1
|
Wang Q, He W, Zhou Y, Feng R, Wang Y, Liu L, Yuan Y, Dai J, Liu Y, Zhang X. Polystyrene nanoplastics aggravate house dust mite induced allergic airway inflammation through EGFR/ERK-dependent lung epithelial barrier dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118329. [PMID: 40381396 DOI: 10.1016/j.ecoenv.2025.118329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Concerns that airborne micro- and nanoplastics (MNPs) may impair human respiratory health are rising. However, the specific effects of MNPs on allergic asthma remain insufficiently explored. This study developed an allergic asthma model using house dust mite (HDM), and mice were exposed to 50 μg polystyrene nanoparticles (PS-NPs) at three-days interval. Additionally, the effects and potential mechanisms of PS-NPs exposure (25, 50 and 100 μg/mL) on lung epithelial barrier dysfunction were explored using mouse lung epithelial type II (MLE-12) and A549 cells. The pathological changes of airway tissue and the increase of inflammatory response confirmed that exposure to PS-NPs significantly aggravated allergic asthma in mice. Importantly, in the presence of HDM sensitization, the accumulation of PS-NPs in the alveolar region was increased, leading to lung epithelial barrier dysfunction and more Th2-mediated eosinophilic inflammation, characterized by elevated IL-4, IL-13, immunoglobulin E (Ig E) and eosinophils. The activation of the epidermal growth factor receptor (EGFR) pathway and its downstream extracellular regulating kinase (ERK) was investigated using transcriptomic sequencing to elucidate the effects of PS-NPs exposure on lung epithelial barrier dysfunction. Furthermore, an EGFR-specific inhibitor AG1478 was employed to confirm the role of the EGFR/ERK pathway in lung epithelial barrier dysfunction and asthma exacerbation in vitro and in vivo experiments. In conclusion, the molecular mechanism by which PS-NPs aggravates asthma in mice was elucidated, which helps to improve the understanding of the health effects of PS-NPs and lays a theoretical foundation for addressing the health risks posed by PS-NPs.
Collapse
Affiliation(s)
- Qing Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wen He
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Rui Feng
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, China
| | - Yingwen Wang
- Department of Nursing, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Lijuan Liu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yuan Yuan
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jiajia Dai
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200032, China.
| | - Xiaobo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Center for Pediatric Clinical Quality Control of Shanghai, Shanghai 201102, China.
| |
Collapse
|
2
|
Chen S, Fang L, Yang T, Li Z, Zhang M, Wang M, Lan T, Dong J, Lu Z, Li Q, Luo Y, Yang B. Unveiling the systemic impact of airborne microplastics: Integrating breathomics and machine learning with dual-tissue transcriptomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137781. [PMID: 40022938 DOI: 10.1016/j.jhazmat.2025.137781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Airborne microplastics (MPs) pose significant respiratory and systemic health risks upon inhalation; however, current assessment methods remain inadequate. This study integrates breathomics and transcriptomics to establish a non-invasive approach for evaluating MP-induced damage to the lungs and heart. C57BL/6 mice were exposed to polystyrene MPs (0.1 μm, 2 μm, and 10 μm), and their exhaled volatile organic compounds (VOCs) were analyzed using photoinduced associative ionization time-of-flight mass spectrometry. Machine learning algorithms identified hydrogen sulfide, acetone, acrolein, propionitrile, and butyronitrile as key VOC biomarkers, linking MP exposure to oxidative stress and metabolic dysregulation. Transcriptomic analysis further revealed significant gene expression alterations in pulmonary and cardiac tissues, implicating immune dysregulation, metabolic disturbance, and cardiac dysfunction. Pathway enrichment analysis, supported by histological and immunohistochemical validation, confirmed pulmonary inflammation and cardiac injury. By integrating exhaled biomarker profiling with transcriptomic insights, this study advances non-invasive detection strategies for MP-related health effects, offering valuable prospects for public health monitoring and early diagnosis.
Collapse
Affiliation(s)
- Siwei Chen
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems. Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Teng Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China.
