1
|
Han Z, Wang J, Liao X, Yang J. Accurate prediction of spatial distribution of soil heavy metal in complex mining terrain using an improved machine learning method. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137994. [PMID: 40112436 DOI: 10.1016/j.jhazmat.2025.137994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Accurate prediction of heavy metals (HMs) spatial distribution in mining areas is crucial for pollution management. However, predicting the spatial distribution of HMs remains a significant challenge in mining areas with complex terrain and variable contaminant transport pathways. This study aims to optimize the spatial prediction of arsenic (As) distribution in the Shimen realgar mining area, the largest in Asia, by integrating machine learning models with kriging interpolation and feature selection techniques. The results show that the Random Forest (RF) model achieved the best performance in predicting soil As concentration, with an R2 of 0.84 for the test data. Incorporating environmental variables improved the spatial prediction accuracy, with RF (R2 = 0.76, RMSE = 24.68 mg/kg) and Random Forest Regression Kriging (RFRK) (R2 = 0.78, RMSE = 23.46 mg/kg) outperforming ordinary kriging and geographically weighted regression kriging. Importance analysis and recursive feature elimination further optimized the model, leading to a 5 % increase in R2 and a reduction of RMSE by 8 %-12.4 %. The optimized RFRK model accurately captured the spatial distribution of As in the mining area, revealing the outward diffusion pattern of As from the smelting plant. The findings highlight the critical role of feature selection in improving prediction accuracy in highly polluted and complex terrain regions, an aspect that has often been overlooked in previous studies. This study provides a practical framework for spatial prediction of contaminants in similar areas, enhancing the understanding of pollution distribution.
Collapse
Affiliation(s)
- Zhaoyang Han
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyun Wang
- Shandong Institute of Geological Sciences, Jinan 250013, China
| | - Xiaoyong Liao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Lou S, Zhang Z, Liu S, Yang Z, Chen S, Zou Y, Fedorova IV. Model-based kinetics of heavy metal enrichment in plants affected by hydrodynamics. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 273:104610. [PMID: 40393304 DOI: 10.1016/j.jconhyd.2025.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
Heavy metal contamination threatens aquatic ecosystems by degrading water quality, biodiversity, and ecological stability. However, the role of hydrodynamics in modulating metal distribution and biogeochemical cycling, particularly in water-sediment-plant systems, remains unclear. Therefore, circular flume experiments were integrated with multiphase kinetic modeling to unravel cadmium (Cd) kinetics in water-sediment-plant systems under flow conditions. Affected by hydrodynamics, the distribution of Cd surged within 2 h and the Cd distribution coefficients showed a desorption peak within 8 h from the start of the experiment followed by reabsorption, and the hydrodynamic strength was negatively correlated with the resorption degree. Plant enrichment of heavy metals under hydrodynamics was observed initially, reaching a peak at the end of the experiment with phyto-sediment distribution coefficients of 0.22-0.25. The pseudo-second-order kinetic model effectively simulated the desorption of Cd from water, with r2 > 0.97. However, the Plant Enrichment Factor (PEF) failed to accurately describe the plant enrichment kinetics of the water-sediment-plant system under hydrodynamic conditions, with the r2 of cumulative Cd uptake kinetic of plants based on PEF lower than 0.77. Consequently, the nonlinear relationship of Cd in a multi-medium distribution was identified using the Artificial Neural Network (ANN), and a modified PEF was proposed, with r2 > 0.96. From the modified PEF, the competitive advantage of the phytobiological action was emphasized as the experiment proceeded. The modified model proposed in this study explains the physical process of Cd enrichment by plants in the water-sediment-plant system under hydrodynamics, providing a feasible tool for the study of pollutant transport in aquatic environments, and the results can contribute to theoretical support for optimizing wetland ecosystem protection strategies.
Collapse
Affiliation(s)
- Sha Lou
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Zhirui Zhang
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
| | - Zhongyuan Yang
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Shizhe Chen
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; Project Management Office of China National Scientific Seafloor Observatory, Tongji University, Shanghai 200092, China
| | - Yuwen Zou
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Irina Viktorovna Fedorova
- Institute of Earth Sciences, Saint Petersburg State University, 7-9 Universitetskaya Embankment, 199034 St Petersburg, Russia
| |
Collapse
|
3
|
Du B, Xia R, Obrist D, Sun Y, Wang T, Zhou J. Tracing atmospherically deposited cadmium accumulation in rice using stable isotopes. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138524. [PMID: 40334586 DOI: 10.1016/j.jhazmat.2025.138524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Understanding the plant uptake of atmospherically deposited cadmium (Cd) is limited. Factorial soil and atmospheric exposure experiments conducted in both field and greenhouse settings, in conjunction with stable Cd isotopes and synchrotron microscopic X-ray fluorescence (SR-μXRF), were performed to differentiate the impact of newly deposited Cd from legacy Cd in the soil. Root uptake of newly deposited Cd in soils contributed 43-48 %, 6.3-30 %, and 6.3-30 % to the leaves, stems, and grains, respectively. In contrast, foliar uptake contributed the most to rice leaves, which were subsequently limited in their translocation to stems and grains, accounting for 18-31 %, 5.7-12 %, and 5.7-11 % of Cd in leaves, stems, and grains, respectively. Stem nodes appear to restrict Cd translocation from leaves to grains while simultaneously facilitating both bi-directional xylem and phloem transport. Geochemical analyses and diffusive gradients in thin films extractions indicated that newly deposited Cd constituted the major bioavailable Cd fractions in soil solutions. In the rice growing season, the atmospherically deposited Cd only accounted 0.8-5.5 % of soil pools, but they substantially contributed 27-45 % to grains, raising important questions about how atmospheric Cd deposition may impact food security. The accumulation of Cd in rice grains from atmospheric deposition primarily occurs during the filling stage, making the management of emissions during this period crucial compared to the remediation of affected soils.
Collapse
Affiliation(s)
- Buyun Du
- College of Environmental Ecology, Jiangsu Open University, Nanjing 210017, China; Jiangsu Engineering and Technology Centre for Ecological and Environmental Protection in Urban and Rural Water Environment Management and Low Carbon Development, Nanjing 210017, China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel Obrist
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, USA; Division of Agriculture and Natural Resources, University of California, Davis, CA 95616, USA
| | - Yufang Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ting Wang
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, USA
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, USA; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Zhang K, Liang Y, Ma C, Guo H, Liu F, Gao A, Liu N, Zhang H. Stomata as the Main Pathway for the Penetration of Atmospheric Particulate Matter Pb into Wheat Leaves. TOXICS 2025; 13:185. [PMID: 40137512 PMCID: PMC11945984 DOI: 10.3390/toxics13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 03/29/2025]
Abstract
The absorption of atmospheric particulate matter lead (APM-Pb) by wheat leaves is the primary source of Pb in wheat grains, yet the mechanisms of how wheat leaves absorb Pb remain unclear. In this study, spraying Pb(NO3)2 (Treatment T1) and spraying PbS (Treatment T2) were used as soluble and insoluble Pb, respectively, to evaluate the primary pathways of APM-Pb absorption by wheat leaves, as well as the translocation and accumulation patterns of Pb within the wheat plant. The results showed that both soluble and insoluble Pb can be absorbed by wheat leaves. Compared to the control group (CK), the treatment of T1 and T2 significantly increased Pb concentration in both leaves and grains, as well as the Pb accumulation rate in grains (p < 0.05). Scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) technology visually confirmed the distribution of particulate Pb in the stomatal region, demonstrating that solid-state Pb can penetrate the leaves through stomata. From the greening stage (GS) to the late filling stage (FS2), the leaves' cell sap contained the highest proportion of Pb, indicating that Pb within the cell sap possesses the greatest capacity for translocation. Concurrently, a significant increase in grain Pb concentration during this period indicated that the migration of Pb to cell sap after penetrating the leaves is subsequently translocated to the grains (p < 0.05). Compared to the jointing stage (JS), the proportion of the ethanol and water extraction states of Pb significantly decreased in FS2 (p < 0.05), indicating that Pb is more readily translocated to the grains during this period. Moreover, in FS2, Pb concentration in leaves and grains in the T2 treatment reached 76.5% and 63.9% that of T1, respectively. Since PbS can only be absorbed through stomata, it can be inferred that stomata are the primary pathway for wheat leaves to absorb APM-Pb. Therefore, Pb absorbed through the stomatal pathway and accumulated in the cell sap fraction is most likely to be translocated to the grains during the filling stage. This study provides new insights into the mechanisms of Pb absorption and translocation in wheat, emphasizing the critical role of stomata in the uptake of APM-Pb. It offers a new direction for breeding wheat varieties resistant to APM-Pb pollution, which is of significant importance in agricultural practices aimed at reducing heavy metal contamination in crops.
