1
|
Mazhandu Z, Mashifana T. Active pharmaceutical contaminants in drinking water: myth or fact? Daru 2024; 32:925-945. [PMID: 39289294 PMCID: PMC11554600 DOI: 10.1007/s40199-024-00536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
Global water availability has been affected by a variety of factors, including climate change, water pollution, urbanization, and population growth. These issues have been particularly acute in many parts of the world, where access to clean water remains a significant challenge. In this context, preserving existing water bodies is a critical priority. Numerous studies have demonstrated the inadequacy of conventional water treatment processes in removing active pharmaceutical ingredients (APIs) from the water. These pharmaceutical active compounds have been detected in treated wastewater, groundwater, and even drinking water sources. The presence of APIs in water resources poses a significant threat not only to aquatic organisms but also to human health. These emerging contaminants have the potential to disrupt endocrine systems, promote the development of antibiotic-resistant bacteria, and bioaccumulate in the food chain, ultimately leading to unacceptable risks to public health. The inability of current conventional treatment methods to effectively remove APIs from water has raised serious concerns about the safety and reliability of water supplies. This issue requires immediate attention and the development of more effective treatment technologies to safeguard the quality of water resources and protect both aquatic ecosystems and human health. Other treatment methods, such as nanotechnology, microalgal treatment, and reverse osmosis, are promising in addressing the issue of API contamination in water resources. These innovative approaches have demonstrated higher removal efficiencies for a wide range of APIs compared to conventional methods, such as activated sludge and chlorination, which have been found to be inadequate in the removal of these emerging contaminants. The potential of these alternative treatment technologies to serve as effective tertiary treatment. To address this critical challenge, governments and policymakers should prioritize investment in research and development to establish effective and scalable solutions for eliminating APIs from various water sources. This should include comprehensive studies to assess the performance, cost-effectiveness, and environmental sustainability of emerging treatment technologies. The emerging contaminants should be included in robust water quality monitoring programs (Aus der Beek et al. in Environ Toxicol Chem 2016;35(4):823-835), with strict regulatory limits enforced to protect public health and the environment. By doing so, the scientific community and regulatory authorities can work together to develop a multi-barrier approach to safeguarding the water resources and ensuring access to safe, clean water for all. This review explores the potential of alternative treatment technologies to serve as viable solutions in the fight against API contamination. Innovative approaches, including nanotechnology, microalgal treatment, and reverse osmosis, have demonstrated remarkable success in addressing this challenge, exhibiting higher removal efficiencies compared to traditional methods.
Collapse
Affiliation(s)
- Zvanaka Mazhandu
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Tebogo Mashifana
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
2
|
Bhattacharjee S, Oussadou SE, Mousa M, Shabib A, Semerjian L, Semreen MH, Almanassra IW, Atieh MA, Shanableh A. Fate of emerging contaminants in an advanced SBR wastewater treatment and reuse facility incorporating UF, RO, and UV processes. WATER RESEARCH 2024; 267:122518. [PMID: 39357162 DOI: 10.1016/j.watres.2024.122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
A critical factor for widescale water reuse adoption is the capability of advanced wastewater treatment facilities to consistently produce high-quality water by efficiently removing various pollutants, including emerging contaminants (ECs). This study monitored the fate of seventeen ECs (which included pesticides, antibiotics and other pharmaceutically active compounds) over six months in an advanced wastewater reuse facility situated in the United Arab Emirates. The facility integrates a sequencing batch reactor (SBR) based sewage treatment plant (STP) with a water recycling facility featuring ultrafiltration (UF), reverse osmosis (RO), and ultraviolet (UV) disinfection. ECs were detected and quantified at the influent and effluents of the various treatment stages, using an ultra-high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). The STP exhibited variable removal efficiencies, achieving >90 % removal for compounds like caffeine and acetaminophen, while others, such as carbamazepine and thiabendazole, displayed poor removal (<10 %). UF treatment broadly resulted in limited removal, with ECs in permeate typically persisting in the 1-10 ng/L range. Subsequently, after undergoing RO treatment, eight ECs were still detected in the RO permeate, albeit at <1 ng/L, except for imidacloprid (2.5 ng/L). Conversely, the final UV disinfection step led to concentration increases of certain ECs, namely imidacloprid, thiabendazole, sulfamethoxazole, sulfamethazine and caffeine. Overall, the total EC concentration levels decreased considerably from 2300 ng/L in the STP influent to 5.2 ng/L in the RO permeate. However, a subsequent increase to 27.5 ng/L was observed after UV disinfection. While the study underscores the effectiveness of advanced treatment processes, notably RO, in reducing EC concentrations, it also demonstrates the importance of continuous EC monitoring in such facilities as many compounds persist post treatment. Additionally, the potential for processes like UV disinfection to increase certain EC concentrations highlights the need to optimize treatment trains to minimize EC concentration rebound.
