1
|
Zhao B, Zheng S, Yang G, He Z, Deng J, Luo L, Li X, Luan T. Rap1 and mTOR signaling pathways drive opposing immunotoxic effects of structurally similar aryl-OPFRs, TPHP and TOCP. ENVIRONMENT INTERNATIONAL 2025; 195:109215. [PMID: 39705979 DOI: 10.1016/j.envint.2024.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Aryl organophosphorus flame retardants (aryl-OPFRs), commonly used product additives with close ties to daily life, have been regrettably characterized by multiple well-defined toxicity risks. Triphenyl phosphate (TPHP) and tri-o-cresyl phosphate (TOCP), two structurally similar aryl-OPFRs, were observed in our previous study to exhibit contrasting immunotoxic effects on THP-1 macrophages, yet the underlying mechanisms remain unclear. This study sought to address the knowledge gap by integrating transcriptomic and metabolomic analyses to elucidate the intricate mechanisms. During individual omics analyses, we unfortunately only obtained highly similar results for both TPHP and TOCP, failing to identify the key reasons for their differences. These results revealed comparable disturbances induced by both compounds, including disruptions in nucleic acid synthesis and energy metabolism, blocking ADP to ATP conversion by reducing TCA cycle intermediates, consequently leading to ATP depletion. However, through integrative analysis, specific pathways affected by each compound were successfully identified, shedding light on their unique effects. TPHP reduced GTP levels necessary for Rap1 activation, thereby inhibiting phagocytosis and adhesion of THP-1 macrophages. Conversely, TOCP stimulated the mTOR signaling pathway, enhancing phosphorylation of downstream proteins S6K, RHOA, and PKC, consequently promoting immune responses. This study not only clarified the distinct immunotoxic mechanisms of TPHP and TOCP but also provided critical insights into how structural variations in aryl-OPFRs can lead to markedly different immune responses, thereby informing future risk assessments and regulatory strategies for these compounds.
Collapse
Affiliation(s)
- Bilin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuang Zheng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Gaoxiang Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijun He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Luo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
2
|
Yan Z, Liao W, Liu H, Zhang X, Lin Q, Feng C, Wu F. Temperature dependent cholinergic synapse induced by triphenyl phosphate and tris(1.3-dichloroisopropyl) phosphate via thyroid hormone synthesis in Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135822. [PMID: 39276737 DOI: 10.1016/j.jhazmat.2024.135822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Triphenyl phosphate (TPHP) and tris(1.3-dichloroisopropyl) phosphate (TDCIPP) are emerging contaminants that pervade diverse ecosystems and impair the thyroid and neural signaling pathways. The intricate interactions between thyroid and neurodevelopmental effects mediated by TPHP and TDCIPP remain elusive. This study integrates in vivo, in vitro, and in silico approaches to elucidate these mechanisms in Cyprinus carpio at varying temperatures. It showed that TPHP and TDCIPP hindered fish growth, particularly at low temperatures, by interfering with thyroid hormone synthesis and transport processes. Both compounds have been identified as environmental hormones that mimic thyroid hormone activity and potentially inhibit acetylcholinesterase, leading to neurodevelopmental disorders characterized by brain tissue damage and disrupted cholinergic synapses, such as axon guidance and regeneration. Notably, the bioaccumulation of TPHP was 881.54 % higher than that of TDCIPP, exhibiting temperature-dependent variations with higher levels of TDCIPP at low temperatures (20.50 % and 250.84 % above optimum and high temperatures, respectively), suggesting that temperature could exacerbate the toxicity effects of OPEs. This study sheds new light on the mechanisms underlying thyroid endocrine disruption and neurodevelopmental toxicity in C. carpio. More importantly, these findings indicate that temperature affects the environmental fate and effects of TPHP and TDCIPP, which could provide an important basis for ecological environmental zoning control of emerging contaminants in the future.
Collapse
Affiliation(s)
- Zhenfei Yan
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wei Liao
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Hangshuo Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoyi Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Luo C, Zhang Q, Zheng S, Wang D, Huang W, Huang Y, Shi X, Xie H, Wu K. Visual toxicity in zebrafish larvae following exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), triphenyl phosphate (TPhP), and isopropyl phenyl diphenyl phosphate (IPPP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175131. [PMID: 39127212 DOI: 10.1016/j.scitotenv.2024.175131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
TPhP and IPPP, alternatives to PBDEs as flame retardants, have been studied for their developmental toxicity, but their visual toxicities are less understood. In this study, zebrafish larvae were exploited to evaluate the potential ocular impairments following exposure to BDE-47, TPhP, and IPPP. The results revealed a range of ocular abnormalities, including malformation, vascular issues within the eyes, and histopathological changes in the retina. Notably, the visually mediated behavioral changes were primarily observed in IPPP and TPhP, indicating that they caused more severe eye malformations and vision impairment than BDE-47. Molecular docking and MD simulations showed stronger binding affinity of TPhP and IPPP to RAR and RBP receptors. Elevated ROS and T3 levels induced by these compounds led to apoptosis in larvae eyes, and increased GABA levels induced by TPhP and IPPP hindered retinal repair. In summary, our results indicate TPhP and IPPP exhibit severer visual toxicity than BDE-47, affecting eye development and visually guided behaviors. The underlying mechanism involves disruptions in RA signaling, retinal neurotransmitters imbalance, thyroid hormones up-regulation, and apoptosis in larvae eyes. This work highlights novel insights into the need for cautious use of these flame retardants due to their potential biological hazards, thereby offering valuable guidance for their safer applications.
Collapse
Affiliation(s)
- Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
4
|
Hoang J, Wiegand J, Mersman Z, Michalicek K, Jimenez N, Volz DC. Aryl phosphate ester-induced pericardial edema in zebrafish embryos is influenced by the ionic composition of exposure media. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107121. [PMID: 39423744 PMCID: PMC11560604 DOI: 10.1016/j.aquatox.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Pericardial edema - fluid accumulation within the pericardium - is a frequently observed malformation in zebrafish embryo-based chemical toxicity screens. We recently discovered that the severity of triphenyl phosphate (TPHP)-induced pericardial edema was dependent on the ionic strength of exposure media. TPHP is an aryl phosphate ester (APE) widely used as a plasticizer and flame retardant. APEs are characterized by having one or more aryl groups bound to a phosphate center, with TPHP containing only unsubstituted aryl groups. Therefore, the objective of this study was to begin investigating whether, similar to TPHP, pericardial edema induced by other structurally related APEs is dependent on the ionic composition of exposure media. We first mined the peer-reviewed literature to identify other APEs that 1) induced pericardial edema in zebrafish embryos within a minimum of three peer-reviewed publications, and 2) demonstrated a statistically significant induction of pericardial edema in at least 70 % of the studies evaluated. Based on this meta-analysis, we identified four other APEs that caused pericardial edema in zebrafish embryos: isopropylated triphenyl phosphate (IPTPP), cresyl diphenyl phosphate (CDP), tricresyl phosphate (TMPP), and 2-ethylhexyl diphenyl phosphate (EDHPHP). Using TPHP as a positive control and pericardial edema as a readout, we developed concentration-response curves for all four APEs based on static exposure from 24 to 72 h post-fertilization (hpf). We then conducted co-exposures with D-Mannitol (an osmotic diuretic) and exposures within reverse osmosis (RO) water determine whether the ionic composition of exposure media mitigated APE-induced pericardial edema at 72 hpf. Using pericardial edema as an endpoint, the approximate EC50s for TPHP (positive control), IPTPP, CDP, TMPP, and EDHPHP were 6.25, 3.125, 3.125, 25, and 100 µM, respectively, based on exposure from 24 to 72 hpf. Interestingly, similar to our findings with TPHP, co-exposure with D-Mannitol and exposure within ion-deficient water significantly mitigated IPTPP- CDP-, TMPP-, and EDHPHP-induced pericardial edema in zebrafish embryos, suggesting that chemically-induced pericardial edema may be 1) dependent on the ionic composition of exposure media and 2) driven by a disruption in osmoregulation across the embryonic epidermis. Therefore, similar to other assay parameters, our findings underscore the need to standardize the osmolarity of exposure media in order to minimize the potential for false positive/negative hits in zebrafish embryo-based chemical toxicity screens conducted around the world.
