1
|
Zhao L, Li S, Wang T, Wang S, Zhan J, Chen J. Cost-effective magnetic Nylon 6 composites for extraction of perfluorinated compounds in water and bottled beverage followed with LC-MS/MS analysis. Food Chem 2025; 480:143944. [PMID: 40138838 DOI: 10.1016/j.foodchem.2025.143944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Perfluorinated compounds are of extensive concern due to their prevalent use, persistence, and toxicities. There is a demand for extraction adsorbents that are efficient, easy to synthesize, and cost-effective. Herein, a magnetic nylon 6 nanocomposite (M-Ny6) was synthesized through a simple process and utilized as an adsorbent in magnetic solid-phase extraction (MSPE) of perfluorooctanoic acid (PFOA). The MSPE condition was optimized and the adsorption characteristics for PFOA was investigated. Based on the interaction between the amide groups on M-Ny6 and PFOA, the MSPE method was coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for analyzing trace levels of PFOA in environmental water and bottled beverages. The established method demonstrated a detection limit of 1.2 ng L-1 with linear range across 50-800 ng L-1 and satisfactory recoveries (82.3-113.0 %) in spiked samples. The experimental results indicated that M-Ny6 is a promising and cost-effective MSPE adsorbent offering potential for large-scale applications in food analysis.
Collapse
Affiliation(s)
- Luyue Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shu Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Sinan Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
2
|
Li Z, Wang X, Wang L, Liu L, Zhao L, Li N, Jiang H, Hao Z, Liu J, Chen X, Zhao R. Tertiary amine-functionalized metal-organic frameworks for high adsorption of perfluoroalkyl and polyfluoroalkyl substances in environmental water samples. J Chromatogr A 2025; 1750:465926. [PMID: 40188784 DOI: 10.1016/j.chroma.2025.465926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Sensitive monitoring of per- and polyfluoroalkyl substances (PFASs) is critical for environmental and health risk assessment. In this work, metal-organic frameworks (MOFs) functionalized with positively charged tertiary amines (UiO-67-CH2-N(CH3)2) were synthesized by the one-pot route, which integrated solvothermal MOFs assembly and in-situ reductive amination of formyl groups. The fabricated UiO-67-CH2-N(CH3)2 exhibited exceptional performance as adsorbents for solid-phase extraction (SPE), and the efficient adsorption of PFASs was attribute to the electrostatic attraction and hydrogen bonding. The proposed SPE-HPLC-MS/MS method demonstrated low limit of detection (0.02-0.88 ng·L-1), good linearity (0.2-400 ng·L-1) and high precision (RSD < 8.18 %). The effectiveness of the established method was assessed through the analysis of PFASs in environmental waters, and recoveries in spiked samples were 84.0-117 % with RSD < 13 %. This study highlighted the efficacy of the functionalized UiO-67-CH2-N(CH3)2 in trace PFASs analysis, advancing their application in environmental monitoring.
Collapse
Affiliation(s)
- Zhuoning Li
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoli Wang
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Leilei Wang
- Shandong Province Key Laboratory of Applied Microbiology, Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Jinan 250014, China.
| | - Lu Liu
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lingxi Zhao
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Li
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hailong Jiang
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhineng Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Jingfu Liu
- Institute of Environment and Health, Jianghan University, Wuhan 4300565, China
| | - Xiangfeng Chen
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Rusong Zhao
- College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Li Z, Zhong D, Lin H, Li P, Li Y, Huang Q, Yang L, Zhang X. In situ immobilization of covalent organic frameworks on diatomaceous earth for pipette-tip solid-phase microextraction. J Chromatogr A 2025; 1749:465893. [PMID: 40154191 DOI: 10.1016/j.chroma.2025.465893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Solid-phase microextraction (SPME) is essential for analyzing ultra-low concentration samples, such as trace drugs and environmental pollutants. Among various formats, pipette tip-based SPME (PT-SPME) stands out for its advantages in efficiency, automation, and flexibility. However, PT-SPME faces challenges such as material loss, high synthesis costs, and environmental impact. To address these issues, we developed a novel PT-SPME device by synthesizing Schiff-base covalent organic frameworks (COFs) in situ on diatomaceous earth (DE), which served as both a matrix and support. This approach significantly improved stability and reduced COFs consumption by 93.7 %. The DE@COFs were packed into pipette tips with a sandwich-like structure and used to extract polycyclic aromatic hydrocarbons (PAHs), with detection achieved through high-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD). The method exhibited excellent sensitivity, with limits of detection (LODs) ranging from 2.05 to 52.5 pg/mL and limits of quantification (LOQs) from 15.0 to 159 pg/mL. It also demonstrated high accuracy, with recoveries between 87.05 % and 115.86 %, and strong repeatability, making it suitable for trace pollutant analysis in complex matrices This cost-effective and environmentally friendly PT-SPME system enhances extraction efficiency while reducing material usage, providing a practical and innovative solution for trace pollutant analysis in pharmaceutical and environmental applications.
Collapse
Affiliation(s)
- Zhihao Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Dihong Zhong
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Haipeng Lin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Peiyin Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Yongyi Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Qingmei Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Lingzhi Yang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, PR China
| |
Collapse
|
4
|
Manousi N, Anthemidis A, Rosenberg E. Practicality evaluation of novel microextraction techniques for the determination of PFAS in food and water samples using the Blue Applicability Grade Index. Anal Chim Acta 2025; 1352:343864. [PMID: 40210266 DOI: 10.1016/j.aca.2025.343864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Due to their high stability, persistence, and non-degradability, per- and polyfluoroalkyl substances (PFAS) are considered to be "forever chemicals" that can be present in a wide range of samples. Towards the development of novel analytical strategies for the reduction of the environmental impact of the analytical scheme, a plethora of novel solid-phase microextraction and miniaturized extraction techniques have been proposed for the determination of PFAS. However, the evaluation of the applicability of these protocols in terms of their practicality is still scarce. RESULTS In this article, the Blue Analytical Grade Index (BAGI) was used to evaluate the practicality of the sorbent-based microextraction techniques that were developed during the last decade for PFAS. In total thirty-four protocols were evaluated, resulting in a minimum score of 50.0 and a maximum score of 77.5. SIGNIFICANCE These findings clearly indicate that there is significant room for improvement and there is still a need for the development of microextraction approaches with higher practicality. Moreover, with regards to the best-performing protocols, their greenness was also assessed using the AGREEprep metric to enable a more comprehensive comparison.
Collapse
Affiliation(s)
- Natalia Manousi
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria; Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| |
Collapse
|
5
|
Wang L, Du H, Wang X, Hao D, Li Q, Zhu H, Li C, Wang Q. A critical review of COFs-based photocatalysis for environmental remediation. ENVIRONMENTAL RESEARCH 2025; 272:121166. [PMID: 39978624 DOI: 10.1016/j.envres.2025.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Covalent organic frameworks (COFs) are highly porous crystalline polymers formed through covalent bonding of molecular building blocks. Numerous fabrication strategies have been developed, including solvothermal, ionothermal, microwave, mechanochemical, and sonochemical methods, alongside ligand substitution and post-modification techniques, which allow for precise control over the structures and properties of COFs. The exceptional physicochemical stability, large specific surface area, broad visible light absorption, and extended π-conjugated systems have sparked significant interest in photocatalytic applications. Recently, COFs have shown remarkable efficacy in environmental remediation, demonstrating the ability to degrade a wide range of organic pollutants, including dyes, antibiotics, and drugs, as well as to reduce/oxidize heavy metals such as Cr(VI), U(VI), and As(III), in addition to targeting biological pollutants. This review comprehensively explores recent advancements in COFs-based photocatalysis, covering synthetic methods, COF types, modification method, theoretical calculations, environmental applications, and underlying mechanisms. Additionally, the challenges and opportunities for COFs as a robust, cost-effective technology in practical applications was discussed, and offering valuable insights for researchers in environmental remediation, materials science, and photocatalysis.