Collapse
Affiliation(s)
- Ke Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (Y.L.); (H.G.); (F.L.); (N.L.); (H.Z.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| | - Yujing Liang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (Y.L.); (H.G.); (F.L.); (N.L.); (H.Z.)
| | - Chuang Ma
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (Y.L.); (H.G.); (F.L.); (N.L.); (H.Z.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| | - Haopeng Guo
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (Y.L.); (H.G.); (F.L.); (N.L.); (H.Z.)
| | - Fuyong Liu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (Y.L.); (H.G.); (F.L.); (N.L.); (H.Z.)
| | - Aihua Gao
- Zhongyuan Ecological Environment Technology Innovation Center (Henan) Co., Ltd., Zhengzhou 450000, China
| | - Nan Liu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (Y.L.); (H.G.); (F.L.); (N.L.); (H.Z.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| | - Hongzhong Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (Y.L.); (H.G.); (F.L.); (N.L.); (H.Z.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| |
Collapse
|
5
|
Li M, Wang H, Chen Z, Liu H, Zhao H, Rong X, Xia R, Wang X, Zhou J. Contribution, absorption mode, and model prediction of atmospheric deposition to copper and lead accumulation in soybean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177448. [PMID: 39521081 DOI: 10.1016/j.scitotenv.2024.177448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Atmospheric deposition plays a significant role in the introduction of trace metals into agricultural ecosystems; however, accurately determining its impact on the accumulation of metals in crops remains a challenge. Here, the contribution, absorption mode, and model prediction of atmospheric deposition to trace metal accumulation in soybean were investigated by a three-year full factorial atmospheric and soil exposure experiment near a large copper (Cu) smelter. The results showed that newly deposited (one-year atmospheric deposition) metals only accounted for 0.2 %-14 % of total soil pools, while they contributed 8 %-77 % of Cu and 14 %-84 % of lead (Pb) in soybean plants. Meanwhile, the extension of soil exposure time to atmospheric deposition (two- and three-year atmospheric deposition) did not lead to significant increase in the bioavailable fraction of Cu and Pb in soil plough horizon and the bioaccumulation in soybean tissues. This suggested that the newly atmospheric deposition during the growth period was the key source of Cu and Pb in soybean plants. Furthermore, foliar absorption was an important pathway for metal accumulation in aboveground tissues as evidenced by its relative high contributions in metal bioaccumulation, i.e., 17 %-62 %, 26 %-70 %, 19 %-75 %, and 20 %-46 % of Cu and Pb in stem, leaf, hull, and seed, respectively. Besides, two models were developed to predict the Cu and Pb concentrations in soybean seeds using multiple regression analysis with atmospherically deposited metals and soil metals as variables. Compared with models based on a single variable, these models significantly improved the prediction accuracy of Cu and Pb concentrations in soybean seeds (adjusted R2 = 0.936 and 0.995). The model prediction results suggested that the threshold value of atmospherically deposited Pb to ensure the safe production of soybean was 17.7 mg/m2/year. This study offers new insights into the effective management of metal pollution in soybeans, focusing on atmospheric deposition and foliar absorption.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Ziqi Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Xiuting Rong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
6
|
Xu L, Zhao F, Xing X, Peng J, Wang J, Ji M, Li BL. A Review on Remediation Technology and the Remediation Evaluation of Heavy Metal-Contaminated Soils. TOXICS 2024; 12:897. [PMID: 39771112 PMCID: PMC11728636 DOI: 10.3390/toxics12120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
With the rapid development of industry and agriculture, soil contamination has become a significant environmental issue, and the heavy metal contamination of soils is an important part of it. The main methods for the remediation of heavy metal-contaminated soils include physical methods, chemical methods, biological methods, and combined remediation methods have been proposed as research deepens. However, the standards and evaluation methods for the remediation of heavy metal-contaminated soils are still not well-established. This article discusses the sources and contamination status of heavy metals in soils, the advantages and disadvantages of remediation technology for heavy metal-contaminated soils, remediation standards, and post-remediation evaluation methods. It also proposes scientific issues to be addressed in future research and provides an outlook on future development, hoping to assist in subsequent remediation studies of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Lei Xu
- Henan Province Engineering Research Center of Environmental Laser Remote Sensing Technology and Application, Nanyang Normal University, Nanyang 473001, China;
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-Line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473001, China
| | - Feifei Zhao
- Henan Province Engineering Research Center of Environmental Laser Remote Sensing Technology and Application, Nanyang Normal University, Nanyang 473001, China;
| | - Xiangyu Xing
- Non-Major Foreign Language Teaching Department, Nanyang Normal University, Nanyang 473001, China;
| | - Jianbiao Peng
- College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473001, China; (J.P.); (J.W.); (M.J.)
| | - Jiaming Wang
- College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473001, China; (J.P.); (J.W.); (M.J.)
| | - Mingfei Ji
- College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473001, China; (J.P.); (J.W.); (M.J.)
| | - B. Larry Li
- Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California–Riverside, Riverside, CA 92521, USA;
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle, Nanyang Normal University, Nanyang 473001, China
| |
Collapse
|
7
|
Yang J, Han Z, Yan Y, Guo G, Wang L, Shi H, Liao X. Neglected pathways of heavy metal input into agricultural soil: Water-land migration of heavy metals due to flooding events. WATER RESEARCH 2024; 267:122469. [PMID: 39305526 DOI: 10.1016/j.watres.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 11/28/2024]
Abstract
Flooding, carrying sediments, inundates farmlands across the world due to extreme adverse weather conditions. The casualties and property damage associated with flooding are important direct impacts. However, there is currently insufficient understanding of the remobilization and distribution of heavy metals (HMs) caused by flooding. Few studies have specifically considered flooding as a pathway for HMs contamination of soil. Herein, a novel methodological framework for revealing the input pathways of HMs in agricultural soils in mining-intensive areas is proposed and applied. Flooding is considered one of the pathways for HMs inputs during source apportionment. The results demonstrated a high degree of overlap between the distribution characteristics of major HMs in agricultural soils and sediments. The degree of soil Cd pollution was significantly positively correlated with the inundation depth in the flooded area. It took 8.4-11.5 times of flood inundation or 98.5-119.9 years of accumulation of atmospheric deposition to reach HMs contamination levels in the soil of the study area. Flooding brought in most of the soil Cd, while atmospheric deposition was the primary input pathway for soil Pb and Zn. Our results identified the role of flood inundation on the input of HMs in mining-intensive areas. These results demonstrated the value of our framework for studying the impact of flooding on HMs in agricultural soils from the perspective of input pathways, providing new insights not only into identifying the sources of soil HMs but also into enhancing understanding of the impact of flooding on soil environments. With the potential increase in the frequency and intensity of flooding inundating farmlands in the future, it is essential to consider flooding as a pathway for HMs inputs in order to comprehensively assess their environmental impact.
