no current risk in Shanghai. However, there was a clear accumulation of heavy metals, as the mean concentrations were significantly higher than the background values. Furthermore, we explored the relationships between key heavy metals with population density, GDP and green space area. Both Spearman correlation and Random Forest analysis indicated that per capita green space area (pGSA) and population density were the most crucial factors influencing the status of heavy metals in urban soils, unlike edaphic factors e.g. SOM content in farmland soils. Specifically, there was a significantly positive linear correlation between heavy metal concentrations and population density, with correlation coefficients ranging from 0.3 to 0.4. However, the correlation with pGSA was found to be non-linear. The nonlinear regression analysis revealed threshold values between heavy metals concentrations and pGSA (e.g Zn 22.22 m2, Pb 24.92 m2, and Cd 25.92 m2), with a sharp reduction in heavy metal concentrations below the threshold and a slow reduction above the threshold. It suggests that an increase in per capita green space area can mitigate the accumulation of heavy metals caused by growing population density, but the effect is limited after the threshold. Our findings not only provide insights into the distribution patterns of heavy metals in the urban soils at the local scale, but also contribute to the urban greening at the global scale and offer guidance for city planning in the face of increasing population densities over the coming decades.
Collapse
Affiliation(s)
- Shuhong Luo
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai, 202150, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruirui Chen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jigang Han
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai, 202150, China; Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Forestry and Grassland Innovation Alliance on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai, 200232, China.
| | - Weiwei Zhang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Evangelos Petropoulos
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; Stantec, UK, Newcastle upon Tyne, NE1 3DY, UK
| | - Yun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Youzhi Feng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
34
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
35
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
36
|
Wei X, Yang D, Yin X, Yang H, Fang Y, Chen N, Zhang H, Hu Z. Comparative study of efficiencies of purification of cadmium contaminated irrigation water by different purification systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167941. [PMID: 37863222 DOI: 10.1016/j.scitotenv.2023.167941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Cadmium (Cd) contamination in rice threats food safety and human health. Control of Cd pollution has become an urgent need. Most existing studies on heavy metal pollution control have focused on industrial wastewater and few on irrigation water. Some researchers have found ecological ditches, plant ponds and constructed wetlands have the potential of treating heavy metal contaminated irrigation water, but they examined only one of the methods and the validity needs to be verified by field studies. Our study has filled the gap by combining the methods and using field experiments. We examined efficiencies of removal of Cadmium from irrigation water by 14 different combinations of ecological ditches, plant ponds, and constructed wetlands using field experiments. The effects of the purification on Cd concentration in paddy soil and rice grains were also examined. Results showed that there were significant differences among efficiencies of purification of Cd contaminated irrigation water using different systems and that pH, chemical form of Cd in irrigation water, vegetation coverage and biomass of aquatic plants significantly affect the efficiency. Of the 14 purification systems, seven resulted in the concentration of Cd in the effluent water meeting the National Standard for Irrigation Water Quality (GB5084-2021) for all days of the experiment period. The highest amount and rate of Cd removal were achieved by the combination of two-stage ecological ditch, two-stage plant pond, and one-stage constructed wetland, while the highest removal amount and rate per 100 m2 was achieved by the combination of one-stage plant pond and one-stage constructed wetland. Considering purification efficiency, area of coverage, and cost of construction and maintenance, we suggest that combination of plant pond and constructed wetland be a priority choice for purification of Cd pollution in irrigation water. Compared to the control data collected from rice grain and paddy soil irrigated by unpurified water, Cd concentration in rice grain and paddy soil irrigated by purified water declined by 5.08-19.42 % and 30.93-77.15 % respectively. All results showed that removal of Cd contamination from irrigation water effectively controlled cadmium pollution in rice grain and paddy soil. Our study not only contributes to pollution control practice, but also warrants further investigation of the mechanisms of how the treatment systems work. The most efficient method we identified could be applied locally, regionally and in areas of similar topography, climate, soil, vegetation, agriculture, and heavy metal pollution.
Collapse
Affiliation(s)
- Xiangdong Wei
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Deng Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaohui Yin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hongquan Yang
- Bureau of Agriculture and Rural Affairs of Cili County, Cili, Zhangjiajie 42700, PR China
| | - Yayu Fang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Nan Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhiyong Hu
- Department of Earth & Environmental Sciences, University of West Florida, Pensacola, Florida 32514, USA.
| |
Collapse
|
37
|
El-Nemr MA, Aigbe UO, Hassaan MA, Ukhurebor KE, Ragab S, Onyancha RB, Osibote OA, El Nemr A. The use of biochar-NH2 produced from watermelon peels as a natural adsorbent for the removal of Cu(II) ion from water. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:1975-1991. [DOI: 10.1007/s13399-022-02327-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 01/12/2025]
|
38
|
Mao J, Hu G, Deng W, Zhao M, Li J. Industrial wastewater treatment using floating wetlands: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5043-5070. [PMID: 38150162 DOI: 10.1007/s11356-023-31507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Industrial wastewater generated from various production processes is often associated with elevated pollutant concentrations and environmental hazards, necessitating efficient treatment. Floating wetlands (FWs) have emerged as a promising and eco-friendly solution for industrial wastewater treatment, with numerous successful field applications. This article comprehensively reviews the removal mechanisms and treatment performance in the use of FWs for the treatment of diverse industrial wastewaters. Our findings highlight that the performance of FWs relies on proper plant selection, design, aeration, season and temperature, plants harvesting and disposal, and maintenance. Well-designed FWs demonstrate remarkable effectiveness in removing organic matter (COD and BOD), suspended solids, nutrients, and heavy metals from industrial wastewater. This effectiveness is attributed to the intricate physical and metabolic interactions between plants and microbial communities within FWs. A significant portion of the reported applications of FWs revolve around the treatment of textile and oily wastewater. In particular, the application reports of FWs are mainly concentrated in temperate developing countries, where FWs can serve as a feasible and cost-effective industrial wastewater treatment technology, replacing high-cost traditional technologies. Furthermore, our analysis reveals that the treatment efficiency of FWs can be significantly enhanced through strategies like bacterial inoculation, aeration, and co-plantation of specific plant species. These techniques offer promising directions for further research. To advance the field, we recommend future research efforts focus on developing novel floating materials, optimizing the selection and combination of plants and microorganisms, exploring flexible disposal methods for harvested biomass, and designing multi-functional FW systems.
Collapse
Affiliation(s)
- Jianliang Mao
- School of Engineering, Environmental Engineering Program, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Guangji Hu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Deng
- School of Engineering, Environmental Engineering Program, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Min Zhao
- School of Life and Environmental Sciences, Wenzhou University (WZU), Wenzhou, 325035, Zhejiang Province, China
- WZU-UNBC Joint Research Institute of Ecology and Environment, Wenzhou University (WZU), Wenzhou, 325035, Zhejiang Province, China
| | - Jianbing Li
- School of Engineering, Environmental Engineering Program, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada.
- WZU-UNBC Joint Research Institute of Ecology and Environment, Wenzhou University (WZU), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
39
|
Wang SQ, Zhou XL, Jin YS, Jeppesen E, Yang L, Shen SK. Gene co-expression networks unravel the molecular responses of freshwater hydrophytes to combined stress of salinity and cadmium. CHEMOSPHERE 2023; 340:139933. [PMID: 37625492 DOI: 10.1016/j.chemosphere.2023.139933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Salinization in freshwater lakes is becoming a serious global environmental problem, especially in lakes of plateaus such as south-western plateau of China. However, limited information is available about the molecular response of freshwater hydrophytes to salinity under multiple stress. In the present study, a weighted gene co-expression network (WGCNA) was used to identify the modules of co-expressed genes in the physiological and biochemical indicators of Pistia stratiotes to determine its molecular response to salinity (NaCl) alone and when combined with cadmium (Cd). The physiological and biochemical indicators showed that P. stratiotes improved its salt tolerance by enhancing photosynthetic abilities, reducing oxidative stress, and inducing osmoprotectant generation. Morever, addition of NaCl reduced the Cd accumulation in P. stratiotes. Transcriptome and WGCNA analysis revealed that the pathways of alpha-linolenic acid metabolism, ribosomal, flavonoid biosynthesis, and phenylpropanoid biosynthesis were significantly enriched in both treatments. Genes associated with photosynthesis-antenna proteins, nitrogen metabolism, and the acid cycle pathways were only expressed under salinity stress alone, while the proteasome pathway was only significantly enriched in the combined salinity and Cd treatment. Our findings provide novel insights into the effects of salinization on aquatic plants in freshwater ecosystems and the management of aquatic ecosystems under global change.
Collapse
Affiliation(s)
- Si-Qi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Xiong-Li Zhou
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Yan-Shan Jin
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus C, 8000, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, 33731, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Liu Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shi-Kang Shen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China.
| |
Collapse
|
40
|
Sadeghi J, Lakzian A, Halajnia A, Alikhani M. Effects of fungal carbon dots application on growth characteristics and cadmium uptake in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108102. [PMID: 39492165 DOI: 10.1016/j.plaphy.2023.108102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
The advancement of nanotechnology has led to the increased use of nanomaterials for the purpose of restoring contaminated soils. However, so far no research has been reported on the interactions of carbon dots with heavy metals (loid)s in phytoremediation. The purpose of this study was to investigate the effect of a new carbon dots derived from fungal exopolysaccharide (EPSs) on the growth and cadmium uptake in maize plants. This research was carried out using a completely randomized design with three replications in a greenhouse condition. Treatments included control, carbon dots (150 mg kg-1), cadmium (50 mg kg-1) and cadmium + carbon dots (50 mg kg-1+150 mg kg-1). The carbon dots synthesized by hydrothermal method from EPSs. The results showed that shoot dry weight and chlorophyll content of maize increased 9.7% and 23.2% in the presence of carbon dots, respectively. Carbon dots improved the chlorophyll content of maize by 24.3% in the cadmium treatment. Cadmium concentration increased (106%) in maize shoot but it decreased in root maize (68%). Carbon dots caused an increase of 5.7 and 6.7 times in the transfer factor and phytoremediation rate of cadmium, respectively. The presence of carbon dots triggered an increase of 77.9% and 39.9% of dissolved organic carbon in non-contaminated and cadmium-contaminated soils, respectively. Soil microbial biomass carbon increased 54.9% and 24.1% carbon dots and cadmium + carbon dots treatments, respectively. The study demonstrates the potential of fungal carbon dots for phytoremediation of heavy metal (loid)s contaminated soils. It also highlights the potential of nanotechnology in environmental remediation efforts.
Collapse
Affiliation(s)
- Jalal Sadeghi
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran
| | - Amir Lakzian
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran.
| | - Akram Halajnia
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran
| | - Mina Alikhani
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| |
Collapse
|
41
|
Zulkernain NH, Uvarajan T, Ng CC. Roles and significance of chelating agents for potentially toxic elements (PTEs) phytoremediation in soil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117926. [PMID: 37163837 DOI: 10.1016/j.jenvman.2023.117926] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Phytoremediation is a biological remediation technique known for low-cost technology and environmentally friendly approach, which employs plants to extract, stabilise, and transform various compounds, such as potentially toxic elements (PTEs), in the soil or water. Recent developments in utilising chelating agents soil remediation have led to a renewed interest in chelate-induced phytoremediation. This review article summarises the roles of various chelating agents and the mechanisms of chelate-induced phytoremediation. This paper also discusses the recent findings on the impacts of chelating agents on PTEs uptake and plant growth and development in phytoremediation. It was found that the chelating agents have increased the rate of metal absorption and translocation up to 45% from roots to the aboveground plant parts during PTEs phytoremediation. Besides, it was also explored that the plants may experience some phytotoxicity after adding chelating agents to the soil. However, due to the leaching potential of synthetic chelating agents, the use of organic chelants have been explored to be used in PTEs phytoremediation. Finally, this paper also presents comprehensive insights on the significance of using chelating agents through SWOT analysis to discuss the advantages and limitations of chelate-induced phytoremediation.
Collapse
Affiliation(s)
- Nur Hanis Zulkernain
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia (XMUM), Sepang, Selangor Darul Ehsan, Malaysia; School of Postgraduate Studies, Research and Internationalisation, Faculty of Integrated Life Sciences, Quest International University, Malaysia
| | - Turkeswari Uvarajan
- School of Postgraduate Studies, Research and Internationalisation, Faculty of Integrated Life Sciences, Quest International University, Malaysia
| | - Chuck Chuan Ng
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia (XMUM), Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
42
|
Joshi S, Gangola S, Bhandari G, Bhandari NS, Nainwal D, Rani A, Malik S, Slama P. Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Front Microbiol 2023; 14:1229828. [PMID: 37555069 PMCID: PMC10405491 DOI: 10.3389/fmicb.2023.1229828] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The increasing rate of industrialization, anthropogenic, and geological activities have expedited the release of heavy metals (HMs) at higher concentration in environment. HM contamination resulting due to its persistent nature, injudicious use poses a potential threat by causing metal toxicities in humans and animals as well as severe damage to aquatic organisms. Bioremediation is an emerging and reliable solution for mitigation of these contaminants using rhizospheric microorganisms in an environmentally safe manner. The strategies are based on exploiting microbial metabolism and various approaches developed by plant growth promoting bacteria (PGPB) to minimize the toxicity concentration of HM at optimum levels for the environmental clean-up. Rhizospheric bacteria are employed for significant growth of plants in soil contaminated with HM. Exploitation of bacteria possessing plant-beneficial traits as well as metal detoxifying property is an economical and promising approach for bioremediation of HM. Microbial cells exhibit different mechanisms of HM resistance such as active transport, extra cellular barrier, extracellular and intracellular sequestration, and reduction of HM. Tolerance of HM in microorganisms may be chromosomal or plasmid originated. Proteins such as MerT and MerA of mer operon and czcCBA, ArsR, ArsA, ArsD, ArsB, and ArsC genes are responsible for metal detoxification in bacterial cell. This review gives insights about the potential of rhizospheric bacteria in HM removal from various polluted areas. In addition, it also gives deep insights about different mechanism of action expressed by microorganisms for HM detoxification. The dual-purpose use of biological agent as plant growth enhancement and remediation of HM contaminated site is the most significant future prospect of this article.
Collapse
Affiliation(s)
- Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Geeta Bhandari
- Department of Biosciences, Himalayan School of Bio Sciences, Swami Rama Himalayan University, Dehradun, India
| | | | - Deepa Nainwal
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Anju Rani
- Department of Life Sciences, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
- Department of Applied Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
43
|
Awad HEA, Mohammad AM, Farahat EA. Potential use of dry powder of Vossia cuspidata (Roxb.) Griff. rhizomes and leaves in methylene blue dye remediation. Sci Rep 2023; 13:11073. [PMID: 37422533 PMCID: PMC10329666 DOI: 10.1038/s41598-023-37987-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023] Open
Abstract
Phytoremediation is a promising, cost-effective, and eco-friendly process for wastewater treatment. Herein, the dry biomasses of Vossia cuspidata (Roxb.) Griff. leaves (PL) and rhizomes including aerial stems (PR) were used to effectively remediate methylene blue (MB) dyes. Interestingly, the adsorption uptake and removal efficiency of MB by PR were higher than those of PL; exceeding 97 and 91% in 35 and 25 min for 0.1 and 0.4 g/L MB, respectively. The MB diffusion within the PL and PR was insignificant and the adsorption kinetics was principally controlled by the surface MB-adsorbent interaction, as consistently approved by the pseudo-second order kinetic model. In addition, the adsorption increased rapidly with the plant dosage with high dependence on the initial MB concentration. Moreover, the impact of shaking speed on the adsorption was minor but temperature played a critical role where the highest efficiencies were recorded at 30 and 40 °C on PL (91.9%) and PR (93.3%), respectively. The best removal efficiencies were attained with PR at pH 6, but with PL at pH 8. The Temkin isotherm could perfectly simulate the experimental data (R2 > 0.97); suggesting a linear decrease of the adsorption heat of MB with the plant coverage.
Collapse
Affiliation(s)
- Hossam E A Awad
- Botany and Microbiology Department, Cairo University, Giza, 12613, Egypt
| | - Ahmad M Mohammad
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt.
| | - Emad A Farahat
- Botany and Microbiology Department, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
44
|
Peng K, Liu X, Wu X, Yu H, He J, Chen K, Zhu L, Wang X. Study on the preparation of molecularly imprinted ZrO 2-TiO 2 photocatalyst and the degradation performance of hydroquinone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83575-83586. [PMID: 37344713 DOI: 10.1007/s11356-023-28295-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
In this paper, molecularly imprinted Zr-doped TiO2 photocatalysts (MIP-ZrO2-TiO2) were prepared by the molecularly imprinted sol-gel method for the photocatalytic degradation study of hydroquinone (HQ) as the target pollutant. For the effectiveness of the MIP-ZrO2-TiO2 catalyst in degrading HQ, the effects of Zr doping ratio, imprinted molecule dosage, calcination conditions, and pollutant concentration on its photocatalytic activity were investigated. XRD, TEM, XPS, and other techniques were used to evaluate the materials, and the findings revealed that MIP-ZrO2-TiO2 films with imprinted HQ were successfully produced on the ZrO2-TiO2 surface. The optimal preparation conditions were n(Ti):n(Zr) = 100:8, m(HQ) = 1.5 g, 550 °C for the calcination temperature, and 2 h for the calcination duration. The optimum reaction conditions were 10 mg/L HQ concentration, 1 g/L catalyst dose, and a pH of 6.91. According to the findings of photocatalytic tests, during 30 min of UV lamp (365 nm) irradiation, the degradation rates of MIP-ZrO2-TiO2, ZrO2-TiO2, and TiO2 for HQ were 90.58%, 83.94%, and 58.30%, respectively. The findings revealed that the doping of Zr metal and the addition of imprinted molecules improved the photocatalytic activity of TiO2, which can be used for the efficient treatment of low concentrations of hard-to-degrade hydroquinone.
Collapse
Affiliation(s)
- Ke Peng
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xian Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xi Wu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hang Yu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jiachen He
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ke Chen
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lei Zhu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan, 430065, China.
| |
Collapse
|
45
|
Dai T, Liu R, Zhou X, Zhang J, Song M, Zou P, Bi X, Li S. Role of Lake Aquatic-Terrestrial Ecotones in the Ecological Restoration of Eutrophic Water Bodies. TOXICS 2023; 11:560. [PMID: 37505526 PMCID: PMC10385339 DOI: 10.3390/toxics11070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Freshwater lake eutrophication is a global concern causing adverse effects on aquatic ecosystems. The degradation of lake aquatic-terrestrial ecotones, which are the transitional zones between terrestrial and water ecosystems, contributes to eutrophication. These ecotones play vital roles in nutrient cycling, runoff control, biodiversity conservation, and habitat provision. In the past three decades, the research on lake aquatic-terrestrial ecotones has focused on techniques for managing contaminants and runoff purification. This paper reviews the recent studies on the restoration ability of eutrophic water bodies in lake aquatic-terrestrial ecotones in recent years regarding three aspects: the establishment, restoration mechanism, and improvement of restoration function. In addition, ecological factors such as lakeshore height, water level, surface runoff, shallow groundwater level, and rainfall intensity have impacts on the restoration capacity of lake aquatic-terrestrial ecotones.
Collapse
Affiliation(s)
- Tingting Dai
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| | - Rui Liu
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| | - Xingxing Zhou
- Architecture and Environment, Ningxia Institute of Science and Technology, Shizuishan 753000, China
| | - Jing Zhang
- International School of Shenyang Jianzhu University, Shenyang 110168, China
| | - Mengting Song
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066064, China
| | - Ping Zou
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| | - Xiaoyi Bi
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| | - Shuibing Li
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| |
Collapse
|
46
|
Diaconu LI, Covaliu-Mierlă CI, Păunescu O, Covaliu LD, Iovu H, Paraschiv G. Phytoremediation of Wastewater Containing Lead and Manganese Ions Using Algae. BIOLOGY 2023; 12:773. [PMID: 37372058 DOI: 10.3390/biology12060773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023]
Abstract
Heavy metal pollution of water from industrial discharge is a major problem worldwide. Thus, the quality of the environment and human health are severely affected. Various conventional technologies have been applied for water treatment, but these can be expensive, especially for industrial water treatment, and may have limited treatment efficiencies. Phytoremediation is a method that is successfully applied to remove metal ions from wastewater. In addition to the high efficiency of the depollution treatment, this method has the advantages of a low cost of the operation and the existence of many plants that can be used. This article presents the results of using algae (Sargassum fusiforme and Enteromorpha prolifera) to treat water containing manganese and lead ions. It was observed that maximum efficiencies for wastewater treatment were obtained when was used the algae Enteromorpha prolifera for a 600 min contact time period. The highest wastewater treatment efficiency obtained using Sargassum fusiforme was 99.46%.
Collapse
Affiliation(s)
- Loredana Ioana Diaconu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Oana Păunescu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Leon Dumitru Covaliu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Horia Iovu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe POLIZU Street, Sector 1, 011061 Bucharest, Romania
| | - Gigel Paraschiv
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
47
|
Daurov D, Zhambakin K, Shamekova M. Phytoremediation as a way to clean technogenically polluted areas of Kazakhstan. BRAZ J BIOL 2023; 83:e271684. [PMID: 37222372 DOI: 10.1590/1519-6984.271684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2023] [Indexed: 05/25/2023] Open
Abstract
One of the most serious problems worldwide is heavy metal (HM) pollution. HMs can have a toxic effect on human health and thus cause serious diseases. To date, several methods have been used to clean environments contaminated by HMs, but most of them are expensive, and it is difficult to achieve the desired result. Phytoremediation is currently an effective and affordable processing solution used to clean and remove HMs from the environment. This review article discusses in detail the technology of phytoremediation and mechanisms of HM absorption. In addition, methods are described using genetic engineering of various plants to enhance the resistance and accumulation of HMs. Thus, phytoremediation technology can become an additional aid to traditional methods of purification.
Collapse
Affiliation(s)
- D Daurov
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - K Zhambakin
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
| | - M Shamekova
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
48
|
Fernandez M, Gómez RJ, González PS, Barroso CN, Paisio CE. Sequential application of activated sludge and phytoremediation with aquatic macrophytes on tannery effluents: in search of a complete treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27718-3. [PMID: 37204583 DOI: 10.1007/s11356-023-27718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Tannery effluents with a high organic matter load (indicated by their COD level) have to be treated before they are discharged, so as to minimize their negative impact on the environment. Using field mesocosm systems, this study evaluated the feasibility of treating such effluents through bioaugmentation with activated sludge, followed by phytoremediation with aquatic macrophytes (Lemnoideae subfamily). Regardless of its quality, the activated sludge was able to remove approximately 77% of the COD from effluents with a low initial organic load (up to 1500 mg/L). The macrophytes then enhanced removal (up to 86%), so the final COD values were permissible under the current legislation for effluent discharge. When the initial organic load in the undiluted effluents was higher (around 3000 mg/L), the COD values obtained after consecutive bioaugmentation and phytoremediation were close to the legally allowed limits (583 mg/L), which highlights the potential of phytoremediation as a tertiary treatment. This treatment also brought total coliform counts down to legally acceptable values, without plant biomass decreasing over time. Moreover, the plant biomass remained viable and capable of high COD removal efficiency (around 75%) throughout two additional reuse cycles. These findings indicate that the efficiency of the biological treatments assayed here depends largely on the initial organic load in the tannery effluents. In any case, the sequential application of activated sludge and aquatic macrophytes proved to be a successful alternative for remediation.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Roxana J Gómez
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Cintia N Barroso
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina
| | - Cintia E Paisio
- Departamento de Biología Molecular- FCEFQyN, Universidad Nacional de Río Cuarto, UNRC, 5800 Río Cuarto, Córdoba, Argentina.
- Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
49
|
Lu J, Lu H, Liang D, Feng S, Li Y, Li J. A review of the occurrence, transformation, and removal technologies for the remediation of per- and polyfluoroalkyl substances (PFAS) from landfill leachate. CHEMOSPHERE 2023; 332:138824. [PMID: 37164196 DOI: 10.1016/j.chemosphere.2023.138824] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants (POPs) that pose significant environmental and human health risks. The presence of PFAS in landfill leachate is becoming an increasingly concerning issue. This article presents a comprehensive review of current knowledge and research gaps in monitoring and removing PFAS from landfill leachate. The focus is on evaluating the effectiveness and sustainability of existing removal technologies, and identifying areas where further research is needed. To achieve this goal, the paper examines the existing technologies for monitoring and treating PFAS in landfill leachate. The review emphasizes the importance of sample preparation techniques and quality assurance/quality control measures in ensuring accurate and reliable results. Then, this paper reviewed the existing technologies for removal and remediation of PFAS in landfill leachates, such as adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands. Additionally, the paper summarizes the factors that exhibit the performance of various treatment technologies: reaction time, experimental conditions, and removal rates. Furthermore, the paper evaluates the potential application of different remediation technologies (i.e., adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands, etc.) in treating landfill leachate containing PFAS and its precursors, such as fluorotelomeres like FTOH and FTSs. The review highlights the importance of considering economic, technical, and environmental factors when selecting control measures. Overall, this article aims to provide guidance for promoting environmental protection and sustainable development in the context of PFAS contamination in landfill leachate.
Collapse
Affiliation(s)
- Jingzhao Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China.
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Dongzhe Liang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - SanSan Feng
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Yao Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Jingyu Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| |
Collapse
|
50
|
Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S. Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. PLANTS (BASEL, SWITZERLAND) 2023; 12:1653. [PMID: 37111876 PMCID: PMC10141480 DOI: 10.3390/plants12081653] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The pollution of soil by trace elements is a global problem. Conventional methods of soil remediation are often inapplicable, so it is necessary to search intensively for innovative and environment-friendly techniques for cleaning up ecosystems, such as phytoremediation. Basic research methods, their strengths and weaknesses, and the effects of microorganisms on metallophytes and plant endophytes resistant to trace elements (TEs) were summarised and described in this manuscript. Prospectively, bio-combined phytoremediation with microorganisms appears to be an ideal, economically viable and environmentally sound solution. The novelty of the work is the description of the potential of "green roofs" to contribute to the capture and accumulation of many metal-bearing and suspended dust and other toxic compounds resulting from anthropopressure. Attention was drawn to the great potential of using phytoremediation on less contaminated soils located along traffic routes and urban parks and green spaces. It also focused on the supportive treatments for phytoremediation using genetic engineering, sorbents, phytohormones, microbiota, microalgae or nanoparticles and highlighted the important role of energy crops in phytoremediation. Perceptions of phytoremediation on different continents are also presented, and new international perspectives are presented. Further development of phytoremediation requires much more funding and increased interdisciplinary research in this direction.
Collapse
Affiliation(s)
- Agnieszka Mocek-Płóciniak
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Justyna Mencel
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Wiktor Zakrzewski
- Regional Chemical and Agricultural Station in Poznan, Sieradzka 29, 60-163 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| |
Collapse
|