Collapse
Affiliation(s)
- Lichao Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Du
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaoqing Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Derek Hao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Qiang Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Huayue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Chunjuan Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Qi Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
6
|
Zhao W, Wang X, Bahri M, Zhu Q, Li B, Wu K, Wang Z, Li H, Shi X, Shi D, Ji C, Browning ND, Sun J, Wang J, Zhao D. Water-Assisted Microwave Synthesis of Imide-Linked Covalent Organic Frameworks in Minutes. J Am Chem Soc 2025. [PMID: 40304088 DOI: 10.1021/jacs.5c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Solvothermal synthesis has been dominant for covalent organic frameworks (COFs) in the past decades. However, it requires high temperatures, harmful organic solvents, sealed pressurized reactors, and a long reaction time (from days to weeks). Herein, we report a solid-state strategy to synthesize imide-linked COFs rapidly. Utilizing water-assisted microwave synthesis, the process is remarkably fast, with one COF synthesized in merely 1 min. This method eliminates the need for toxic organic solvents and significantly shortens the reaction time. Using the water-assisted microwave method, we synthesized four previously reported COFs. The crystallinity and porosity of these COFs are comparable to or better than those made by the reported procedures. The generality of our synthetic method is shown in the preparation of three new imide-linked COFs. Finally, a microwave-synthesized COF@CNT composite acts as an excellent cathode material for lithium-ion batteries, showing a specific capacity of 154 mAh g-1 at an ultrahigh current density of 10 A g-1 (equivalent to 26 C), which can maintain a specific capacity of 128.59 mAh g-1 after 10,000 cycles. This excellent stability and durability under extreme operational conditions make the material highly suitable for applications requiring rapid charging and discharging. The speed, ease, and generality of this water-assisted microwave method, together with improved material quality, enable the rapid discovery of functional imide-linked COFs.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xingyang Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Mounib Bahri
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool L69 3GL, U.K
| | - Qiang Zhu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Boyu Li
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Kun Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zekun Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chunqing Ji
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Nigel D Browning
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool L69 3GL, U.K
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Yang X, Xu Q, Wei W, Zeng G. Linkages Chemistry of Covalent Organic Frameworks in Photocatalysis and Electrocatalysis. Angew Chem Int Ed Engl 2025:e202504355. [PMID: 40192554 DOI: 10.1002/anie.202504355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Covalent organic frameworks (COFs) have emerged as promising candidates for electrocatalysis and photocatalysis applications due to their structurally ordered architectures and tunable physicochemical properties. In COFs, organic building blocks are linked via covalent bonds, and the structural and electronic characteristics of COFs are critically governed by their linkage chemistry. These linkages influence essential material attributes including surface area, crystallinity, hydrophobicity, chemical stability, and the optoelectronic behavior (e.g., photoelectron separation efficiency, electron conductivity, and reductive activity), which collectively determine catalytic performance in energy conversion systems. A systematic understanding of linkage engineering in COFs not only advances synthetic methodologies but also provides innovative solutions to global energy and environmental challenges, thereby accelerating the development of sustainable technologies for clean energy production and environmental remediation.
Collapse
Affiliation(s)
- Xiubei Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P.R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P.R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Wei Wei
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P.R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P.R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
8
|
Amirfakhri SJ, Zobel B, Lilla MK, Tomaszewski C, Stellpflug O. Enhanced PFBS adsorption via silver-impregnated activated carbon: Mechanistic insights and Thermodynamic analysis. CHEMOSPHERE 2025; 375:144257. [PMID: 40037022 DOI: 10.1016/j.chemosphere.2025.144257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
This study investigates the effect of silver nanoparticle impregnation on the performance of activated carbon (AC) for perfluorobutane sulfonic acid (PFBS) adsorption. Using the deposition-precipitation method, three silver-impregnated activated carbon (SIAC) adsorbents were synthesized with varying silver contents: SIAC0.01 (0.15 wt%), SIAC0.1 (1.7 wt%), and SIAC1 (8.5 wt%). Among these, SIAC0.1 exhibited the highest adsorption capacity at 25 °C and was selected for detailed analysis. The adsorption mechanism of PFBS on SIAC0.1 was examined at 25, 35, and 45 °C, yielding key kinetic parameters, including reaction rate constants and activation energies. Additionally, the thermodynamic properties of the adsorption process, including ΔH≠, ΔS≠, and ΔG≠, were evaluated. The findings reveal that silver nanoparticle impregnation significantly enhances the kinetic and thermodynamic favorability of PFBS adsorption, leading to a substantial increase in adsorption capacity. This work highlights the potential of silver-impregnated activated carbon as an effective adsorbent for PFBS removal.
Collapse
Affiliation(s)
- Seyed Javad Amirfakhri
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Ben Zobel
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Michael Karsten Lilla
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Christopher Tomaszewski
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Olivia Stellpflug
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| |
Collapse
|
9
|
Xiang JQ, He L, Qiu M, Zhang Y, Chen EX, Lin Q. Rational Fabrication of a Robust, Exfoliatable Catechol-Porphyrin Covalent Network for Enhanced H 2O 2 Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500573. [PMID: 40026061 DOI: 10.1002/smll.202500573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Covalent organic frameworks (COFs) containing dioxin-linkages are highly valued for their exceptional chemical stability, which is essential for practical use. However, research on dioxin-based COFs remains limited. Herein, a unique nonplanar 2D COF, designated as TCP-COF, constructed from catechol-porphyrin units interconnected by 1,4-dioxin bonds, exhibiting a staggered AAA stacking pattern, is presented. Remarkably, TCP-COF can undergo in situ exfoliation to produce ultrathin 2D nanosheets when it is utilized as a photocatalyst for hydrogen peroxide (H2O2) generation in water and air, without the need for additives. This exfoliation process is primarily driven by the distortion of porphyrin units and weak π-π interaction between adjacent layers in TCP-COF. The resultant ultrathin nanosheets significantly reinforce catalytic activity, achieving a photocatalytic H2O2 production rate of 3077 µmol g-1 h-1. The mechanism underlying H2O2 photosynthesis is further explored through a combination of experimental analyses and theoretical calculations. This study provides valuable insights for the development of efficient COF-based photocatalysts for H2O2 evolution.
Collapse
Affiliation(s)
- Ju-Qiang Xiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350108, China
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fujian, 350002, China
| | - Liang He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350108, China
| | - Mei Qiu
- College of Chemistry and Materials, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fujian, 350116, China
| | - Er-Xia Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fujian, 350002, China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Mao QY, Ran XQ, Xu ST, Gu P, Jiang Y, Yan XP, Qian HL. Unlocking Enhanced Detection of Perfluoroalkanesulfonic Acids via Fluorinated Nonpolar 3D Covalent Organic Frameworks-Based Ambient Probe Nanoelectrospray Ionization Mass Spectrometry. Anal Chem 2025; 97:6312-6319. [PMID: 40091416 DOI: 10.1021/acs.analchem.5c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The trace levels and severe matrix interferences greatly limited the determination of stable, persistent, and long-range-transported perfluoroalkanesulfonic acids (PFSAs) in complex environments. Here, we design and prepare the first fluorinated nonpolar 3D COF (TFPM-Pa-CF3) as an adsorbent, consisting of tetrakis(4-formylphenyl)methane (TFPM) and 2,5-diaminobenzo-trifluoride (Pa-CF3) for adsorption and extraction of PFSAs. The proposed TFPM-Pa-CF3 demonstrates excellent adsorption capacity (509.1 mg g-1) and rapid adsorption kinetics (5 min) for PFSAs attributed to the synergistic effects of F-F, hydrophobic, and electrostatic interactions. Furthermore, TFPM-Pa-CF3 is grown in situ on a stainless needle and coupled with ambient probe nanoelectrospray ionization mass spectrometry (PESI-MS) to develop a rapid and direct determination method with a low limit of detection (0.05-0.86 ng L-1) and wide linear range (1-10,000 ng L-1) for trace perfluorooctanesulfonate and its alternatives in environmental soil, algae and water. This work unlocks the efficient determination or removal of PFSAs in a complex environment, facilitating the solution of critical environmental PFSAs problems.
Collapse
Affiliation(s)
- Qian-Ying Mao
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peng Gu
- Department of Light Chemical Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yun Jiang
- Department of Light Chemical Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Li X, Zheng X, Yuan Y, Deng J, Su L, Xu K. A review of research progress on COF-based biosensors in pathogen detection. Anal Chim Acta 2025; 1342:343605. [PMID: 39919853 DOI: 10.1016/j.aca.2024.343605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Despite the availability of various detection tools, the rapid identification and accurate detection of pathogens remain a major challenge in public health management. Covalent organic frameworks (COFs), which are crystalline conjugated organic polymers with considerable application potential, offer unique advantages in several fields owing to their highly ordered structure, large specific surface area, stable chemical properties, and tunable pore microenvironment. In recent years, with the rapid development of biosensing technology, COF application in the field of pathogen detection has attracted extensive attention. Herein, the properties, applications, and synthesis methods of COFs are briefly described, and the application types and basic principles of COFs in building an efficient and sensitive pathogen detection platform are emphatically discussed. Overall, we analyze the current challenges associated with COF-based biosensors in pathogen detection and look forward to their broad application prospects in biomedicine and public health in future.
Collapse
Affiliation(s)
- Xiang Li
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Xi Zheng
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Yanhui Yuan
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Jiahui Deng
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Liang Su
- Changsha Center for Disease Control and Prevention, Changsha, 410004, Hunan, PR China.
| | - Kun Xu
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
12
|
Yang Q, An J, Gao M, Wang H, Liu W, Gao X, Wang R, Song J. Covalent Organic Frameworks for Green Energy: Synthesis, Properties, and Applications. Chem Asian J 2025; 20:e202401349. [PMID: 39888163 DOI: 10.1002/asia.202401349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/19/2024] [Indexed: 02/01/2025]
Abstract
Covalent organic frameworks (COFs) are a new type of porous organic crystalline material, which have become an emerging platform for promoting the development of green energy technology due to their high surface area, adjustable pores, low skeleton density, and easy functionalization. In recent years, with the continuous advancement of synthesis technology, the synthesis efficiency and sustainability of COFs have been significantly improved, from traditional solvothermal methods to the emergence of various green synthesis strategies such as ion thermal, mechanochemical, and ultrasound assisted methods. This article reviews the main synthesis methods of COFs and explores their applications in the field of green energy, such as photocatalysis, gas adsorption and separation, electrocatalysis, battery, supercapacitor and Proton exchange membrane fuel cell. By analyzing the performance and mechanism of COFs in these applications in detail, this article further looks forward to the challenges and future development trends faced by COFs in green energy technology, aiming to provide valuable reference and inspiration for researchers in related fields.