Collapse
Affiliation(s)
- Sourjya Bhattacharjee
- Department of Civil & Environmental Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Samy Elhadi Oussadou
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muath Mousa
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad Shabib
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lucy Semerjian
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Ismail W Almanassra
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muataz Ali Atieh
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abdallah Shanableh
- Department of Civil & Environmental Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Scientific Research Center, Australian University, P.O Box 1411, Kuwait.
| |
Collapse
|
3
|
Wang W, Cao G, Zhang J, Qiao H, Li H, Yang B, Chen Y, Zhu L, Sang Y, Du L, Cai Z. UV-induced photodegradation of emerging para-phenylenediamine quinones in aqueous environment: Kinetics, products identification and toxicity assessments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133427. [PMID: 38185090 DOI: 10.1016/j.jhazmat.2024.133427] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Substituted para-phenylenediamine quinones (PPD-quinones) are a class of emerging contaminants frequently detected in the aqueous environment. One of them, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q), was found to cause acute toxicities to aquatic species at extremely low environmental levels. The ubiquitousness and ecotoxicity of such pollutants underscore the importance of their transformation and elimination. In this work, we demonstrated effective removals of five PPD-quinones in aqueous environments under UV irradiation, with up to 94% of 6PPD-Q eliminated after a 40-min treatment. By applying high-resolution mass spectrometry (HRMS) non-targeted screening in combination with isotope labeling strategies, a total of 22 transformation products (TPs) were identified. Coupling with the time-based dynamic patterns, potential transformation mechanisms were identified as an •OH-induced photocatalysis reaction involving bond cleavage, hydroxylation, and oxidation. Computational toxicity assessment predicted lower aquatic toxicity of the TPs than their parent PPD-quinones. Our results in parallel evidenced an obvious reduction of PPD-quinones accompanied by the presence of their TPs in the effluent after UV disinfection in real municipal wastewater. This work builds a comprehensive understanding of the fate, transformation products, and related toxicological characteristics of emerging PPD-quinone contaminants in the aqueous environment.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Jing Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Han Qiao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Biwei Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Yuecheng Sang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Lei Du
- Huangpu Hydrogen Energy Innovation Center/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Sun B, Rouzbehani OM, Kramer RJ, Ghosh R, Perelli RM, Atkins S, Fatahian AN, Davis K, Szulik MW, Goodman MA, Hathaway MA, Chi E, Word TA, Tunuguntla H, Denfield SW, Wehrens XHT, Whitehead KJ, Abdelnasser HY, Warren JS, Wu M, Franklin S, Boudina S, Landstrom AP. Nonsense Variant PRDM16-Q187X Causes Impaired Myocardial Development and TGF-β Signaling Resulting in Noncompaction Cardiomyopathy in Humans and Mice. Circ Heart Fail 2023; 16:e010351. [PMID: 38113297 PMCID: PMC10752244 DOI: 10.1161/circheartfailure.122.010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/29/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND PRDM16 plays a role in myocardial development through TGF-β (transforming growth factor-beta) signaling. Recent evidence suggests that loss of PRDM16 expression is associated with cardiomyopathy development in mice, although its role in human cardiomyopathy development is unclear. This study aims to determine the impact of PRDM16 loss-of-function variants on cardiomyopathy in humans. METHODS Individuals with PRDM16 variants were identified and consented. Induced pluripotent stem cell-derived cardiomyocytes were generated from a proband hosting a Q187X nonsense variant as an in vitro model and underwent proliferative and transcriptional analyses. CRISPR (clustered regularly interspaced short palindromic repeats)-mediated knock-in mouse model hosting the Prdm16Q187X allele was generated and subjected to ECG, histological, and transcriptional analysis. RESULTS We report 2 probands with loss-of-function PRDM16 variants and pediatric left ventricular noncompaction cardiomyopathy. One proband hosts a PRDM16-Q187X variant with left ventricular noncompaction cardiomyopathy and demonstrated infant-onset heart failure, which was selected for further study. Induced pluripotent stem cell-derived cardiomyocytes prepared from the PRDM16-Q187X proband demonstrated a statistically significant impairment in myocyte proliferation and increased apoptosis associated with transcriptional dysregulation of genes implicated in cardiac maturation, including TGF-β-associated transcripts. Homozygous Prdm16Q187X/Q187X mice demonstrated an underdeveloped compact myocardium and were embryonically lethal. Heterozygous Prdm16Q187X/WT mice demonstrated significantly smaller ventricular dimensions, heightened fibrosis, and age-dependent loss of TGF-β expression. Mechanistic studies were undertaken in H9c2 cardiomyoblasts to show that PRDM16 binds TGFB3 promoter and represses its transcription. CONCLUSIONS Novel loss-of-function PRDM16 variant impairs myocardial development resulting in noncompaction cardiomyopathy in humans and mice associated with altered TGF-β signaling.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Omid M.T. Rouzbehani
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Ryan J. Kramer
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Rajeshwary Ghosh
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Robin M. Perelli
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sage Atkins
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Marta W. Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Michael A. Goodman
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Marissa A. Hathaway
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Ellenor Chi
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Tarah A. Word
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, United States