Collapse
Affiliation(s)
- Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Han
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxian Yan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huading Shi
- Technical Center for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Xiaoyong Liao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Wu H, Shi J, Ren R, Du J, Zhou F, Qi M, Zhao W, Du X, Xia Z, Ren R, Liang D. Ignoring the food route underestimated human health risk from potentially toxic elements in agricultural environments of Ziyang, Shaanxi, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:496. [PMID: 39509036 DOI: 10.1007/s10653-024-02272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Staple food is a crucial exposure route for the human intake of potentially toxic elements (PTEs), but it has been neglected in previous human health risk (HHR) studies. Lack of attention to this issue will lead to an underestimation of HHR caused by PTEs. This study establishes a comprehensive regional identification method for health risk assessment (HRA), namely, soil-maize health risk assessment (SMHRA) and applies it to Ziyang, Shaanxi, which is a typical agricultural county. SMHRA considered the exposure pathway of staple food and utilized Monte Carlo simulation to enhance the accuracy of HRA for PTEs. Results indicated the PTE spatial heterogeneity in a soil-maize system. Introducing staple food exposure pathway would increase HHR values and probabilities 1.57-2.80 and 1.53-5.63 times than that when food route was not considered. Overall, the HHR caused by a single PTE was low, which relatively safe. The introduction of food pathway contributed to accurate estimate the HHR of As and Ni, and the risk probabilities ranged from 0.04% to 12.46%. Few areas had high levels of Ni, which pose health risks: approximately 1.8% for children and higher than 0.5% for adults. Both As and Ni had the highest contribution to HHR among all PTEs, with 33.84%-41.56% TNCR caused by As, and 54.73%-56.90% TCR created by Ni, respectively. For human health risk routes, the staple food exhibited the highest contribution to HHR among all exposure routes, with TNCR of 36.15%-56.73% and the TCR of 44.96%-64.28%. Our research imply that dietary intake of PETs must be considered in the human health risk assessment in agricultural environment, which offers the foundation for subsequent environmental risk prevention and control.
Collapse
Affiliation(s)
- Hao Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingyi Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rongxin Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wanchen Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoping Du
- China Se-Enriched Industry Research Institute, Ankang, Shaanxi, China
| | - Zengrun Xia
- China Se-Enriched Industry Research Institute, Ankang, Shaanxi, China
| | - Rui Ren
- Shaanxi Hydrogeolog Engineering Geosciences and Environment Geosciences Investigation Institution, Xi'an, Shaanxi, China.
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Li Y, Qin Y, Zhang L, Qi L, Wang S, Guo J, Tang A, Goulding K, Liu X. Bioavailability and ecological risk assessment of metal pollutants in ambient PM 2.5 in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174129. [PMID: 38917907 DOI: 10.1016/j.scitotenv.2024.174129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Metal pollutants in fine particulate matter (PM2.5) are physiologically toxic, threatening ecosystems through atmospheric deposition. Biotoxicity and bioavailability are mainly determined by the active speciation of metal pollutants in PM2.5. As a megacity in China, Beijing has suffered severe particulate pollution over the past two decades, and the health effects of metal pollutants in PM2.5 have received significant attention. However, there is a limited understanding of the active forms of metals in PM2.5 and their ecological risks to plants, soil or water in Beijing. It is essential that the ecological risks of metal pollutants in PM2.5 are accurately evaluated based on their bioavailability, identifying the key pollutants and revealing historic trends to future risks control. A two-year project measured the chemical speciation of pollution elements (As, Cd, Cu, Cr, Ni, Mn, Pb, Sb, Sr, Ti, and Zn) in PM2.5 in Beijing, in particular their bioavailability, assessing ecological risks and identifying key pollutants. The mass concentrations of total and active species of pollution elements were 199.12 ng/m3 and 114.97 ng/m3, respectively. Active fractions accounted for 57.7 % of the total. Cd had the highest active proportion. Based on the risk assessment code (RAC), most pollution elements except Ti had moderate or high ecological risk, with RAC exceeding 30 %. Cd, with an RAC of 70 %, presented the strongest ecological risk. Comparing our data with previous research shows that concentrations of pollution elements in PM2.5 in Beijing have decreased over the past decade. However, although the total concentrations of Cd in PM2.5 have decreased by >50 % over the past decade, based on machine model simulation, its ecological risk has reduced by only 10 %. Our research shows that the ecological risks of pollution elements remain high despite their decreasing concentrations. Controlling the active species of metal pollutants in PM2.5 in Beijing in the future is vital.
Collapse
Affiliation(s)
- Yunzhe Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yanyi Qin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Lisha Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Linxi Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shuifeng Wang
- Analysis and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Jinghua Guo
- Analysis and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Aohan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Keith Goulding
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Xuejun Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Liu H, Rong X, Zhao H, Xia R, Li M, Wang H, Cui H, Wang X, Zhou J. Bioaccumulation of Atmospherically Deposited Cadmium in Soybean: Three-Year Field Experiment Combined with Cadmium Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17703-17716. [PMID: 39317642 DOI: 10.1021/acs.est.4c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atmospheric deposition plays a significant role in introducing cadmium (Cd) into agroecological systems; however, accurately determining its accumulation in crops through foliar and root uptake presents challenges. This study investigated the bioaccumulation of atmospherically deposited Cd in soybean using a three-year fully factorial atmospheric exposure experiment incorporating Cd isotope analysis. Results shown that atmospheric deposition accounted for 1-13% of soil Cd pools, yet contributed 11-72% of Cd to soybean tissues during the growing seasons. Over the course of soil exposure to atmospheric deposition ranging from 1 to 3 years, no notable variations were observed in Cd concentrations in soil solutions and soybean tissues, nor in isotope ratios. Newly deposited Cd was a major source in soybean plants, and the bioavailability of deposited Cd rapidly aged in soils. Atmospheric Cd enriched in lighter isotopes induced negative isotope shifts in soybean plants. By employing an optimized isotope mixing model in conjunction with a mass balance approach, foliar Cd uptake contributed 13-51%, 16-45%, and 21-56% to stem, leaf, and seed, respectively. This study highlights substantial contribution of foliar uptake of atmospheric deposition to Cd levels in soybean and controlling foliar uptake as a potential strategy in agroecological systems experiencing high atmospheric Cd deposition.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
| | - Xiuting Rong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, P.R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
11
|
Zhou J, Xia R, Landis JD, Sun Y, Zeng Z, Zhou J. Isotope Evidence for Rice Accumulation of Newly Deposited and Soil Legacy Cadmium: A Three-Year Field Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17283-17294. [PMID: 39066705 DOI: 10.1021/acs.est.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Biogeochemical processes of atmospherically deposited cadmium (Cd) in soils and accumulation in rice were investigated through a three-year fully factorial atmospheric exposure experiment using Cd stable isotopes and diffusive gradients in thin films (DGT). Our results showed that approximately 37-79% of Cd in rice grains was contributed by atmospheric deposition through root and foliar uptake during the rice growing season, while the deposited Cd accounted for a small proportion of the soil pools. The highly bioavailable metals in atmospheric deposition significantly increased the soil DGT-measured bioavailable fraction; yet, this fraction rapidly aged following a first-order exponential decay model, leading to similar percentages of the bioavailable fraction in soils exposed for 1-3 years. The enrichment of light Cd isotopes in the atmospheric deposition resulted in a significant shift toward lighter Cd isotopes in rice plants. Using a modified isotopic mass balance model, foliar and root uptake of deposited Cd accounted for 47-51% and 28-36% in leaves, 41-45% and 22-30% in stems, and 45-49% and 26-30% in grains, respectively. The implications of this study are that new atmospheric deposition disproportionately contributes to the uptake of Cd in rice, and managing emissions thus becomes very important versus remediation of impacted soils.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua D Landis
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yufang Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Yu P, Shao X, Wang M, Zhu Z, Tong Z, Peng J, Deng Y, Huang Y. Effects of atmospheric deposition on heavy metal contamination in paddy field systems under different functional areas in ChangZhuTan, Hunan Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172953. [PMID: 38734112 DOI: 10.1016/j.scitotenv.2024.172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
In recent decades, the problem of heavy metal contamination in rice paddies has attracted widespread attention. However, most studies on heavy metal contamination in paddy fields are biased towards soil and/or rice plants, without taking atmospheric deposition into account. In this study, atmospheric deposition, paddy soil, and rice samples were collected from three functional areas (area proximity to factories, along the roadside, and suburban) in ChangZhuTan, Hunan Province. The pollution characterization, translocation, and health risk of heavy metals were reassessed. The findings revealed that Cd and As contamination in the study area's soils was more severe, with point exceedance rates reaching 70 % and 35.9 %, respectively. The highest concentrations of As, Ni, Cd, and Pb in atmospheric deposition were found along the roadside, with 1.42 μg/m2/day, 3.21 μg/m2/day, 0.34 μg/m2/day, and 8.28 μg/m2/day, respectively. In area proximity to factories, As and Ni in atmospheric deposition showed to be lowest, whereas Cd and Pb concentrations showed lowest in suburban areas. Furthermore, the accumulation of Cd and Pb in rice grains in regions proximity to factories was significantly higher than in other regions. The human health risk assessment indicated the health risk caused by rice intake in areas proximity to factories was the highest and requires attention, which was mainly due to Cd accumulation, with HQ value reached 3.19. Correlation tests indicate that atmospheric deposition has a positive effect on heavy metal enrichment in rice grains. Further Random Forest analysis revealed that the transport of heavy metals from atmospheric deposition to leaves and shells were important influencing factors for As, Cd, Ni and Mg accumulation in rice grain. Therefore, more attention should be paid to the effects of atmospheric deposition on the accumulation of heavy metals in paddy fields in order to maintain the production safety of crops.