Collapse
Affiliation(s)
- Qianqian Yang
- School of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan Shandong, 250200, China
| | - Juan An
- School of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan Shandong, 250200, China
| | - Mingming Gao
- School of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan Shandong, 250200, China
| | - Hui Wang
- School of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan Shandong, 250200, China
| | - Wei Liu
- School of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan Shandong, 250200, China
| | - Xing Gao
- School of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan Shandong, 250200, China
| | - Rongming Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao Shandong, 266580, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Zhang X, Yan M, Chen P, Li J, Li Y, Li H, Liu X, Chen Z, Yang H, Wang S, Wang J, Tang Z, Huang Q, Lei J, Hayat T, Liu Z, Mao L, Duan T, Wang X. Emerging MOFs, COFs, and their derivatives for energy and environmental applications. Innovation (N Y) 2025; 6:100778. [PMID: 39991481 PMCID: PMC11846040 DOI: 10.1016/j.xinn.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Traditional fossil fuels significantly contribute to energy supply, economic development, and advancements in science and technology. However, prolonged and extensive use of fossil fuels has resulted in increasingly severe environmental pollution. Consequently, it is imperative to develop new, clean, and pollution-free energy sources with high energy density and versatility as substitutes for conventional fossil fuels, although this remains a considerable challenge. Simultaneously, addressing water pollution is a critical concern. The development, design, and optimization of functional nanomaterials are pivotal to advancing new energy solutions and pollutant remediation. Emerging porous framework materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), recognized as exemplary crystalline porous materials, exhibit potential in energy and environmental applications due to their high specific surface area, adjustable pore sizes and structures, permanent porosity, and customizable functionalities. This work provides a comprehensive and systematic review of the applications of MOFs, COFs, and their derivatives in emerging energy technologies, including the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, lithium-ion batteries, and environmental pollution remediation such as the carbon dioxide reduction reaction and environmental pollution management. In addition, strategies for performance adjustment and the structure-effect relationships of MOFs, COFs, and their derivatives for these applications are explored. Interaction mechanisms are summarized based on experimental discussions, theoretical calculations, and advanced spectroscopy analyses. The challenges, future prospects, and opportunities for tailoring these materials for energy and environmental applications are presented.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Minjia Yan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Pei Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jiaqi Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuxuan Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenwu Tang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiehong Lei
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Tasawar Hayat
- Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xiangke Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
14
|
Lai Z, Zhou Y, Bai S, Sun Q. Opportunity and Challenge of Advanced Porous Sorbents for PFAS Removal. CHEMSUSCHEM 2025; 18:e202401229. [PMID: 39037172 DOI: 10.1002/cssc.202401229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), comprising over 9,000 persistent synthetic organic contaminants, are extensively found in the environment and pose significant risks to both human and ecological health. Among the strategies for addressing PFAS contamination, adsorption processes have proven to be cost-effective. Traditional sorbents such as ion-exchange resins and activated carbon have been found to exhibit low adsorption capacities and slow equilibration times. Recent innovations in porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), however, offer significant improvements in the efficiency of PFAS adsorption. This review thoroughly examines the latest advancements in these materials, analyzing their mechanisms of adsorption, and concludes by suggesting directions for future research that could further enhance their effectiveness in PFAS management.
Collapse
Affiliation(s)
- Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yaolu Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Shanshan Bai
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
15
|
Qin Y, Li D, Yao T, Ali A, Wu J, Yao S. Covalent organic frameworks and related innovative materials in chiral separation and recognition. Biomed Chromatogr 2024; 38:e6008. [PMID: 39317421 DOI: 10.1002/bmc.6008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Chiral recognition and enantioseparation are of paramount importance in various fields, including pharmaceuticals, agrochemicals, and material science. Covalent organic frameworks (COFs) have emerged as promising materials for chiral separation due to their unique structural features and tunable properties. This review provided a comprehensive overview of recent progress in the application of COFs and related innovative materials for chiral separation and recognition. Various strategies were analyzed for the design and synthesis of chiral COFs, including the incorporation of chiral building blocks, post-synthetic modification, and the integration of chiral selectors. The applications of chiral COFs in chromatographic techniques, membrane separations, and other emerging methods were critically evaluated with the emphasis on their advantages and limitations. Additionally, the review summarized the potential of combining COFs with other nanomaterials, such as metal-organic frameworks (MOFs) and nanoparticles, to enhance chiral recognition and separation performance. The fundamental principles and mechanisms of chiral recognition were discussed, highlighting the role of chiral selectors and their interactions with enantiomers. Finally, current challenges and future perspectives in this field were discussed, providing insights into the development of more efficient and versatile chiral separation systems based on COFs and related materials.
Collapse
Affiliation(s)
- Yuxin Qin
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dan Li
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Tian Yao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ahmad Ali
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jieyu Wu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Yu HP, Xu QQ, Wang X, Cui YY, Wang HF, Yang CX. Fabrication of fluorinated magnetic microporous organic network for selective and efficient extraction of benzoylurea insecticides in tea beverages. Food Chem 2024; 460:140529. [PMID: 39047468 DOI: 10.1016/j.foodchem.2024.140529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
In this work, a novel fluorinated magnetic microporous organic network (Fe3O4@FMON) was exquisitely designed and synthesized for highly efficient and selective magnetic solid phase extraction (MSPE) of fluorinated benzoylurea insecticides (BUs) from complex tea beverage samples. The Fe3O4@FMON exhibited good extraction for BUs via the pre-designed hydrophobic, π-π stacking, hydrogen bonding and specific FF interactions. A sensitive Fe3O4@FMON-based MSPE-HPLC-UV method with wide linear range (0.10-1000 μg L-1, R2 ≥ 0.996), low limits of detection (0.01-0.02 μg L-1), and large enrichment factors (85.6-98.0) for BUs from tea beverage samples was developed. By decorating F elements within MON's networks, the Fe3O4@FMON characterized good hydrophobicity and chemical stability, which could be reused at least 8 times without decrease of recoveries. This work demonstrated the great prospects of Fe3O4@FMON for enriching trace BUs from complex substrates and triggered the potential of FMON for sample pretreatment of fluorinated analytes.
Collapse
Affiliation(s)
- Hui-Ping Yu
- College of Chemistry, Research Center for Analytical Sciences, Nankai University, Tianjin 300071, China
| | - Qian-Qian Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xin Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - He-Fang Wang
- College of Chemistry, Research Center for Analytical Sciences, Nankai University, Tianjin 300071, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
17
|
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB, Jiang J. A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control. Chem Soc Rev 2024; 53:11259-11302. [PMID: 39479879 DOI: 10.1039/d4cs00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (i.e., ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Collapse
Affiliation(s)
- Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Esther Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
18
|
Teng XH, Cheng YQ, Xia ZZ, Zhao QQ, Zhang W, Wang LL, Wang JN. Conjugated microporous polymer for solid-phase extraction of neonicotinoid insecticides from environmental water samples. J Chromatogr A 2024; 1731:465179. [PMID: 39047447 DOI: 10.1016/j.chroma.2024.465179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Conjugated microporous polymers (CMPs) have unique characteristics and have been used in a range of fascinating applications in separation sciences. In this study, a CMP, designated as CMP-1, was synthesized via the Sonogashira-Hagihara coupling reaction using 1,3,5-triphenylbenzene and 1,4-dibromobenzene as building blocks. CMP-1 features a large surface area, abundant micropore structures, and excellent stability, making it a promising solid-phase extraction adsorbent for the efficient enrichment of neonicotinoid insecticides (NEOs). Under the optimized conditions, CMP-1 was combined with high-performance liquid chromatography and diode array detection to enable the detection of NEOs with a wide linear range (0.5-200 μg·L-1), a low detection limit (0.26-0.58 μg·L-1), and acceptable precision. The developed method was applied to determine spiked NEOs in three types of environmental water samples, with recoveries of 73.7%-112.0% and relative standard deviations of 0.6%-9.4%.