| | - Hari Tunuguntla
- Departments of Medicine and Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas, United States
| | - Susan W. Denfield
- Departments of Medicine and Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas, United States
| | - Xander H. T. Wehrens
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, United States
- Departments of Medicine and Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas, United States
- Departments of Neuroscience, Cardiovascular Research Institute, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Kevin J. Whitehead
- Division Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Hala Y. Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston College of Pharmacy, Houston, Texas, United States
| | - Junco S. Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston College of Pharmacy, Houston, Texas, United States
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Andrew P. Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
5
|
Bellver-Domingo Á, Fuentes R, Hernández-Sancho F, Carmona E, Picó Y, Hernández-Chover V. MCDA-DEA approach to construct a composite indicator for effluents from WWTPs considering the influence of PPCPs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47234-47247. [PMID: 36735130 DOI: 10.1007/s11356-023-25500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Considering current water situation, reuse is an effective solution to meet water demand and reduce pressure on conventional water sources. However, pharmaceutical and personal care products (PPCPs) in effluents from wastewater treatment plants (WWTPs) decrease their quality and suitability. With the aim of identifying and monitoring both the influence of PPCPs and the suitability of effluents to be reused, this study proposes the development of a composite indicator (CI) related to PPCP presence in WWTPs, through the common weight multi-criteria decision analysis (MCDA)-data envelopment analysis (DEA) model. Obtaining a CI for PPCPs is a novel approach in the published literature, showing a new perspective in PPCP management and their influence in wastewater treatment. Furthermore, this study proposes an improvement on MCDA-DEA model which maintains the initial hierarchy obtained for the units analyzed. The development of CI is based on information about the technological, environmental, social, and biological issues of WWTPs. Results show that 4 of the 33 WWTPs analysed had the best CI values, meaning that their effluents have lower environmental impact. The development of a CI related to PPCPs in WWTPs suggests that further steps are needed to manage the WWTP effluents. Hence, the need to implement preventive measures in WWTPs has been shown, even though the removal of PPCPs is not yet part of European law. This work highlights the importance of considering PPCPs as priority pollutants in wastewater management and reuse frameworks, to guarantee low environmental impact and adapt wastewater reuse based on a circular economy approach. HIGHLIGHTS: Emerging contaminants (PPCPs) are used as effluent quality indicators. A composite indicator for PPCPs performance has been developed through MCDA-DEA model. Indicator obtained allow decision makers implementing concrete actions to assess effluent quality. Results show the improvement capacity of the effluents quality through PPCPs removing.
Collapse
Affiliation(s)
- Águeda Bellver-Domingo
- Institute of Local Development (ILD-WATER). Water Economics Group, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain.
| | - Ramón Fuentes
- Department of Applied Economic Analysis, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Francesc Hernández-Sancho
- Institute of Local Development (ILD-WATER). Water Economics Group, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain
| | - Eric Carmona
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre, CIDE-GV-UV), University of Valencia, Avda. Vicent Andrés, S/N, 46100, Burjassot, Valencia, Spain
- Department Effect-Directed Analysis, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr, 15 04318, Leipzig, Germany
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre, CIDE-GV-UV), University of Valencia, Avda. Vicent Andrés, S/N, 46100, Burjassot, Valencia, Spain
| | - Vicent Hernández-Chover
- Institute of Local Development (ILD-WATER). Water Economics Group, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain
| |
Collapse
|
6
|
Liu H, Meng Y, Li J, Wang X, Zhang T. Mechanistic insights into UV photolysis of carbamazepine and caffeine: Active species, reaction sites, and toxicity evolution. CHEMOSPHERE 2022; 308:136418. [PMID: 36126737 DOI: 10.1016/j.chemosphere.2022.136418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The pseudo-persistence of pharmaceutical and personal care products (PPCPs)in the aqueous environment may pose potential risks to human health and ecosystems. The UV disinfection in wastewater treatment plants is one of the essential processes before PPCPs enter the water environment, so it is crucial to elucidate the photolytic behavior and mechanism of PPCPs under UV radiation. In this work, carbamazepine (CBZ) and caffeine (CAF) were selected as typical pollutants to investigate the effect of water matrixes, humic acid, inorganic ions, and pH on the UV radiation performance. Hydroxyl radical (•OH) and singlet oxygen (1O2) were identified by quenching experiments and electron paramagnetic resonance (EPR) spectra as playing a dominant role in the degradation process. UPLC-TOF/MS was conducted to identify 13 and 14 possible intermediates of CBZ and CAF, respectively. Moreover, combining density functional theory (DFT) calculations (Frontier Molecular Orbital and Fukui index), hydroxylation, oxidation, and ring cleavage were proposed as the main degradation pathways of the contaminants, which occurred first at the C(7C), N(17 N) and O(18O) sites of CBZ and at the C(9C) site of CAF. The bio-acute toxicity experiment and the Ecological Structure-Activity Relationships (ECOSAR) program were performed to analyze and predict the toxicity of the intermediates of CBZ and CAF under UV radiation, respectively. The results showed that the acute toxicity of both solutions increased after UV radiation and followed with the combined toxicity. This work has great scientific value and practical environmental significance for evaluating the UV disinfection process and managing PPCPs in the aqueous environment.