Collapse
Affiliation(s)
- Pengyue Yu
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Xingyuan Shao
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Maodi Wang
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Zhen Zhu
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Zhenglong Tong
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Jianwei Peng
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Yaocheng Deng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying Huang
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
13
|
Anaman R, Peng C, Jiang Z, Amanze C, Fosua BA. Distinguishing the contributions of different smelting emissions to the spatial risk footprints of toxic elements in soil using PMF, Bayesian isotope mixing models, and distance-based regression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173153. [PMID: 38735332 DOI: 10.1016/j.scitotenv.2024.173153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Toxic element pollution of soils emanating from smelting operations is an escalating global concern due to its severe impact on ecosystems and human health. In this study, soil samples were collected and analyzed to quantify the risk contributions and delineate the spatial risk footprints from smelting emissions for 8 toxic elements. A comprehensive health risk contribution and delineation framework was utilized, consisting of Positive matrix factorization (PMF), spatial interpolation, an advanced Bayesian isotope mixing model via Mixing Stable Isotope Analysis in R (MixSIAR), and distance-based regression. The results showed that the mean concentrations of As, Cd, Cu, Hg, Pb, and Zn exceeded the background levels, indicating substantial contamination. Three sources were identified using the PMF model and confirmed by spatial interpolation and MixSIAR, with contributions ranked as follows: industrial wastewater discharge and slag runoff from the smelter site (48.9 %) > natural geogenic inputs from soil parent materials (26.7 %) > atmospheric deposition of dust particles from smelting operations (24.5 %). Among the identified sources, smelter runoff posed the most significant risk, accounting for 97.9 % of the non-carcinogenic risk (NCR) and 59.9 % of the carcinogenic risk (CR). Runoff also drove NCR and CR exceedances at 7.8 % and 4.7 % of sites near the smelter, respectively. However, atmospheric deposition from smelting emissions affected soils across a larger 0.8 km radius. Although it posed lower risks, contributing just 1.1 % to NCR and 22.6 % to CR due to the limited elevation of toxic elements, deposition reached more distant soils. Spatial interpolation and distance-based regression delineated high NCR and CR exposure hotspots within 1.4 km for runoff and 0.8 km for deposition, with exponentially diminishing risks at further distances. These findings highlight the need for pathway-specific interventions that prioritize localized wastewater containment and drainage controls near the smelter while implementing broader regional air pollution mitigation measures.
Collapse
Affiliation(s)
- Richmond Anaman
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Zhichao Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Liu H, Wang H, Zhao H, Wang H, Xia R, Wang X, Li M, Zhou J. Speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in soil-earthworm (Eisenia fetida) system near a large copper smelter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171700. [PMID: 38490408 DOI: 10.1016/j.scitotenv.2024.171700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in the soil-earthworm (Eisenia fetida) system were investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.8-year and 1.8-year atmospheric depositions. The results shown that the newly deposited metals (Cu, Cd, and Pb) primarily accumulated in the topsoil (0-6 cm) and were present as the highly bioavailable speciation. They can migrate further to increase the concentrations of Cu, Cd, and Pb in soil solution of the deeper layer (at 10 cm) by 12 %-436 %. Earthworms tended to preferentially accumulate the newly deposited metals, which contributed 10 %-61 % of Cu, Cd, and Pb in earthworms. Further, for the unpolluted and moderately polluted soils, the newly deposited metals induced the significant oxidative stress in earthworms, resulting in significant increases in antioxidant enzyme activities (SOD, CAT, and GSH-Px). No significant differences were observed in the levels of heavy metals in soil solutions, bioaccumulation, and enzyme activities in earthworms exposed to 0.8-year and 1.8-year depositions, indicating the bioavailability of atmospheric metals deposited into soils was rapidly decreased with time. This study highlights the high bioaccumulation and toxicity of heavy metals to earthworm from the new atmospheric deposition during the earthworm growing period.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Hu Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China.
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
15
|
Cui H, Zhao Y, Hu K, Xia R, Zhou J, Zhou J. Impacts of atmospheric deposition on the heavy metal mobilization and bioavailability in soils amended by lime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170082. [PMID: 38220003 DOI: 10.1016/j.scitotenv.2024.170082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Atmospheric deposition is an important source of heavy metal in agricultural soils, but there is limited research on the mobility of these metals in soil and their impact on soil amendment. Here, we performed a dust incubation experiment in soils in the laboratory and a factorial transplant experiment at three field sites with a gradient of atmospheric deposition to examine the impacts of atmospherically deposited heavy metals (Cu, Cd, and Pb) on the mobility and bioavailability in soils with and without lime applications. Results showed that the atmospherically deposited heavy metals showed high mobility and were primarily presented in the soluble ionic fractions in the wet part and acid-exchangeable and reducible fractions in the dry part of atmospheric deposition. Atmospheric dust addition caused the 2p3/2 and 2p1/2 electrons of Cu atoms in uncontaminated soils to transition the 3d vacant states, resulting in similar copper absorption peaks as atmospheric particles by the observation of X-ray absorption near-edge spectroscopy (XANES). In the field, atmospheric deposition can only increase the mobile fractions in the surface soils, but not in the deeper layers. However, the deposition can increase the soluble and diffusive gradients in thin films (DGT)-measured bioavailable fractions in profile along with the soil depth. Lime applications cannot significantly reduce the mobile fractions of heavy metals in the surface soils exposed to atmospheric deposition, but significantly reduce the heavy metal concentrations in soil solutions and the DGT-measured bioavailable concentrations, particularly in the deeper layer (6-10 cm). The major implication is that atmospherically deposited heavy metals can significantly increase their bioavailable concentrations in the plough horizon of soil and constrain the effects of soil amendments on heavy metal immobilization, thereby increasing the risks of crop uptake.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Yingjie Zhao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Kaixin Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Xia R, Zhou J, Sun Y, Zeng Z, Liu H, Cui H, Yan J, Kou L, Hu K, Zhang H, Zhou J. Stable Isotope Ratios Trace the Rice Uptake of Cadmium from Atmospheric Deposition via Leaves and Roots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16873-16883. [PMID: 37874039 DOI: 10.1021/acs.est.3c04820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cadmium (Cd) stable isotopes provide a novel technique to investigate the fate of Cd in the environment, but challenges exist for tracing the sources in the plants. We performed individual rice leaf and root exposures to dry and wet deposition using customized open-top chambers (OTCs) in the greenhouse and in the field next to a smelter, respectively. The field experiment also included a control without Cd deposition and a "full" treatment. The exposure experiments and isotope signatures showed that leaves can directly take up atmospheric Cd and then translocate within rice plants to other tissues, contributing 52-70% of Cd in grains, which exceeded the contribution (30-48%) by root exposure. The Cd isotopes in leaves, nodes, internodes, and grains demonstrate that roots preferentially take up Cd from wet deposition, but leaves favor uptake of Cd from dry deposition. The Cd uptake by leaves is redistributed via nodes, allowing for upward transport to the grains but preventing downward transport to the roots. Leaves favor uptake of heavy isotopes from atmospheric deposition (ΔCd114/110Leaf-Dust: 0.10 ± 0.02‰) but retain light isotopes and transport heavy isotopes to the nodes and further to grains. These findings highlight the contribution of atmospheric deposition to rice and Cd isotopes as a useful tracer for quantifying sources in plants when different isotopic compositions are in sources.