Collapse
Affiliation(s)
- Xing-Hua Teng
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan 250014, China
| | - Yu-Qi Cheng
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan 250014, China
| | - Zhen-Zhen Xia
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan 250014, China
| | - Qing-Qing Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan 250014, China
| | - Wen Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan 250014, China
| | - Lei-Lei Wang
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan 250014, China.
| | - Jia-Ning Wang
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan 250014, China
| |
Collapse
|
19
|
Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel) 2024; 16:2319. [PMID: 39204541 PMCID: PMC11359747 DOI: 10.3390/polym16162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| |
Collapse
|
20
|
Altaf A, Khan I, Khan A, Sadiq S, Humayun M, Khan S, Zaman S, Khan A, Abumousa RA, Bououdina M. Metal/Covalent Organic Framework Encapsulated Lead-Free Halide Perovskite Hybrid Nanocatalysts: Multifunctional Applications, Design, Recent Trends, Challenges, and Prospects. ACS OMEGA 2024; 9:34220-34242. [PMID: 39157131 PMCID: PMC11325423 DOI: 10.1021/acsomega.4c04532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
Perovskites are bringing revolutionization in a various fields due to their exceptional properties and crystalline structure. Most specifically, halide perovskites (HPs), lead-free halide perovskites (LFHPs), and halide perovskite quantum dots (HPs QDs) are becoming hotspots due to their unique optoelectronic properties, low cost, and simple processing. HPs QDs, in particular, have excellent photovoltaic and optoelectronic applications because of their tunable emission, high photoluminescence quantum yield (PLQY), effective charge separation, and low cost. However, practical applications of the HPs QDs family have some limitations such as degradation, instability, and deep trap states within the bandgap, structural inflexibility, scalability, inconsistent reproducibility, and environmental concerns, which can be covered by encapsulating HPs QDs into porous materials like metal-organic frameworks (MOFs) or covalent-organic frameworks (COFs) that offer protection, prevention of aggregation, tunable optical properties, flexibility in structure, enhanced biocompatibility, improved stability under harsh conditions, consistency in production quality, and efficient charge separation. These advantages of MOFs-COFs help HPs QDs harness their full potential for various applications. This review mainly consists of three parts. The first portion discusses the perovskites, halide perovskites, lead-free perovskites, and halide perovskite quantum dots. In the second portion, we explore MOFs and COFs. In the third portion, particular emphasis is given to a thorough evaluation of the development of HPs QDs@MOFs-COFs based materials for comprehensive investigations for next-generation materials intended for diverse technological applications, such as CO2 conversion, pollutant degradation, hydrogen generation, batteries, gas sensing, and solar cells. Finally, this review will open a new gateway for the synthesis of perovskite-based quantum dots.
Collapse
Affiliation(s)
- Anam Altaf
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Iltaf Khan
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aftab Khan
- College
of Material Science and Engineering, Beijing
University of Chemical Technology, Beijing 100029, China
| | - Samreen Sadiq
- Jiangsu
Key Laboratory of Sericultural and Animal Biotechnology, School of
Biotechnology, Jiangsu University of Science
and Technology, Zhenjiang 212100, China
| | - Muhammad Humayun
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Shoaib Khan
- College
of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Saeed Zaman
- College of
Chemistry, Liaoning University, Shenyang 110036, China
| | - Abbas Khan
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Rasha A. Abumousa
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
21
|
Li G, Cui Y, Yang X, Xin X, Yan H, Han D. Fabrication of molecularly imprinted carbon nanotubes integrating ionic liquids for efficient detection of perfluoroalkyl carboxylic acid in environmental water. Talanta 2024; 275:126017. [PMID: 38626499 DOI: 10.1016/j.talanta.2024.126017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024]
Abstract
It is extremely significant while challenging to accurately detect low-levels of perfluoroalkyl carboxylic acid compounds (PFCAs) in environmental water. Herein, adopting perfluorotetradecanoic acid as the dummy template, selective molecularly imprinted composites (CNTs@ILs@MIPs) grafted carbon nanotubes integrating hydrophilic ionic liquids were successfully prepared via surface imprinting and dummy-template imprinting techniques. The obtained CNTs@ILs@MIPs were applied as selective extraction adsorbent for specifically extract PFCAs in environmental water coupled with gas chromatography-mass spectrometry quantification. Detailed studies were conducted on the main preparation parameters and extraction conditions. The CNTs@ILs@MIPs displayed excellent adsorptivity, and the established method exhibited low LODs (0.60-1.64 ng L-1), wide linearity with R2 above 0.9994, and satisfactory adsorption recoveries (80.5-112.5%) for seven PFCAs. This proposed method provides a new applicable approach for the detection of targeted pollutants in environmental water by utilizing the high affinity and recognition ability of molecularly imprinted carbon nanotube functional materials modified with ionic liquids.
Collapse
Affiliation(s)
- Gang Li
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Yahan Cui
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Xiaonan Yang
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Xuelian Xin
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding, 071002, China.
| |
Collapse
|
22
|
Gong J, Chen Y, A W, Zhang X, Ma J, Xie Z, Li P, Huang A, Zhang S, Liao Q. Multiple-component covalent organic frameworks for simultaneous extraction and determination of multitarget pollutants in sea foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134563. [PMID: 38735186 DOI: 10.1016/j.jhazmat.2024.134563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have been raising global concerns due to their toxic effects on environment and human health. The monitoring of residues of POPs in seafood is crucial for assessing the accumulation of these contaminants in the study area and mitigating potential risks to human health. However, the diversity and complexity of POPs in seafood present significant challenges for their simultaneous detection. Here, a novel multi-component fluoro-functionalized covalent organic framework (OH-F-COF) was designed as SPE adsorbent for simultaneous extraction POPs. On this basis, the recognition and adsorption mechanisms were investigated by molecular simulation. Due to multiple interactions and large specific surface area, OH-F-COF displayed satisfactory coextraction performance for PFASs, PCBs, and BPs. Under optimized conditions, the OH-F-COF sorbent was employed in a strategy of simultaneous extraction and stepwise elution (SESE), in combination with HPLC-MS/MS and GC-MS method, to effectively determined POPs in seafood collected from coastal areas of China. The method obtained low detection limits for BPs (0.0037 -0.0089 ng/g), PFASs (0.0038 -0.0207 ng/g), and PCBs (0.2308 -0.2499 ng/g), respectively. This approach provided new research ideas for analyzing and controlling multitarget POPs in seafood. ENVIRONMENTAL IMPLICATIONS: Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have caused serious hazards to human health and ecosystems. Hence, there is a need to develop a quantitative method that can rapidly detect POPs in environmental and food samples. Herein, a novel multi-component fluorine-functionalized covalent organic skeletons (OH-F-COF) were prepared at room temperature, and served as adsorbent for POPs. The SESE-SPE strategy combined with chromatographic techniques was used to achieve a rapid detection of POPs in sea foods from the coastal provinces of China. This method provides a valuable tool for analyzing POPs in environmental and food samples.
Collapse
Affiliation(s)
- Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
| | - Wenwei A
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong Province, 510623, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518106, China
| | - Pei Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Aihua Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Shusheng Zhang
- Center for Modern Analysis and Gene Sequencing, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
23
|
Yang J, Han X, Feng X. Rapid synthesis of aminal-linked covalent organic frameworks for CO 2/CH 4 separation. RSC Adv 2024; 14:21151-21157. [PMID: 38966812 PMCID: PMC11223515 DOI: 10.1039/d4ra02505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
As an emerging category of crystalline porous materials, covalent organic frameworks (COFs) are primarily synthesized via solvothermal methods. However, achieving rapid synthesis of COFs through this approach poses a significant challenge. To address the issue of slow synthesis, we studied the crystallization process of aminal-linked COFs via the condensation of a cost-effective aldehyde and secondary amine, and successfully expedited the synthesis of COFs within a one-hour duration. Furthermore, gram-scale aminal-linked COFs with abundant ultra-microporous channels demonstrated promising potential for CO2/CH4 separation. This study enables the rapid synthesis of aminal-linked COFs from cheap raw materials, which lays a foundation for their practical applications.