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Meng Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Ting Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Dong
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qirun Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwei Luo
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Vailionytė A, Uogintė I, Pajarskienė J, Bagdonas E, Jelinskas T, Ignatjev I, Byčenkienė S, Aldonytė R. In vitro effects of aged low-density polyethylene micro(nano)plastic particles on human airway epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126186. [PMID: 40185180 DOI: 10.1016/j.envpol.2025.126186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/13/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Airborne micro(nano)plastic (MNP) pollution has emerged as a major global concern due to its increasingly worrying adverse health effects. Environmental weathering and UV irradiation of plastic waste, together with tire wear, generate airborne MNPs with irregular shapes and varied sizes, with low-density polyethylene (LDPE) being the predominant plastic type. However, knowledge of MNPs' toxicological effects remains scarce, as current in vitro research mainly focuses on commercial polystyrene beads. In this study, we investigated for the first time the toxicological effects of environmentally relevant aged LDPE MNPs on human bronchial epithelial cells (BEAS-2B). UV-aged LDPE fragments of irregular sizes and shapes were used to mimic real atmospheric particles, and BEAS-2B cells were exposed to 10-1000 μg/cm2 of LDPE MNPs. Our results showed that MNPs were internalized by BEAS-2B cells and promoted epithelial-to-mesenchymal transition (EMT), characterized by reduced β-catenin and increased vimentin expression, enhanced motility, and disturbed cell cycle. Moreover, exposure to aged LDPE MNPs significantly increased intracellular ROS levels and reduced cell proliferation rate at the highest dose. LDPE MNPs triggered oxidative stress in BEAS-2B cells through activation of the NRF2 signaling pathway, with impaired autophagic flux indicated by increased expression of p62 and LC3A/B. Importantly, LDPE MNP exposure significantly increased the secretion of pro-inflammatory mediators (CD62E, CD62P, ICAM-1, IL-6, IL-8), accompanied by suppressive effects on mitochondrial respiration and glycolytic function at 1000 μg/cm2. Taken together, our findings suggest that inhalation of LDPE MNPs could impact the morphology and function of the human airway epithelium and respiratory health in general.
Collapse
Affiliation(s)
- Agnė Vailionytė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, 08406, Lithuania; Department of Nanoengineering, State Research Institute Center for Physical Sciences and Technology, Vilnius, 02300, Lithuania.
| | - Ieva Uogintė
- Department of Environmental Research, State Research Institute Center for Physical Sciences and Technology, Vilnius, 10257, Lithuania
| | - Justina Pajarskienė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, 08406, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, 08406, Lithuania
| | - Tadas Jelinskas
- Department of Nanoengineering, State Research Institute Center for Physical Sciences and Technology, Vilnius, 02300, Lithuania
| | - Ilja Ignatjev
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Vilnius, 10257, Lithuania
| | - Steigvilė Byčenkienė
- Department of Environmental Research, State Research Institute Center for Physical Sciences and Technology, Vilnius, 10257, Lithuania
| | - Rūta Aldonytė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, 08406, Lithuania
| |
Collapse
|
4
|
Dennis J, Arulraj D, Mistri TK. Unseen toxins: Exploring the human health consequences of micro and nanoplastics. Toxicol Rep 2025; 14:101955. [PMID: 40092045 PMCID: PMC11909754 DOI: 10.1016/j.toxrep.2025.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Micro and nanoplastics (MNPs) contamination constitute a pressing global issue with considerable ramifications for human health. Particles originating from the decomposition of plastic waste permeate ecosystems and disturb biological systems, especially the gastrointestinal (GI) tract. MNPs compromise the intestinal barrier, provoke oxidative stress, inflammation, and immunological dysfunction, and modify gut microbiota, which is associated with metabolic problems, inflammatory bowel disease (IBD), and colorectal cancer. MNPs traverse biological barriers beyond the gastrointestinal system, including the blood-brain barrier, colonic mucus layer, and placental barrier, resulting in accumulation in essential organs such as the liver, kidneys, and brain. This results in inflammatory damage, metabolic abnormalities, and oxidative stress, specifically affecting liver disease due to microbiota metabolite alteration and nephrotoxicity in the kidneys. Airborne MNPs pose an additional risk to respiratory health, aggravating ailments such as asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. At-risk groups, such as pregnant women, newborns, and the elderly, encounter increased dangers, as MNPs traverse the placental barrier and may induce neurological and intergenerational health consequences. These particles function as vectors for environmental pollutants, exacerbating their cardiovascular and neurological effects. Addressing the long-term consequences of MNP exposure necessitates interdisciplinary collaboration to enhance comprehension and alleviate their growing risk to human health.