Collapse
Affiliation(s)
- John Hoang
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Jenna Wiegand
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Zoe Mersman
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Kevin Michalicek
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Nicholas Jimenez
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| |
Collapse
|
5
|
Baetz N, Cunha JR, Itzel F, Schmidt TC, Tuerk J. Effect-directed analysis of endocrine and neurotoxic effects in stormwater depending discharges. WATER RESEARCH 2024; 265:122169. [PMID: 39128332 DOI: 10.1016/j.watres.2024.122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/06/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The investigation of pollutant inputs via stormwater runoff and subsequent effects in receiving waters is becoming increasingly urgent in view of climate change with accompanying extreme weather situations such as heavy rainfall events. In this study, two sampling areas, one urban and one rural but dominated by a highway, were investigated using effect-directed analysis to identify endocrine and neurotoxic effects and potentially responsible substances in stormwater structures and receiving waters. For this purpose, a transgenic yeast cell assay for the simultaneous detection of estrogenic, androgenic, and progestogenic effects (YMEES) was performed directly on high-performance thin-layer chromatography (HPTLC) plates. Concomitantly, estrogens were analyzed by GC-MS/MS and other micropollutants typical for wastewater and stormwater by LC-MS/MS. Discharges from the combined sewer overflow (CSO) contribute a large portion of the endocrine load to the studied water body, even surpassing the load from a nearby wastewater treatment plant (WWTP). An effect pattern similar to the CSO sample was shown in the receiving water after the CSO with lower intensities, consisting of an estrogenic, androgenic, and progestogenic effect. In contrast, after the WWTP, only one estrogenic effect with a lower intensity was detected. Concentrations of E1, 17α-E2, 17β-E2, EE2, and E3 in the CSO sample were 2000, 410, 1100, 560, and 2700 pg/L, respectively. HPTLC-YMEES and GC-MS/MS complement each other very well and help to elucidate endocrine stresses. An Acetylcholinesterase (AChE) inhibitory effect could not be assigned to a causative compound by suspect and non-target analysis using LC-HRMS. However, the workflow showed how information from HPTLC separation, effect-based methods, and other meta-information on the sampling area and substance properties can contribute to an identification of effect-responsible substances. Overall, the study demonstrated that effect-based methods in combination with HPTLC and instrumental analysis can be implemented to investigate pollution by stormwater run-off particularly regarding heavy rain events due to climate change.
Collapse
Affiliation(s)
- Nicolai Baetz
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jorge Ricardo Cunha
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany
| | - Fabian Itzel
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Körperschaft des öffentlichen Rechts, Friedrich-Heinrich-Allee 64, 47475 Kamp-Lintfort, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jochen Tuerk
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.
| |
Collapse
|
6
|
Li H, Tong J, Wang X, Lu M, Yang F, Gao H, Gan H, Yan S, Gao G, Huang K, Cao Y, Tao F. Associations of prenatal exposure to individual and mixed organophosphate esters with ADHD symptom trajectories in preschool children: The modifying effects of maternal Vitamin D. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135541. [PMID: 39154480 DOI: 10.1016/j.jhazmat.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs) are a class of environmental chemicals with endocrine-disrupting properties. Epidemiologic studies have demonstrated that prenatal OPEs exposure is associated with neurodevelopmental disorders in offspring. However, studies assessing the effects of prenatal OPEs exposure on the dynamic changes in attention deficit hyperactivity disorder (ADHD) symptoms in preschoolers are scarce. Since vitamin D has been demonstrated to have a "neuroprotective" effect, the modifying effects of maternal vitamin D were estimated. METHODS The present study included 2410 pregnant women from the Ma'anshan Birth Cohort. The levels of OPEs in the mothers' urine were examined in the three trimesters. The Chinese version of the Conners Abbreviated Symptom Questionnaire was used to examine preschoolers' ADHD symptoms at 3, 5, and 6 years of age. ADHD symptom trajectories were fitted via group-based trajectory modeling. We used multinomial logistic regression, Bayesian kernel machine regression, quantile-based g-computation, and generalized linear models to assess individual and mixed relationships between OPEs during pregnancy and preschoolers' ADHD symptoms and trajectories. RESULTS Preschoolers' ADHD symptom scores were fitted to 3 trajectories, including the low-score, moderate-score, and high-score groups. First-trimester dibutyl phosphate (DBP), second-trimester bis(2-butoxyethyl) phosphate (BBOEP), and third-trimester diphenyl phosphate (DPHP) were associated with an increased risk in the high-score group (p < 0.05). BBOEP in the third trimester was associated with decreased risk in the moderate-score group (OR = 0.89, 95% CI: 0.79, 1.00). For mothers with 25(OH)D deficiency, a positive relationship was observed between OPEs during pregnancy and symptom trajectories. Our results did not reveal any mixed effects of OPEs on ADHD symptom trajectories. CONCLUSION Prenatal exposure to OPEs had heterogeneous associations with ADHD symptom trajectories in preschoolers. Additionally, the effect of individual OPEs on symptom trajectories was intensified by vitamin D deficiency.
Collapse
Affiliation(s)
- Han Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Xing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Fengyu Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Guopeng Gao
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
7
|
Chen YX, Zheng J, Zhang XF. Association analysis between organophosphorus flame retardants exposure and the risk of depression: Data from NHANES 2017-2018. J Affect Disord 2024; 355:385-391. [PMID: 38574866 DOI: 10.1016/j.jad.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Organophosphorus flame retardants (OPFRs) can damage the brain and may cause abnormal behaviors. There was no population-based study to reveal the relationship between OPFRs and the occurrence of depression. This study utilized a publicly available database to investigate the correlation between OPFRs exposure and the risk of depression, and the mediation effect of inflammation on the correlation. METHODS Data in this study was from the database of the National Health and Nutrition Examination Survey. Multifactorial logistic regression was used to estimate the relationship between OPFRs exposure and the risk of depression, and a mediation effect model was constructed to explore the impact of inflammation on the correlation. RESULTS Data of 1273 participants was included in the study. It was found that individuals with high urinary concentration of bis-(2-chloroethyl) phosphate had an increased risk of developing depression (OR = 1.217, 95 % CI: 1.032-1.435). Combined exposure to OPFRs was significantly associated with the increased risk of depression than single OPFRs exposure. Subgroup analyses based on inflammatory levels in the body revealed that inflammation might exert the mediation effect on the association between OPFRs exposure and the risk of depression, with the contribution proportion of 8.23 %. LIMITATIONS Cross-sectional data and rapid metabolism of OPFRs lead to uncertainty in revealing long-term exposure in the body. CONCLUSIONS There was a correlation between OPFRs exposure and the risk of depression, which may be mediated by inflammation in the body to some extent.
Collapse
Affiliation(s)
- Yi-Xin Chen
- Department of Toxicology, Public Health School, Harbin Medical University, No 157, Baojian Road, Nangang District, Harbin City 150081, Heilongjiang Province, China
| | - Jing Zheng
- Department of Environmental Health, Heilongjiang Provincial Center for Disease Prevention and Control, No 40, Youfang Street, Xiangfang District, Harbin City 150030, Heilongjiang Province, China
| | - Xiao-Feng Zhang
- Department of Toxicology, Public Health School, Harbin Medical University, No 157, Baojian Road, Nangang District, Harbin City 150081, Heilongjiang Province, China.
| |
Collapse
|
8
|
Du Z, Ruan Y, Chen J, Fang J, Xiao S, Shi Y, Zheng W. Global Trends and Hotspots in Research on the Health Risks of Organophosphate Flame Retardants: A Bibliometric and Visual Analysis. TOXICS 2024; 12:391. [PMID: 38922072 PMCID: PMC11209454 DOI: 10.3390/toxics12060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Organophosphate flame retardants (OPFRs) are compounds with a wide range of industrial and commercial applications and are mainly used as flame retardants and plasticizers. The global consumption of OPFRs has risen rapidly in recent decades, and they have been widely detected in environmental media. Unfortunately, OPFRs have been associated with many adverse health outcomes. The issue of the health risks of OPFRs is attracting increasing attention. Therefore, there is a need to review the current state of research and trends in this field to help researchers and policymakers quickly understand the field, identify new research directions, and allocate appropriate resources for further development of the OPFR health risk research field. METHODS This study statistically analyzed 1162 relevant publications included in the Web of Science Core Collection from 2003-2023. The internal and external features of the literature, such as publication trends, countries, authors, journals, and keywords, were quantitatively analyzed and visually presented to identify the research hotspots, compositions, and paradigms of the field and to horizontally and vertically analyze the development trends and structural evolution of the field. RESULTS The development of the field can be divided into three stages, and the field entered a period of rapid development in 2016. China (649 papers) is the most prolific country, followed by the United States (188 papers). The authors STAPLETON HM and WANG Y have the highest combined impact. International collaboration between countries and researchers still needs to be strengthened. Science of The Total Environment is the most frequently published journal (162 papers), and Environmental Science and Technology is the most frequently cited journal (5285 citations). Endocrine disruption, developmental toxicity, and neurotoxicity are the health effects of greatest interest. CONCLUSIONS Future research is expected to be multidisciplinary, and research hotspots may involve a comprehensive assessment of OPFR exposure in the population, exploration of the mechanisms of endocrine-disrupting effects and in vivo metabolic processes, and examination of the health effects of OPFR metabolites.
Collapse
Affiliation(s)
- Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; (Z.D.); (J.C.); (J.F.)
| | - Yuanyuan Ruan
- NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiabin Chen
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; (Z.D.); (J.C.); (J.F.)
| | - Jian Fang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; (Z.D.); (J.C.); (J.F.)
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institutes, Rutgers University, Piscataway, NJ 08854, USA;
| | - Yewen Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; (Z.D.); (J.C.); (J.F.)
- Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Karaboga S, Severac F, Collins EMS, Stab A, Davis A, Souchet M, Hervé G. Organophosphate toxicity patterns: A new approach for assessing organophosphate neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134236. [PMID: 38613959 DOI: 10.1016/j.jhazmat.2024.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Organophosphorus compounds or organophosphates (OPs) are widely used as flame retardants, plasticizers, lubricants and pesticides. This contributes to their ubiquitous presence in the environment and to the risk of human exposure. The persistence of OPs and their bioaccumulative characteristics raise serious concerns regarding environmental and human health impacts. To address the need for safer OPs, this study uses a New Approach Method (NAM) to analyze the neurotoxicity pattern of 42 OPs. The NAM consists of a 4-step process that combines computational modeling with in vitro and in vivo experimental studies. Using spherical harmonic-based cluster analysis, the OPs were grouped into four main clusters. Experimental data and quantitative structure-activity relationships (QSARs) analysis were used in conjunction to provide information on the neurotoxicity profile of each group. Results showed that one of the identified clusters had a favorable safety profile, which may help identify safer OPs for industrial applications. In addition, the 3D-computational analysis of each cluster was used to identify meta-molecules with specific 3D features. Toxicity was found to correspond to the level of phosphate surface accessibility. Substances with conformations that minimize phosphate surface accessibility caused less neurotoxic effect. This multi-assay NAM could be used as a guide for the classification of OP toxicity, helping to minimize the health and environmental impacts of OPs, and providing rapid support to the chemical regulators, whilst reducing reliance on animal testing.
Collapse
Affiliation(s)
- Sinan Karaboga
- Harmonic Pharma, Campus Artem 92, rue du Sergent Blandan, 54000 Nancy, France
| | - Florence Severac
- R&D Laboratory and Technical Department, NYCO, 75008 Paris, France
| | | | - Aurélien Stab
- Harmonic Pharma, Campus Artem 92, rue du Sergent Blandan, 54000 Nancy, France
| | - Audrey Davis
- UniCaen, Université de Caen Normandie, Normandie, CERMN, 14000 Caen, France
| | - Michel Souchet
- Harmonic Pharma, Campus Artem 92, rue du Sergent Blandan, 54000 Nancy, France
| | - Grégoire Hervé
- R&D Laboratory and Technical Department, NYCO, 75008 Paris, France.
| |
Collapse
|
10
|
Zhang X, Tong X, Tang X, Yang Y, Zhang L, Zhan X, Zhang X. Behavioral toxicity of TDCPP in marine zooplankton: Evidence from feeding and swimming responses, molecular dynamics and metabolomics of rotifers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170864. [PMID: 38401740 DOI: 10.1016/j.scitotenv.2024.170864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
As new organic flame retardants, chlorinated organophosphate esters (Cl-OPEs) have high water solubility and structural similarity to organophosphate pesticides, posing risks to aquatic organisms. The potential neurotoxicity of Cl-OPEs has attracted attention, especially in marine invertebrates with a relatively simple nervous system. In this study, a marine rotifer with a cerebral ganglion, Brachionus plicatilis, was exposed to tris (1,3-dichloro-2-propyl) phosphate (TDCPP) (two environmental concentrations and one extreme level), and the changes in feeding and swimming behaviors and internal mechanism were explored. Exposure to 1.05 nM TDCPP did not change the filtration and ingestion rates of rotifers and average linear velocity. But 0.42 and 4.20 μM TDCPP inhibited these three parameters and reduced unsaturated fatty acid content, reproduction and population growth. All TDCPP test concentrations suppressed AChE activity, causing excessive accumulation of acetylcholine within rotifers, thereby disturbing the neural innervation of corona cilia. Molecular docking and molecular dynamics revealed that this inhibition was because TDCPP can bind to the catalytic active site of rotifer AChE through van der Waals forces and electrostatic interactions. TRP420 was the leading amino residue in the binding, and GLY207 contributed to a hydrogen bond. Nontargeted metabolomics using LC-MS and GC-MS identified differentially expressed metabolites in TDCPP treatments, mainly from lipid and lipid-like molecules, especially sphingolipids. TDCPP decreased ganglioside content but stimulated ceramide generation and the expression levels of 3 genes related to ceramide de novo synthesis. The mitochondrial membrane potential (MMP) and ATP content decreased, and the electron respiratory chain complex and TCA cycle were deactivated. An inhibitor of ceramide synthase, fumonisin, alleviated MMP and ATP, implying a critical role of ceramide in mitochondrial dysfunction. Thus, TDCPP exposure caused an energy supply deficit affecting ciliary movement and ultimately inhibiting rotifer behaviors. Overall, this study promotes the understanding of the neurotoxicity of Cl-OPEs in marine invertebrates.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xin Tong
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yixin Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Luyuchen Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xiaotong Zhan
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
11
|
Sutha J, Gayathri M, Ramesh M. Chronic exposure to tris (2-chloroethyl) phosphate (TCEP) induces brain structural and functional changes in zebrafish (Danio rerio): A comparative study on the environmental and LC50 concentrations of TCEP. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16770-16781. [PMID: 38321284 DOI: 10.1007/s11356-024-32154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Tris (2-chloroethyl) phosphate (TCEP) is a crucial organophosphorus flame retardant widely used in many industrial and commercial products. Available reports reported that TCEP could cause various toxicological effects on organisms, including humans. Unfortunately, toxicity data for TCEP (particularly on neurotoxicity) on aquatic organisms are lacking. In the present study, Danio rerio were exposed to different concentrations of TCEP for 42 days (chronic exposure), and oxidative stress, neurotoxicity, sodium, potassium-adenosine triphosphatase (Na+, K+-ATPase) activity, and histopathological changes were evaluated in the brain. The results showed that TCEP (100 and 1500 µg L-1) induced oxidative stress and significantly decreased the activities of antioxidant enzymes (SOD, CAT and GR) in the brain tissue of zebrafish. In contrast, the lipid peroxidation (LPO) level was increased compared to the control group. Exposure to TCEP inhibited the acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain tissue. Brain histopathology after 42 days of exposure to TCEP showed cytoplasmic vacuolation, inflammatory cell infiltration, degenerated neurons, degenerated purkinje cells and binucleate. Furthermore, TCEP exposure leads to significant changes in dopamine and 5-HT levels in the brain of zebrafish. The data in the present study suggest that high concentrations of TCEP might affect the fish by altering oxidative balance and inducing marked pathological changes in the brain of zebrafish. These findings indicate that chronic exposure to TCEP may cause a neurotoxic effect in zebrafish.
Collapse
Affiliation(s)
- Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India
| | - Murugesh Gayathri
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
12
|
Foster SA, Kile ML, Hystad P, Diamond ML, Jantunen LM, Mandhane PJ, Moraes TJ, Navaranjan G, Scott JA, Simons E, Subbarao P, Takaro TK, Turvey SE, Brook JR. Organophosphate ester flame retardants and plasticizers in house dust and mental health outcomes among Canadian mothers: A nested prospective cohort study in CHILD. ENVIRONMENTAL RESEARCH 2024; 240:117451. [PMID: 37871788 PMCID: PMC10841641 DOI: 10.1016/j.envres.2023.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Organophosphate ester flame retardants and plasticizers (OPEs) are common exposures in modern built environments. Toxicological models report that some OPEs reduce dopamine and serotonin in the brain. Deficiencies in these neurotransmitters are associated with anxiety and depression. We hypothesized that exposure to higher concentrations of OPEs in house dust would be associated with a greater risk of depression and stress in mothers across the prenatal and postpartum periods. We conducted a nested prospective cohort study using data collected on mothers (n = 718) in the CHILD Cohort Study, a longitudinal multi-city Canadian birth cohort (2008-2012). OPEs were measured in house dust sampled at 3-4 months postpartum. Maternal depression and stress were measured at 18 and 36 weeks gestation and 6 months and 1 year postpartum using the Centre for Epidemiologic Studies for Depression Scale (CES-D) and Perceived Stress Scale (PSS). We used linear mixed models to examine the association between a summed Z-Score OPE index and continuous depression and stress scores. In adjusted models, one standard deviation increase in the OPE Z-score index was associated with a 0.07-point (95% CI: 0.01, 0.13) increase in PSS score. OPEs were not associated with log-transformed CES-D (β: 0.63%, 95% CI: -0.18%, 1.46%). The effect of OPEs on PSS score was strongest at 36 weeks gestation and weakest at 1 year postpartum. We observed small increases in maternal perceived stress levels, but not depression, with increasing OPEs measured in house dust during the prenatal and early postpartum period in this cohort of Canadian women. Given the prevalence of prenatal and postpartum anxiety and the ubiquity of OPE exposures, additional research is warranted to understand if these chemicals affect maternal mental health.
Collapse
Affiliation(s)
- Stephanie A Foster
- School of Biological and Population Health Sciences, College of Health, Oregon State University, 160 SW 26th St, Corvallis, OR, 97331, USA.
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Health, Oregon State University, 160 SW 26th St, Corvallis, OR, 97331, USA.
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Health, Oregon State University, 160 SW 26th St, Corvallis, OR, 97331, USA.
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, 149 College Street, Suite 410, Fourth Floor, Toronto, ON, M5T 1P5, Canada.
| | - Liisa M Jantunen
- Environment and Climate Change Canada, Government of Canada, Canada.
| | - Piush J Mandhane
- Pediatric Respiratory Medicine, University of Alberta, 11405-87 Avenue Edmonton, Alberta, T6G 1C9, Canada.
| | - Theo J Moraes
- Department of Pediatrics, University of Toronto, 555 University Avenue, Black Wing Room 1436, Toronto, ON, M5G 1X8, Canada.
| | - Garthika Navaranjan
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Sixth Floor, Toronto, ON, MST 3M7, Canada.
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Sixth Floor, Toronto, ON, MST 3M7, Canada.
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, 840 Sherbrook Street, University of Manitoba, Winnipeg, MB, R3A 1S1, Canada.
| | - Padmaja Subbarao
- Department of Pediatrics, University of Toronto, 555 University Avenue, Black Wing Room 1436, Toronto, ON, M5G 1X8, Canada; Dalla Lana School of Public Health, University of Toronto, 155 College Street, Sixth Floor, Toronto, ON, MST 3M7, Canada.
| | - Tim K Takaro
- Department of Health Sciences, Simon Fraser University, 8888 University Drive, Blusson Hall, Room 11300, Burnaby, B.C, V5A 1S6, Canada.
| | - Stuart E Turvey
- Pediatric Immunology, The University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Sixth Floor, Toronto, ON, MST 3M7, Canada.
| |
Collapse
|
13
|
Luo Z, Huang W, Yu W, Tang S, Wei K, Yu Y, Xu L, Yin H, Niu J. Insights into electrochemical oxidation of tris(2-butoxyethyl) phosphate (TBOEP) in aquatic media: Degradation performance, mechanisms and toxicity changes of intermediate products. CHEMOSPHERE 2023; 343:140267. [PMID: 37758090 DOI: 10.1016/j.chemosphere.2023.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/13/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) has gained significant attention due to its widespread presence and potential toxicity in the environment. In this study, the degradation of TBOEP in aquatic media was investigated using electrochemical oxidation technology. The anode Ti/SnO2-Sb/La-PbO2 demonstrated effective degradation performance, with a reaction constant (k) of 0.6927 min-1 and energy consumption of 1.24 kW h/m3 at 10 mA/cm2. CV tests, EPR tests, and quenching experiments confirmed that indirect degradation is the main degradation mechanism and ·OH radicals were the predominant reactive species, accounting for up to 93.8%. The presence of various factors, including Cl-, NO3-, HCO3- and humic acid (HA), inhibited the degradation of TBOEP, with the inhibitory effect dependent on the concentrations. A total of 13 intermediates were identified using UPLC-Orbitrap-MS/MS, and subsequent reactions led to their further degradation. Two main degradation pathways involving bond breaking, hydroxylation, and oxidation were proposed. Both Flow cytometry and the ECOSAR predictive model indicated that the intermediates exhibited lower toxic than the parent compound, resulting in a high detoxification rate of 95.9% for TBOEP. Although the impact of TBOEP on the phylum-level microbial community composition was found to be insignificant, substantial alterations in bacterial abundance were noted when examining the genus level. The dominant genus Methylotenera, representing 17.4% in the control group, decreased to 6.9% in the presence of TBOEP and slightly increased to 8.7% in the 4-min exposure group of degradation products. Electrochemical oxidation demonstrated its effectiveness for the degradation and detoxification of TBOEP in aqueous solutions, while it is essential to consider the potential impact of degradation products on sediment microbial communities.
Collapse
Affiliation(s)
- Zhujun Luo
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenyan Yu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kun Wei
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuanyuan Yu
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Lei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hua Yin
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
14
|
Bai Y, Wang Q, Li J, Zhou B, Lam PKS, Hu C, Chen L. Significant Variability in the Developmental Toxicity of Representative Perfluoroalkyl Acids as a Function of Chemical Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14904-14916. [PMID: 37774144 DOI: 10.1021/acs.est.3c06178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Current toxicological data of perfluoroalkyl acids (PFAAs) are disparate under similar exposure scenarios. To find the cause of the conflicting data, this study examined the influence of chemical speciation on the toxicity of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS). Zebrafish embryos were acutely exposed to PFAA, PFAA salt, and a pH-negative control, after which the developmental impairment and mechanisms were explored. The results showed that PFAAs were generally more toxic than the corresponding pH control, indicating that the embryonic toxicity of PFAAs was mainly caused by the pollutants themselves. In contrast to the high toxicity of PFAAs, PFAA salts only exhibited mild hazards to zebrafish embryos. Fingerprinting the changes along the thyroidal axis demonstrated distinct modes of endocrine disruption for PFAAs and PFAA salts. Furthermore, biolayer interferometry monitoring found that PFOA and PFBS acids bound more strongly with albumin proteins than did their salts. Accordingly, the acid of PFAAs accumulated significantly higher concentrations than their salt counterparts. The present findings highlight the importance of chemical forms to the outcome of developmental toxicity, calling for the discriminative risk assessment and management of PFAAs and salts.
Collapse
Affiliation(s)
- Yachen Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
15
|
Ma X, Kang J, Wu Y, Pang C, Li S, Li J, Xiong Y, Luo J, Wang M, Xu Z. A bifunctional polycentric-affinity MOF/MXene heterojunction-based molecularly imprinted photoelectrochemical organophosphorus-sensing platform. CHEMICAL ENGINEERING JOURNAL 2023; 469:143888. [DOI: 10.1016/j.cej.2023.143888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
|
16
|
Shi Q, Yang H, Chen Y, Zheng N, Li X, Wang X, Ding W, Zhang B. Developmental Neurotoxicity of Trichlorfon in Zebrafish Larvae. Int J Mol Sci 2023; 24:11099. [PMID: 37446277 DOI: 10.3390/ijms241311099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Trichlorfon is an organophosphorus pesticide widely used in aquaculture and has potential neurotoxicity, but the underlying mechanism remains unclear. In the present study, zebrafish embryos were exposed to trichlorfon at concentrations (0, 0.1, 2 and 5 mg/L) used in aquaculture from 2 to 144 h post fertilization. Trichlorfon exposure reduced the survival rate, hatching rate, heartbeat and body length and increased the malformation rate of zebrafish larvae. The locomotor activity of larvae was significantly reduced. The results of molecular docking revealed that trichlorfon could bind to acetylcholinesterase (AChE). Furthermore, trichlorfon significantly inhibited AChE activity, accompanied by decreased acetylcholine, dopamine and serotonin content in larvae. The transcription patterns of genes related to acetylcholine (e.g., ache, chrna7, chata, hact and vacht), dopamine (e.g., drd4a and drd4b) and serotonin systems (e.g., tph1, tph2, tphr, serta, sertb, htrlaa and htrlab) were consistent with the changes in acetylcholine, dopamine, serotonin content and AChE activity. The genes related to the central nervous system (CNS) (e.g., a1-tubulin, mbp, syn2a, shha and gap-43) were downregulated. Our results indicate that the developmental neurotoxicity of trichlorfon might be attributed to disorders of cholinergic, dopaminergic and serotonergic signaling and the development of the CNS.
Collapse
Affiliation(s)
- Qipeng Shi
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Huaran Yang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yangli Chen
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Bangjun Zhang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
Shi Q, Yang H, Zheng Y, Zheng N, Lei L, Li X, Ding W. Neurotoxicity of an emerging organophosphorus flame retardant, resorcinol bis(diphenyl phosphate), in zebrafish larvae. CHEMOSPHERE 2023; 334:138944. [PMID: 37211164 DOI: 10.1016/j.chemosphere.2023.138944] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Resorcinol bis(diphenyl phosphate) (RDP), an emerging organophosphorus flame retardant and alternative to triphenyl phosphate (TPHP), is a widespread environmental pollutant. The neurotoxicity of RDP has attracted much attention, as RDP exhibits a similar structure to TPHP, a neurotoxin. In this study, the neurotoxicity of RDP was investigated by using a zebrafish (Danio rerio) model. Zebrafish embryos were exposed to RDP (0, 0.3, 3, 90, 300 and 900 nM) from 2 to 144 h postfertilization. After this exposure, the decreased heart rates and body lengths and the increased malformation rates were observed. RDP exposure significantly reduced the locomotor behavior under light-dark transition stimulation and the flash stimulus response of larvae. Molecular docking results showed that RDP could bind to the active site of zebrafish AChE and that RDP and AChE exhibit potent binding affinity. RDP exposure also significantly inhibited AChE activity in larvae. The content of neurotransmitters (γ-aminobutyric, glutamate, acetylcholine, choline and epinephrine) was altered after RDP exposure. Key genes (α1-tubulin, mbp, syn2a, gfap, shhα, manf, neurogenin, gap-43 and ache) as well as proteins (α1-tubulin and syn2a) related to the development of the central nervous system (CNS) were downregulated. Taken together, our results showed that RDP can affect different parameters related to CNS development, eventually leading to neurotoxicity. This study indicated that more attention should be paid to the toxicity and environmental risk of emerging organophosphorus flame retardants.
Collapse
Affiliation(s)
- Qipeng Shi
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| | - Huaran Yang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yanan Zheng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
18
|
Esplugas R, Linares V, Bellés M, Domingo JL, Schuhmacher M. In vitro neurotoxic potential of emerging flame retardants on neuroblastoma cells in an acute exposure scenario. Toxicol In Vitro 2023; 87:105523. [PMID: 36427757 DOI: 10.1016/j.tiv.2022.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Since 2004, some legacy flame retardants (FRs) were restricted or removed from the European markets due to their concern on human health. Both organophosphorus FRs (OPFRs) and novel brominated FRs (NBFRs) have replaced them because they are presumably safer and less persistent emerging FRs (EFRs) and their exposure is currently occurring in indoor environments at high levels. Little is known about the neurotoxic potential risk of these EFRs in humans. The present study was aimed at assessing the acute neurotoxicity potential of Tris(1, 3-dichloro-2-propyl)phosphate (TDCPP), triphenyl phosphate (TPhP), Bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) on human neuroblastoma cells (SH-SY5Y). SH-SY5Y were exposed to these EFRs at low concentrations -ranging 2.5-20 μM. during 2-24 h. We investigated viability, mitochondrial function, oxidative stress, inflammatory response, as well as neural plasticity and development. The results have demonstrated that selected EFRs (TDCPP, TPhP, EH-TBB and BEH-TBP) did not impair neural function on SH-SY5Y as acute response. To the best of our knowledge, this has been the first study focused on evaluating the neural affection of TPhP on SH-SY5Y cells and of EH-TBB and BEH-TBP on neural cells. We also assessed for the first time almost all endpoints after FR exposure on neural cell lines.
Collapse
Affiliation(s)
- Roser Esplugas
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Victoria Linares
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Montserrat Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Schuhmacher
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
19
|
Zhu B, Wang Z, Lei L, Guo Y, Han J, Zhou B. Transcriptome reveals overview of Ca 2+ dose-dependent metabolism disorders in zebrafish larvae after Cd 2+ exposure. J Environ Sci (China) 2023; 125:480-491. [PMID: 36375931 DOI: 10.1016/j.jes.2021.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd), a ubiquitous environmental hazardous heavy metal, poses a significant threat to the health of aquatic organisms, including teleosts. Although the toxic profile of Cd is well recognized, little is known regarding the overall view of toxic responses to varying aquatic environmental parameters (e.g., water hardness) at an individual level. Herein, differences in water hardness were partially mimicked by adjusting Ca2+ levels in E3 medium. As an in vivo model, zebrafish embryos were exposed to variable Ca2+ levels (NV, normal Ca2+; LV, low Ca2+; HV, high Ca2+) alone or combined with 30.7 µg/L Cd2+ (NC, LC, and HC, respectively) until 144 hr post-fertilization. The genome-wide transcriptome revealed differentially expressed genes between groups. Functional enrichment analysis found that biological processes related to metabolism, particularly lipid metabolism, were significantly disrupted in NC and LC treatments, while a remission was observed in the HC group. Biochemical assays confirmed that the decrease in Ca2+ enhanced synthesis, inhibited mobilization and increased the storage of lipids in Cd2+ treatments. This study suggests that the toxic effect of Cd on biological pathways will be influenced by Ca2+, which will improve the toxicological understanding and facilitate accurate assessment of Cd.
Collapse
Affiliation(s)
- Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ziniu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
20
|
Besis A, Avgenikou A, Pantelaki I, Serafeim E, Georgiadou E, Voutsa D, Samara C. Hazardous organic pollutants in indoor dust from elementary schools and kindergartens in Greece: Implications for children's health. CHEMOSPHERE 2023; 310:136750. [PMID: 36241110 DOI: 10.1016/j.chemosphere.2022.136750] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Children spend a significant portion of their day in school, where they may be exposed to hazardous organic compounds accumulated in indoor dust. The aim of this study was to evaluate the concentrations of major hazardous organic contaminants in dust collected from kindergartens and elementary schools in Northern Greece (n = 20). The sum concentrations of 20 targeted polybrominated diphenyl ether congeners (∑20PBDEs) in dust varied from 58 ng g-1 to 1480 ng g-1, while the sum of 4 novel brominated fire retardants (∑4NBFRs) ranged from 28 ng g-1 to 555 ng g-1. Correspondingly, the sum concentrations of phthalate esters (∑9PAEs) ranged between 265 μg g-1 and 2120 μg g-1, while the sum of organophosphate esters (∑11OPEs) was found between 2890 ng g-1 and 16,100 ng g-1. Finally, the sum concentrations of polycyclic aromatic hydrocarbons (∑16PAHs) were found within in the range 212 ng g-1 and 6960 ng g-1. Exposure to indoor dust contaminant via inhalation, ingestion and dermal absorption was investigated for children and adults (teachers). Carcinogenic and non-carcinogenic risks were also estimated. Children's estimated intakes of individual hazardous chemicals via the three exposure routes, were lower than the available health-based reference values.