Collapse
Affiliation(s)
- Jianwei Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing China
| | - Xianghao Han
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing China
| |
Collapse
|
24
|
Wang Z, Zhang A, Hua T, Chen X, Zhu M, Guo Z, Song Y, Yang G, Li S, Feng J, Li M, Yan W. Revealing the interaction forms between Hg(II) and group types (-Cl, -CN, -NH 2, -OH, -COOH) in functionalized Poly(pyrrole methane)s for efficient mercury removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124049. [PMID: 38692386 DOI: 10.1016/j.envpol.2024.124049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
To explore the impact of different functional groups on Hg(II) adsorption, a range of poly(pyrrole methane)s functionalized by -Cl, -CN, -NH2, -OH and -COOH were synthesized and applied to reveal the interaction between different functional groups and mercury ions in water, and the adsorption mechanism was revealed through combined FT-IR, XPS, and DFT calculations. The adsorption performance can be improved to varying degrees by the incorporation of functional groups. Among them, the oxygen-containing functional groups (-OH and -COOH) exhibit stronger affinity for Hg(II) and can increase the adsorption capacity from 180 mg g-1 to more than 1400 mg g-1 at 318 K, with distribution coefficient (Kd) exceeding 105 mL g-1. The variations in the capture and immobilization capabilities of functionalized poly(pyrrole methane)s predominantly stem from the unique interactions between their functional groups and mercury ions. In particular, oxygen-containing -OH and -COOH effectively capture Hg(OH)2 through hydrogen bonding, and further deprotonate to form the -O-Hg-OH and -COO-Hg-OH complexes which are more stable than those obtained from other functionalized groups. Finally, the ecological safety has been fully demonstrated through bactericidal and bacteriostatic experiments to prove the functionalized poly(pyrrole methane)s can be as an environmentally friendly adsorbent for purifying contaminated water.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Aijing Zhang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tingyu Hua
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Chen
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengyuan Zhu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ziyu Guo
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanna Song
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guorui Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shanshan Li
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangtao Feng
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
25
|
Riboni N, Ribezzi E, Bianchi F, Careri M. Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis. Molecules 2024; 29:2802. [PMID: 38930867 PMCID: PMC11206577 DOI: 10.3390/molecules29122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | |
Collapse
|
26
|
Lin C, Weng Y, Lin Y, Liu Y, Li X, Lv Y, Ye X, Song L, Yang G, Liu M. Porous covalent organic framework nanofibrous membrane for excellent enrichment and ultra-high sensitivity detection of trace organochlorine pesticides in water. J Chromatogr A 2024; 1721:464854. [PMID: 38579528 DOI: 10.1016/j.chroma.2024.464854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Developing adsorbents with high performance and long service life for effective extracting the trace organochlorine pesticides (OCPs) from real water is attracting numerous attentions. Herein, a self-standing covalent organic framework (COF-TpPa) membrane with fiber morphology was successfully synthesized by using electrospun nanofiber membranes as template and employed as solid-phase microextraction (SPME) coating for ultra-high sensitivity extraction and analysis of trace OCPs in water. The as-synthesized COF-TpPa membrane exhibited a high specific surface area (800.83 m2 g-1), stable nanofibrous structure, and excellent chemical and thermal stability. Based on the COF-TpPa membrane, a new SPME analytical method in conjunction with gas chromatography-mass spectrometry (GC-MS) was established. This proposed method possessed favorable linearity in concentration of 0.05-2000 ng L-1, high sensitivity with enrichment factors ranging from 2175 to 5846, low limits of detection (0.001-0.150 ng L-1), satisfactory precision (RSD < 10 %), and excellent repeatability (>150 cycles), which was better than most of the reported works. Additionally, the density functional theory (DFT) calculations and XPS results demonstrated that the outstanding enrichment performance of the COF-TpPa membrane was owing to synergistic effect of π-π stacking effects, high specific surface area and hydrogen bonding. This work will expect to extend the applications of COF membrane to captures trace organic pollutants in complex environmental water, as well as offer a multiscale interpretation for the design of effective adsorbents.
Collapse
Affiliation(s)
- Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian 350116, China
| | - Yufang Weng
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian 350116, China
| | - Yule Lin
- School of Geographical Science, Fujian Normal University, Fuzhou 350116, China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian 350116, China
| | - Xiaojuan Li
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian 350116, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian 350116, China.
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian 350116, China
| | - Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian 350116, China
| | - Guifang Yang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian 351100, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No. 2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, Fujian 350116, China
| |
Collapse
|
27
|
Al-Dolaimy F, Saraswat SK, Hussein BA, Hussein UAR, Saeed SM, Kareem AT, Abdulwahid AS, Mizal TL, Muzammil K, Alawadi AH, Alsalamy A, Hussin F, Kzarb MH. A review of recent advancement in covalent organic framework (COFs) synthesis and characterization with a focus on their applications in antibacterial activity. Micron 2024; 179:103595. [PMID: 38341939 DOI: 10.1016/j.micron.2024.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
The primary objective of this review is to present a comprehensive examination of the synthesis, characterization, and antibacterial applications of covalent organic frameworks (COFs). COFs represent a distinct category of porous materials characterized by a blend of advantageous features, including customizable pore dimensions, substantial surface area, and adaptable chemical properties. These attributes position COFs as promising contenders for various applications, notably in the realm of antibacterial activity. COFs exhibit considerable potential in the domain of antibacterial applications, owing to their amenability to functionalization with antibacterial agents. The scientific community is actively exploring COFs that have been imbued with metal ions, such as copper or silver, given their observed robust antibacterial properties. These investigations strongly suggest that COFs could be harnessed effectively as potent antibacterial agents across a diverse array of applications. Finally, COFs hold immense promise as a novel class of materials for antibacterial applications, shedding light on the synthesis, characterization, and functionalization of COFs tailored for specific purposes. The potential of COFs as effective antibacterial agents beckons further exploration and underscores their potential to revolutionize antibacterial strategies in various domains.
Collapse
Affiliation(s)
| | | | - Baydaa Abed Hussein
- Department of Medical Engineering, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq.
| | | | | | - Ashwaq Talib Kareem
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | | | - Thair L Mizal
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq.
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA.
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Najaf, Iraq.
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq.
| | - Farah Hussin
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq.
| | - Mazin Hadi Kzarb
- College of Physical Education and Sport Sciences, Al-Mustaqbal University, 51001 Hillah, Babil, Iraq.
| |
Collapse
|
28
|
Tan X, Shi Y, Ma CF, Chi Q, Yang YH, Zhang WX, Xiao HM, Wang X. Fluoro-functionalized plant biomass adsorbent: Preparation and application in extraction of trace perfluorinated compounds from environmental water samples. J Environ Sci (China) 2024; 137:703-715. [PMID: 37980053 DOI: 10.1016/j.jes.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 11/20/2023]
Abstract
Perfluorinated compounds (PFCs) are toxic and widely present in the environment, and therefore effective adsorbents are required to remove PFCs from environmental water. In the present study, a new type of fluorinated biomass materials was synthesized via an ingenious fluorosilanization reaction. These adsorbents were applied for the adsorption of 13 typical PFCs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). By comparing their adsorption performance, Fluorinated cedar slag (FCS) was discovered to have the best absorption efficiency and enabled highly efficient enrichment of PFCs. The adsorption recovery of FCS with the investigated PFCs is greater than 90% under the optimal adsorption condition. Ascribed to the high affinity of F-F sorbent-sorbate interaction, FCS had good adsorption capacities of PFCs from aqueous solution, with the maximum adsorption capacity of 15.80 mg/g for PFOS and 10.71 mg/g for PFOA, respectively. Moreover, the adsorption time could be achieved in a short time (8 min). Using the FCS absorbent, an innovative FCS-solid phase extraction assisted with high performance liquid chromatography-electrospray-tandem mass spectrometry (FCS-SPE-HPLC-ESI-MS/MS) method was first developed to sensitively detect PFCs in the environmental water samples. The intra-day and inter-day recovery rates of the 13 compounds ranged from 90.7%-104.3%, with the RSD of 2.1%-4.7% (intra-day) and 2.5%-8.5% (inter-day), respectively. This research demonstrates the potential of the newly fluoro-functionalized plant biomass to adsorb PFCs from environmental water, with the advantages of high adsorption efficiencies, high anti-interference, easy operation and low economic cost.
Collapse
Affiliation(s)
- Xi Tan
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yan Shi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Chun-Feng Ma
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Quan Chi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Hang Yang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Xiang Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
29
|
Guo W, Tao H, Tao H, Shuai Q, Huang L. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal Chim Acta 2024; 1287:341953. [PMID: 38182358 DOI: 10.1016/j.aca.2023.341953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 01/07/2024]
Abstract
Solid-phase microextraction (SPME) is a green, environmentally friendly, and efficient technique for sample pre-treatment. Covalent organic frameworks (COFs), a class of porous materials formed by covalent bonds, have gained prominence owing to their remarkable attributes, including large specific surface area, tunable pore size, and robust thermal/chemical stability. These characteristics have made COFs highly appealing as potential coatings for SPME fiber over the past decades. In this review, various methods used to prepare SPME coatings based on COFs are presented. These methods encompass physical adhesion, sol-gel processes, in situ growth, and chemical cross-linking strategies. In addition, the applications of COF-based SPME coating fibers for the preconcentration of various targets in environmental, food, and biological samples are summarized. Moreover, not only their advantages but also the challenges they pose in practical applications are highlighted. By shedding light on these aspects, this review aims to contribute to the continued development and utilization of COF materials in the field of sample pretreatment.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China.
| |
Collapse
|
30
|
Ghosh P, Banerjee P. Drug delivery using biocompatible covalent organic frameworks (COFs) towards a therapeutic approach. Chem Commun (Camb) 2023; 59:12527-12547. [PMID: 37724444 DOI: 10.1039/d3cc01829f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Covalent organic frameworks (COFs) are constructed exclusively with lightweight organic scaffolds, which can have a 2D or 3D architecture. The ease of synthesis, robust skeleton and tunable properties of COFs make them superior candidates among their counterparts for a wide range of uses including biomedical applications. In the biomedical field, drug delivery or photodynamic-photothermal (PDT-PTT) therapy can be individually considered a potential parameter to be investigated. Therefore, this comprehensive review is focused on drug delivery using COFs, highlighting the encapsulation and decapsulation of drugs by COF scaffolds and their delivery in biological media including live cells. Versatile COF scaffolds together with the delivery of several drug molecules are considered. We attempted to incorporate the status of drug encapsulation and decapsulation considering a wide range of recent publications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamilnadu, India.