Collapse
Affiliation(s)
- Hang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Meng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
7
|
Wan D, Wang J, Chen T, Xiang W, Selvinsimpson S, Chen Y. Effect of disinfection on the photoreactivity of effluent organic matter and photodegradation of organic contaminants. WATER RESEARCH 2022; 219:118552. [PMID: 35550969 DOI: 10.1016/j.watres.2022.118552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Chlorine, UV254, and ozone are three typical processes commonly used for wastewater disinfection, which could change the photoreactivity of dissolved organic matter (DOM) in effluents of wastewater treatment plants (WWTPs). The photoinduced reactive species (RS) from DOM, primarily including the excited triplet state of DOM (3DOM*), singlet oxygen (1O2), and hydroxyl radical (•OH), play important roles in the attenuation of contaminants. However, the effect of disinfection processes on the photosensitized degradation of contaminants is poorly understood. This paper presents the first evidence that 3DOM*, 1O2, and •OH interaction with three typical contaminants (diphenhydramine, cimetidine, and N,N-diethyl-m-toluamide (DEET)) was largely impacted by DOM after disinfection. The results of electron spin resonance (ESR) spectrometry and laser flash photolysis (LFP) experiments demonstrated that the chlorination increased the formation rate of 3DOM* and 1O2, while UV254 irradiation and ozonation decreased the formation rate of these RS. All these three disinfection processes promoted the photoproduction of •OH and increased the photodegradation rate constants (kobs) of DEET by 26-361%. The kobs of diphenhydramine, cimetidine, and DEET correlated positively with the formation rate of 3DOM*, 1O2, and •OH, respectively. The bimolecular reaction rate constant of 3DOM* with diphenhydramine increased by ∼41% after chlorination. These findings suggest that disinfection processes altered the photogeneration of RS from DOM, which significantly impacts the fate of trace pollutants in aquatic environments.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jie Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Weiming Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
8
|
Yang Z, Liu P, Wei H, Li H, Li J, Qiu X, Ding R, Guo X. Alteration in microbial community and antibiotic resistance genes mediated by microplastics during wastewater ultraviolet disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153918. [PMID: 35189224 DOI: 10.1016/j.scitotenv.2022.153918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) could be as a vector to colonize microorganisms and antibiotic resistance gene (ARGs) in surface water. However, little information is known regarding their changes by the presence of MPs in wastewater treatment. Here, the effects of different concentrations and sizes of polystyrene microplastics (PSMPs) on the distribution and removal of microbial communities and ARGs under ultraviolet disinfection of urban sewage have been systematically studied. Results showed that the presence of MPs altered abundance and functions of microorganisms in wastewater, despite different effects on different types of microorganisms. The most abundant ARGs in original disinfection tank sewage was rpoB2 (6.34%). A certain concentration range of MPs can improve the ability of specific types of ARGs in the UV disinfection process. Compared to the system without PSMPs, the content of Deinococcus-Thermus and Bacteroidetes phylum increased, while Actinobacteria and Proteobacteria phylum decreased in the presence of MPs. The microbial functions, especially the genetic information processing and metabolism were altered by the presence of PSMPs. In addition, PSMPs altered the content of ARGs, where the contents of OXA-182 and ErmH were increased, while adeF and ANT3-Iic were decreased. PSMPs also decreased the free ARB content in wastewater by providing colonization sites. The UV disinfection efficiency of microorganisms and ARGs was also intervened by PSMPs since they provided colonization sites and increased the water turbidity. The findings indicated that PSMPs altered the distribution and removal of microbial community and ARGs in ultraviolet disinfection of wastewater, highlighting the combined risks.
Collapse
Affiliation(s)
- Zeyuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Haoyu Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Bertagna Silva D, Buttiglieri G, Babić B, Ašperger D, Babić S. Performance of TiO 2/UV-LED-Based Processes for Degradation of Pharmaceuticals: Effect of Matrix Composition and Process Variables. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:295. [PMID: 35055312 PMCID: PMC8780436 DOI: 10.3390/nano12020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
Abstract
Ultra-violet light-emitting diode (UV-LED)-based processes for water treatment have shown the potential to surpass the hurdles that prevent the adoption of photocatalysis at a large scale due to UV-LEDs' unique features and design flexibility. In this work, the degradation of five EU Watch List 2020/1161 pharmaceutical compounds was comprehensively investigated. Initially, the UV-A and UV-C photolytic and photocatalytic degradation of individual compounds and their mixtures were explored. A design of experiments (DoE) approach was used to quantify the effects of numerous variables on the compounds' degradation rate constant, total organic carbon abatement, and toxicity. The reaction mechanisms of UV-A photocatalysis were investigated by adding different radical scavengers to the mix. The influence of the initial pH was tested and a second DoE helped evaluate the impact of matrix constituents on degradation rates during UV-A photocatalysis. The results showed that each compound had widely different responses to each treatment/scenario, meaning that the optimized design will depend on matrix composition, target pollutant reactivity, and required effluent standards. Each situation should be analyzed individually with care. The levels of the electrical energy per order are still unfeasible for practical applications, but LEDs of lower wavelengths (UV-C) are now approaching UV-A performance levels.
Collapse
Affiliation(s)
- Danilo Bertagna Silva
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.B.S.); (B.B.); (D.A.)
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit, 101, 17003 Girona, Spain;
- Universitat de Girona, Girona, Spain
| | - Bruna Babić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.B.S.); (B.B.); (D.A.)
| | - Danijela Ašperger
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.B.S.); (B.B.); (D.A.)
| | - Sandra Babić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia; (D.B.S.); (B.B.); (D.A.)
| |
Collapse
|
10
|
Lazarotto JS, Júnior EPM, Medeiros RC, Volpatto F, Silvestri S. Sanitary sewage disinfection with ultraviolet radiation and ultrasound. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 19:11531-11538. [PMID: 34777529 PMCID: PMC8575156 DOI: 10.1007/s13762-021-03764-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 05/19/2023]
Abstract
UNLABELLED Currently, the world is facing a horrible situation due to SARS-CoV-2. Though its RNA was found in wastewater, there are still no studies on RNA contamination detected in sewage. Hence, a possible treatment of sewage is suggested in this work. The disinfection stage is extremely important in the treatment of effluents, minimizing the impacts on the receiving body of water and promoting public health. In this context, the sequential use of ultrasound and ultraviolet radiation, on a bench scale, was investigated as a way to improve the disinfection of anaerobically treated effluents. Two types of treated effluents were tested, by septic tank and anaerobic filter, for which, two ultrasound frequencies, 25 and 40 kHz, and four doses of UV, 3.6; 9.0; 18 and 36 mJ cm-2 were applied. Physicochemical and microbiological parameters were observed for individual and sequential assays. The better quality of the anaerobic filter effluent influenced the performance of both processes, decreasing the concentration of organic load and turbidity, even though a concentration of total coliforms and Escherichia coli occurred in the lowest quality effluent (septic tank). The application of ultrasound has a positive effect on the inactivation of total coliforms and E. coli up to 1.0 log and provides better conditions for ultraviolet radiation to be sequentially applied. The UV radiation applied for the septic tank and the anaerobic filter inactivates 2.5 log for total coliforms and 3.5 log for E. coli, respectively. It is suggested that the disinfection methods applied in this work to inactivate gram-negative bacteria (E. coli) can also be applied to secondary treatment effluents, as well as being better tested for viruses, protozoa, and helminths. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13762-021-03764-7.
Collapse
Affiliation(s)
- J. S. Lazarotto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, RS Brazil
| | - E. P. M. Júnior
- Department of Engineering and Environmental Technology, Federal University of Santa Maria, Frederico Westphalen, RS Brazil
| | - R. C. Medeiros
- Department of Engineering and Environmental Technology, Federal University of Santa Maria, Frederico Westphalen, RS Brazil
| | - F. Volpatto
- Department of Engineering and Environmental Technology, Federal University of Santa Maria, Frederico Westphalen, RS Brazil
| | - S. Silvestri
- Graduate Program in Environmental Engineering, Federal University of Santa Maria–UFSM, 1000, Roraima Avenue, Santa Maria, RS 97105–900 Brazil
| |
Collapse
|
11
|
Wang YK, Ma XY, Zhang S, Tang L, Zhang H, Wang XC. Sunlight-induced changes in naturally stored reclaimed water: Dissolved organic matter, micropollutant, and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141768. [PMID: 32896733 DOI: 10.1016/j.scitotenv.2020.141768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Natural sunlight is a vital environmental element and plays a significant role in the ecological storage of reclaimed water (RW), but its impacts on RW quality are poorly understood. In this study, sunlight-induced changes in RW with a focus on dissolved organic matter (rDOM) and 52 residual micropollutants were investigated in the field during the summer and winter seasons. The results indicated that sunlight exposure led to the dissipation of chromophoric DOM (CDOM) in the summer (55% loss) and winter (19% loss) after 14 consecutive sunny days. During open storage of RW, CDOM absorption in UVC regions was preferentially removed in the summer, while during the winter there was preferential removal of CDOM in UVA regions. The results also showed higher fluorescent DOM (FDOM) removal in summer than in winter (49% and 28%, respectively). Results in both seasons indicated that humic acid-like compounds were the most photolabile fractions and were preferentially removed under sunlight exposure. Sunlight also induced attenuation of micropollutants in the summer and winter at reductions of 66% and 24% from the initial values, respectively. Significant attenuation (>75%) was only observed for endocrine-disrupting chemicals, pharmaceuticals, and sunscreens in the summer, but they accounted for 76% of the total concentrations. Vibrio fischeri toxicity tests demonstrated that sunlight constantly decreased the luminescent bacteria acute toxicity of RW, which was estimated to be caused mainly by the sunlight-induced changes of FDOM and CDOM, while the detected micropollutants could only explain 0.02%-2% of acute toxicity. These findings have important implications regarding our understanding of the ecological storage of reclaimed water and the contribution of management strategies.
Collapse
Affiliation(s)
- Yongkun K Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiaoyan Y Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Shiying Zhang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Lei Tang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Hengfeng Zhang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| |
Collapse
|
12
|
Beretsou VG, Michael-Kordatou I, Michael C, Santoro D, El-Halwagy M, Jäger T, Besselink H, Schwartz T, Fatta-Kassinos D. A chemical, microbiological and (eco)toxicological scheme to understand the efficiency of UV-C/H 2O 2 oxidation on antibiotic-related microcontaminants in treated urban wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140835. [PMID: 32721672 DOI: 10.1016/j.scitotenv.2020.140835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
An assessment comprising chemical, microbiological and (eco)toxicological parameters of antibiotic-related microcontaminants, during the application of UV-C/H2O2 oxidation in secondary-treated urban wastewater, is presented. The process was investigated at bench scale under different oxidant doses (0-50 mg L-1) with regard to its capacity to degrade a mixture of antibiotics (i.e. ampicillin, clarithromycin, erythromycin, ofloxacin, sulfamethoxazole, tetracycline and trimethoprim) with an initial individual concentration of 100 μg L-1. The process was optimized with respect to the oxidant dose. Under the optimum conditions, the inactivation of selected bacteria and antibiotic resistant bacteria (ARB) (i.e. faecal coliforms, Enterococcus spp., Pseudomonasaeruginosa and total heterotrophs), and the reduction of the abundance of selected antibiotic resistance genes (ARGs) (e.g. blaOXA, qnrS, sul1, tetM) were investigated. Also, phytotoxicity against three plant species, ecotoxicity against Daphnia magna, genotoxicity, oxidative stress and cytotoxicity were assessed. Apart from chemical actinometry, computational fluid dynamics (CFD) modelling was applied to estimate the fluence rate. For the given wastewater quality and photoreactor type used, 40 mg L-1 H2O2 were required for the complete degradation of the studied antibiotics after 18.9 J cm-2. Total bacteria and ARB inactivation was observed at UV doses <1.5 J cm-2 with no bacterial regrowth being observed after 24 h. The abundance of most ARGs was reduced at 16 J cm-2. The process produced a final effluent with lower phytotoxicity compared to the untreated wastewater. The toxicity against Daphnia magna was shown to increase during the chemical oxidation. Although genotoxicity and oxidative stress fluctuated during the treatment, the latter led to the removal of these effects. Overall, it was made apparent from the high UV fluence required, that the particular reactor although extensively used in similar studies, it does not utilize efficiently the incident radiation and thus, seems not to be suitable for this kind of studies.
Collapse
Affiliation(s)
- Vasiliki G Beretsou
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | - Irene Michael-Kordatou
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | - Costas Michael
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | | | | | - Thomas Jäger
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Harrie Besselink
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Thomas Schwartz
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Despo Fatta-Kassinos
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus.
| |
Collapse
|
13
|
Cuervo Lumbaque E, Sirtori C, Vilar VJP. Heterogeneous photocatalytic degradation of pharmaceuticals in synthetic and real matrices using a tube-in-tube membrane reactor with radial addition of H 2O 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140629. [PMID: 32679490 DOI: 10.1016/j.scitotenv.2020.140629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
A tube-in-tube membrane reactor, with radial addition of hydrogen peroxide, was used for the oxidation of four pharmaceuticals, paracetamol (PCT), furosemide (FRS), nimesulide (NMD), and diazepam (DZP), in a continuous-mode operation, using photochemical and photocatalytic processes, driven by UVA or UVC photons. This reactor allows a controlled titration of small H2O2 doses (inside-out mode) to the catalyst particles immobilized in the membrane shell side and to the annular space between the membrane inner tubing and the concentric outer quartz tubing, where water to be treated flows. Tests were performed using synthetic (SWW) and real (urban wastewater after secondary treatment) (UWW) matrices, both spiked with the pharmaceutical mix solution (200 μg L-1 of each). The photochemical and photocatalytic oxidation efficiency was evaluated as a function of H2O2 dose (5-20 mg L-1), oxidant injection mode (radial permeation vs injection upstream from the reactor inlet), light source (UVA vs UVC lamps) and aqueous matrix (synthetic vs real matrix). At steady-state regime, the UVC/H2O2/TiO2 system, with radial H2O2 addition (20 mg L-1), showed the highest pharmaceuticals removal percentage, PCT (27.4%), FRS (35.0%), NMD (24.2%) and DZP (30.0%) in SWW. A substantial decrease in pharmaceuticals elimination was observed for UWW (PCT - 11.5%, FRS - 20.3%, NMD - 8.2% and DZP - 12.6%), in comparison with the SWW matrix. Finally, twelve transformation products (TPs) were identified; most of them showed in their structures hydroxylation in aromatic moiety; all TPs chemical structures were evaluated by BIOWIN software indicating that the TPs are non-biodegradables.
Collapse
Affiliation(s)
- Elisabeth Cuervo Lumbaque
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Carla Sirtori
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil.
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
14
|
Wan D, Kong Y, Selvinsimpson S, Luo F, Chen Y. Effect of UV 254 disinfection on the photoformation of reactive species from effluent organic matter of wastewater treatment plant. WATER RESEARCH 2020; 185:116301. [PMID: 32818737 DOI: 10.1016/j.watres.2020.116301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
UV254 is one of the main disinfection methods used in wastewater treatment plants (WWTPs) for the inactivation of pathogens in the effluents before being discharged into the receiving waters. The effluent organic matters (EfOM) are well-known photosensitizers for the generation of reactive species, mainly including the triplet states of EfOM (3EfOM*), singlet oxygen (1O2) and hydroxyl radical (•OH), which contribute to the removal of trace pollutants in water. However, the effect of UV254 disinfection on the photoreactivity of EfOM remains unclear. Here we investigated the photophysical and photochemical properties variation of EfOM after UV254 disinfection, along with humic substances (HS) as comparison. The UV254 disinfection caused a decrease of aromaticity, fluorescence intensity and molecular weight for all samples, while a reduction formation of triplet state of these dissolved organic matters (3DOM*), 1O2, hydrogen peroxide (H2O2), and superoxide anions (O2•-) under simulated sunlight was observed. In contrast, the generation of •OH was increased after UV254 disinfection. The quantum yield of 1O2 was positively correlated with triplet quantum yield coefficient (fTMP) in all cases. However, the quantum yield of •OH exhibited positive and negative correlations with fTMP for EfOM and HS, respectively. The quantum yields showed positive correlations with E2/E3 (ratio of the absorbance at 254 to 365 nm) for untreated DOM samples, while for the first time we found the trends differ distinctly after UV254 disinfection. These findings indicate that UV254 disinfection in WWTPs significantly increases the potential of •OH photoproduction from effluents and the cost-effective solar irradiation after UV254 disinfection is expected to be a novel technique for further removal of pathogen and trace organic pollutants in wastewater effluents and receiving waters.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yaqian Kong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | | | - Fan Luo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Advanced Technology Institute of Suzhou, Suzhou, 215123, PR China.