Collapse
Affiliation(s)
- Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - Anna Avgenikou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioanna Pantelaki
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Serafeim
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Georgiadou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| |
Collapse
|
21
|
Lu Q, Lin N, Cheng X, Yuan T, Zhang Y, Gao Y, Xia Y, Ma Y, Tian Y. Simultaneous determination of 16 urinary metabolites of organophosphate flame retardants and organophosphate pesticides by solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry. CHEMOSPHERE 2022; 300:134585. [PMID: 35427657 DOI: 10.1016/j.chemosphere.2022.134585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) and organophosphate pesticides (OPPs), pertaining to organophosphate esters, are ubiquitous in environment and have been verified to pose noticeable risks to human health. To evaluate human exposures to OPFRs and OPPs, a fast and sensitive approach based on a solid phase extraction (SPE) followed by the ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) detection has been developed for the simultaneous analysis of multiple organophosphorus metabolites in urine. The method allows the identification and quantification of ten metabolites of the most common OPFRs and all six dialkylphosphates (DAPs) of OPPs concerning the population exposure characteristics. The method provided good linearities (R2 = 0.998-0.999), satisfactory method detection limits (MDLs) (0.030-1.129 ng/mL) and only needed a small volume (200 μL) of urine. Recovery rates ranged 73.4-127.1% at three spiking levels (2, 10 and 25 ng/mL urine), with both intra- and inter-day precision less than 14%. The good correlations for DAPs in a cross-validation test with a previous gas chromatography-mass spectrometry (GC-MS) method and a good inter-laboratory agreement for several OPFR metabolites in a standard reference material (SRM 3673) re-enforced the precision and validity of our method. Finally, the established method was successfully applied to analyze 16 organophosphorus metabolites in 35 Chinese children's urine samples. Overall, by validating the method's sensitivity, accuracy, precision, reproducibility, etc., data reliability and robustness were ensured; and the satisfactory pilot application on real urine samples demonstrated feasibility and acceptability of this method for being implemented in large population-based studies.
Collapse
Affiliation(s)
- Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Cheng
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuning Ma
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Lu J, Shan X, Wu Q, Sun Z, Zhang X, Zhao Y, Tian L. Solid-state electrochemiluminescence sensor based on zeolitic imidazolate framework-67 electrospinning nanofibers for chlorpyrifos detection. Mikrochim Acta 2022; 189:298. [PMID: 35902435 DOI: 10.1007/s00604-022-05398-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023]
Abstract
A novel solid-state electrochemiluminescence (ECL) sensor for chlorpyrifos (CPF) detection was constructed based on zeolitic imidazolate framework-67 electrospinning nanofibers (ZIF-67 NFs). Silver nanoparticles (Ag NPs), ZIF-67 NFs, tris(2,2'-bipyridyl) ruthenium(II) [Ru(bpy)32+], and Nafion were successively deposited on the surface of the electrode. Ag NPs played a role in promoting electron transfer, and ZIF-67 NFs played a role in fixing Ru(bpy)32+ and promoting electron transfer due to its large specific surface area and porosity. Nafion formed a film on the outermost layer of the electrode to further improve the stability of the system. Therefore, the modified electrode showed stable and obvious ECL signal in PBS solution containing 10 μL 0.01 M TprA (pH 8.0). CPF quenched the ECL signal of the system, and the quenching value was linear with the logarithm of CPF concentration in the range 1.0 × 10-13 to 1.0 × 10-6 M. The detection limit was 3.3 × 10-14 M (S/N = 3). In this study, ZIF-67 NFs were used as an ECL promoter for the first time, broadening the application range of ZIF-67 NFs.
Collapse
Affiliation(s)
- Juan Lu
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China.
| | - Xiangyu Shan
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Qian Wu
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Zhuo Sun
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Xin Zhang
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Yingjie Zhao
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China.
| |
Collapse
|
23
|
Yin C, Sun Z, Ji C, Li F, Wu H. Toxicological effects of tris(1,3-dichloro-2-propyl) phosphate in oyster Crassostrea gigas using proteomic and phosphoproteomic analyses. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128824. [PMID: 35427976 DOI: 10.1016/j.jhazmat.2022.128824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
As a typical organophosphorus pollutant, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been widely detected in aquatic environment. Previous studies showed that protein phosphorylation might be a vital way of TDCIPP to exert multiple toxic effects. However, there is a lack of high-throughput investigations on how TDCIPP affected protein phosphorylation. In this study, the toxicological effects of TDCIPP were explored by proteomic and phosphoproteomic analyses together with traditional means in oysters Crassostrea gigas treated with 0.5, 5 and 50 μg/L TDCIPP for 28 days. Integration of omic analyses revealed that TDCIPP dysregulated transcription, energy metabolism, and apoptosis and cell proliferation by either directly phosphorylating pivotal proteins or phosphorylating their upstream signaling pathways. The U-shaped response of acetylcholinesterase activities suggested the neurotoxicity of TDCIPP in a hormesis manner. What's more, the increase in caspase-9 activity as well as the expression or phosphorylation alterations in eukaryotic translation initiation factor 4E, cell division control protein 42 and transforming growth factor-β1-induced protein indicated the disruption of homeostasis between apoptosis and cell proliferation, which was consistent with the observation of shedding of digestive cells. Overall, combination of proteomic and phosphoproteomic analyses showed the capability of identifying molecular events, which provided new insights into the toxicological mechanisms of TDCIPP.
Collapse
Affiliation(s)
- Chengcheng Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zuodeng Sun
- Shandong Fisheries Development and Resource Conservation Center, Ji'nan 250013, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
24
|
Yang X, Wang C, Yang L, Zheng Q, Liu Q, Wawryk NJP, Li XF. Neurotoxicity and transcriptome changes in embryonic zebrafish induced by halobenzoquinone exposure. J Environ Sci (China) 2022; 117:129-140. [PMID: 35725065 DOI: 10.1016/j.jes.2022.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) with a widespread presence in drinking water that exhibit much higher cytotoxicity than regulated DBPs. However, the developmental neurotoxicity of HBQs has not been studied in vivo. In this work, we studied the neurotoxicity of HBQs on zebrafish embryos, after exposure to varying concentrations (0-8 µmol/L) of three HBQs, 2,5-dichloro-1,4-benzoquinone (2,5-DCBQ), 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), and 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ) for 4 to 120 hr post fertilization (hpf). HBQ exposure significantly decreased the locomotor activity of larvae, accompanied by significant reduction of neurotransmitters (dopamine and γ-aminobutyric acid) and acetylcholinesterase activity. Furthermore, the expression of genes involved in neuronal morphogenesis (gfap, α1-tubulin, mbp, and syn-2α) were downregulated by 4.4-, 5.2-, 3.0-, and 4.5-fold in the 5 µmol/L 2,5-DCBQ group and 2.0-, 1.6-, 2.1-, and 2.3-fold in the 5 µmol/L 2,5-DBBQ group, respectively. Transcriptomic analysis revealed that HBQ exposure affected the signaling pathways of neural development. This study demonstrates the significant neurotoxicity of HBQs in embryonic zebrafish and provides molecular evidence for understanding the potential mechanisms of HBQ neurotoxicity.
Collapse
Affiliation(s)
- Xue Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| | - Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Qi Zheng
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qiongyu Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
25
|
Song P, Jiang N, Zhang K, Li X, Li N, Zhang Y, Wang Q, Wang J. Ecotoxicological evaluation of zebrafish liver (Danio rerio) induced by dibutyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128027. [PMID: 34906872 DOI: 10.1016/j.jhazmat.2021.128027] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Dibutyl phthalate (DBP), one of the most commonly applied plasticizers, has been frequently detected in the aquatic environment, posing potential risks to aquatic organisms. Currently, reports about the toxicity of zebrafish liver with DBP exposure are rare, and the toxic mechanism is still not clear. In this study, zebrafish (Danio rerio) were used to explore the ecotoxicological effects of DBP from the physiological, biochemical, genetic, and molecular levels. The results showed oxidative stress, lipid peroxidation, and DNA damage occurred in zebrafish liver according to changes in antioxidant enzymes, MDA and 8-OHdG content. AchE activity was always active, and negatively correlated with the DBP concentration. The expression of Cu/Zn-sod and gpx genes were similar to that of antioxidant enzymes from 7 to 21 days, while in the end, the inconsistent result appeared due to the time lag effect in protein modification, gene transcription and translation. Besides, the mRNA abundance of Caspase-3 and p53 were upregulated, showing a "dose-response" relationship. The integrated biomarker reaction indicated that the effects of exposure time on zebrafish liver was 14th day> 28th day> 7th day> 21th day. These results are of great significance to evaluate the toxicological effects and explore the toxic mechanism of DBP on aquatic organisms.
Collapse
Affiliation(s)
- Peipei Song
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Kaiqu Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Na Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Youai Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
26
|
Yang J, Li X, Zhao Y, Yang H, Li Y. The exposure of OPFRs in fish from aquaculture area: Backward tracing of the ecological risk regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118550. [PMID: 34813886 DOI: 10.1016/j.envpol.2021.118550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, we backward traced and controlled the pollution of organophosphorus flame retardants (OPFRs) in aquaculture areas from the standpoints of terminal treatment, migration and transformation resistance, and source molecular substitution technology. A regulatory plan to considerably reduce the combined biotoxicity of fish exposed to OPFRs in aquaculture areas and significantly improves the biodegradation of sewage treatment and the efficiency of soil plant-microorganism combined remediation was formulated. Environmentally friendly alternatives of OPFRs were designed. The supplementation scheme of aquatic feed significantly alleviates the toxicity risk of fish exposure to OPFRs in aquafarm (reduced by 121.02%). The regulatory scheme of external stimulus to enhance the biodegradation of OPFRs in wastewater treatment process included an H2O2 concentration of 400 mg/L, voltage gradient of 1.5 V/m, and pH of 6.5 can improve the degradation capacity of OPFRs molecules by 88.86%. The degradation of OPFRs can be enhanced by plant-microorganism combined remediation (up to 98.64%) by growing plants whose primary function is phytoextraction in soils dominated by Sphingopyxis sp. and Rhodococcus sp. A 3D-QSAR pharmacophore model based on apoptosis toxicity, mitochondrial dysfunction, oxidative stress response, reproductive, neurotoxicity, gill-inhalation combined toxicity of fish exposed to OPFRs in aquafarm was fabricated. The recommended aquatic feed scheme and the control scheme of enhanced degradation of OPFRs by sewage treatment and soil environment had better applicability for the new-designed OPFRs substitution molecules (the maximum combined toxicity/degradation is reduced/increased by 75.46% and 63.24%, respectively). In this paper, a technical scheme of OPFRs terminal treatment, process regulation, and source control was applied as a cradle-to-grave approach to reduce the ecological toxicity risk of fish exposed to OPFRs in aquaculture areas providing theoretical support for the realization of OPFRs environmental pollution control.
Collapse
Affiliation(s)
- Jiawen Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada.
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
27
|
Shen J, Liang J, Lin X, Lin H, Yu J, Wang S. The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering. Polymers (Basel) 2021; 14:82. [PMID: 35012105 PMCID: PMC8747271 DOI: 10.3390/polym14010082] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Against the background of people's increasing awareness of personal safety and property safety, the flame retardancy (FR) of materials has increasingly become the focus of attention in the field of construction engineering. A variety of materials have been developed in research and production in this field. Polymers have many advantages, such as their light weight, low water absorption, high flexibility, good chemical corrosion resistance, high specific strength, high specific modulus and low thermal conductivity, and are often applied to the field of construction engineering. However, the FR of unmodified polymer is not ideal, and new methods to make it more flame retardant are needed to enhance the FR. This article primarily introduces the flame-retardant mechanism of fire retardancy. It summarizes the preparation of polymer flame-retardant materials by adding different flame-retardant agents, and the application and research progress related to polymer flame-retardant materials in construction engineering.
Collapse
Affiliation(s)
- Jingjing Shen
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| | - Jianwei Liang
- Building Office, Taizhou Urban and Rural Planning & Design and Research Institute Co., Ltd., Taizhou 318000, China;
| | - Xinfeng Lin
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| | - Hongjian Lin
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| | - Jing Yu
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| | - Shifang Wang
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; (H.L.); (J.Y.); (S.W.)
| |
Collapse
|
28
|
Patisaul HB, Behl M, Birnbaum LS, Blum A, Diamond ML, Rojello Fernández S, Hogberg HT, Kwiatkowski CF, Page JD, Soehl A, Stapleton HM. Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:105001. [PMID: 34612677 PMCID: PMC8493874 DOI: 10.1289/ehp9285] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND To date, the toxicity of organophosphate esters has primarily been studied regarding their use as pesticides and their effects on the neurotransmitter acetylcholinesterase (AChE). Currently, flame retardants and plasticizers are the two largest market segments for organophosphate esters and they are found in a wide variety of products, including electronics, building materials, vehicles, furniture, car seats, plastics, and textiles. As a result, organophosphate esters and their metabolites are routinely found in human urine, blood, placental tissue, and breast milk across the globe. It has been asserted that their neurological effects are minimal given that they do not act on AChE in precisely the same way as organophosphate ester pesticides. OBJECTIVES This commentary describes research on the non-AChE neurodevelopmental toxicity of organophosphate esters used as flame retardants and plasticizers (OPEs). Studies in humans, mammalian, nonmammalian, and in vitro models are presented, and relevant neurodevelopmental pathways, including adverse outcome pathways, are described. By highlighting this scientific evidence, we hope to elevate the level of concern for widespread human exposure to these OPEs and to provide recommendations for how to better protect public health. DISCUSSION Collectively, the findings presented demonstrate that OPEs can alter neurodevelopmental processes by interfering with noncholinergic pathways at environmentally relevant doses. Application of a pathways framework indicates several specific mechanisms of action, including perturbation of glutamate and gamma-aminobutyric acid and disruption of the endocrine system. The effects may have implications for the development of cognitive and social skills in children. Our conclusion is that concern is warranted for the developmental neurotoxicity of OPE exposure. We thus describe important considerations for reducing harm and to provide recommendations for government and industry decision makers. https://doi.org/10.1289/EHP9285.
Collapse
Affiliation(s)
- Heather B. Patisaul
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Mamta Behl
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Arlene Blum
- Green Science Policy Institute, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | | | | | - Helena T. Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Carol F. Kwiatkowski
- Green Science Policy Institute, Berkeley, California, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jamie D. Page
- Cancer Prevention & Education Society, Meads House, Leighterton, Tetbury, Gloucestershire, UK
| | - Anna Soehl
- Green Science Policy Institute, Berkeley, California, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|