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad 201002, Uttarpradesh, India
| |
Collapse
|
31
|
Xie Z, Hu Y, Lin J, Li G, Zhong Q. Calix[4]arene-based covalent organic frameworks with host-guest recognition for selective adsorption of six per- and polyfluoroalkyl substances in food followed by UHPLC-MS/MS detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132198. [PMID: 37541121 DOI: 10.1016/j.jhazmat.2023.132198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Long-term ingestion or exposure to food contaminated with per- and polyfluoroalkyl substances (PFASs) may cause potential harm to human health. Due to the low contents of PFASs in complex food matrices, it is of great significance to develop adsorbents with excellent properties to enrich PFASs before analysis. Herein, calix[4]arene (CX4) was used as building block to prepare ordered crystalline covalent organic frameworks (COFs). The perfect combination of the host-guest recognition ability of CX4 and the porosity of COFs makes the CX4-COFs selective and high adsorption capacity for linear molecular PFASs (261-1055 mg/g). The adsorption behavior and mechanism were verified by isotherm adsorption experiments and simulation calculations. The CX4-COFs were then used as adsorbents for membrane solid-phase extraction (M-SPE), combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) to determine PFASs in food. The method has low detection limits (0.11-0.28 ng/kg) and good precision (1.3%-9.8%), and has been successfully applied to the simultaneous enrichment and determination of six PFASs in fish, shrimp and shellfish. Satisfactory recoveries (79.9%-118%) were obtained. This study provides a new strategy for preparing CX4-COFs containing macrocyclic molecules with different morphologies and expands the application of COFs as attractive enrichment media for sample pretreatment.
Collapse
Affiliation(s)
- Zenghui Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jiana Lin
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
32
|
Hu J, Huang Z, Liu Y. Beyond Solvothermal: Alternative Synthetic Methods for Covalent Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202306999. [PMID: 37265002 DOI: 10.1002/anie.202306999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline porous organic materials that hold a wealth of potential applications across various fields. The development of COFs, however, is significantly impeded by the dearth of efficient synthetic methods. The traditional solvothermal approach, while prevalent, is fraught with challenges such as complicated processes, excessive energy consumption, long reaction times, and limited scalability, rendering it unsuitable for practical applications. The quest for simpler, quicker, more energy-efficient, and environmentally benign synthetic strategies is thus paramount for bridging the gap between academic COF chemistry and industrial application. This Review provides an overview of the recent advances in alternative COF synthetic methods, with a particular emphasis on energy input. We discuss representative examples of COF synthesis facilitated by microwave, ultrasound, mechanic force, light, plasma, electric field, and electron beam. Perspectives on the advantages and limitations of these methods against the traditional solvothermal approach are highlighted.
Collapse
Affiliation(s)
- Jiyun Hu
- School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, China
| | - Zhiyuan Huang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
33
|
Zhou S, Kuang Y, Lin H, Zheng J, Ouyang G. Modulating covalent organic frameworks with accessible carboxyl to boost superior extraction of polar nitrobenzene compounds from matrix-complicated beverages. Food Chem 2023; 426:136626. [PMID: 37354579 DOI: 10.1016/j.foodchem.2023.136626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The wide use and high polarity of nitrobenzene compounds (NBCs) have caused a concern for their residues in daily beverages. Herein, the covalent organic frameworks (COFs) with abundant carboxyl were ingeniously designed by introducing a novel modulator, and further developed as solid phase microextraction (SPME) coatings. Due to the enhanced polar interaction, the extraction efficiencies of modified COF for NBCs were sharply increased. After coupling the high-performance SPME fiber with gas chromatograph-mass spectrometry (GC-MS), an ultrasensitive analytical method was developed, with a wide linear range (0.50-5000 ng/L), and low limits of detection (0.15-3.0 ng/L). More importantly, the method was highly feasible and practical, leading to the precise determinations of trace NBCs from variously matrix-complicated samples. This work provides a viable and efficacious approach for the extraction and analysis of polar pollutants form complicated matrices, and is of great significance for mild COF modification and its extended applications in analytical chemistry.
Collapse
Affiliation(s)
- Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hongkai Lin
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
34
|
Song C, Zheng J, Zhang Q, Yuan H, Yu A, Zhang W, Zhang S, Ouyang G. Multifunctionalized Covalent Organic Frameworks for Broad-Spectrum Extraction and Ultrasensitive Analysis of Per- and Polyfluoroalkyl Substances. Anal Chem 2023; 95:7770-7778. [PMID: 37154520 DOI: 10.1021/acs.analchem.3c01137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The contamination of surface and ground water by per- and polyfluoroalkyl substances (PFASs) has become a growing concern, and the structural diversity of PFASs is the major challenge for their ubiquitous applications. Strategies for monitoring coexistent anionic, cationic, and zwitterionic PFASs even at trace levels in aquatic environments are urgently demanded for effective pollution control. Herein, novel amide group and perfluoroalkyl chain-functionalized covalent organic frameworks (COFs) named COF-NH-CO-F9 are successfully synthesized and used for highly efficient extraction of broad-spectrum PFASs, attributing to their unique structure and the multifunctional groups. Under the optimal conditions, a simple and high-sensitivity method is established to quantify 14 PFASs including anionic, cationic, and zwitterionic species by coupling solid-phase microextraction (SPME) with ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) for the first time. The established method displays high enrichment factors (EFs) of 66-160, ultrahigh sensitivity with low limits of detection (LODs) of 0.0035-0.18 ng L-1, a wide linearity of 0.1-2000 ng L-1 with correlation coefficient (R2) ≥0.9925, and satisfactory precision with relative standard deviations (RSDs) ≤11.2%. The excellent performance is validated in real water samples with recoveries of 77.1-108% and RSDs ≤11.4%. This work highlights the potential of rational design of COFs with the desired structure and functionality for the broad-spectrum enrichment and ultrasensitive determination of PFASs in real applications.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Qidong Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, Henan 450001, P. R. China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
35
|
Yang M, Ji W. Facile Synthesis of Quinolinecarboxylic Acid-Linked Covalent Organic Framework via One-Pot Reaction for Highly Efficient Removal of Water-Soluble Pollutants. Molecules 2023; 28:molecules28093752. [PMID: 37175162 PMCID: PMC10179942 DOI: 10.3390/molecules28093752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
To efficiently eliminate highly polar organic pollutants from water has always been a difficult issue, especially in the case of ultralow concentrations. Herein, we present the facile synthesis of quinolinecarboxylic acid-linked COF (QCA-COF) via the Doebner multicomponent reaction, possessing multifunction, high specific surface area, robust physicochemical stability, and excellent crystallinity. The marked feature lies in the quinolinyl and carboxyl functions incorporated simultaneously to QCA-COF in one step. The major cis-orientation of carboxyl arms in QCA-COF was speculated by powder X-ray diffraction and total energy analysis. QCA-COF demonstrates excellent adsorption capacity for water-soluble organic pollutants such as rhodamine B (255.7 mg/g), methylene blue (306.1 mg/g), gentamycin (338.1 mg/g), and 2,4-dichlorophenoxyacetic acid (294.1 mg/g) in water. The kinetic adsorptions fit the pseudo-second order model and their adsorption isotherms are Langmuir model. Remarkably, QCA-COF can capture the above four water-soluble organic pollutants from real water samples at ppb level with higher than 95% removal efficiencies and excellent recycling performance.
Collapse
Affiliation(s)
- Mingzhu Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
36
|
Rodríguez-Carríllo C, Benítez M, El Haskouri J, Amorós P, Ros-Lis JV. Novel Microwave-Assisted Synthesis of COFs: 2020–2022. Molecules 2023; 28:molecules28073112. [PMID: 37049875 PMCID: PMC10096173 DOI: 10.3390/molecules28073112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Covalent organic frameworks (COFs) have emerged as a new type of crystalline porous polymers of great interest. However, their preparation requires long reaction times. Microwave-assisted synthesis (MAS) offers an interesting approach to increasing the reaction rate of chemical processes. Thus, microwaves can be a key tool for the fast and scalable synthesis of COFs. Since our previous review on the topic, the preparation of COFs with microwaves has been evolving. Herein, we present a compilation of COFs studies and experiments published in the last three years on the synthesis of COFs using microwave-assisted synthesis as a source of energy. The articles include imine, triazine, and other 2D COFs synthesized using MAS. The 3D COFs have also been compiled. The chemical structure of the monomers and the COFs and their main parameters of synthesis and application are summarized for each article.