| |
Collapse
|
15
|
Li M, Wen Q, Chen Z, Tang Y, Yang B. Comparison of ozonation and UV based oxidation as pre-treatment process for ultrafiltration in wastewater reuse: Simultaneous water risks reduction and membrane fouling mitigation. CHEMOSPHERE 2020; 244:125449. [PMID: 31809924 DOI: 10.1016/j.chemosphere.2019.125449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Wastewater reuse risk and membrane fouling are two concerns in ultrafiltration (UF) of secondary effluent (SE) for wastewater reuse. In this work, several wastewater reuse risk issues, such as dissolved effluent organic matters (dEfOM), organic micro-pollutants (OMPs) and bio-toxicity of SE, as well as membrane fouling were comprehensively investigated when ozonation, UV/H2O2 and UV/persulfate (UV/PS) were used as the pre-treatments for UF process. To be specific, individual UF could remove DOC and UV254 by only 7.5% and 19.8%, respectively, however, humics were largely degraded during the pre-oxidation processes revealed by molecular weight and fluorescence analysis. UF and ozonation showed limited removal of OMPs, however, UV/H2O2 and UV/PS dramatically degraded all the OMPs by more than 80%. Genotoxicity were not detected after the oxidation treatment. Membrane fouling may result from the collaborative effect of organic components, such as humic and protein like substances. Fourier transform infrared spectra of the fouled membranes showed that aromatic CC group and polysaccharides group in dEfOM were largely reduced after the oxidation pre-treatments, resulting in the improved membrane flux sustaining. Increased roughness of the membranes in the combined process supported that the less organics content after the oxidation pre-treatment contributed to improve the performance of the UF process. For the excellent organics degradation in UV/PS pre-treatment process, membrane fouling of subsequent UF process showed maximum mitigation.
Collapse
Affiliation(s)
- Mo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China; School of Environmental and Geography Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China.
| | - Yingcai Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Boxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| |
Collapse
|
16
|
Yang Q, Guo Y, E Y, Zhang S, Blatchley ER, Li J. Methyl chloride produced during UV 254 irradiation of saline water. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121263. [PMID: 31605974 DOI: 10.1016/j.jhazmat.2019.121263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Ultraviolet (UV) irradiation is widely used for water treatment due to its effectiveness against a wide range of waterborne pathogens with minimal production of regulated disinfection byproducts. However, in this study, the formation of methyl chloride (CH3Cl) from guaiacol and chloride was observed during UV254 irradiation. The results indicated that direct photolysis of guaiacol produced an arenium ion, and the reactive methoxy group was further transformed to CH3Cl in the presence of chloride. O-quinone was detected as the primary product of the degradation of guaiacol resulting from UV254 irradiation. Other organic compounds containing methoxy, ethoxy, or methylamino groups with structures that are similar to guaiacol were also demonstrated to generate halocarbons in aqueous chloride or bromide solution under UV254 irradiation. Scavenging experiments and removal of oxygen demonstrated that neither oxygen nor chlorine radicals were involved in CH3Cl formation. In seawater samples, CH3Cl was also detected in the presence or absence of added organic matter. These results demonstrate that CH3Cl can be formed during UV254 irradiation in saline water and that attention should be paid to this compound and structurally-related compounds in the application of UV254 processes.
Collapse
Affiliation(s)
- Qian Yang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Yang Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Yue E
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Sanbing Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, IN, 47907, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
17
|
Botturi A, Daneshgar S, Cordioli A, Foglia A, Eusebi AL, Fatone F. An innovative compact system for advanced treatment of combined sewer overflows (CSOs) discharged into large lakes: Pilot-scale validation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109937. [PMID: 31818744 DOI: 10.1016/j.jenvman.2019.109937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Combined sewer overflows discharging into natural water bodies could potentially contaminate them in terms of conventional wastewater parameters and coliform bacteria. When green water infrastructures are not technically feasible or practically sustainable for stormwater management, innovative compact and effective end-of-pipe systems can be of interest. This study presents long-term and real-environment validated data of a compact and rapid treatment system specifically applicable to CSOs that consists of a dynamic rotating belt filter, adsorption on granular activated carbon and UV disinfection steps. The results of treatment for Lake Garda in Italy, showed great potential for TSS, COD and E. coli removal efficiencies with more than 90%, 69% and 99% respectively. Due to the short contact time of GAC adsorption, nutrients removals were not very high. TN and TP removal of around 41% and 19% were observed respectively that suggests further specific nutrients removal processes are required for achieving higher efficiencies. The treatment system, due to its compactness and rapidness could be a great asset for water utilities in different EU catchments that are dealing with the frequent CSO events. In addition, the possibility of using different combinations of treatment steps allows the choice of different treatment scenarios depending on the treatment goals for any specific catchment.
Collapse
Affiliation(s)
- A Botturi
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - S Daneshgar
- Department of Biotechnology, University of Verona, 37134, Verona, Italy.
| | - A Cordioli
- Azienda Gardesana Servizi, 37019, Peschiera Del Garda, Italy
| | - A Foglia
- Department of Science and Engineering of Materials, Environment and City Planning, Polytechnic University of Marche, 60131, Ancona, Italy
| | - A L Eusebi
- Department of Science and Engineering of Materials, Environment and City Planning, Polytechnic University of Marche, 60131, Ancona, Italy.
| | - F Fatone
- Department of Science and Engineering of Materials, Environment and City Planning, Polytechnic University of Marche, 60131, Ancona, Italy
| |
Collapse
|
18
|
Brienza M, Manasfi R, Chiron S. Relevance of N-nitrosation reactions for secondary amines in nitrate-rich wastewater under UV-C treatment. WATER RESEARCH 2019; 162:22-29. [PMID: 31254883 DOI: 10.1016/j.watres.2019.06.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the transformation of secondary amine pharmaceuticals in UV-C/NO3- and in nitrate-rich wastewater at 254 nm by taking diclofenac, diphenylamine, mefenamic acid and furosemide as probe compounds. The degradation of targeted compounds were positively related to nitrate concentration and mainly caused by the formation of peroxynitrite and related reactive nitrogen species (e.g., nitrogen oxide and nitrogen dioxide radicals). Major transformation products were identified to provide fundamental understanding of the selective oxidation of secondary amine with reactive nitrogen species. UV photolysis, hydroxyl radical oxidation, nitration and nitrosation processes were found to be the most significant transformation pathways. In case of diphenylamine, for which most of the identified intermediates were available as standard, the relative significance of each transformation route could be established, highlighting for the first time the important role of N-nitrosation processes in UV/NO3- treatment followed by the decomposition of the resulting N-nitroso compounds by an alpha hydroxylation mechanism. This specific transformation pathway was of concern because it constitutes the molecular basis of N-nitrosamine carcinogenicity and may contribute to the increase in effluent genotoxicity under UV-C treatment in addition to the formation of nitrophenols. Hydrogenocarbonate ions at concentration values higher than 300 mg/L appeared to be a protective specie against nitrosation processes due to the formation of carbamate adducts but H2O2 in UV-C/H2O2 could be responsible for an exacerbation of the N-nitrosation pathway due to an addition source of hydroxyl radical in the system. The occurrence of major transformation products of diclofenac was confirmed in nitrate-rich wastewater under UV-C treatment at pilot-scale operation.
Collapse
Affiliation(s)
- Monica Brienza
- UMR HydroSciences Montpellier, Montpellier University, IRD, 15 Ave Charles Flahault 34093 Montpellier Cedex 5, France
| | - Rayana Manasfi
- UMR HydroSciences Montpellier, Montpellier University, IRD, 15 Ave Charles Flahault 34093 Montpellier Cedex 5, France
| | - Serge Chiron
- UMR HydroSciences Montpellier, Montpellier University, IRD, 15 Ave Charles Flahault 34093 Montpellier Cedex 5, France.
| |
Collapse
|
19
|
Molé RA, Good CJ, Stebel EK, Higgins JF, Pitell SA, Welch AR, Minarik TA, Schoenfuss HL, Edmiston PL. Correlating effluent concentrations and bench-scale experiments to assess the transformation of endocrine active compounds in wastewater by UV or chlorination disinfection. CHEMOSPHERE 2019; 226:565-575. [PMID: 30953901 DOI: 10.1016/j.chemosphere.2019.03.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Transformation of endocrine active compounds (EACs) by either chlorination (Cl-D) or UV disinfection (UV-D) was studied by field sampling and bench-scale validation studies. Field testing assessed concentration of 13 EACs in effluent at two Chicago area 250 MGD wastewater reclamation plants (WRP) over two years. One WRP uses chlorination/dechlorination while the other employs UV disinfection. Target compounds included bupropion, carbamazepine, citalopram, duloxetine, estradiol, estrone, fluoxetine, nonylphenol, norfluoxetine, norsertraline, paroxetine, sertraline, and venlafaxine. Concentrations of 9/13 target compounds were partially reduced after disinfection (5-65% reduction). None of the target compounds were fully transformed by either chlorination or UV treatment at the WRP scale. In bench-scale experiments each compound was spiked into deionized water or effluent and treated in a process mimicking plant-scale disinfection to validate transformations. Correlation was observed between compounds that were transformed in bench-testing and those that decreased in concentration in post-disinfection WRP effluent (10/13 compounds). A survey of potential reaction products was made. Chlorination of some amine containing compounds produced chloramine by-products that reverted to the initial form after dechlorination. Transformation products produced upon simulated UV disinfection were more diverse. Laboratory UV-induced transformation was generally more effective under stirred conditions, suggesting that indirect photo-induced reactions may predominate over direct photolysis.
Collapse
Affiliation(s)
- Rachel A Molé
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Christopher J Good
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Eva K Stebel
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Julia F Higgins
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Sarah A Pitell
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Arielle R Welch
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Thomas A Minarik
- Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, 60804, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, 56301, USA
| | - Paul L Edmiston
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA.
| |
Collapse
|
20
|
Rodríguez-Chueca J, Laski E, García-Cañibano C, Martín de Vidales MJ, Encinas Á, Kuch B, Marugán J. Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1216-1225. [PMID: 29554743 DOI: 10.1016/j.scitotenv.2018.02.279] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H2O2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H2O2/UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H2O2/UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m3·order). Even H2O2/UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H2O2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone.
Collapse
Affiliation(s)
- J Rodríguez-Chueca
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain; Department of Chemical & Environmental Engineering, Technical University of Madrid, (UPM), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - E Laski
- Department of Hydrochemistry and Hydrobiology, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - C García-Cañibano
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - M J Martín de Vidales
- Mechanical, Chemical and Industrial Design Engineering Department (ETSIDI), Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Á Encinas
- Department of Innovation & Technology, FCC Aqualia, S.A., C/ Montesinos 28, 06002 Badajoz, Spain
| | - B Kuch
- Department of Hydrochemistry and Hydrobiology, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - J Marugán
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|