Collapse
Affiliation(s)
- Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| | - Yufang Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Leyong Kou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kaixin Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing 210042, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| |
Collapse
|
17
|
Ma C, Yu Y, Liu F, Lin L, Zhang K, Liu N, Zhang H. Influence mechanism of awns on wheat grain Pb absorption: Awns' significant contribution to grain Pb was mainly originated from their direct absorption of atmospheric Pb at the late grain-filling stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114957. [PMID: 37105099 DOI: 10.1016/j.ecoenv.2023.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The spike is the organ that contributes the most to lead (Pb) accumulation in wheat grains. However, as an important photosynthetic and transpiration tissue in spike, the role of awn in wheat grain Pb absorption remains unknown. A field experiment was conducted to investigate the influence mechanism of awn on grain Pb accumulation through two comparative treatments: with and without awns (de-awned treatment). The de-awned treatment decreased wheat yield by 4.1 %; however, it significantly lowered the grain Pb accumulation rate at the late filling stage (15 days after anthesis) and led to a 22.8 % decrease in grain Pb concentration from 0.57 to 0.44 mg·kg-1. Moreover, the relative contribution of awn-to-grain Pb accumulation gradually increased with the filling process, finally reaching 26.6 % at maturity. In addition, Pb isotope source analysis indicated that the Pb in the awn and grain mainly originated from atmospheric deposition, and the de-awned treatment decreased the proportion of grain Pb from atmospheric deposition by 8.9 %. Microstructural observations further confirmed that the contribution of awns to grain Pb accumulation mainly originated from their direct absorption of atmospheric Pb. In conclusion, awns play an important role in wheat grain Pb absorption at the late grain-filling stage; planting awnless or short-awn wheat varieties may be the simplest and effective environmental management measure to reduce the health risks of Pb in wheat in regions with serious atmospheric Pb contamination.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| | - Yawei Yu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Department of Chemistry, University of Camerino, Camerino, 62032 Macerata, Italy
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| |
Collapse
|
18
|
Cui H, Hu K, Zhao Y, Zhang W, Zhu Z, Liang J, Li D, Zhou J, Zhou J. Impacts of atmospheric copper and cadmium deposition on the metal accumulation of camphor leaves and rings around a large smelter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27675-x. [PMID: 37193791 DOI: 10.1007/s11356-023-27675-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
The atmospheric deposition of copper (Cu) and cadmium (Cd) was monitored in eight sites around a Cu smelter with similar distance to verify whether tree leaf and ring can be used as bio-indicators to track spatial pollution record. Results showed that total atmospheric deposition of Cu (103-1215 mg/m2/year) and Cd (3.57-11.2 mg/m2/year) were 4.73-66.6 and 3.15-12.2 times higher than those in background site (164 mg/m2/year and 0.93 mg/m2/year). The frequencies of wind directions significantly influenced the atmospheric deposition of Cu and Cd, and the highest atmospheric deposition of Cu and Cd were at the prevalent northeastern wind (JN), and low frequency south (WJ) and north (SW) winds for the lowest deposition fluxes. Since the bioavailability of Cd was higher than that of Cu, the atmospheric deposition of Cd was more easily adsorbed by tree leaf and ring, resulting in only significant relation between atmospheric Cd deposition and Cinnamomum camphora leaves and tree ring Cd. Although tree rings cannot correctly record the atmospheric Cu and Cd deposition, higher concentrations in the indigenous tree rings than the transplanted tree rings suggested that tree rings can reflect to some extent the variations of atmospheric deposition. Generally, spatial pollution of atmospheric deposition of heavy metals cannot reflect the distribution of soil total and available metals around the smelter, and only camphor leaf and tree ring can bio-indicate Cd deposition. A major implication of these findings is that leaf and tree ring can serve for biomonitoring purposes to assess the spatial distribution of atmospheric deposition metal with high bioavailability around a pollution source with similar distance.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Kaixin Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yingjie Zhao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wei Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhenqiu Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Detian Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China.
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, 01854, USA.
| |
Collapse
|
19
|
Yang L, Ge S, Liu J, Iqbal Y, Jiang Y, Sun R, Ruan X, Wang Y. Spatial Distribution and Risk Assessment of Heavy Metal(oid)s Contamination in Topsoil around a Lead and Zinc Smelter in Henan Province, Central China. TOXICS 2023; 11:toxics11050427. [PMID: 37235242 DOI: 10.3390/toxics11050427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
A total of 137 farmland soil samples were collected around a lead/zinc smelter within 64 km2. The concentration, spatial distribution, and potential source of nine heavy metal(oid)s (As, Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) in soils and their potential ecological risk were investigated in detail. The results showed that the average concentrations of Cd, Pb, Cr and Zn in these soils were higher than their background value in Henan Province, and the average content of Cd was 2.83 times of the risk screening values in the national standard of China (GB 15618-2018). According to the distribution of different heavy metal(oid)s in soils, Cd and Pb in soil decrease gradually with the increase of distance from the smelter to the surrounding area. This indicates that the Pb and Cd originate from smelters via airborne practices according to the typical air pollution diffusion model. The distribution of Zn, Cu, and As were similar to Cd and Pb. However, Ni, V, Cr, and Co were mainly affected by soil parent materials. The potential ecological risk of Cd was higher than those of other elements, and the risk grade of the other eight elements was mainly low. The polluted soils with significantly high and high potential ecological risk covered 93.84% of all the studied regions. This should be of serious concern to government. The results of a principal component analysis (PCA) and cluster analysis (CA) show that Pb, Cd, Zn, Cu, and As were the elements mainly stemmed from smelter and other types of plants, with a contribution rate of 60.08%, while Co, Cr, Ni, and V are mainly caused by nature, with a contribution rate of 26.26%.
Collapse
Affiliation(s)
- Ling Yang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Shiji Ge
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Jinhui Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Younas Iqbal
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Yuling Jiang
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ruiling Sun
- Puyang Branch of Municipal Bureau of Ecological Environment, Puyang 457100, China
| | - Xinling Ruan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| |
Collapse
|
20
|
Zeng J, Ke W, Deng M, Tan J, Li C, Cheng Y, Xue S. A practical method for identifying key factors in the distribution and formation of heavy metal pollution at a smelting site. J Environ Sci (China) 2023; 127:552-563. [PMID: 36522085 DOI: 10.1016/j.jes.2022.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/17/2023]
Abstract
Smelting activities are the main pathway for the anthropogenic release of heavy metals (HMs) into the soil-groundwater environment. It is vital to identify the factors affecting HMs pollution to better prevent and manage soil pollution. The present study conducted a comprehensive investigation of HMs in soil from a large abandoned Zn smelting site. An integrated approach was proposed to classify and quantify the factors affecting HMs pollution in the site. Besides, the quantitative relationship between hydrogeological characteristics, pollution transmission pathways, smelting activities and HMs pollution was established. Results showed that the soils were highly contaminated by HMs with a pollution index trend of As > Zn > Cd > Pb > Hg. In identifying the pollution hotspots, we conclude that the pollution hotspots of Pb, As, Cd, and Hg present a concentrated distribution pattern. Geo-detector method results showed that the dominant driving factors for HMs distribution and accumulation were the potential pollution source and soil permeability. Additionally, the main drivers are variable for different HMs, and the interaction among factors also enhanced soil HMs contamination. Our analysis illustrates how the confounding influences from complex environmental factors can be distilled to identify key factors in pollution formation to guide future remediation strategies.
Collapse
Affiliation(s)
- Jiaqing Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Wenshun Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Min Deng
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Jingqiang Tan
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Chuxuan Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yizhi Cheng
- New World Environment Protection Group of Hunan, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
21
|
Tao Z, Guo Q, Liu C, Wei R, Han X, Lang Y, Guo Z, Hu J, Dong X, Famiyeh L. Slight transition in Chinese atmospheric Pb isotopic fingerprinting due to increasing foreign Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121296. [PMID: 36804888 DOI: 10.1016/j.envpol.2023.121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric lead (Pb) pollution negatively affects human health and ecosystem, and extensive research is required to identify its sources and develop robust mitigation methods. In this study, the concentration and isotopic composition of Pb in fine particulate matter (PM2.5) at five sites in the China's Beijing-Tianjin-Hebei (BTH) region were analyzed. The results showed that the Pb concentration in the BTH region declined along the northwest direction in winter owing to the East Asian monsoon. Pb isotopic signatures confirmed that anthropogenic activities significantly contributed to Pb pollution, compared with natural sources. With the increasing import of foreign Pb (with a relatively lower 208Pb/206Pb ratio) to China, we hypothesized that the unique isotopic signature of Pb in Chinese aerosols may decline over time. Therefore, the application of the isotopic approach for quantifying Pb transported from China should be carefully appraised in future research to provide a realistic estimate of the contribution of local sources and the transboundary effect consistent with air mass trajectories analysis. This study provides a theoretical reference for supporting the utilization of Δ208Pb values for better clarify the transboundary impact of Pb pollution and to reduce international disputes.
Collapse
Affiliation(s)
- Zhenghua Tao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Congqiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaokun Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhaobing Guo
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jian Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyuan Dong
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lord Famiyeh
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| |
Collapse
|
22
|
Xu J, Chen Z, Li Y, Dong S, Li L, Long S, Wu Y, Wang S. The changes in the physicochemical properties of calcareous soils and the factors of arsenic (As) uptake by wheat were investigated after the cessation of effluent irrigation for nearly 20 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160171. [PMID: 36379339 DOI: 10.1016/j.scitotenv.2022.160171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
It is not known what the buffering capacity of soils and arsenic (As) enrichment by crops is for calcareous agricultural soils after the end of long-term effluent irrigation. In this study, changes in soil physicochemical properties and factors of influencing As uptake by wheat were investigated in agricultural soils where sewage irrigation had been ceased for nearly 20 years. The results showed that the content of CaCO3 and pH in soil increased compared to the period before the cessation of sewage irrigation, but remained below the soil background value. Furthermore, CaCO3 is by far the main buffering substance in agricultural soils and indirectly contributes to the increase in pH. The As concentration in the soil was 36.4 ± 34.8 mg/kg, which was 0.56-10.28 times and 0.28-5.18 times higher than the soil background and risk screening values, respectively, but showed a decreasing trend. pH and Fe dissolution were the main reasons for the lower As concentration in the soil. Total As in soil was a better predictor of As in wheat, and soil electrical conductivity (EC) and soil organic matter (SOM) promoted As uptake by wheat. The competitive uptake of As by dissolved Si was an important reason for the mismatch between As concentrations in soil and wheat. This study highlighted the key issues of As transport transformation in soil-wheat systems after cessation of effluent irrigation, using agricultural soils, and provided a reference for soil risk management in agricultural soils in mining areas.
Collapse
Affiliation(s)
- Jun Xu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhaoming Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yueyue Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Suhang Dong
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Longrui Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Song Long
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yining Wu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Yang Q, Cheng M, Zhou Q, Wang L, Jiao Y, Liu Y, Zhang S, Tan L, Gu Z, Zhu H, Luo H, Lin D, Liu N, Huang X, Hu L. Sharply and simultaneously increasing pollutant accumulations in cells of organisms induced by rare earth elements in the environment of Nanjing. CHEMOSPHERE 2023; 311:136823. [PMID: 36241114 DOI: 10.1016/j.chemosphere.2022.136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Exploring the factors that simultaneously increase the accumulation of various pollutants in cells of organisms to restrict the toxic effects of pollutants on organisms has become a focus of research aimed at protecting ecosystems. Here, we found that the accumulation of organic [e.g., benzo(a)pyrene (BaP)], inorganic [e.g., cadmium (Cd)] and emerging [e.g., rare earth elements (REEs)] pollutants in leaf cells of different plants grown in Nanjing was 567-1022%, 547-922% and 972-1392% of those grown in Haikou, respectively, when the concentration of REEs in rainwater of Nanjing and Haikou was 4.31 × 10-3 μg/L and 3.04 × 10-6 μg/L. Unprecedentedly, endocytosis in leaf cells of different plants grown in Nanjing was activated by REEs, and then extracellular BaP, Cd and REEs (e.g. terbium) were transported into these leaf cells together via endocytic vesicles. Particularly, the co-accumulation of those pollutants in these leaf cells was sharply increased, thus magnifying their toxic effects on these plants. Furthermore, the co-accumulation of those pollutants in human cells was also significantly increased by REEs, in a similar way to these leaf cells. Therefore, REEs in environments are key factors that greatly increase the co-accumulation of various pollutants in cells of organisms. These results provide new insights into how pollutants are accumulated in cells of organisms in ecosystems, informing a reference for making policy to ensure the safety of ecosystems.
Collapse
Affiliation(s)
- Qing Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengzhu Cheng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunlong Jiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yongqiang Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shuya Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhenhong Gu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Hong Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Daozhe Lin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
24
|
Liu H, Zhou J, Li M, Xia R, Wang X, Zhou J. Dynamic Behaviors of Newly Deposited Atmospheric Heavy Metals in the Soil-Pak Choi System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12734-12744. [PMID: 35977088 DOI: 10.1021/acs.est.2c04062] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic behaviors of the newly deposited atmospheric heavy metals in the soil-pak choi (Brassica chinensis L.) system are investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.5-year and 1.5-year atmospheric depositions. The results showed approximately 17-87%, 19-64%, and 43-84% of the Cu, Cd, and Pb in pak choi edible parts were contributed from the new depositions, respectively. For the newly deposited metals, foliar uptake was the key pathway of shoot bioaccumulation rather than from root uptake of the deposited metals in soils, resulting in no significant soil contribution differences between pak chois growing in 0.5-year and 1.5-year exposed soils. Indeed, highly bioavailable metals in atmospheric deposition significantly increased the soil plant-bioavailable Cu, Cd, and Pb fractions; however, soil aging resulted in similar percentages of the plant-bioavailable fractions in 0.5-year and 1.5-year exposed soils, which indicated the bioavailability of metals deposited into soils rapidly decreased with aging. The soil aging process of the deposited metals was well fitted with the first-order exponential decay model, and soil organic matter and clay were the major driving factors. Our findings highlight high plant bioaccumulation rates and the rapid soil aging process of newly deposited metals during the plant growth period.
Collapse
Affiliation(s)
- Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, Massachusetts 01854, United States
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| |
Collapse
|
25
|
Ma C, Xie P, Yang J, Lin L, Zhang K, Zhang H. Evaluating the contributions of leaf organ to wheat grain cadmium at the filling stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155217. [PMID: 35429556 DOI: 10.1016/j.scitotenv.2022.155217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an element of global concern in agricultural fields owing to its high bioavailability and its risk to human health via the consumption of wheat products. However, whether wheat leaves can directly absorb atmospheric Cd and transport them to the grains along with the contribution of leaves to Cd accumulation in the grains is not clear. We evaluated this mechanism through three comparative treatments: 1) exposure to atmospheric deposition (CK), 2) no exposure to atmospheric deposition (T1), and 3) exposure to atmospheric deposition with leaf cutting (T2). The Cd accumulation rate of grains in the CK, T1, and T2 groups all showed an increasing trend, followed by a decreasing trend, which was consistent with the trend of filling rate. Moreover, the critical period for leaf Cd accumulation in the grains was the early filling period, and its contribution decreased gradually as filling progressed. The contribution of the leaves to grain Cd reached 31.73% at maturity, with the reactivation of stored Cd in leaves pre-flowering and the newly absorbed atmospheric Cd by leaves post-flowering contributing 19.76% and 11.97% to Cd accumulation in grains, respectively, at maturity. Sub-microstructure analysis of the leaves further confirmed that the direct Cd absorption by leaves from atmospheric deposition through stomata contributed to Cd accumulation in wheat grains. Therefore, controlling the sources of atmospheric Cd pollution and reducing Cd absorption by leaves during grain filling can effectively control Cd pollution of wheat grains. This study provides significant insights on how to more effectively control the Cd content of edible part of wheat and ensure food security.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Pan Xie
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
26
|
Xu Z, Zhu Z, Zhao Y, Huang Z, Fei J, Han Y, Wang M, Yu P, Peng J, Huang Y, Fahmy AE. Foliar uptake, accumulation, and distribution of cadmium in rice (Oryza sativa L.) at different stages in wet deposition conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119390. [PMID: 35513197 DOI: 10.1016/j.envpol.2022.119390] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric deposition of cadmium (Cd) in rice (Oryza sativa L.) has become a major global concern. Foliar uptake allows vegetables to accumulate heavy metals from the atmosphere, but this has rarely been studied in rice. Therefore, this study investigated the Cd accumulation in rice growing at different exposure periods (the tillering, booting, heading, and maturity stages) under a wet deposition of CdCl2·2.5H2O solution through pot experiments. The Cd concentrations in leaves, roots, husk, brown rice, and leaf structures were analyzed to explore foliar uptake, accumulation, and distribution of Cd in rice tissues at different growth stages. The results showed that wet deposited Cd can be absorbed on the rice leaf surface and remains on the leaves for a long time. The sequence of Cd accumulation in rice tissues was: leaves > brown rice > husk > roots, with leaves accounting for greater than 71.78% of the total accumulation. The accumulation of wet deposited Cd in leaves, husk, and brown rice had large temporal variations between the four typical stages. There was no significant variations in Cd content in roots between different growth stages. Correspondingly, the foliar uptake of Cd was rarely transported from the leaves via the phloem to roots. Conversely, the foliar uptake of Cd was transported upwards to grains. The accumulation of Cd fluctuated with each growth stage, initially increasing and then decreasing at the heading stage and finally reaching a peak at the maturity stage. The highest total accumulation of Cd in both the high and low wet deposition conditions occurred at maturity, resulting in 15.53 and 11.23 μg plant-1, respectively. These results provide theoretical support for further research into identifying efficient foliar control measures to reduce Cd accumulation and maintain food safety.
Collapse
Affiliation(s)
- Zhangqian Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Zhen Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Yuhua Zhao
- Ningyuan County Agricultural Comprehensive Service Center, Hunan, 425600, China
| | - Zhi Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Jiangchi Fei
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Yongliang Han
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Maodi Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Pengyue Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Jianwei Peng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Ying Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Ahmed E Fahmy
- Egyptian Atomic Energy Authority, Nuclear Research Centre, Soil & Water Research Department, Abou-Zaabl, 13759, Egypt
| |
Collapse
|
27
|
Estimation of Copper and Cadmium Bioavailability in Contaminated Soil Remediated by Different Plants and Micron Hydroxyapatite. Bioinorg Chem Appl 2022; 2022:3565550. [PMID: 35706847 PMCID: PMC9192303 DOI: 10.1155/2022/3565550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
A three-year in situ remediation experiment was carried out to understand the effect of combined phytoremediation with chemical materials on the bioavailability of heavy metals in soil. Indigenous weed (Setaria pumila), energy plant (Pennisetum sp.), cadmium (Cd)-hyperaccumulator (Sedum plumbizincicola), and copper (Cu)-tolerant plant (Elsholtzia splendens) were used as the phytoremediation plants aided by micron hydroxyapatite (1% wt). The bioavailability of Cu and Cd in soil was evaluated during the three years. The results showed that the four plants combined with micron hydroxyapatite significantly increased soil pH and soil organic carbon (SOC), and decreased Cu and Cd fractions extracted by CaCl2 and diffusive gradients in thin films (DGT) than the untreated soils, respectively. Because of the large biomass, the accumulation of Cu and Cd is the largest in Pennisetum sp. followed by Elsholtzia splendens, Sedum plumbizincicola, and Setaria pumila. The bioavailability of Cu and Cd is significantly negatively correlated with pH, soil organic carbon, available phosphorus, and available potassium. Moreover, the correlation is mainly related to the addition of micron hydroxyapatite. The accumulation of Cu and Cd is the combined action of the soil bioavailability of Cu, Cd, and biomass. Our results suggest that Pennisetum sp. can act as an appropriate remediation plant for phytoremediation aided by amendments.
Collapse
|
28
|
Screening of Leafy Vegetable Varieties with Low Lead and Cadmium Accumulation Based on Foliar Uptake. Life (Basel) 2022; 12:life12030339. [PMID: 35330090 PMCID: PMC8955535 DOI: 10.3390/life12030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/03/2022] Open
Abstract
Leafy vegetables cultivated in kitchen gardens and suburban areas often accumulate excessive amounts of heavy metals and pose a threat to human health. For this reason, plenty of studies have focused on low accumulation variety screening. However, identifying specific leafy vegetable varieties according to the foliar uptake of air pollution remains to be explored (despite foliar uptake being an important pathway for heavy-metal accumulation). Therefore, in this study, the lead (Pb) and cadmium (Cd) contents, leaf morphology, and particle matter contents were analyzed in a micro-area experiment using 20 common vegetables. The results show that the Pb content in leaves ranged from 0.70 to 3.86 mg kg−1, and the Cd content ranged from 0.21 to 0.99 mg kg−1. Atmospheric particles were clearly scattered on the leaf surface, and the particles were smaller than the stomata. Considering the Pb and Cd contents in the leaves and roots, stomata width-to-length ratio, leaf area size, enrichment factor, and translocation factor, Yidianhongxiancai, Qingxiancai, Baiyuanyexiancai, Nanjingjiangengbai and Sijixiaobaicai were recommended for planting in kitchen gardens and suburban areas as they have low accumulation characteristics. Identifying the influencing factors in the accumulation of heavy metals in vegetables through foliar uptake is important to help plant physiologists/environmentalists/policy makers to select suitable varieties for planting in air-polluted areas and thus reduce their threat to human health.
Collapse
|
29
|
Xu DM, Fu RB, Wang JX, An BH. The geochemical behaviors of potentially toxic elements in a typical lead/zinc (Pb/Zn) smelter contaminated soil with quantitative mineralogical assessments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127127. [PMID: 34601404 DOI: 10.1016/j.jhazmat.2021.127127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
This study comprehensively investigated the potential roles of soil mineralogy identified by the automated mineral liberation analysers (MLA) in the prediction of geochemical behavior of toxic metals in the smelter polluted soils. The results from modal mineralogy revealed that the non-reactive silicate phases such as quartz (42.05%) and biotite (40.43%) were the major mineralogical phases. The element deportment showed that fayalite, lead oxide, apatite, galena and wollastonite were identified as the dominant As, Cd, Pb and Zn bearing minerals. Furthermore, MLA analysis also confirmed that Pb was most concentrated in the smaller particles of lead oxide, which significantly enhanced Pb release in reaction with the chemical extractant during chemical kinetic tests. The results from pH-dependent leaching tests indicated that the leaching concentrations of As, Pb and Zn increased at low and high pH values, but were lowest at the neutral pH range. In addition, the results from the kinetic study demonstrated that the second order model provided the best description for the release patterns of the main metal contaminants in the bioavailability and bioaccessibility tests. The integrated geochemical analysis demonstrated that among these studied elements, As showed a typical geochemical pattern, which was predominantly controlled by 90.09% of fayalite. The above study results would have significant implications for soil remediation and risk management of smelter contaminated sites.
Collapse
Affiliation(s)
- Da-Mao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Rong-Bing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Jun-Xian Wang
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, PR China; Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Bai-Hong An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
30
|
Weng J, Zhang P, Gao L, Zhu S, Liu Y, Qiao L, Zhao B, Liu Y, Xu M, Zheng M. Concentrations, homolog profiles, and risk assessment of short- and medium-chain chlorinated paraffins in soil around factories in a non-ferrous metal recycling park. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118456. [PMID: 34740736 DOI: 10.1016/j.envpol.2021.118456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated paraffins (CPs) are used as additives in metal processing in the metal smelting industry. Data on CPs in the environment near metal smelting plants are limited. The objectives of this study were to investigate the concentrations and congener profiles of CPs in soil around factories in a non-ferrous metal recycling park located in Hebei, China, and to investigate human exposure to CPs in the soil. The concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were determined by two-dimensional gas chromatography with electron capture negative ionization mass spectrometry. The SCCP and MCCP concentrations in the soil samples were 121-5159 ng/g and 47-6079 ng/g, respectively. Generally, the CP concentrations in soils around the factories were relatively high compared with those near other contaminated sites and in rural and urban areas. There were significant correlations between the MCCP concentrations, some SCCP carbon homologs, and the total organic carbon content (p < 0.05). The major SCCP and MCCP congener groups were C10Cl6-7 and C15-16Cl5, respectively. Hierarchical cluster analysis and principal component analysis indicated that SCCPs and MCCPs in the soil might originate from extreme pressure additives containing CP-42 and CP-52 and CP-containing waste material from the factories. The concentrations in two samples collected near a metal recycling factory posed a moderate risk according to a risk assessment conducted using risk quotients. Further risk assessment showed that the CPs concentrations in soil did not pose significant health risks to either children or adults.
Collapse
Affiliation(s)
- Jiyuan Weng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Peixuan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing, 100037, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
31
|
Cheng M, Zhou Q, Wang L, Jiao Y, Liu Y, Tan L, Zhu H, Nagawa S, Wei H, Yang Z, Yang Q, Huang X. A new mechanism by which environmental hazardous substances enhance their toxicities to plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126802. [PMID: 34396977 DOI: 10.1016/j.jhazmat.2021.126802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of hazardous substances enhances their toxicities to plants, but its mechanism is still unclear due to the unknown cytochemical behavior of hazardous substance in plants. In this study, by using interdisciplinary methods, we observed the cytochemical behavior of coexisting hazardous substances {terbium [Tb(III)], benzo(a)pyrene (BaP) and cadmium [Cd(II)] in environments} in plants and thus identified a new mechanism by which coexisting hazardous substances in environments enhance their toxicities to plants. First, Tb(III) at environmental exposure level (1.70 × 10-10 g/L) breaks the inert rule of clathrin-mediated endocytosis (CME) in leaf cells. Specifically, Tb(III) binds to its receptor [FASCICLIN-like arabinogalactan protein 17 (FLA17)] on the plasma membrane of leaf cells and then docks to an intracellular adaptor protein [adaptor protein 2 (AP2)] to form ternary complex [Tb(III)-FLA17-AP2], which finally initiates CME pathway in leaf cells. Second, coexisting Tb(III), BaP and Cd(II) in environments are simultaneously transported into leaf cells via Tb(III)-initiated CME pathway, leading to the accumulation of them in leaf cells. Finally, these accumulated hazardous substances simultaneously poison plant leaf cells. These results provide theoretical and experimental bases for elucidating the mechanisms of hazardous substances in environments poisoning plants, evaluating their risks, and protecting ecosystems.
Collapse
Affiliation(s)
- Mengzhu Cheng
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, China 214122
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, China 214122
| | - Yunlong Jiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Yongqiang Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Li Tan
- Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China 201602
| | - Hong Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China 201602
| | - Shingo Nagawa
- Fujian Agriculture and Forestry University-University of California, Riverside Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China 350002
| | - Haiyan Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Zhenbiao Yang
- Fujian Agriculture and Forestry University-University of California, Riverside Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China 350002; Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Qing Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023.
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Life Sciences, Nanjing Normal University, Nanjing, China 210023.
| |
Collapse
|
32
|
Effects of urban atmospheric particulate matter on higher plants using Lycopersicon esculentum as model species. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04745-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractAtmospheric particulate matter (PM) is one of the major environmental concerns in Europe. A wide range of studies has proved the ecotoxic potential of atmospheric particles. PM exerts chemical stress on vegetation by its potentially toxic constituents; however, relatively few studies are available on assessing phytotoxic effects under laboratory conditions. In our study, aqueous extract of particulate matter was prepared and used for treatment. Experiment was following the procedure defined by the No. 227 OECD Guideline for the Testing of Chemicals: Terrestrial Plant Test. Tomato (Lycopersicon esculentum Mill.) plants were used; elucidated toxicity was assessed based on morphological and biochemical endpoints such as biomass, chlorophyll-a and chlorophyll-b, carotenoids, and protein content. Biomass reduction and protein content showed a clear dose–effect relationship; the biomass decreased in comparison with the control (100%) in all test groups (TG) at a steady rate (TG1: 87.73%; TG2: 71.77%; TG3: 67.01%; TG4: 63.63%). The tendency in protein concentrations compared to the control was TG1: 113.61%; TG2: 148.21% TG3: 160.52%; TG4: 157.31%. However, pigments showed a ‘Janus-faced’ effect: nutrient content of the sample caused slight increase at lower doses; actual toxicity became apparent only at higher doses (chlorophyll-a concentration decrease was 84.47% in TG4, chlorophyll-b was 77.17%, and finally, carotene showed 83.60% decrease in TG4).
Collapse
|
33
|
Ma C, Liu F, Xie P, Zhang K, Yang J, Zhao J, Zhang H. Mechanism of Pb absorption in wheat grains. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125618. [PMID: 33735766 DOI: 10.1016/j.jhazmat.2021.125618] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric deposition is the primary source of external environmental media for lead (Pb) influx in wheat grains. However, the mechanisms of Pb grain absorption remains unclear. We explored this mechanism through comparative experiments, involving defoliating leaf blades (TG) and a control group (CK) of field wheat after the anthesis stage. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis displayed that leaves and ears can directly absorb atmospheric deposition Pb through stomata. Compared with CK, the yield, grain Pb content, and grain Pb accumulation of TG wheat were significantly decreased by 13.25%, 22.10%, and 32.58%, respectively. Combined with the Pb isotope analysis, the ear had the highest contribution to grain Pb followed by leaf and root. Simultaneously, the absorption rate of grain Pb demonstrated a dynamic trend of "N" shape. Dominant contribution periods of the root, leaf, and ear organs to grain Pb accumulation were different. Unlike the root system, the contribution of the aboveground to grain Pb increased gradually, and the contribution of leaf and ear to grain Pb were mainly concentrated in the early and late filling stage, respectively. Our findings can provide a theoretical basis for the control of Pb pollution in grains.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Department of Chemistry, University of Camerino, Camerino (MC) 62032, Italy
| | - Pan Xie
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Junxing Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jihong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|