Collapse
Affiliation(s)
- Cristina Rodríguez-Carríllo
- REDOLI Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Moleculary Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, 46100 Valencia, Spain
| | - Miriam Benítez
- REDOLI Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Moleculary Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, 46100 Valencia, Spain
| | - Jamal El Haskouri
- Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 22085, 46071 Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 22085, 46071 Valencia, Spain
| | - Jose V. Ros-Lis
- REDOLI Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Moleculary Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, 46100 Valencia, Spain
| |
Collapse
|
37
|
Han H, Ding S, Geng Y, Qiao Z, Li X, Wang R, Zhang X, Ji W. Preparation of a pyridyl covalent organic framework via Heck cross-coupling for solid-phase microextraction of perfluoropolyether carboxylic acids in food. Food Chem 2023; 403:134310. [DOI: 10.1016/j.foodchem.2022.134310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
|
38
|
Zhang X, Zhu D, Wang S, Zhang J, Zhou S, Wang W. Efficient adsorption and degradation of dyes from water using magnetic covalent organic frameworks with a pyridinic structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34669-34683. [PMID: 36515876 DOI: 10.1007/s11356-022-24688-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) have promising applications in environmental remediation owing to their precise directional synthesis and superior adsorption ability. However, magnetic COFs with pyridinic N have not been studied as bifunctional materials for the adsorption and catalytic degradation of dyes. Therefore, in this study, a magnetic COF with a pyridinic structure (BiPy-MCOF) was successfully synthesized using a solvothermal method, which exhibited higher methyl orange (MO) removal than other common adsorbents. The best degradation efficiency via the Fenton-like reaction was obtained by pre-adsorbing MO for 3 h at pH 3.1. Both adsorption and catalytic degradation resulted in better removal of MO under acidic conditions. The introduction of pyridinic N improved MO adsorption and degradation on BiPy-MCOF. The electrostatic potential (ESP) showed that pyridinic N had a strong affinity for MO adsorption. Density functional theory calculations confirmed the potential sites on MO molecules that may be attacked by free radicals. Possible degradation pathways were proposed based on the experimental results. Moreover, BiPy-MCOF could effectively degrade MO at least four times, and a high degradation efficiency was obtained in other dyes applications. The coupling of adsorption and degradation demonstrated that the as-prepared BiPy-MCOF was an effective material for organic dyes removal from water.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shiyi Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Jinwen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China.
| |
Collapse
|
39
|
Yuan J, Huang W, Tong W, Chen Z, Li H, Chen J, Lin Z. In-situ growth of covalent organic framework on stainless steel needles as solid-phase microextraction probe coupled with electrospray ionization mass spectrometry for rapid and sensitive determination of tricyclic antidepressants in biosamples. J Chromatogr A 2023; 1695:463955. [PMID: 37004299 DOI: 10.1016/j.chroma.2023.463955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Tricyclic antidepressants (TCAs) including amitriptyline (AT), doxepin (DOX) and nortriptyline (NT) are the first-line drugs for the clinical treatment of depression; however, monitoring TCA concentrations in biological fluids and tissues is necessary to improve therapeutic effect and determine the cause of death in patients. It is of great significance to develop a rapid and sensitive method for real-time monitoring of TCAs in various biosamples. In this work, we fabricated a novel covalent organic framework (COF) based solid-phase microextraction (SPME) probe by an in-situ step-by-step strategy, which was obtained by sequentially modifying 1,3,5-tri (4-aminophenyl) benzene (TPB) and 2, 5-divinylbenzaldehyde (DVA) on the surface of polydopamine layer. The TPB-DVA-COF-SPME probe possessed high specific surface area (1244 m2·g - 1), regular pores (3.23 nm), good hydrophobicity and stability, resulting in efficient enrichment for TCAs. Furthermore, the combination of TPB-DVA-COF-SPME probe and ambient electrospray ionization mass spectrometry system (ESI/MS) was firstly proposed for rapid and sensitive determination of TCAs in biosamples. As a result, the developed method exhibited low limits of detection (LODs) (0.1-0.5 μg∙L - 1), high enrichment factors (39-218), and low relative standard deviations (RSDs) for one probe (1.2-3.8%) and probe-to-probe (2.0-3.7%). Benefiting from these outstanding performance, TPB-DVA-COF-SPME probe was further successfully applied to biosamples (i.e., serum, liver, kidney, and brain) with excellent reusability, indicating the promising applicability of the TPB-DVA-COF-SPME-ESI/MS as a powerful tool for drug monitoring.
Collapse
Affiliation(s)
- Jiahao Yuan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weini Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wei Tong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zihan Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiajing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
40
|
Li Z, Yang M, Shen X, Zhu H, Li B. The Preparation of Covalent Bonding COF-TpBD Coating in Arrayed Nanopores of Stainless Steel Fiber for Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons in Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1393. [PMID: 36674147 PMCID: PMC9858968 DOI: 10.3390/ijerph20021393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Covalent organic framework (COF)-TpBD was grafted on the arrayed nanopores of stainless steel fiber (SSF) with (3-aminopropyl) triethoxysilane as the cross-linking agent. The prepared SSF bonded with COF-TpBD showed high thermal and chemical stability and excellent repeatability. The prepared SSF bonded with COF-TpBD was also used for the solid-phase microextraction (SPME) of seven kinds of polycyclic aromatic hydrocarbons (PAHs) in actual water samples, followed by gas chromatography with flame ionization detection (GC-FID) determination, which exhibited low limits of detection (LODs), good relative standard deviation (RSD) and high recoveries.
Collapse
Affiliation(s)
- Zihan Li
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071066, China
- Hebei Key Lab Power Plant Flue Gas Multipollutant, Baoding 071003, China
| | - Mengqi Yang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071066, China
- Hebei Key Lab Power Plant Flue Gas Multipollutant, Baoding 071003, China
| | - Xuetong Shen
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071066, China
- Hebei Key Lab Power Plant Flue Gas Multipollutant, Baoding 071003, China
| | - Hongtao Zhu
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071066, China
- Hebei Key Lab Power Plant Flue Gas Multipollutant, Baoding 071003, China
| | - Baohui Li
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071066, China
- Hebei Key Lab Power Plant Flue Gas Multipollutant, Baoding 071003, China
| |
Collapse
|
41
|
Karak S, Dey K, Banerjee R. Maneuvering Applications of Covalent Organic Frameworks via Framework-Morphology Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202751. [PMID: 35760553 DOI: 10.1002/adma.202202751] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Translating the performance of covalent organic frameworks (COFs) from laboratory to macroscopic reality demands specific morphologies. Thus, the advancement in morphological modulation has recently gained some momentum. A clear understanding of nano- to macroscopic architecture is critical to determine, optimize, and improve performances of this atomically precise porous material. Along with their chemical compositions and molecular frameworks, the prospect of morphology in various applications should be discussed and highlighted. A thorough insight into morphology versus application will help produce better-engineered COFs for practical implications. 2D and 3D frameworks can be transformed into various solids such as nanospheres, thin films, membranes, monoliths, foams, etc., for numerous applications in adsorption, separation photocatalysis, the carbon dioxide reduction, supercapacitors, and fuel cells. However, the research on COF chemistry mainly focuses on correlating structure to property, structure to morphology, and structure to applications. Here, critical insights on various morphological evolution and associated applications are provided. In each case, the underlying role of morphology is unveiled. Toward the end, a correlation between morphology and application is provided for the future development of COFs.
Collapse
Affiliation(s)
- Suvendu Karak
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, 97074, Würzburg, Germany
| | - Kaushik Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
42
|
Zhang A, Liu X, Hong J, Guo R, Zhou Y, Ai Y. A mussel-pearl side chain interaction in mercury(II) and phenol removal by sulfur-functionalized covalent organic frameworks: A DFT study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156082. [PMID: 35618120 DOI: 10.1016/j.scitotenv.2022.156082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The covalent organic framework materials (COFs) with excellent chemical and physical characteristics have been rapidly developed as adsorbents in the application of environmental remediation. In the design of COFs, the selection of functional groups and side chains is of great significance. Herein, density function theory (DFT) method is used to illustrate the adsorption behavior and mechanism of three sulfur-functionalized COFs (S-COFs) for the adsorption of mercury(II) and phenol. According to the analysis of geometric configurations and electronic properties, it demonstrated that the side chains of S-COFs with high flexibility and concentrated sulfur-functional groups, acting like a closed mussel which tightly confined the contaminants, the highest adsorption was -24.32 kcal/mol. The adsorption mechanism of phenol and mercury(II) on S-COFs was elucidated. For phenol, hydrogen bonds and π-π stacking interaction played an important role in the adsorption process, while the coordination interaction was dominated for the adsorption of mercury(II). This research explains the importance of selecting appropriate functional groups and side chains for COFs in the removal of contaminants in the molecular scale, and reveals the great potential of COFs in environmental remediation applications.
Collapse
Affiliation(s)
- Anrui Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xuewei Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jiahui Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Ruoxuan Guo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yueying Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
43
|
Niu L, Zhao X, Tang Z, Wu F, Lei Q, Wang J, Wang X, Liang W, Wang X. Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155423. [PMID: 35469885 DOI: 10.1016/j.scitotenv.2022.155423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) are promising supports for the synthesis of noble metal nanoparticles (NM NPs) with controllable sizes and dispersities. However, it is still challenging to synthesize COFs using green and efficient routes. Herein, COFs (TpMA) were prepared by ball milling, which required less solvent and time. They were then used as a support for the growth of ultrafine Au NPs. Using the COFs as supports, five size-controlled ultrafine Au NPs (2.5 ± 0.55- 4.32 ± 1.39 nm) were synthesized (Au@TpMA). It was found that the Au NPs exhibited remarkable dispersibility owing to the support of TpMA. The reduction of 4-nitrophenol to 4-aminophenol was used as a model reaction to evaluate the performance of the Au@TpMA catalyst, which showed excellent catalytic activity for the reduction of 4-nitrophenol. The Au@TpMA catalyst exhibited good stability and recyclability, and the reduction rate was 95% at the end of six successive experiments. In addition, in the presence of the Au@TpMA catalyst, the maximum pseudo-first-order reaction rate constant of 4-nitrophenol was 0.2379 min-1. From the results of this study, we hope that using COFs-based supports prepared by ball milling for the size-controlled synthesis of NM NPs provides a path forward for the mechanical synthesis of other COFs.