Collapse
Affiliation(s)
- John Dennis
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, SRM Nagar, Chennai, Tamil Nadu 603203, India
| | - Divya Arulraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, SRM Nagar, Chennai, Tamil Nadu 603203, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, SRM Nagar, Chennai, Tamil Nadu 603203, India
| |
Collapse
|
5
|
Gagan S, Dodero AJ, Olin M, Liu R, Cheng Z, Niu S, Kim Y, Lambe AT, Chen Y, China S, Zhang Y. Characterizing Atmospheric Oxidation and Cloud Condensation Nuclei Activity of Polystyrene Nanoplastic Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40397458 DOI: 10.1021/acs.est.4c11738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Nanoplastic particles (NPPs) are emerging anthropogenic pollutants and have been detected in urban, rural, and remote areas. Characterizing the lifetime, fate, and cloud-forming potential of atmospheric NPPs improves our understanding of their environmental processes and climate impacts. This study provides the first quantified heterogeneous reaction rate and lifetime of polystyrene (PS) NPPs against common atmospheric oxidants. The atomized PS NPPs were introduced to a Potential Aerosol Mass (PAM) oxidation flow reactor with ·OH exposure of 0 to 1.5 × 1012 molecules cm-3 s, equivalent to atmospheric exposure from 0 to 18 days, assuming an ambient ·OH concentration of 1 × 106 cm-3. The decay of the PS mass concentration was quantified by monitoring tracer ions, C6H6+ (m/z 78) and C8H8+ (m/z 104), by using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The pseudo-first-order rate constant of PS particles reacting with ·OH, kOH, was determined to be (3.2 ± 0.7) × 10-13 cm3 molecule-1 s-1, equivalent to a half-lifetime of a few hours to ∼80 days in the atmosphere, depending on particle sizes and hydroxyl radical concentrations. The hygroscopicity of 100 nm PS NPPs at different ·OH exposure levels was quantified using a cloud condensation nuclei counter (CCNC), showing a twofold increase of hygroscopicity parameter upon 27 days of atmospheric photooxidation.
Collapse
Affiliation(s)
- Sahir Gagan
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Alana J Dodero
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Miska Olin
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Ruizhe Liu
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Zezhen Cheng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sining Niu
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Yeaseul Kim
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew T Lambe
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Yuzhi Chen
- Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Swarup China
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yue Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Cui Y, Wu Y, Shi P, Ni Y, Zeng H, Zhang Z, Zhao C, Sun W, Yi Q. Mitigating microplastic-induced organ Damage: Mechanistic insights from the microplastic-macrophage axes. Redox Biol 2025; 84:103688. [PMID: 40412021 DOI: 10.1016/j.redox.2025.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/10/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
We live in a world increasingly dominated by plastic, leading to the generation of microplastic particles that pose significant global health concerns. Microplastics can enter the body via ingestion, inhalation, and direct contact, accumulating in various tissues and potentially causing harm. Despite this, the specific cellular mechanisms and signaling pathways involved remain poorly understood. Macrophages are essential in absorbing, distributing, and eliminating microplastics, playing a key role in the body's defense mechanisms. Recent evidence highlights oxidative stress signaling as a key pathway in microplastic-induced macrophage dysfunction. The accumulation of microplastics generates reactive oxygen species (ROS), disrupting normal macrophage functions and exacerbating inflammation and organ damage. This review serves as the first comprehensive examination of the interplay between microplastics, macrophages, and oxidative stress. It discusses how oxidative stress mediates macrophage responses to microplastics and explores the interactions with gut microbiota. Additionally, it reviews the organ damage resulting from alterations in macrophage function mediated by microplastics and offers a novel perspective on the defense, assessment, and treatment of microplastic-induced harm from the viewpoint of macrophages.
Collapse
Affiliation(s)
- Yinxing Cui
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China; Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Yuqi Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Pan Shi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Yan Ni
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Huaying Zeng
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Zhao Zhang
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Chunling Zhao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China.
| |
Collapse
|
7
|
Dar SA, Gani KM. Microplastic pollution in the glaciers, lakes, and rivers of the Hindu Kush Himalayas: Knowledge gaps and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179304. [PMID: 40203747 DOI: 10.1016/j.scitotenv.2025.179304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/06/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
The Hindu Kush Himalayas (HKH), often referred to as the Third Pole and the Water Tower of Asia, represents a vital geo-ecological asset, providing essential services to millions of people. However, this once-pristine environment is increasingly threatened by the influx of microplastics. This study provides a comprehensive overview of the current state of microplastic pollution in the HKH region, identifies key research gaps, and highlights areas for future research. A review of existing literature reveals the lack of standardized protocols for microplastics analysis, which hinders cross-study comparisons. The reported microplastic abundances vary widely across environmental matrices including 0.14-31,200 MPs m-3 in river water, 0.072-26,000 MPs kg-1 in river sediments, 180-5500 MPs kg-1 in lake sediments, 55-2380 MPs kg-1 in lake shoreline sediments, 30-871.34 MPs L-1 in glaciers, and 2.23-130 MPs L-1 in lake surface water. Polymer characterization using spectroscopic techniques has identified 54 polymer types across different environmental matrices in the HKH region with polypropylene (PP) being the most dominant, followed by polyethylene (PE), and polystyrene (PS). The sources of microplastics in the HKH region include both local activities and long-range atmospheric transport. Although research on microplastics in the region has gained momentum in recent years, significant knowledge gaps remain regarding their fate, degradation mechanisms, and environmental impacts. Further studies are essential to investigate the role of microplastics as light-absorbing impurities that may accelerate glacier melting, as well as their implications for biodiversity and human health in the region.
Collapse
Affiliation(s)
- Shahid Ahmad Dar
- Department of Civil Engineering, National Institute of Technology Srinagar, J&K 190006, India.
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology Srinagar, J&K 190006, India; Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa.
| |
Collapse
|
8
|
Liu S, Zheng J, Lan W, Yang Z, Li M, Li J, Yu J, Yang S, Du J, Dong R, Lin Y. Microplastics exposed by respiratory tract and exacerbation of community-acquired pneumonia: The potential influences of respiratory microbiota and inflammatory factors. ENVIRONMENT INTERNATIONAL 2025; 199:109485. [PMID: 40252548 DOI: 10.1016/j.envint.2025.109485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The relationships between microplastics (MP) exposure through respiratory and exacerbation of community-acquired pneumonia (CAP), as well as the potential influences of respiratory microbiota and inflammatory factors remain unknown in adults. Therefore, we conducted a cross-sectional study involving 50 non-severe CAP (NSCAP) and severe CAP (SCAP) patients to examine the associations of MP exposure in sputum (SP) and bronchoalveolar lavage fluid (BALF) samples with SCAP risk, and the underlying influences of respiratory microbiota and inflammatory factors. The average concentration of total MP was 23.24 μg/g dw and 4.49 μg/g dw in SP and BALF samples, with the detection rates of 98 % and 94 %. Participants who performing housework often or sedentary time ≤ 5h exhibited a higher proportion of high exposure to MP. Multivariable logistic regression and weighted quantile sum regression models showed the significantly positive relationships of single type or overall MP exposure with SCAP risk. Correlation analysis revealed that MP concentrations in BALF samples were significantly associated with multiple respiratory microbiota and inflammatory factors, particularly with the reduction in α-diversity indices of the respiratory microbiota. Our findings demonstrated that respiratory exposure to MP may cause the risk increase of SCAP, along with the alterations of respiratory microbiota and inflammatory factors. It is recommended that patients with CAP should reduce the respiratory exposure to MP for preventing the exacerbation of CAP in clinical practice.
Collapse
Affiliation(s)
- Shaojie Liu
- Department of Clinical Nutrition, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | | | - Wenbin Lan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Zhiping Yang
- Department of Clinical Nutrition, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Meizhen Li
- Department of Clinical Nutrition, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Jing Li
- Zhongshan Community Health Care Center, Songjiang District, Shanghai 201613, China
| | - Jianguo Yu
- Zhongshan Community Health Care Center, Songjiang District, Shanghai 201613, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 200023, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200023, China
| | - Ruihua Dong
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yihua Lin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| |
Collapse
|
9
|
Chen Y, Chen J, Guo J, Yao M, Liu Y, Qian J, Ma Q. Release of microplastics during dental procedures and denture wear: Impact on dental personnel and patients. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138463. [PMID: 40319856 DOI: 10.1016/j.jhazmat.2025.138463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Plastic products are widely used in modern dentistry, including dental instruments and resin-based materials. In recent years, microplastics (MPs) that are generated from plastic products have been demonstrated to pose negative impacts on human health. However, the possible exposure of MP during dental procedures has been rarely explored. This study aims to assess the MP exposure faced by both dental personnel and patients via simulating the wear and cleaning procedures of dentures, as well as the grinding of resin-based materials under clinical settings. Additionally, environmental samples of the dental clinic were collected to determine the types and concentrations of MP settlement. The biological toxicity of the particles has also been evaluated. Results showed that denture releases MP particles into artificial saliva during soaking and cleaning processes. During the grinding of resin-based materials, MP could be detected in settlements with decreased concentration as the increase of distance from 25 cm to 100 cm. A substantial accumulation of particles was observed in the clinic within a single day. Grinding-generated MPs exhibited biological toxicity toward oral keratinocyte cells and triggered inflammation in macrophages at concentrations that could be encountered in clinical exposure. This study confirms the presence of MP exposure during dental procedures, providing valuable insights for the development of improved management regulations and pollution control measures in dental practice.
Collapse
Affiliation(s)
- Yan Chen
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jian Chen
- Stomatological Hospital affiliated Suzhou Vocational Health College, Suzhou, Jiangsu 215002, China
| | - Jingyao Guo
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Minhui Yao
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yue Liu
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jieshu Qian
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, China
| | - Qian Ma
- Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
10
|
Ho CM, Feng W, Li X, Ngien SK, Yu X, Song F, Yang F, Liao H. Microplastic distribution and its implications for human health through marine environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125427. [PMID: 40252426 DOI: 10.1016/j.jenvman.2025.125427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Microplastics are pervasive pollutants in the ocean, threatening ecosystems and human health through bioaccumulation and toxicological effects. This review synthesizes recent findings on microplastic distribution, trophic transfer, and human health impacts. Key findings indicate that microplastic abundance is highest in the Indian and Pacific Oceans, particularly in seawater and sediment. Morphologically, fibers and fragments dominate, with polypropylene, polyethylene, and polyester being the most prevalent polymers. Smaller particles (<1 mm) undergo long-range transport via ocean currents, while biofouling accelerates vertical sinking. Trophic transfer studies confirm microplastic ingestion across marine food webs. Human exposure is associated with seafood consumption, inhalation of airborne particles, and potential dermal contact, particularly in marine environments. These exposures can lead to adverse health effects, including inflammation, organ damage, respiratory issues, oxidative stress, and metabolic disruptions. Finally, this review explores potential strategies for minimizing human exposure to microplastic pollution in marine environments, paving the way for further research in this critical area.
Collapse
Affiliation(s)
- Chia Min Ho
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Xiaofeng Li
- China Hebei Construction and Geotechnical Investigation Group Ltd., Shijiazhuang, 050227, China
| | - Su Kong Ngien
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300, Pahang, Malaysia
| | - Xuezheng Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
11
|
Martin WJ, Mirmozaffari Y, Cook LM, Benaim EH, Monk AS, Armstrong M, Vuncannon J, Klatt-Cromwell C, Ebert CS, Thorp BD, Senior BA, Raz Yarkoni T, Kimple AJ. The Role of the Environment and Occupational Exposures in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2025; 25:16. [PMID: 40067563 DOI: 10.1007/s11882-025-01197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 05/13/2025]
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize the current literature and evaluate how different environmental exposures may contribute to the development and course of chronic rhinosinusitis (CRS). The review aims to explore the relationship between host factors and environmental exposures in the pathogenesis of CRS. RECENT FINDINGS Recent studies have helped establish the role of air pollutants, tobacco smoke, occupational exposures, and microplastics in the pathogenesis of CRS. These exposures have been shown to cause epithelial dysfunction and promote inflammation through different mechanisms and to different degrees. The pathogenesis of CRS is complex and multifactorial, with environmental exposures playing a key role in its onset and exacerbation. Research indicates that pollutants can damage the sinonasal epithelial barrier and disrupt the microbiome, leading to increased inflammation. A deeper understanding of the mechanisms behind this inflammatory process and its link to environmental exposures could enhance strategies for preventing and treating CRS.
Collapse
Affiliation(s)
- W Jared Martin
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Yasine Mirmozaffari
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lauren M Cook
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ezer H Benaim
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Aurelia S Monk
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael Armstrong
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jackson Vuncannon
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Cristine Klatt-Cromwell
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Charles S Ebert
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brian D Thorp
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brent A Senior
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Tom Raz Yarkoni
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam J Kimple
- Department of Otolaryngology and Head & Neck Surgery, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
Bianchi MG, Casati L, Sauro G, Taurino G, Griffini E, Milani C, Ventura M, Bussolati O, Chiu M. Biological Effects of Micro-/Nano-Plastics in Macrophages. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:394. [PMID: 40072197 PMCID: PMC11901536 DOI: 10.3390/nano15050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The environmental impact of plastics is worsened by their inadequate end-of-life disposal, leading to the ubiquitous presence of micro- (MPs) and nanosized (NPs) plastic particles. MPs and NPs are thus widely present in water and air and inevitably enter the food chain, with inhalation and ingestion as the main exposure routes for humans. Many recent studies have demonstrated that MPs and NPs gain access to several body compartments, where they are taken up by cells, increase the production of reactive oxygen species, and lead to inflammatory changes. In most tissues, resident macrophages engage in the first approach to foreign materials, and this interaction largely affects the subsequent fate of the material and the possible pathological outcomes. On the other hand, macrophages are the main organizers and controllers of both inflammatory responses and tissue repair. Here, we aim to summarize the available information on the interaction of macrophages with MPs and NPs. Particular attention will be devoted to the consequences of this interaction on macrophage viability and functions, as well as to possible implications in pathology.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Lavinia Casati
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giulia Sauro
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Erika Griffini
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Christian Milani
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Marco Ventura
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| |
Collapse
|
13
|
Lee SE, Kim DY, Jeong TS, Park YS. Micro- and Nano-Plastic-Induced Adverse Health Effects on Lungs and Kidneys Linked to Oxidative Stress and Inflammation. Life (Basel) 2025; 15:392. [PMID: 40141737 PMCID: PMC11944196 DOI: 10.3390/life15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Micro- and nano-plastics (MNPs) are small plastic particles that result from the breakdown of larger plastics. They are widely dispersed in the environment and pose a threat to wildlife and humans. MNPs are present in almost all everyday items, including food, drinks, and household products. Air inhalation can also lead to exposure to MNPs. Research in animals indicates that once MNPs are absorbed, they can spread to various organs, including the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys, and even the brain by crossing the blood-brain barrier. Furthermore, MPs can transport persistent organic pollutants or heavy metals from invertebrates to higher levels in the food chain. When ingested, the additives and monomers that comprise MNPs can disrupt essential biological processes in the human body, thereby leading to disturbances in the endocrine and immune systems. During the 2019 coronavirus (COVID-19) pandemic, there was a significant increase in the global use of polypropylene-based face masks, leading to insufficient waste management and exacerbating plastic pollution. This review examines the existing research on the impact of MNP inhalation on human lung and kidney health based on in vitro and in vivo studies. Over the past decades, a wide range of studies suggest that MNPs can impact both lung and kidney tissues under both healthy and diseased conditions. Therefore, this review emphasizes the need for additional studies employing multi-approach analyses of various associated biomarkers and mechanisms to gain a comprehensive and precise understanding of the impact of MNPs on human health.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Yun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Taek Seung Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
14
|
Agache I, Annesi-Maesano I, Cecchi L, Biagioni B, Chung F, D'Amato G, Damialis A, Del Giacco S, Dominguez Ortega J, Galán C, Gilles S, Holgate S, Jeebhay M, Kazadzis S, Nadeau K, Papadopoulos NG, Quirce S, Sastre J, Traidl-Hoffmann C, Walusiak-Skorupa J, Zemelka-Wiacek M, Jutel M, Akdis CA. EAACI Guidelines on Environmental Science for Allergy and Asthma-Recommendations on the Impact of Indoor Air Pollutants on the Risk of New-Onset Asthma and on Asthma-Related Outcomes. Allergy 2025; 80:651-676. [PMID: 40018799 DOI: 10.1111/all.16502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
The EAACI Guidelines used the GRADE approach to evaluate the impact of major indoor air pollutants (dampness and mould, cleaning agents, volatile organic compounds and pesticides) on the risk of new-onset asthma and on asthma-related outcomes. The guideline also acknowledges the synergies among indoor air pollutants and other components of the indoor exposome (allergens, viruses, endotoxins). Very low to low certainty of evidence was found for the association between exposure to indoor pollutants and increased risk of new-onset asthma and asthma worsening. Only for mould exposure there was moderate certainty of evidence for new-onset asthma. Due to the quality of evidence, conditional recommendations were formulated on the risk of exposure to all indoor pollutants. Recommendations are provided for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management. For policymakers and regulators this evidence-informed guideline supports setting legally binding standards and goals for indoor air quality at international, national and local levels. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but community and governmental measures for improved indoor air quality are needed to achieve significant impact.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Allergology and Clinical Immunology, S Giovanni di Dio Hospital, Florence, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit, San Giovanni di Dio Hospital, Florence, Italy
| | | | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- Medical School of Respiratory Diseases, University of Naples Federico II, Naples, Italy
| | - Athanasios Damialis
- Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Javier Dominguez Ortega
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Carmen Galán
- Inter-University Institute for Earth System Research (IISTA), international Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Stelios Kazadzis
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies; Chair, Department of Environmental Health, Interim Director, Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikos G Papadopoulos
- Department of Allergy, second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Lydia Becker Institute, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Insitute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Magdalena Zemelka-Wiacek
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
15
|
Paplińska-Goryca M, Misiukiewicz-Stępień P, Wróbel M, Mycroft-Rzeszotarska K, Adamska D, Rachowka J, Królikowska M, Goryca K, Krenke R. The impaired response of nasal epithelial cells to microplastic stimulation in asthma and COPD. Sci Rep 2025; 15:4242. [PMID: 39905077 PMCID: PMC11794662 DOI: 10.1038/s41598-025-87242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Microplastic particles from the air are inhaled and accumulate in the lungs, potentially causing immunological reactions and airway tissue injury. This study aimed to evaluate the biological effects of polyamide fibres on nasal epithelium co-cultivated with macrophages in control, asthma, and COPD groups. Nasal epithelial cells alone or in co-culture with monocyte-derived macrophages were exposed to polyamide fibres for 48 h. We identified 8 differentially expressed genes (DEGs) in controls, 309 DEGs in asthma (including ANKRD36C, BCL2L15, FCGBP, and IL-19), and 22 DEGs in COPD (e.g., BCL2L15, IL-19, CAPN14, PGBD5, PTPRH), particularly in epithelial/moMφ co-cultures. Microplastic exposure induced inflammatory cytokine secretion only for IL-8 production in controls (epithelial/ moMφs co-culture) and asthmatic (monoculture) epithelial cells in contrast to PM2.5, which was a strong inflammatory inducer. Gene Ontology analysis revealed that microplastic exposure affected sterol and cholesterol biosynthesis, secondary alcohol metabolism, and acetyl-CoA metabolism in asthma, and cell motility, chemokine signaling, leukocyte migration, and chemotaxis in COPD. Microplastic stimulation altered the response of airway epithelial cells in obstructive lung diseases differently than in controls, linking to Th2 inflammation, stress response modulation, and carcinogenesis. Asthmatic and COPD epithelial cells are more susceptible to damage from microplastic fibre exposure.
Collapse
Affiliation(s)
- Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.
| | - Paulina Misiukiewicz-Stępień
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Monika Wróbel
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Katarzyna Mycroft-Rzeszotarska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Dorota Adamska
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Julia Rachowka
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | - Krzysztof Goryca
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| |
Collapse
|
16
|
Xu M, Chen J, Gao L, Cai S, Dong H. Microplastic exposure induces HSP90α secretion and aggravates asthmatic airway remodeling via PI3K-Akt-mTOR pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117828. [PMID: 39923560 DOI: 10.1016/j.ecoenv.2025.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Microplastics pollution has raised a considerable awareness due to their extensive distribution in the environment. It has potential side effects on human health. Microplastics can enter the human respiratory system, then deposit in the lung, destroying the structure of the bronchus and alveoli, and causing pulmonary inflammation, mucus production, and airway hyperresponsiveness, leading to the aggravation of asthma. Nevertheless, the underlying mechanism remains elusive. There are several cytokines involved in the inflammatory response of asthma. Heat shock protein 90α(HSP90α) is one of cytokines involving in inflammation which is a member of the HSPs family. The aim of this study is to explore the mechanism by which microplastics influence the secretion of HSP90α and the progression of asthma. Initially, we found that microplastics were destroyed airway epithelial barrier, resulting in inherent dysfunction in the secretion of HSP90α. Then, microplastics were proved to activate PI3K-Akt-mTOR pathway by prompting airway epithelial cells secrete HSP90α and proliferation of airway smooth muscle cells(ASMCs), leading to airway narrowing and hypersensitivity. 1G6-D7 is a monoclonal antibody to HSP90, which can reverse the pulmonary inflammation infiltration, mucus production, and airway hyperresponsiveness(AHR). Overall, these finding suggested that microplastics elicited inflammation via the PI3K-Akt-mTOR signaling pathway and stimulated the proliferation of ASMCs. Hence, the present study unveils a novel mechanism responsible for microplastic-induced inflammation and airway hyperreactivity, establishing a basis for further research and risk evaluations of microplastics.
Collapse
Affiliation(s)
- Mingming Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiyuan Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
17
|
Xu Y, Liu L, Ma Y, Wang C, Duan F, Feng J, Yin H, Sun L, Cao Z, Jung J, Li P, Li ZH. Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107215. [PMID: 39706134 DOI: 10.1016/j.aquatox.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
Collapse
Affiliation(s)
- Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
18
|
Zha H, Li S, Zhuge A, Shen J, Yao Y, Chang K, Li L. Hazard assessment of airborne and foodborne biodegradable polyhydroxyalkanoates microplastics and non-biodegradable polypropylene microplastics. ENVIRONMENT INTERNATIONAL 2025; 196:109311. [PMID: 39892168 DOI: 10.1016/j.envint.2025.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/14/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Microplastics (MP) are ubiquitous in the environment, and are toxic to various living organisms. Proper application of biodegradable plastics may alleviate the hazards of conventional non-biodegradable plastics. In the current study, multi-omics analyses were performed to compare the biodegradable polyhydroxyalkanoates (PHA) and non-biodegradable polypropylene (PP) MP for their toxicity on mouse liver and lung. Airborne PHA MP induced nasal microbiome dysbiosis, pulmonary microbiome alteration, pulmonary and serum metabolome disruption, and hepatic transcriptome disturbances, resulting in mild pulmonary toxicity. By contrast, airborne PP MP caused greater alterations in nasal and pulmonary microbiome, pulmonary and serum metabolome, and hepatic transcriptome, resulting in pulmonary and hepatic toxicity. Both foodborne PHA and PP MP caused intestinal microbiome dysbiosis, while foodborne PHA MP caused slighter intestinal and serum metabolome disruption, hepatic transcriptome disturbances and hepatotoxicity (e.g., lower serum aspartate aminotransferase and alanine aminotransferase) compared to foodborne PP MP. Some potential differential biomarkers were determined between PP and PHA MP exposures, i.e., nasal Allobaculum and pulmonary Alloprevotella for airborne PHA; nasal Lactobacillus and pulmonary Acinetobacter for airborne PP; intestinal Faecalibacterium for foodborne PHA; and intestinal unclassified_Erysipelatoclostridiaceae for foodborne PP. The results show that PHA MP can induce less pulmonary and hepatic toxicity compared to PP MP, suggesting PHA is a potential substitution for PP. The findings can benefit the hazard assessment of airborne and foodborne PHA and PP MP.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Hu JQ, Wang CC, Ma RX, Qi SQ, Fu W, Zhong J, Cao C, Zhang XL, Liu GH, