1
|
Silva SA, Duarte MS, Amaral AL, Ferreira EC, Alves MM, Mesquita DP. Monitoring the stability of aerobic granular sludge under increasing fractions of slowly biodegradable substrate using quantitative image analysis. CHEMOSPHERE 2025; 374:144233. [PMID: 39983625 DOI: 10.1016/j.chemosphere.2025.144233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
This work investigates the effects of increasing fraction of slowly biodegradable chemical oxygen demand (sbCOD) on the morphology, stability, and performance of aerobic granular sludge (AGS) used for wastewater treatment. A sequencing batch reactor (SBR) was supplied with synthetic wastewater containing acetate as readily biodegradable COD (rbCOD) and increasing concentrations of oleate as slowly biodegradable carbon source. The sbCOD fraction was gradually increased, reaching up to 50% of the total influent biodegradable COD (bCOD). Quantitative image analysis (QIA) revealed a significant shift in granule morphology and size distribution due to increasing sbCOD fractions. Larger granules (Deq >1.0 mm) become predominant due to the washout of smaller granules (Deq <1.0 mm), which evidenced deterioration in several structural parameters. In contrary, larger granules maintained stable compactness, robustness, and extent. These morphological and size distribution changes were concomitant with variations in reactor performance: total inorganic nitrogen (TIN) removal efficiency improved up to 94%, due to enhanced denitrification capacity, supported by the predominance of larger granules and increase in granules size at higher sbCOD fractions. In contrast, P-PO43- removal efficiency declined, associated with the leakage of rbCOD to the aerobic phase, filamentous growth, and deteriorated sludge settling properties. These findings highlight the complex interactions between oleate characteristics, AGS morphology, and reactor performance, emphasizing the need for optimized strategies to mitigate process instability in AGS systems treating lipid-rich wastewater, ensuring sustainable and efficient wastewater treatment in real-world applications.
Collapse
Affiliation(s)
- Sérgio A Silva
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - António L Amaral
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal; Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045 - 601, Coimbra, Portugal
| | - Eugénio C Ferreira
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - M Madalena Alves
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela P Mesquita
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Goswami D, Mukherjee J, Mondal C, Bhunia B. Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176426. [PMID: 39326754 DOI: 10.1016/j.scitotenv.2024.176426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The synthetic azo dyes are widely used in the textile industries for their excellent dyeing properties. They may be classified into many classes based on their structure and application, including direct, reactive, dispersive, acidic, basic, and others. The continuous discharge of wastewater from a large number of textile industries without prior treatment poses detrimental effects on the environment and human health. Azo dyes and their degradation products are extremely poisonous for their carcinogenic, teratogenic and mutagenic nature. Moreover, exposure to synthetic azo dyes can cause genetic changes, skin inflammation, hypersensitivity responses, and skin irritations in persons, which may ultimately result in other profound issues including the deterioration of water quality. This review discusses these dyes in details along with their detrimental effects on aquatic and terrestrial flora and fauna including human beings. Azo dyes degrade the water bodies by increasing biochemical and chemical oxygen demand. Therefore, dye-containing wastewater should be effectively treated using eco-friendly and cost-effective technologies to avoid negative impact on the environment. This article extensively reviews on physical, chemical and biological treatment with their benefits and challenges. Biological-based treatment with higher hydraulic retention time (HRT) is economical, consumes less energy, produces less sludge and environmentally friendly. Whereas the physical and chemical methods with less hydraulic retention time is costly, produces large sludge, requires high dissolved oxygen and ecologically inefficient. Since, biological treatment is more advantageous over physical and chemical methods, researchers are concentrating on bioremediation for eliminating harmful azo dye pollutants from nature. This article provides a thorough analysis of the state-of-the-art biological treatment technologies with their developments and effectiveness in the removal of azo dyes. The mechanism by which genes encoding azoreductase enzymes (azoG, and azoK) enable the natural degradation of azo dyes by bacteria and convert them into less harmful compounds is also extensively examined. Therefore, this review also focuses on the use of genetically modified microorganisms and nano-technological approaches for bioremediation of azo dyes.
Collapse
Affiliation(s)
- Deepa Goswami
- Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana 501401, India
| | - Chanchal Mondal
- Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
3
|
Barbosa PT, Dos Santos AB, da Silva MER, Firmino PIM. Color removal in acidogenic reactor followed by aerobic granular sludge reactor: Operational and microbiological aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123175. [PMID: 39488956 DOI: 10.1016/j.jenvman.2024.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This work investigated the operational and microbiological aspects of the decolorization of the azo dye Reactive Black 5 in acidogenic reactors followed by aerobic granular sludge (AGS) reactors, evaluating the effect of the acidogenic hydraulic retention time (HRT) (3, 2, and 1 h), effluent recirculation in the AGS reactor (50 mL min-1), dye concentration (50 and 100 mg L-1), and the redox mediator sodium anthraquinone-2-disulfonate (AQS) (50 μM). The acidogenic reactors were mainly responsible for the dye decolorization, with AQS significantly improving its efficiency and enabling the use of a shorter HRT (2 h). The recirculation effect was not so evident, probably masked by the adaptation of the acidogenic microbiota. Increasing the dye concentration did not affect the total decolorization, but reduced nitrogen removal in the AGS reactors. Furthermore, the dye and its byproducts may have negatively affected the long-term AGS stability. While the acidogenic microbiota maintained its diversity, the AGS tended to become more specialist. However, in both, some abundant genera that may have acted in reducing the dye were found, such as Clostridium_sensu_stricto_1 and Raoutella in the acidogenic sludge and Dechloromonas and Defluviicoccus in the AGS.
Collapse
Affiliation(s)
- Plínio Tavares Barbosa
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
4
|
Setianingsih NI, Hadiyanto, Budihardjo MA, Yuliasni R, Malik RA, Budiono, Sudarno, Warsito B. Potential application and strategies of aerobic granular sludge (AGS) technology for wastewater treatment in Indonesia: A review. DESALINATION AND WATER TREATMENT 2024; 320:100756. [DOI: 10.1016/j.dwt.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Srivastav AL, Rani L, Sharda P, Patel A, Patel N, Chaudhary VK. Sustainable biochar adsorbents for dye removal from water: present state of art and future directions. ADSORPTION 2024; 30:1791-1804. [DOI: 10.1007/s10450-024-00522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 01/05/2025]
|
6
|
Mahmoodi A, Dorranian D, Abbasi H. Significant effects of negligible amount of H 2O 2 on photocatalytic efficiency of MIL-125 and NH 2-MIL-125 nanostructures in degradation of methylene blue. RSC Adv 2024; 14:30140-30153. [PMID: 39315026 PMCID: PMC11418012 DOI: 10.1039/d4ra05733c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
The notable impact of a trace amount of hydrogen peroxide (H2O2) on the photocatalytic performance of Ti-based metal-organic frameworks (MOFs), namely MIL-125 and NH2-MIL-125, in the purification of water polluted with chemical agents was studied experimentally. MIL-125 and NH2-MIL-125 were synthesized using the solvothermal method and were characterized by a variety of diagnostic methods. NH2-MIL-125 exhibited a bandgap of 2.8 eV compared to 3.65 eV for MIL-125 with optimal visible light capture capability, indicating the outstanding photodegradation activity of the synthesized MOFs. In addition, the photocatalytic performance of MIL-125 and NH2-MIL-125 was tested for the degradation of methylene blue (MB) as a chemical pollutant in water under both dark conditions and irradiation by visible light and a UVC lamp. NH2-MIL-125 exhibited a significantly higher photodegradation rate compared to MIL-125 due to the presence of the amino group, higher surface electronegativity and slightly lower bandgap. Furthermore, the effect of H2O2 as an electron acceptor on the efficiency of MB degradation was investigated, which markedly enhanced the photocatalytic MB degradation performance due to the ligand-to-metal charge transfer mechanism, particularly for NH2-MIL-125, under all tested conditions.
Collapse
Affiliation(s)
- Afsaneh Mahmoodi
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Davoud Dorranian
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Hamed Abbasi
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology Delft The Netherlands
- Center for Optical Diagnostics and Therapy, Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam 3015 CN Rotterdam The Netherlands
| |
Collapse
|
7
|
Jagaba AH, Lawal DU, Yassin MA, Abdulazeez I, Mu'azu ND, Usman AK, Lim JW, Aljundi IH. Nickel augmented biochar for sustaining produced water treatment to decarbonize oil and gas industrial waste using anaerobic-aerobic granular cylindrical periodic discontinuous batch reactors. ENVIRONMENTAL RESEARCH 2024; 257:119381. [PMID: 38857858 DOI: 10.1016/j.envres.2024.119381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
This study assessed the efficacy of granular cylindrical periodic discontinuous batch reactors (GC-PDBRs) for produced water (PW) treatment by employing eggshell and waste activated sludge (WAS) derived Nickel (Ni) augmented biochar. The synthesized biochar was magnetized to further enhance its contribution towards achieving carbon neutrality due to carbon negative nature, Carbon dioxide (CO2) sorption, and negative priming effects. The GC-PDBR1 and GC-PDBR2 process variables were optimized by the application of central composite design (CCD). This is to maximize the decarbonization rate. Results showed that the systems could reduce total phosphorus (TP) and chemical oxygen demand (COD) by 76-80% and 92-99%, respectively. Optimal organic matter and nutrient removals were achieved at 80% volumetric exchange ratio (VER), 5 min settling time and 3000 mg/L mixed liquor suspended solids (MLSS) concentration with desirability values of 0.811 and 0.954 for GC-PDBR1 and GC-PDBR2, respectively. Employing four distinct models, the biokinetic coefficients of the GC-PDBRs treating PW were calculated. The findings indicated that First order (0.0758-0.5365) and Monod models (0.8652-0.9925) have relatively low R2 values. However, the Grau Second-order model and Modified Stover-Kincannon model have high R2 values. This shows that, the Grau Second Order and Modified Stover-Kincannon models under various VER, settling time, and MLSS circumstances, are more suited to explain the removal of pollutants in the GC-PDBRs. Microbiological evaluation demonstrated that a high VER caused notable rises in the quantity of several microorganisms. Under high biological selective pressure, GC-PDBR2 demonstrated a greater percentage of nitrogen removal via autotrophic denitrification and a greater number of nitrifying bacteria. The overgrowth of bacteria such as Actinobacteriota spp. Bacteroidota spp, Gammaproteobacteria, Desulfuromonas Mesotoga in the phylum, class, and genus, has positively impacted on granule formation and stability. Taken together, our study through the introduction of intermittent aeration GC-PDBR systems with added magnetized waste derived biochar, is an innovative approach for simultaneous aerobic sludge granulation and PW treatment, thereby providing valuable contributions in the journey toward achieving decarbonization, carbon neutrality and sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Ahmad Hussaini Jagaba
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Dahiru U Lawal
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohamed A Yassin
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nuhu Dalhat Mu'azu
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31451 Dammam, Saudi Arabia
| | - Abdullahi Kilaco Usman
- Department of Civil Engineering, College of Engineering, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin, 39524, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Isam H Aljundi
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
8
|
K Benny C, Chakraborty S. Mechanistic investigation of azo dye removal from carbon-deficient dyeing wastewater using horizontal-vertical constructed wetlands. CHEMOSPHERE 2024; 364:143148. [PMID: 39168387 DOI: 10.1016/j.chemosphere.2024.143148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Azo dye degradation can be achieved by simulating a series of anaerobic and aerobic conditions within the constructed wetland (CW) system. The current investigation evaluated the effectiveness of a baffled horizontal-vertical CW system, planted with Typha angustifolia, simulating anaerobic-aerobic conditions to treat carbon-deficient synthetic dyeing wastewater containing 100 mg/L Reactive Yellow 145 (RY145) azo dye. In the absence of an available carbon source in dyeing wastewater, an optimum quantity of sodium acetate was supplemented as the substrate for microbial degradation of RY145. Influent dyeing wastewater characteristics were 5555 ADMI colour, 461 mg/L chemical oxygen demand (COD) and 39 mg/L total nitrogen (TN). During the operation period, the CW system achieved 97% colour, 87% COD, 95% ammonium nitrogen (NH4+-N) and 71% TN removals at 4 d hydraulic retention time (HRT). Favourable environmental conditions, such as low redox conditions and substrate availability in horizontal CW, contributed to a significant reduction in colour (96%). Most TN reduction (67%) happened in horizontal CW by denitrification and plant assimilation. The metagenomic study revealed that Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes were responsible for pollutant degradation within horizontal CW. The UV-visible spectra and high-resolution liquid chromatograph mass spectrometer (HR-LCMS) analysis confirmed that dye degradation intermediates generated from the breakage of azo bonds were eliminated in vertical CW with high redox conditions. The results of the phytotoxicity and fish toxicity experiments demonstrated a substantial toxicity reduction in the CW system-treated effluent.
Collapse
Affiliation(s)
- Christy K Benny
- Department of Civil Engineering, IIT Guwahati, Guwahati, India.
| | | |
Collapse
|
9
|
Thambiliyagodage C, Liyanaarachchi H, Jayanetti M, Ekanayake G, Mendis A, Samarakoon U, Vigneswaran S. Persulfate assisted photocatalytic and antibacterial activity of TiO 2-CuO coupled with graphene oxide and reduced graphene oxide. Sci Rep 2024; 14:12505. [PMID: 38822052 PMCID: PMC11143361 DOI: 10.1038/s41598-024-63452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Photocatalysts of TiO2-CuO coupled with 30% graphene oxide (GO) were hydrothermally fabricated, which varied the TiO2 to CuO weight ratios to 1:4, 1:2, 1:1, 2:1 and 4:1 and reduced to form TiO2-CuO/reduced graphene oxide (rGO) photocatalysts. They were characterized using XRD, TEM, SEM, XPS, Raman, and DRS technologies. TiO2-CuO composites and TiO2-CuO/GO degrade methylene blue when persulfate ions are present. Persulfate concentration ranged from 1, 2, 4 to 8 mmol/dm-3 in which the highest activity of 4.4 × 10-2 and 7.35 × 10-2 min-1 was obtained with 4 mmol/dm-3 for TiO2-CuO (1:4) and TiO2-CuO/GO (1:1), respectively. The presence of EDTA and isopropyl alcohol reduced the photodegradation. TiO2-CuO coupled with rGO coagulates methylene blue in the presence of persulfate ions and such coagulation is independent of light. The catalyst dosage and the concentration of the dye were varied for the best-performing samples. The antibacterial activity of the synthesized samples was evaluated against the growth of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumonia. Ti:Cu (1:2)-GO and Ti:Cu (1:4)-GO had the highest antibacterial activity against K. pneumoniae (16.08 ± 0.14 mm), P. aeruginosa (22.33 ± 0.58 mm), E. coli (16.17 ± 0.29 mm) and S. aureus (16.08 ± 0.88).
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Upeka Samarakoon
- Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 1432, Ås, Norway
| |
Collapse
|
10
|
Ghodsi S, Kamranifar M, Fatehizadeh A, Taheri E, Bina B, Hublikar LV, Ganachari SV, Nadagouda M, Aminabhavi TM. New insights on the decolorization of waste flows by Saccharomyces cerevisiae strain - A systematic review. ENVIRONMENTAL RESEARCH 2024; 249:118398. [PMID: 38331155 DOI: 10.1016/j.envres.2024.118398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
One of the common causes of water pollution is the presence of toxic dye-based effluents, which can pose a serious threat to the ecosystem and human health. The application of Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization has been widely investigated due to their efficient removal and eco-friendly treatments. This review attempts to create an awareness of different forms and methods of using Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization through a systematic approach. Overall, some suggestions on classification of dyes and related environmental/health problems, and treatment methods are discussed. Besides, the mechanisms of dye removal by S. cerevisiae including biosorption, bioaccumulation, and biodegradation and cell immobilization methods such as adsorption, covalent binding, encapsulation, entrapment, and self-aggregation are discussed. This review would help to inspire the exploration of more creative methods for applications and modification of S. cerevisiae and its further practical applications.
Collapse
Affiliation(s)
- Soudabeh Ghodsi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Kamranifar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Bijan Bina
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Leena V Hublikar
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| | - Megha Nadagouda
- University of Cincinnati, 2600 Clifton Ave. Cincinnati, OH 45221, United States.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India; Korea University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Yan B, Dai Y, Xin L, Li M, Zhang H, Long H, Gao X. Research progress in the degradation of printing and dyeing wastewater using chitosan based composite photocatalytic materials. Int J Biol Macromol 2024; 263:130082. [PMID: 38423910 DOI: 10.1016/j.ijbiomac.2024.130082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The surge in economic growth has spurred the expansion of the textile industry, resulting in a continuous rise in the discharge of printing and dyeing wastewater. In contrast, the photocatalytic method harnesses light energy to degrade pollutants, boasting low energy consumption and high efficiency. Nevertheless, traditional photocatalysts suffer from limited light responsiveness, inadequate adsorption capabilities, susceptibility to agglomeration, and hydrophilicity, thereby curtailing their practical utility. Consequently, integrating appropriate carriers with traditional photocatalysts becomes imperative. The combination of chitosan and semiconductor materials stands out by reducing band gap energy, augmenting reactive sites, mitigating carrier recombination, bolstering structural stability, and notably advancing the photocatalytic degradation of printing and dyeing wastewater. This study embarks on an exploration by initially elucidating the technical principles, merits, and demerits of prevailing printing and dyeing wastewater treatment methodologies, with a focal emphasis on the photocatalytic approach. It delineates the constraints encountered by traditional photocatalysts in practical scenarios. Subsequently, it comprehensively encapsulates the research advancements and elucidates the reaction mechanisms underlying chitosan based composite materials employed in treating printing and dyeing wastewater. Finally, this work casts a forward-looking perspective on the future research trajectory of chitosan based photocatalysts, particularly in the realm of industrial applications.
Collapse
Affiliation(s)
- Boting Yan
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Yiming Dai
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Lili Xin
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Mingyang Li
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Hao Zhang
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Hongming Long
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Xiangpeng Gao
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Anhui University of Technology, Ministry of Education, Maanshan, Anhui 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China.
| |
Collapse
|
12
|
Radoor S, Kandel DR, Park K, Jayakumar A, Karayil J, Lee J. Low-cost and eco-friendly PVA/carrageenan membrane to efficiently remove cationic dyes from water: Isotherms, kinetics, thermodynamics, and regeneration study. CHEMOSPHERE 2024; 350:140990. [PMID: 38141681 DOI: 10.1016/j.chemosphere.2023.140990] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Methylene blue (MB), a common dye in the textile industry, has a multitude of detrimental consequences on humans and the environment. Accordingly, it is necessary to remove dyes from water to guarantee our health and sustainable ecosystem. In this study, we developed polyvinyl alcohol (PVA)-based hydrogel adsorbents with high adsorption capacity by adding three types of carrageenan (kappa, iota, and lambda) to remove MB from water. Thanks to the functional groups, the PVA/carrageenan membranes dramatically increased the removal efficiency (kappa, 98.8%; iota, 97.0%; lambda, 95.4%) compared to the pure PVA membrane (6.3%). Among the three types of PVA/carrageenan membranes, the PVA/kappa-carrageenan membrane exhibited the best adsorption capacity of 147.8 mg/g. This result implies that steric hindrance was considerably significant, given that kappa carrageenan has only one sulfate group in the repeating unit, whereas iota and lambda carrageenan composite PVA membranes possess two and three sulfate groups. Apart from the maximum adsorption capacity, this study addressed a variety of characteristics of PVA/carrageenan membranes such as the effects of initial MB concentration, kappa carrageenan weight percentage, contact time, adsorbent dosage, and temperature on the adsorption performance. In addition, the kinetic and thermodynamic studies were also carried out. Lastly, the reusability of the PVA/carrageenan membrane was verified by the 98% removal efficiency maintained after five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Kyeongyeon Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
13
|
Guo T, Pan K, Chen Y, Tian Y, Deng J, Li J. When aerobic granular sludge faces emerging contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167792. [PMID: 37838059 DOI: 10.1016/j.scitotenv.2023.167792] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The evolution of emerging contaminants (ECs) has caused greater requirements and challenges to the current biological wastewater treatment technology. As one of the most promising biological treatment technologies, the aerobic granular sludge (AGS) process also faces the challenge of ECs. This study summarizes the recent progress and characteristics of several representative ECs (persistent organic pollutants, endocrine disrupting chemicals, antibiotics, and microplastics) in AGS systems that have garnered widespread attention. Additionally, the biodegradation and adsorption mechanisms of ECs were discussed, and the interactions between various ECs and AGS was elucidated. The importance of extracellular polymeric substances for the stabilization of AGS and the removal of ECs is also discussed. Knowledge gaps and future research directions that may enable the practical application of AGS are highlighted. Overall, AGS processes show great application potential and this review provides guidance for the future implementation of AGS technology as well as elucidating the mechanism of its interaction with ECs.
Collapse
Affiliation(s)
- Tao Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Kuan Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yunxin Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yajun Tian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jing Deng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
14
|
Nancharaiah YV, Sarvajith M, Mohan TVK. Pilot-scale aerobic granular sludge reactors with granular activated carbon for effective nitrogen and phosphorus removal from domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164822. [PMID: 37331394 DOI: 10.1016/j.scitotenv.2023.164822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Aerobic granular sludge (AGS) is a breakthrough biotechnology of 21st century and an innovative alternative to activated sludge for treating wastewater. Concerns on long-start up periods for development of AGS and stability of granules are impeding its widespread implementation for treating low-strength domestic wastewater especially in tropical climate conditions. Addition of nucleating agents have been shown to improve development of AGS while treating low-strength wastewaters. There are no previous studies on AGS development and biological nutrient removal (BNR) in the presence of nucleating agents during treatment of real domestic wastewater. This study investigated AGS formation and BNR pathways while treating real domestic wastewater in a 2 m3 pilot-scale granular sequencing batch reactor (gSBR) operated without and with granular activated carbon (GAC) particles. The gSBRs were operated under tropical climate (T ≈ 30 °C) for >4-years to evaluate the effect of GAC addition on granulation, granular stability and BNR at pilot-scale. Formation of granules was observed within 3 months. MLSS values of 4 and 8 g/L were recorded within 6 months in gSBRs without and with GAC particles, respectively. The granules had an average size of 1.2 mm and SVI5 of 22 mL/g. Ammonium was mainly removed through nitrate formation in the gSBR without GAC. But, ammonium was removed by short-cut nitrification via nitrite due to washout of nitrite oxidizing bacteria in the presence of GAC. Phosphorus removal was much higher in gSBR with GAC due to the establishment of enhanced biological phosphorus removal (EBPR) pathway. After 3 months, the phosphorus removal efficiencies were at 15 % and 75 %, respectively, without and with GAC particles. The addition of GAC led to moderation in bacterial community and enrichment of polyphosphate-accumulating organisms. This is the first ever report on pilot-scale demonstration of AGS technology in the Indian sub-continent and GAC addition on BNR pathways.
Collapse
Affiliation(s)
- Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400094, India.
| | - M Sarvajith
- Biofouling and Biofilm Processes Section, WSCD, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400094, India
| | - T V Krishna Mohan
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamilnadu, India
| |
Collapse
|
15
|
Sarvajith M, Nancharaiah YV. De novo granulation of sewage-borne microorganisms: A proof of concept on cultivating aerobic granular sludge without activated sludge and effective enhanced biological phosphorus removal. ENVIRONMENTAL RESEARCH 2023; 224:115500. [PMID: 36791839 DOI: 10.1016/j.envres.2023.115500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Long start-up periods for granulating activated sludge and concerns on granular stability are the bottlenecks reported during implementation of novel aerobic granular sludge (AGS) technology in municipal wastewater treatment plants. Here, de novo granulation of sewage-borne microorganisms without using activated sludge (AS) inoculum was investigated in bench-scale sequencing batch reactors (SBR). Data showed that formation of AGS from sewage-borne microorganisms was rapid and first granules appeared within one week. Granulation was indicated by appearance of biomass particles (size >0.12 mm), high biomass levels (∼8 g/L) and superior settling properties (SVI30 min: 30 mL/g). Granulation process involved distinct stages like formation of aggregates, retention of aggregates, and growth of millimetre sized granules. Simultaneous COD, nitrogen and phosphorous removal was established within 10 days of start-up in the SBR without using AS inoculum. However, phosphorus removal became stable after 50 days of start-up. Total nitrogen (TN) and total phosphorus (TP) removals of 92% and 70%, respectively, were achieved from real domestic wastewater. Furthermore, addition of granular activated carbon (GAC) had improved both granulation and biological nutrient removals. Interestingly, phosphorus removal became quite stable within 10 days of start-up in the SBR operated with GAC particles. TN and TP removals were found to be higher at >98% and >94%, respectively, in GAC-augmented SBR. Removal of ammonia and phosphorus were mediated by nitritation-denitritation and enhanced biological phosphorus removal (EBPR) pathways, respectively. The bacterial diversity of AGS was lower than that of sewage. Quantitative PCR indicated enrichment of ammonia oxidizing bacteria, denitrifying bacteria and polyphosphate accumulating organisms during granulation. De novo granulation of sewage-borne microorganisms is a promising approach for rapidly cultivating AGS and establishing biological nutrient removal in sewage treatment plants.
Collapse
Affiliation(s)
- M Sarvajith
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
16
|
Jin Y, Xiong W, Liu D, Wu Z, Xiao G, Wang S, Su H. Responses of straw foam-based aerobic granular sludge to atrazine: Insights from metagenomics and microbial community variations. CHEMOSPHERE 2023; 331:138828. [PMID: 37137392 DOI: 10.1016/j.chemosphere.2023.138828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Atrazine (ATZ) has caused serious environmental pollution, but the biodegradation of ATZ is relatively slow and inefficient. Herein, a straw foam-based aerobic granular sludge (SF-AGS) was developed, the spatially ordered architectures of which could greatly improve the drug tolerance and biodegradation efficiency of ATZ. The results showed that, in the presence of ATZ, chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), total phosphorus (TP), and total nitrogen (TN) were effectively removed within 6 h, and the removal efficiencies were as high as 93.37%, 85.33%, 84.7%, and 70%, respectively. Furthermore, ATZ stimulated microbial consortia to secrete three times more extracellular polymers compared to without ATZ. Illumina MiSeq sequencing results showed that bacterial diversity and richness decreased, leading to significant changes in microbial population structure and composition. ATZ-resistant bacteria including Proteobacteria, Actinobacteria, and Burkholderia laid the biological basis for the stability of aerobic particles, efficient removal of pollutants, and degradation of ATZ. The study demonstrated that SF-AGS is feasible for ATZ-laden low-strength wastewater treatment.
Collapse
Affiliation(s)
- Yu Jin
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wei Xiong
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Dan Liu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhiqing Wu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
17
|
Mahdavi H, Hosseini F, Akbar Heidari A, Karami M. Polyethersulfone-TPU blend membrane coated with an environmentally friendly sabja seed mucilage-Cu2+ cross-linked layer with outstanding separation performance and superior antifouling. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Nivedhita S, Shyni Jasmin P, Sarvajith M, Nancharaiah YV. Effects of oxytetracycline on aerobic granular sludge process: Granulation, biological nutrient removal and microbial community structure. CHEMOSPHERE 2022; 307:136103. [PMID: 35995202 DOI: 10.1016/j.chemosphere.2022.136103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Formation of aerobic granular sludge (AGS), process performance and microbial community structure were investigated in lab-scale sequencing batch reactors (SBR) operated without and with oxytetracycline (OTC). Granulation of activated sludge and appearance of AGS was observed in parallel SBRs operated without and with OTC. However, formation of well-settling aerobic granules was relatively faster in the SBR fed with 100 μg/L OTC and observed within 2 weeks of start-up. Ammonium, total nitrogen, and phosphorus removals were quickly established in the AGS cultivated without OTC. In contrast, nitrogen and phosphorus removals were lower in the OTC fed SBR. But, a gradual improvement in nitrogen and phosphorus removals was observed. After 45 days, nitrogen and phosphorous removals were stabilized at 99% and 70%, respectively, due to establishment of OTC-tolerant community. qPCR revealed the impact of OTC on ammonium oxidizing bacteria, polyphosphate accumulating organisms and their enrichment during exposure to OTC. Ammonium and phosphorus were majorly removed via nitritation-denitritation and enhanced biological phosphorus removal (EBPR) pathways, respectively, in the presence of OTC. Brevundimonas (35%), Thaurea (14%) sp. Ca. Competibacter (5.6%), and Ca. Accumulibacter (4.2%) were enriched in OTC-fed AGS. Of the two OTC-tolerant strains isolated, Micrococcus luteus exhibited growth and efficient OTC biotransformation at different OTC concentrations. Moreover, M. luteus was predominantly growing in the form of aggregates. Key traits such as tolerance, biotransformation and high autoaggregation ability allowed a niche for this strain in the granules. This work has important implications in understanding the effect of antibiotics on AGS and designing AGS based treatment for antibiotic-laden wastewaters.
Collapse
Affiliation(s)
- S Nivedhita
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603 102, Tamil Nadu, India
| | - P Shyni Jasmin
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603 102, Tamil Nadu, India
| | - M Sarvajith
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603 102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603 102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
19
|
Zou J, Yang J, He H, Wang X, Mei R, Cai L, Li J. Effect of Seed Sludge Type on Aerobic Granulation, Pollutant Removal and Microbial Community in a Sequencing Batch Reactor Treating Real Textile Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10940. [PMID: 36078654 PMCID: PMC9518340 DOI: 10.3390/ijerph191710940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The aerobic granulation, pollutant removal, and microbial community in real textile wastewater (TWW) treatment were compared using conventional activated sludge (CAS) and preformed aerobic granular sludge (AGS) in synthetic wastewater as seed in two reactors, reactor-1 (R1) and reactor-2 (R2), respectively. The results showed that complete granulation was achieved in R1 (sludge volume index at 5 min (SVI5) and 30 min (SVI30): 19.4 mL/g; granule size: 210 μm) within 65 days, while it only required 28 days in R2 (SVI5 and SVI30: 27.3 mL/g; granule size: 496 μm). The removal of COD, NH4+-N and TN in R1 (49.8%, 98.8%, and 41.6%) and R2 (53.6%, 96.9%, and 40.8%) were comparable in 100% real TWW treatment, but stable performance was achieved much faster in R2. The real TWW had an inhibitory effect on heterotrophic bacteria activity, but it had no inhibition on ammonia-oxidizing bacteria activity. AGS with a larger particle size had a higher microbial tolerance to real TWW. Furthermore, filamentous Thiothrix in the AGS in R2 disappeared when treating real TWW, leading to the improvement of sludge settleability. Thus, seeding preformed AGS is suggested as a rapid start-up method for a robust AGS system in treating real TWW.
Collapse
Affiliation(s)
- Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaqi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hangtian He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaofei Wang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Rongwu Mei
- Eco-Environmental Science Design & Research Institute of Zhejiang Province, Hangzhou 310007, China
| | - Lei Cai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
20
|
Sarvajith M, Nancharaiah YV. Enhanced biological phosphorus removal in aerobic granular sludge reactors by granular activated carbon dosing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153643. [PMID: 35124048 DOI: 10.1016/j.scitotenv.2022.153643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of granular activated carbon (GAC) addition on the enrichment of polyphosphate accumulating organisms (PAOs), stratification of PAOs in the co-existing GAC-biofilms and granules and biological nutrient removal (BNR) in aerobic granular sludge (AGS) reactors. It was found that BNR increased in the GAC-augmented system. Establishment of enhanced biological phosphorus removal (EBPR) pathway was faster with about 1.7 to 2-fold higher P removal in GAC system than control. EBPR biomass grown in the presence of GAC was segregated into different size fractions for determining BNR and stratification of microbial groups. It was found that EBPR was majorly associated with the large biomass (>0.5 mm) fraction, corroborating with higher abundance of PAOs. Higher P removals of 60 to 70% with characteristic EBPR profiles were observed in 0.5 mm fraction. In contrast, P removals by 0.25 mm fraction were lower at 20 to 35% without EBPR profiles. EBPR biomass (>0.5 mm) fraction was segregated into granules and GAC-biofilms for determining the role of GAC in PAOs enrichment. P release (2.5-3.5 mg L-1 P) and P uptake (5-7 mg L-1 P) were higher in the P removal profiles exhibited by GAC-biofilms. In contrast, P release and P uptake were lower with the granules. These differences in P removal profiles resulted in distinct net P removal efficiencies of 70 ± 5% and 50 ± 6% for GAC-biofilms and granules, respectively. These differences in P removals were corroborated by higher abundance of PAOs in the GAC-biofilms than co-existing granules. PAO clade-level enrichment was found to be dependent on substrate wherein acetate feeding enriched PAO clade I, while acetate-propionate feeding caused enrichment of both PAO clade I and II. These results suggest that GAC addition to AGS reactors can aid in enrichment of PAOs, reduce the start-up period for EBPR, and increase P removal efficiencies.
Collapse
Affiliation(s)
- M Sarvajith
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400 094, India.
| |
Collapse
|
21
|
Hamad HN, Idrus S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers (Basel) 2022; 14:783. [PMID: 35215695 PMCID: PMC8876036 DOI: 10.3390/polym14040783] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Over the last few years, various industries have released wastewater containing high concentrations of dyes straight into the ecological system, which has become a major environmental problem (i.e., soil, groundwater, surface water pollution, etc.). The rapid growth of textile industries has created an alarming situation in which further deterioration to the environment has been caused due to substances being left in treated wastewater, including dyes. The application of activated carbon has recently been demonstrated to be a highly efficient technology in terms of removing methylene blue (MB) from wastewater. Agricultural waste, as well as animal-based and wood products, are excellent sources of bio-waste for MB remediation since they are extremely efficient, have high sorption capacities, and are renewable sources. Despite the fact that commercial activated carbon is a favored adsorbent for dye elimination, its extensive application is restricted because of its comparatively high cost, which has prompted researchers to investigate alternative sources of adsorbents that are non-conventional and more economical. The goal of this review article was to critically evaluate the accessible information on the characteristics of bio-waste-derived adsorbents for MB's removal, as well as related parameters influencing the performance of this process. The review also highlighted the processing methods developed in previous studies. Regeneration processes, economic challenges, and the valorization of post-sorption materials were also discussed. This review is beneficial in terms of understanding recent advances in the status of biowaste-derived adsorbents, highlighting the accelerating need for the development of low-cost adsorbents and functioning as a precursor for large-scale system optimization.
Collapse
Affiliation(s)
| | - Syazwani Idrus
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
22
|
El Hani O, Karrat A, Digua K, Amine A. Development of a simplified spectrophotometric method for nitrite determination in water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120574. [PMID: 34772633 DOI: 10.1016/j.saa.2021.120574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A new eco-friendly, rapid, and sensitive spectrophotometric method was developed to determine small quantities of nitrite, based on a diazotization mechanism. In an acidic solution, sulfathiazole was first diazotized with sodium nitrite, followed by adding phosphate buffer to form a yellow-colored compound, which showed maximum absorption at 450 nm, without the need for the addition of coupling agents such as N-(1-naphthyl) ethylenediamine. The effects of reagents amount and the optimal experimental conditions were examined by Central composite design. The simplified method presented a wide linear range of nitrite between 0.091 μg mL-1 and 1.47 μg mL-1, a sensitivity of 0.447 Abs mL µg-1, a determination coefficient of 0.998, and a low limit of detection of 0.053 μg mL-1. The simplified method was found to be comparable to the Griess method. It was evaluated for the measurements of nitrite using the accuracy profile approach. The validation procedure results established that 80% of the future results would be within the acceptability limit of 10% over the validation domain ranging from 0.174 μg mL-1 to 1.37 μg mL-1. The developed method was furtherly applied in the determination of nitrite using a developed paper-based analytical device that detected a nitrite concentration of 3 μg mL-1 which is considered by the World Health Organization to be the maximal permissible limit of nitrite in drinking water.
Collapse
Affiliation(s)
- Ouarda El Hani
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P. A. 146., Mohammedia, Morocco
| | - Abdelhafid Karrat
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P. A. 146., Mohammedia, Morocco
| | - Khalid Digua
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P. A. 146., Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P. A. 146., Mohammedia, Morocco.
| |
Collapse
|
23
|
Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113160. [PMID: 35026583 DOI: 10.1016/j.ecoenv.2021.113160] [Citation(s) in RCA: 553] [Impact Index Per Article: 184.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 05/21/2023]
Abstract
The synthetic dyes used in the textile industry pollute a large amount of water. Textile dyes do not bind tightly to the fabric and are discharged as effluent into the aquatic environment. As a result, the continuous discharge of wastewater from a large number of textile industries without prior treatment has significant negative consequences on the environment and human health. Textile dyes contaminate aquatic habitats and have the potential to be toxic to aquatic organisms, which may enter the food chain. This review will discuss the effects of textile dyes on water bodies, aquatic flora, and human health. Textile dyes degrade the esthetic quality of bodies of water by increasing biochemical and chemical oxygen demand, impairing photosynthesis, inhibiting plant growth, entering the food chain, providing recalcitrance and bioaccumulation, and potentially promoting toxicity, mutagenicity, and carcinogenicity. Therefore, dye-containing wastewater should be effectively treated using eco-friendly technologies to avoid negative effects on the environment, human health, and natural water resources. This review compares the most recent technologies which are commonly used to remove dye from textile wastewater, with a focus on the advantages and drawbacks of these various approaches. This review is expected to spark great interest among the research community who wish to combat the widespread risk of toxic organic pollutants generated by the textile industries.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Kamal M Okasha
- Internal Medicine and Nephrology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of the Environment and Agrifood, Cranfield University, MK43 0AL, UK
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
24
|
Sarvajith M, Nancharaiah YV. Enhancing biological nitrogen and phosphorus removal performance in aerobic granular sludge sequencing batch reactors by activated carbon particles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114134. [PMID: 34839174 DOI: 10.1016/j.jenvman.2021.114134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Long start-up periods for aerobic granular sludge (AGS) formation and establishment of P removal pathways are challenges for widespread implementation of AGS process. External additives such as activated carbon (AC) attracted interest for accelerating AGS formation. However, the roles of AC in granulation and biological nutrient removal (BNR) are not understood. Here, the role of AC was investigated in decreasing start-up periods in AGS formation and BNR under different carbon substrate conditions (i.e., acetate (HAc), propionate (HPr) and HAc-HPr) in sequencing batch reactors (SBRs). AC addition increased aggregation index and settleability of activated sludge (AS) inoculum which minimized AS washout from SBRs. AC addition hastened AGS formation and establishment of BNR pathways by facilitating AS retention and biofilm formation. Feeding HAc or HAc-HPr supported better granulation (MLSS: 6-7 g l-1, SVI: 30-40 ml g-1) than HPr (MLSS: 4 g l-1, SVI: 70). The start-up periods for efficient total nitrogen (TN) removals were decreased to 22 and 16 d from 38 to 25 d, respectively, in AC augmented SBRs fed with either HAc or HAc-HPr. TN removals were higher at ≥95% in HAc or HAc-HPr fed SBRs. Total phosphorus (TP) removals were also higher in AC-augmented SBRs at 80% and ≥90% in HAc and HAc-HPr fed SBRs, respectively. In contrast, TN and TP removals were lower at 70% and 35%, respectively, in HPr fed SBR. Ammonium was primarily removed via nitritation-denitritation pathway. Phosphorus removal was at 1.7 to 2-fold higher in AC augmented SBRs and driven by enhanced biological phosphorus removal (EBPR) pathway. MiSeq sequencing and qPCR revealed higher enrichment of polyphosphate accumulating organisms (PAOs), denitrifying PAOs, and ammonia oxidizers in AC-augmented SBRs fed with HAc or HAc-HPr. This study demonstrates that AC addition can be considered for enrichment of PAOs and establishment of EBPR in aerobic granular SBRs.
Collapse
Affiliation(s)
- M Sarvajith
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
25
|
Abstract
The use of dyes dates to ancient times and has increased due to population and industrial growth, leading to the rise of synthetic dyes. These pollutants are of great environmental impact and azo dyes deserve special attention due their widespread use and challenging degradation. Among the biological solutions developed to mitigate this issue, bacteria are highlighted for being versatile organisms, which can be applied as single organism cultures, microbial consortia, in bioreactors, acting in the detoxification of azo dyes breakage by-products and have the potential to combine biodegradation with the production of products of economic interest. These characteristics go hand in hand with the ability of various strains to act under various chemical and physical parameters, such as a wide range of pH, salinity, and temperature, with good performance under industry, and environmental, relevant conditions. This review encompasses studies with promising results related to the use of bacteria in the bioremediation of environments contaminated with azo dyes in the most diverse techniques and parameters, both in environmental and laboratory samples, also addressing their mechanisms and the legislation involving these dyes around the world, showcasing the importance of bacterial bioremediation, specialty in a scenario in an ever-increasing pursuit for sustainable production.
Collapse
|
26
|
Nancharaiah YV, Sarvajith M. Aerobic granular sludge for efficient biotransformation of chalcogen Se IV and Te IV oxyanions: Biological nutrient removal and biogenesis of Se 0 and Te 0 nanostructures. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126833. [PMID: 34399215 DOI: 10.1016/j.jhazmat.2021.126833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous removal of selenite (SeIV), tellurite (TeIV) and nutrients by aerobic granular sludge (AGS) was investigated. A sequencing batch reactor (SBR) was operated with increasing SeIV and TeIV (up to 500 µM each) for 205 days to evaluate metalloid oxyanion and nutrient removal. AGS efficiently removed SeIV and TeIV by readily converting them to biomass associated forms. The total Se and Te removal efficiencies were higher at 98% and 99%, respectively. Formation of biomass-associated Se0 and Te0 was confirmed by XRD, Raman spectroscopy and SEM-EDX. Feeding of SeIV and TeIV elicited inhibitory action on ammonium removal initially, nonetheless removal performance was recovered during the subsequent cycles. Ammonium, total nitrogen and phosphorus removals were stabilized at 85%, 80% and 75%, respectively, at 500 µM of SeIV and TeIV. Sequencing of 16S rRNA gene confirmed enrichment of known SeIV and TeIV reducing bacteria in the granules. qPCR and removal kinetics supported ammonia removal via nitritation-denitritation. This work demonstrates functional capabilities of AGS for effectively removing toxic SeIV and TeIV oxyanions apart from performing simultaneous COD, nitrogen and phosphorus removal. Efficient biological nutrient removal in the presence of toxic SeIV and TeIV concentrations, suggests robustness of AGS and its resilience to toxic contaminants.
Collapse
Affiliation(s)
- Y V Nancharaiah
- Biofouling and Biofilm Processes, Water & Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400 094, India.
| | - M Sarvajith
- Biofouling and Biofilm Processes, Water & Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400 094, India
| |
Collapse
|
27
|
Tchinsa A, Hossain MF, Wang T, Zhou Y. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. CHEMOSPHERE 2021; 284:131393. [PMID: 34323783 DOI: 10.1016/j.chemosphere.2021.131393] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The development of metal organic frameworks (MOFs) has recently drawn a lot of scientific interest in water treatment due to the unique properties such as tunable porosities, large pore volumes, hierarchical structures, excellent adsorption and regeneration performances. MOFs represent an eco-friendly alternative to conventional adsorbents especially for the adsorptive removal of noxious organic pollutants from aqueous solution. Advanced MOFs' performances are justified by the introduction of functional groups, magnetic moieties, and specific foreign materials onto MOFs. This however leads to increase in the manufacturing costs of MOFs and consequently possess a huge challenge in large-scale applications. This review hence critically discusses the recent progresses in the development of MOFs-based adsorbents for the removal of selected organic pollutants (e.g., dyes, antibiotics and pesticides) from aqueous solution. Furthermore, major interaction mechanisms between MOFs and organic pollutants in response to numerous experimental conditions, such as pH, temperature, coexisting ions are put forward. Finally, some recommendations in support for designing MOFs with improved adsorption performances are also highlighted.
Collapse
Affiliation(s)
- Audrey Tchinsa
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Md Faysal Hossain
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Tong Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
28
|
Bueno RDF, Faria JK, Uliana DP, Liduino VS. Simultaneous removal of organic matter and nitrogen compounds from landfill leachate by aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2021; 42:3756-3770. [PMID: 32148171 DOI: 10.1080/09593330.2020.1740798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
This study aimed at investigating the treatment of landfill leachate using the aerobic granular sludge process in a lab-scale sequential batch reactor (SBR-AGS). The leachate from a giant sanitary landfill localized in the State of São Paulo (Brazil) exhibited high concentration of organic matter (COD 5,300 ± 78 mg L-1) and total nitrogen (TKN 2,630 ± 355 mg L-1). Comparatively, the leachate was added to wastewater in three different volumetric ratios (5, 10 and 20%) and the mixtures were characterized over treatment. The results indicated that there were no significant changes in the behaviour of the biological process even at the highest leachate ratio. The granulation of the aerobic sludge occurred after 90 days of operation and the granules had a diameter of 485-1585 μm. SBR-AGS exhibited removal efficiency of 87-89% for organic matter and at least 98% for total nitrogen, regardless of the leachate ratio. The treated effluent that received 20% of leachate showed 2.7 mg L-1 ammonia and 1.1 mg L-1 nitrate. This study shows that SBR-AGS was able to form large granules, thus promoting a simultaneous nitrification and denitrification (SND) process. We highlighted that SND occurred in low dissolved oxygen concentrations (< 1.5 mg L-1) for 120 days, without compromising aerobic granule integrity. These results suggest that the aerobic granular sludge process is a promising alternative for the co-treatment of landfill leachate and domestic wastewater under tropical climate conditions and its use should be encouraged.
Collapse
|
29
|
Kubendiran H, Alex SA, Pulimi M, Chandrasekaran N, Nancharaiah YV, Venugopalan VP, Mukherjee A. Development of biogenic bimetallic Pd/Fe nanoparticle-impregnated aerobic microbial granules with potential for dye removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112789. [PMID: 34029979 DOI: 10.1016/j.jenvman.2021.112789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to develop bimetallic core-shell Pd/Fe nanoparticles on the surface of aerobic microbial granules (Bio-Pd/Fe) and to evaluate their dye removal potential using a representative dye, methyl orange (MO). The aerobic microbial granules (1.5 ± 0.32 mm) were grown for 70 days in a 3-L glass sequencing batch reactor (SBR) with a 12-h cycle time. The Bio-Pd/Fe formation was catalyzed by the Bio-H2 gas produced by the granules. The developed Bio-Pd/Fe was further used for MO removal from aqueous solutions, and the reaction parameters were optimized by response surface methodology (RSM). The XRD, SEM, EDAX, elemental mapping, and XPS studies confirmed the formation of Bio-Pd/Fe. Under the optimized removal conditions, 99.33% MO could be removed by Bio-Pd/Fe, whereas removal by Bio-Pd, Bio-Fe, aerobic microbial granules, and heat-killed granules were found to be quite low (68.91 ± 0.2%, 76.8 ± 0.3%, 19.8 ± 0.6%, and 6.59 ± 0.2%, respectively). The mechanism of removal was investigated by UV-visible spectroscopy, redox potential analysis, HR-LCMS analyses of the solution phase, and XRD and XPS analyses of the solid sorbent. The degradation products of MO exhibited m/z values corresponding to 292, 212, and 160 m/z. The remnant toxicity of the intermediate degradation products was analysed using freshwater algae, Scenedesmus sp. And Allium cepa, as indicator organisms. These assays suggested that after the treatment with Bio-Pd/Fe, MO was transformed to a lesser toxic form.
Collapse
Affiliation(s)
| | - Sruthi Ann Alex
- Centre for Nano Science and Technology, Anna University, Chennai, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Y V Nancharaiah
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400 094, India
| | - V P Venugopalan
- Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400 094, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
30
|
Rahmati R, Nayebi B, Ayati B. Investigating the effect of hydrogen peroxide as an electron acceptor in increasing the capability of slurry photocatalytic process in dye removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2414-2423. [PMID: 34032619 DOI: 10.2166/wst.2021.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The hydrogen peroxide role in photocatalytic degradation of an anionic azo dye, Acid Orange 7 (AO7), was investigated in a slurry reactor. Commercial ZnO nanoparticles with an average size between 10 to 30 nm were used as catalysts. Optimum conditions for different parameters, including dye concentration (10-100 mg/L), catalyst concentration (0.1-0.5 g/L), and pH (5-10), were determined first in the absence of H2O2. Changes in the COD were measured for the optimum condition. The impact of adding hydrogen peroxide at different concentrations to the system operating at optimum conditions was investigated. It was observed that 0.416 mM hydrogen peroxide increased the system's efficiency and decreased reaction time by 40 min. The reaction followed first-order kinetic. Hydrogen peroxide alone did not contribute to oxidizing the contaminant, and its positive impact was attributed to decreasing electron-hole recombination in the photocatalytic process. Not only can the hydrogen peroxide-assisted photocatalytic process decrease retention time in treatment units, but it can also result in more contaminant degradation. Therefore, it can reduce the treatment cost.
Collapse
Affiliation(s)
- Roxana Rahmati
- Environmental Engineering, Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397 Tehran, Iran; Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Behnam Nayebi
- Environmental Engineering, Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397 Tehran, Iran
| | - Bita Ayati
- Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397 Tehran, Iran E-mail:
| |
Collapse
|
31
|
Zhou L, Zhao B, Ou P, Zhang W, Li H, Yi S, Zhuang WQ. Core nitrogen cycle of biofoulant in full-scale anoxic & oxic biofilm-membrane bioreactors treating textile wastewater. BIORESOURCE TECHNOLOGY 2021; 325:124667. [PMID: 33465647 DOI: 10.1016/j.biortech.2021.124667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Core nitrogen cycle within biofoulant in full-scale anoxic & oxic biofilm-membrane bioreactor (bMBR) treating textile wastewater was investigated. Wastewater filtered through membrane with biofoulant had elevated NH4+-N and NO2--N concentrations corresponding to decreased NO3--N concentrations. Nevertheless, total nitrogen concentrations did not change significantly, indicating negligible nitrogen removal activities within biofoulant. Metagenomic analysis revealed a lack of genes, such as AmoCAB and Hao in biofoulant, indicating absence of nitrification or anammox populations. However, genes encoding complete pathway for dissimilatory nitrate reduction to ammonium (DNRA) were discovered in 15 species that also carry genes encoding both nitrate reductase and nitrite reductase. No specie contained all genes for complete denitrification pathway. High temperature, high C:N ratio, and anoxic conditions of textile wastewater could favorite microbes growth with DNRA pathway over those with canonical denitrification pathway. High dissolved oxygen concentrations could effectively inhibit DNRA to minimize ammonia concentration in the effluent.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Shan Yi
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
32
|
Photocatalytic performance of nano-ZnTiO3 decorated with Ag/AgCl nanoparticles for degradation of the organic dyes. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04428-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Sarvajith M, Nancharaiah YV. Biological nutrient removal by halophilic aerobic granular sludge under hypersaline seawater conditions. BIORESOURCE TECHNOLOGY 2020; 318:124065. [PMID: 32932114 DOI: 10.1016/j.biortech.2020.124065] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Biological nutrient removal and physical properties of halophilic aerobic granular sludge (hAGS) cultivated from autochthonous seawater-born microbes were investigated under hypersaline seawater conditions. hAGS achieved stable total nitrogen (TN) and total phosphorus (TP) removals of 96 ± 3% and 95 ± 4%, respectively, from seawater-based wastewater at 3.4% salt. At 4 to 12% salt concentrations, stable TN and TP removals of 82-99% and 95-96%, respectively, were maintained over 4 months under seawater conditions. Ammonium and phosphorus were mainly removed by nitritation-denitritation and enhanced biological phosphorus removal pathways, respectively. Stappiaceae (45%) and Rhodobacteraceae (21%) were the dominant genera in hAGS performing nutrient removal at 12% salt. hAGS contained acid-soluble extracellular polymeric substance as the major structural polymer which increased from 0.43 ± 0.02 g/gTS at 3.4% salt to 0.93 ± 0.03 g/gTS at 12% salt. Cultivation of hAGS from autochthonous wastewater-microbes can be a promising approach for achieving biological nitrogen and phosphorus removals from hypersaline seawater-based wastewaters.
Collapse
Affiliation(s)
- M Sarvajith
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, India.
| |
Collapse
|
34
|
Zero-waste recycling method for textile dyeing sludge by magnetizing roasting–magnetic separation process and ceramic filter preparation. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Bera SP, Tank SK. Screening and identification of newly isolated Pseudomonas sp. for biodegrading the textile azo dye C.I. Procion Red H-3B. J Appl Microbiol 2020; 130:1949-1959. [PMID: 33145923 DOI: 10.1111/jam.14920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/27/2022]
Abstract
AIM To test the potential of a newly isolated strain of Pseudomonas sp., and its optimization for carrying out bioremediation of textile azo dye Procion Red H-3B. METHOD The isolation of the bacterial strain was done from a textile waste dumping site, followed by screening techniques to study the decolourization of an azo dye. The isolated pure culture was selected by its ability to form clear zones. The biochemical tests gave partial confirmation of the isolates, and the phylogenic analysis made the complete confirmation by 16S rRNA sequencing. RESULT The identified strain belongs to the genus Pseudomonas. The phylogenic analysis confirmed that the strain belongs to Pseudomonas stutzeri. The culture exhibited maximum decolourization at pH between 6 and 8, the optimum at pH 7·5 and 37°C temperature. A maximum of 96% discolouration was observed at 50 mg l-1 of initial dye concentration after 24 h of incubation period. At a dye concentration equally or greater than 600 mg l-1 , the colour removal was drastically decreased to 30%. The use of fructose at 1% (w/v) and peptone 0·5% (w/v) concentration for 24 h of incubation, as carbon and nitrogen source, showed luxuriant decolourization. The results showed that the Pseudomonas sp. holds immense potential in treating textile effluents containing the dye Procion red H-3B. CONCLUSION Pseudomonas is a known organism in bioremediation of various textile dyes but not much has being reported about the role of P. stutzeri in the bioremediation of azo dyes. This study revealed the immense potential of this strain in degrading the azo dyes. SIGNIFICANCE AND IMPACT OF THE STUDY The strain shows prospective for industrial application in the field of textile wastewater treatment. Bioremediation is comparatively cheaper and more effective treatment, thus holds promising future for a cleaner environment.
Collapse
Affiliation(s)
- S P Bera
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - S K Tank
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
36
|
Rasheed T, Hassan AA, Bilal M, Hussain T, Rizwan K. Metal-organic frameworks based adsorbents: A review from removal perspective of various environmental contaminants from wastewater. CHEMOSPHERE 2020; 259:127369. [PMID: 32593814 DOI: 10.1016/j.chemosphere.2020.127369] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Rapidly increasing water contamination has turned into a major threat globally. The pollutants such as organic and inorganic compounds, heavy metals, and biological organisms are among the major contributor to water pollution. Therefore, the removal of these contaminants has attracted the researchers a lot. Various methodologies are being carried out for the purpose. Among them, the metal-organic frameworks (MOFs) with several active sites and tailorable porous architectures as adsorbents or photocatalytic removal agents is a fast-growing class of coordination chemistry to remove these agents from water. To date, numerous approaches dealing with water treatment including conservative and advanced technologies have been presented. This article thoroughly reviews the application of MOFs toward how to remove the toxic agents from water. The leading objective is to present up-to-date information and references regarding MOFs based materials toward wastewater treatment applications.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Adeel Ahmad Hassan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhamad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Tariq Hussain
- Key Lab of Ocean Engineering, School of Naval Architecture Civil and Ocean Engineering Shanghai Jiao Tong University, 200240, China
| | - Komal Rizwan
- Department of Chemistry University of Sahiwal, Sahiwal, 57000, Pakistan.
| |
Collapse
|
37
|
Zhu M, Jing Z, Zheng Q, Du S, Ya T, Wang X. Microbial network succession along a current gradient in a bio-electrochemical system. BIORESOURCE TECHNOLOGY 2020; 314:123741. [PMID: 32650263 DOI: 10.1016/j.biortech.2020.123741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
A lab-scale three dimensional biofilm-electrode reactor (3DBER) coupled with sulfur/iron (3DBER-Fe/S) system was established to examine the impacts of current gradient on the performances and microbial network dynamics. Results showed that generally low current could promote nitrogen and phosphorus removal, while high current caused the inhibition of nutrients removal. Molecular ecological network (MEN) analysis showed that the current altered the overall architecture of the networks, and low currents could improve the scale and complexity of networks (<100 mA), while high current (≥100 mA) likely decrease the networks scale and complexity. Stronger competition was observed among Proteobacteria and Chloroflexi at high current conditions, which may be relevant to the deterioration of nutrients removal. In addition, the current dramatically altered the network interactions among denitrifiers, and the keystone species were intensively dynamic among various networks under the current gradient.
Collapse
Affiliation(s)
- Minghan Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zibo Jing
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quan Zheng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuai Du
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
38
|
Rajitha K, Sarvajith M, Venugopalan V, Nancharaiah Y. Development and performance of halophilic microalgae-colonized aerobic granular sludge for treating seawater-based wastewater. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Sarvajith M, Kiran Kumar Reddy G, Nancharaiah YV. Aerobic granular sludge for high-strength ammonium wastewater treatment: Effect of COD/N ratios, long-term stability and nitrogen removal pathways. BIORESOURCE TECHNOLOGY 2020; 306:123150. [PMID: 32192961 DOI: 10.1016/j.biortech.2020.123150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Aerobic granular sludge (AGS) technology is increasingly considered for wastewater treatment. AGS stability particularly under lower COD/N ratios is an impediment for AGS technology. This study evaluated AGS stability and nitrogen removal at different loading rates of 0.03 to 4 kg NH4+-N m-3 d-1 and COD/N ratios of 18.3 to 0.13. Ammoniacal and total nitrogen removals were high at 99.9% and 99.3%, respectively, during 440 days. MiSeq sequencing revealed a reduction in bacterial diversity and enrichment of ammonia oxidizing bacteria (AOB), anammox and denitrifying bacteria. Quantitative PCR showed enrichment of AOB, anammox bacteria, Nitrospira and denitrifiers. Chemical data and bacterial community supported occurrence of nitritation and anammox pathways. AGS had stable granular structure with excellent settling properties at lower COD/N ≤ 1. Removal of high-strength ammonium could be partly explained by the existing nitrogen pathways suggesting novel mechanisms. Nevertheless, results presented here support implementation of AGS process for ammonium wastewaters.
Collapse
Affiliation(s)
- M Sarvajith
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, India
| | - G Kiran Kumar Reddy
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, India.
| |
Collapse
|
40
|
Shih YJ, Dong CD, Huang YH, Huang CP. Loofah-derived activated carbon supported on nickel foam (AC/Ni) electrodes for the electro-sorption of ammonium ion from aqueous solutions. CHEMOSPHERE 2020; 242:125259. [PMID: 31896176 DOI: 10.1016/j.chemosphere.2019.125259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Activated carbon (AC), prepared from dried loofah sponge, was supported on nickel foam to fabricate AC/Ni electrodes. The characteristics of ammonium electrosorption on AC/Ni electrodes was studied. Results showed that AC prepared in one-step activation (without pre-pyrolysis), i.e., OAC, had relatively low crystallinity, high mesoporosity, and high specific capacitance compared to those made in two-step carbonation followed by activation. Adsorption and desorption density of NH4+ were measured at constant potential of -1.0 V (vs. Hg/HgO) and +0.1 V (vs. Hg/HgO), respectively. Non-faradaic charging contributed to the electrochemical storage and adsorption of ammonium ions on the AC surface with a maximal charge efficiency of 80%, at an applied potential of -1.0 V (vs. Hg/HgO). Multiple-layer adsorption isotherm better described the electrosorption of ammonium ion on OAC/Ni electrodes yielding a maximum adsorption capacity of 6 mg-N g-1, which was comparable with other similar systems. Overall, results clearly demonstrated the effect of synthesis strategy on the capacitive charging behaviors of AC/Ni electrodes and its relationship to NH4+ electrosorption.
Collapse
Affiliation(s)
- Yu-Jen Shih
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Yao-Hui Huang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, 701, Taiwan
| | - C P Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
41
|
Zhan BJ, Li JS, Xuan DX, Poon CS. Recycling hazardous textile effluent sludge in cement-based construction materials: Physicochemical interactions between sludge and cement. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121034. [PMID: 31445470 DOI: 10.1016/j.jhazmat.2019.121034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
The textile industry produces a large amount of textile effluent sludge (TES). Many studies have explored the potential use of TES in cement-based materials. However, the physicochemical interactions between the TES and ordinary Portland cement (OPC) have rarely been studied. In this study, the effects of increasing dosage (0-20% by OPC) of TES on the performance of OPC-TES blends were investigated in terms of hydration progress, mechanical strength, microstructure evolution and metal leachability. The results showed that TES markedly delayed the OPC hydration at the early age, and increasing dosages of TES decreased the portlandite content at 7 and 28 days' age. Compared to the reference, the OPC-TES mortar exhibited seriously degraded mechanical strength; when using 20% TES, the decrease in compressive and flexural strength reached up to 71% and 42% respectively at the age of 28 days. Scanning electron microcopy and mercury intrusion porosimetry found the inclusion of TES introduced more weak interfaces in the cement mortar, thus increased the total porosity especially the macropores. But leachability tests revealed all the toxic metals in the TES were stabilized after the incorporation of OPC and exhibited very low metal mobility in the OPC-TES mortar, which posed no environmental risk.
Collapse
Affiliation(s)
- Bao Jian Zhan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Jiang-Shan Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Dong Xing Xuan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
42
|
Zhou J, Sun Q. Performance and microbial characterization of aerobic granular sludge in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal with varying C/N ratios. Bioprocess Biosyst Eng 2019; 43:663-672. [PMID: 31823002 DOI: 10.1007/s00449-019-02264-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/01/2019] [Indexed: 01/27/2023]
Abstract
The mechanism and effect of C/N ratios on the aerobic granules simultaneous nitrification, denitrification and phosphorus removal (SNDPR) system are still unclear. The reactor performance and microbial community dynamics of the system were investigated under variable C/N ratios (20, 10 and 5). The COD, TP and NH4+-N removal remained unaffected with variable C/N ratios. The decreased C/N ratio of five strongly influenced the nitrogen removal. Further investigations revealed that Candidatus_Accumulibacter, Acinetobacter, Candidatus_Competibacter were the predominant genera. Classification of key groups involved in nitrogen and phosphorus removal indicated the lowest C/N ratio resulting in a large microbial community shift. This study might contribute to the application of SNDPR system for the treatment of wastewater. Different C/N ratios led to shift on the microbial community and the dominant was phosphorus-accumulating bacteria. The nitrogen removal efficiency decreased while the removal of COD, TP and NH4+-N remained remarkable with the decreased C/N ratios.
Collapse
Affiliation(s)
- Jun Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China.
| | - Qianyu Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
43
|
Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, El Harfi A. Textile finishing dyes and their impact on aquatic environs. Heliyon 2019; 5:e02711. [PMID: 31840123 PMCID: PMC6893069 DOI: 10.1016/j.heliyon.2019.e02711] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 11/18/2022] Open
Abstract
In the present review, we have been able to describe the different families of dyes and pigments used in textile finishing processes (Yarns, fabrics, nonwovens, knits and rugs) such as dyeing and printing. These dyes are reactive, direct, dispersed, indigo, sulphur and vats. Such that their presence in the liquid effluents resulting from the textile washing constitutes a serious risk, in the absence of their purification, for the quality of receiving aquatic environments. Indeed, the presence of these dyes and pigments can cause a significant alteration in the ecological conditions of the aquatic fauna and flora, because of the lack of their biodegradability. This has a negative impact on the equilibrium of the aquatic environment by causing serious dangers, namely the obvious dangers (Eutrophication, under-oxygenation, color, turbidity and odor), the long-term dangers (Persistence, bioaccumulation of carcinogenic aromatic products and formation of by-products of chlorination), mutagenicity and carcinogenicity.
Collapse
Affiliation(s)
- Mohamed Berradi
- Laboratory of Agricultural Resources, Polymers and Process Engineering, Department of Chemistry, Faculty of Science, Ibn Tofaïl University, B.P. 133-14000, Kenitra, Morocco
| | - Rachid Hsissou
- Laboratory of Agricultural Resources, Polymers and Process Engineering, Department of Chemistry, Faculty of Science, Ibn Tofaïl University, B.P. 133-14000, Kenitra, Morocco.,Team of Innovative Materials and Mechanical Manufacturing Process, ENSAM, University Moulay Ismail, B.P. 15290, Al Mansour, Meknes, Morocco
| | - Mohammed Khudhair
- Faculty of Engineering and Information Technology, Amran University, Amran, Yemen
| | - Mohammed Assouag
- Team of Innovative Materials and Mechanical Manufacturing Process, ENSAM, University Moulay Ismail, B.P. 15290, Al Mansour, Meknes, Morocco
| | - Omar Cherkaoui
- Laboratory REMTEX, High School of Textile and Clothing Industries, Casablanca, Morocco
| | - Abderrahim El Bachiri
- Royal Naval School, University Department, Boulevard Sour - Jdid, Casablanca, Morocco
| | - Ahmed El Harfi
- Laboratory of Agricultural Resources, Polymers and Process Engineering, Department of Chemistry, Faculty of Science, Ibn Tofaïl University, B.P. 133-14000, Kenitra, Morocco
| |
Collapse
|
44
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
45
|
Jiang Y, Yang K, Shang Y, Zhang H, Wei L, Wang H. Response and recovery of aerobic granular sludge to pH shock for simultaneous removal of aniline and nitrogen. CHEMOSPHERE 2019; 221:366-374. [PMID: 30641378 DOI: 10.1016/j.chemosphere.2018.12.207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/22/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Considering the pH fluctuation in industrial wastewater, the response and resilience to pH shock should be investigated during aerobic granular sludge (AGS) system operation. In this work, three AGS reactors, namely R1, R2, and R3 for simultaneous removal of aniline and nitrogen were exposed to neutral, acidic, and alkaline conditions, respectively. The removal efficiency of aniline and chemical oxygen demand with pH variation was over 99.9% and 91.0%, respectively after stable in the three reactors. The aniline removal rate modestly decreased in R2 and R3 after pH varied and denitrification was slightly improved in acidic environment with average removal efficiency of 61.2%. The mature AGS could maintain settleability in R1 and R2 with 30 min sludge volume index below 35 mL g-1 but was unstable under alkaline condition. Correspondingly, the secretion of extracellular polymeric substances especially protein decreased notably in R3. The bacterial groups varied with pH shock, but some could recover after adjustment to original pH value. Proteobacteria was the predominant phylum in the three reactors and Bacteroidetes was enriched in alkaline conditions. In addition, the main functional genera such as Achromobacter, Defluviimonas, Enterobacter, Pseudomonas, and Pseudoxanthomonas, were detected in the system and were found to be responsible for reduction of aniline and nitrogen.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yu Shang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Huining Zhang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730000, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
46
|
de Sousa Rollemberg SL, Mendes Barros AR, Milen Firmino PI, Bezerra Dos Santos A. Aerobic granular sludge: Cultivation parameters and removal mechanisms. BIORESOURCE TECHNOLOGY 2018; 270:678-688. [PMID: 30201322 DOI: 10.1016/j.biortech.2018.08.130] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Aerobic granular sludge (AGS) has been the focus of many investigations, and the main parameters responsible for AGS formation are hydrodynamic shear force, short periods and feast-famine cycles. However, some other parameters are associated with AGS maintenance after long periods of operation. This review evaluates the parameters responsible for AGS formation and maintenance and some reference values are proposed. In addition, some discussions are addressed about the main metabolic pathways that AGS uses for the removal of some compounds, such as nutrients, organic matter, dyes, recalcitrant compounds, among others. Finally, the main microbial groups present in the AGS and their respective functions are discussed. It is also highlighted that many parameters that are taken as reference currently for AGS cultivation and maintenance can be optimized for energy savings, implementation costs, among others, as well as a greater recovery of resources during wastewater treatment, within the scope of the biorefinery concept.
Collapse
Affiliation(s)
| | | | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
47
|
Gu M, Yin Q, Wang Z, He K, Wu G. Color and nitrogen removal from synthetic dye wastewater in an integrated mesophilic hydrolysis/acidification and multiple anoxic/aerobic process. CHEMOSPHERE 2018; 212:881-889. [PMID: 30195168 DOI: 10.1016/j.chemosphere.2018.08.162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/30/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Dye wastewater is one kind of refractory pollutant and it is commonly treated by the integrated anaerobic and aerobic process. A new integrated hydrolysis/acidification and multiple anoxic/aerobic (AO) process was proposed for the removal of color and nitrogen from azo dye wastewater. System performance, the degradation pathway of azo dye and nitrogen metabolic pathway were investigated with quadrupole-time-of-flight and metagenomic analyses. The proposed process removed color and nitrogen efficiently, with the removal percentages of 89.4% and 54.0%, respectively. A colorful intermediate C16H11N3O7S2 during the degradation of azo dye was detected. Controlling a low dissolved oxygen concentration in the multiple AO process could enhance nitrogen removal. The detected bacteria possessing azoreductase for the azo dye degradation included Desulfovibrio aminophilus, Thermoanaerobacter, Lactococcus raffinolactis, Ruminiclostridium and Rhodopirellula. The nitrifying genes of amo and hao were mainly detected in Nitrosomonas, while the denitrifying genes were detected in Thauera, Candidatus Accumulibacter and Rhodothermus marinus.
Collapse
Affiliation(s)
- Mengqi Gu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Qidong Yin
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Zhongzhong Wang
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Kai He
- Research Centre for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Guangxue Wu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
48
|
Oveisi M, Asli MA, Mahmoodi NM. MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:123-140. [PMID: 29304451 DOI: 10.1016/j.jhazmat.2017.12.057] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 05/17/2023]
Abstract
Herein, 1,4-benzenedicarboxylate (BDC) and 2-amino-1,4-benzenedicarboxylate (NH2-BDC) as organic linkers and tetraisopropyl orthotitanate as a metal source were used to synthesize several metal-organic frameworks (MOFs) nanomaterials. Five Materials Institut Lavoisiers (MILs) as MOFs include MIL-125(Ti), NH2-MIL-125(Ti) and three MILs with different organic linkers molar ratios (BDC/NH2-BDC: 75/25, 50/50 and 25/75 denoted as MIL-X1, MIL-X2 and MIL-X3, respectively). The synthesized nanomaterials were used for ultrasound-aided adsorption of cationic dyes (Basic Red 46 (BR46), Basic Blue 41 (BB41) and Methylene Blue (MB)) from single and multicomponent (binary) systems. The BET, XRD, FTIR, SEM, TEM, TGA and zeta potential were used for characterizing the MILs. Dye removal followed pseudo-second order kinetics with constant rate of 0.20833, 0.00481 and 0.00051 mg/g min for BR46, BB41 and MB, respectively. In addition dye adsorption obeyed the Langmuir isotherm model and the experimental dye adsorption capacity for BR46, BB41 and MB was 1296, 1257 and 862 mg/g, respectively. The synthesized MIL showed high reusability and stability over three cycles. The adsorption thermodynamics data presented that dye removal was a spontaneous, endothermic and physical reaction. The free Gibbs energy for dye removal by the NH2-MIL-125(Ti) at 308K was -19.424, -15.721 and -17.413 kJ/mol for BR46, BB41 and MB, respectively.
Collapse
Affiliation(s)
- Mina Oveisi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mokhtar Alina Asli
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| |
Collapse
|
49
|
Nancharaiah YV, Sarvajith M, Lens PNL. Selenite reduction and ammoniacal nitrogen removal in an aerobic granular sludge sequencing batch reactor. WATER RESEARCH 2018; 131:131-141. [PMID: 29278787 DOI: 10.1016/j.watres.2017.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Simultaneous removal of selenite and ammonium by aerobic granular sludge was investigated to develop an improved biological treatment process for selenium rich wastewaters. Aerobic granules not previously exposed to selenite were able to remove selenite by converting it to elemental selenium (Se(0)) and simultaneously remove ammonium under different conditions in batch experiments. To achieve sustainable selenite and ammonium removal, an aerobic granular sludge reactor was operated in fill-and-draw mode with a cycle of anaerobic (8 h) and aeration (15 h) phases. Almost complete removal of different initial concentrations of selenite up to 100 μM was achieved in the anaerobic phase. Ammonium removal was severely inhibited when the granules were initially exposed to 1.27 mg L-1 selenite, but ammonium and total nitrogen removal efficiencies gradually improved to 100 and 98%, respectively, under selenite-reducing conditions. Selenite loading shifted ammonium removal occurring mainly during the anaerobic phase to both the anaerobic and aeration phases. Selenite was removed from the aqueous phase by converting it to nanoparticulate Se(0), which was entrapped in the granular sludge. Scanning electron microscop-energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of Se(0) nanospheres and their retention in the granular sludge. The effluent Se ranged from 0.02 to 0.25 mg Se L-1, while treating up to 12.7 mg L-1 selenite, which is lower as compared to previous studies on selenite removal using activated sludge or anaerobic granular sludge. This study shows that aerobic granular sludge reactors are not only capable of removing toxic selenite, but offer improved treatment of Se-rich wastewaters.
Collapse
Affiliation(s)
- Y V Nancharaiah
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| | - M Sarvajith
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - P N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands; Department of Microbiology, National University of Ireland, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
50
|
Nancharaiah YV, Kiran Kumar Reddy G. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications. BIORESOURCE TECHNOLOGY 2018; 247:1128-1143. [PMID: 28985995 DOI: 10.1016/j.biortech.2017.09.131] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 05/27/2023]
Abstract
Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment.
Collapse
Affiliation(s)
- Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, India.
| | - G Kiran Kumar Reddy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, India
| |
Collapse
|