Collapse
Affiliation(s)
- Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qitao Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaolei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
44
|
Gong X, Xu L, Kou X, Zheng J, Kuang Y, Zhou S, Huang S, Zheng Y, Ke W, Chen G, Ouyang G. Amino-functionalized metal–organic frameworks for efficient solid-phase microextraction of perfluoroalkyl acids in environmental water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Fluorine-functionalized conjugated microporous polymer as adsorbents for solid-phase extraction of nine perfluorinated alkyl substances. J Chromatogr A 2022; 1681:463457. [DOI: 10.1016/j.chroma.2022.463457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
|
46
|
ZHANG W, LIU G, MA W, FANG M, ZHANG L. [Application progress of covalent organic framework materials in extraction of toxic and harmful substances]. Se Pu 2022; 40:600-609. [PMID: 35791598 PMCID: PMC9404040 DOI: 10.3724/sp.j.1123.2021.12004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Toxic and hazardous substances constitute a category of compounds that are potentially hazardous to humans, other organisms, and the environment. These substances include pesticides (benzoylureas, pyrethroids, neonicotinoids), persistent organic pollutants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, perfluorinated compounds), plasticizers (phthalate esters, phenolic endocrine disruptors), medicines (sulfonamides, non-steroid anti-inflammatory drugs, tetracyclines, fluoroquinone antibiotics), heterocyclic aromatic amines, algal toxins, and radioactive substances. Discharge of these toxic and harmful substances, as well as their possible persistence and bioaccumulation, pose a major risk to human health, often to the extent of being life-threatening. Therefore, it is important to analyze and detect toxic and hazardous substances in the environment, drinking water, food, and daily commodities. Sample pretreatment is an imperative step in most of the currently used analytical methods, especially in the analysis of trace toxic and harmful substances in complex samples. An efficient and fast sample pretreatment technology not only helps improve the sensitivity, selectivity, reproducibility, and accuracy of analytical methods, but also avoids contamination of the analytical instruments and even damages the performance and working life of instruments. Sample pretreatment techniques widely used in the extraction of toxic and hazardous substances include solid-phase extraction (SPE), solid-phase microextraction (SPME), and dispersed solid-phase extraction (DSPE). The adsorbent material plays a key role in these pretreatment techniques, thereby determining their selectivity and efficiency. In recent years, covalent organic frameworks (COFs) have attracted increasing attention in sample pretreatment. COFs represent an exciting new class of porous crystalline materials constructed via the strong covalent bonding of organic building units through a reversible condensation reaction. COFs present four advantages: (1) precise control over structure type and pore size by consideration of the target molecular structure based on the connectivity and shape of the building units; (2) post-synthetic modification for chemical optimization of the pore interior toward optimized interaction with the target; (3) straightforward scalable synthesis; (4) feasible formation of composites with magnetic nanoparticles, carbon nanotubes, graphene, silica, etc., which is beneficial to enhance the performance of COFs and meet the requirement of diverse pretreatment technologies. Because of the well-defined crystalline porous structures and tailored functionalities, COFs have excellent potential for use in target extraction. However, some issues need to be addressed for the application of COFs in the extraction of toxic and hazardous substances. (1) For the sample matrix, most of the reported COFs are highly hydrophobic, which limits their dispersibility in water-based samples, leading to poor extraction performance. COFs with good dispersibility in water-based samples are urgently required. (2) Besides, COFs rely on hydrophobic interaction, size repulsion, π-π stacking, and Van der Waals forces to extract target substances, but they are not effective for some polar targets. Thus, it is necessary to develop COFs with high affinity for polar toxic and hazardous substances. (3) Methods for the synthesis of COFs have evolved from solvothermal methods to room-temperature methods, mechanical grinding, microwave-assisted synthesis, ion thermal methods, etc. Most of the existing methods are time-consuming, laborious, and environmentally unfriendly. The starting materials are too expensive to prepare COFs in large quantities. More effort is required to improve the synthesis efficiency and overcome the obstacles in the application of COFs for extraction. This article summarizes and reviews the research progress in COFs toward the extraction of toxic and hazardous substances in recent years. Finally, the application prospects of COFs in this field are summarized, which serves as a reference for further research into pretreatment technologies based on COFs.
Collapse
|
47
|
Bagheri AR, Aramesh N, Liu Z, Chen C, Shen W, Tang S. Recent Advances in the Application of Covalent Organic Frameworks in Extraction: A Review. Crit Rev Anal Chem 2022; 54:565-598. [PMID: 35757859 DOI: 10.1080/10408347.2022.2089838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covalent organic frameworks (COFs) are a class of emerging materials that are synthesized based on the covalent bonds between different building blocks. COFs possess unique attributes in terms of high porosity, tunable structure, ordered channels, easy modification, large surface area, and great physical and chemical stability. Due to these features, COFs have been extensively applied as adsorbents in various extraction modes. Enhanced extraction performance could be reached with modified COFs, where COFs are presented as composites with other materials including nanomaterials, carbon and its derivatives, silica, metal-organic frameworks, molecularly imprinted polymers, etc. This review article describes the recent advances, developments, and applications of COF-based materials being utilized as adsorbents in the extraction methods. The COFs, their properties, their synthesis approaches as well as their composite structures are reviewed. Most importantly, suggested mechanisms for the extraction of analyte(s) by COF-based materials are also discussed. Finally, the current challenges and future prospects of COF-based materials in extraction methods are summarized and considered in order to provide more insights into this field.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zhiqiang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
48
|
Tan W, Zhu L, Tian L, Zhang H, Peng R, Chen K, Zhao S, Ye F. Preparation of cationic hierarchical porous covalent organic frameworks for rapid and effective enrichment of perfluorinated substances in dairy products. J Chromatogr A 2022; 1675:463188. [PMID: 35667218 DOI: 10.1016/j.chroma.2022.463188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 12/17/2022]
Abstract
Perfluorinated substances (PFASs) are harmful pollutants that have environmental persistence and high bioaccumulation. Effective sample pretreatment must be performed to detect trace or even ultra-trace PFASs in actual samples because of their extremely low contents in complex samples. In this study, a cationic hierarchical porous covalent organic frameworks (C-H-COF) were customized via a template-assisted strategy using polystyrene spheres (PS) as sacrificial materials and a post-synthetic modification method. C-H-COF showed good adsorption selectivity for PFASs owing to the dual effects of the full utilization of the internal adsorption sites and electrostatic interaction. The key role of electrostatic attraction in the extraction of PFASs using C-H-COF was further proven by density functional theory (DFT) calculations. The maximum adsorption capacity of the C-H-COF for perfluorooctanoic acid (PFOA) was 400 mg·g⁻1, which was superior to that of microporous COFs (M-COF) and hierarchical porous COFs without cationic functionalization (H-COF). Accordingly, an analytical method for sensitively detecting five PFASs was established by employing C-H-COF as a dispersive solid phase extraction (DSPE) adsorbent combined with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and the limits of detection were 0.011‒0.29 ng·L⁻1. Moreover, the hierarchical porous structure of the C-H-COF accelerated the mass transfer of analytes so that the extraction process could be completed within 10 min. This method was employed to analyze PFASs in dairy products, in which the ultra-trace levels of analytes were quickly determined with spiked recoveries of 80.1‒112.6%. This work not only provides a rational synthetic strategy for novel ionic hierarchical porous COFs but also helps to expand the application of COFs in sample pretreatment.
Collapse
Affiliation(s)
- Wei Tan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China; Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, PR China
| | - Li Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, PR China
| | - Longfei Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Hongfeng Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, PR China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, PR China
| | - Kuncai Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, PR China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
49
|
|
50
|
Haldar S, Wang M, Bhauriyal P, Hazra A, Khan AH, Bon V, Isaacs MA, De A, Shupletsov L, Boenke T, Grothe J, Heine T, Brunner E, Feng X, Dong R, Schneemann A, Kaskel S. Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium-Sulfur Battery Cathodes. J Am Chem Soc 2022; 144:9101-9112. [PMID: 35543441 DOI: 10.1021/jacs.2c02346] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Preeti Bhauriyal
- Chair of Theoretical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Arpan Hazra
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark A Isaacs
- Department of Chemistry, University College London, London WC1H 0AJ, U.K.,HarwellXPS, Rutherford Appleton Laboratories, Research Complex at Harwell, Didcot OX11 0FA, U.K
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Tom Boenke
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| | - Julia Grothe
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Thomas Heine
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig Research Branch, Permoser Str. 15, 04316 Leipzig, Germany.,Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany.,Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| |
Collapse
|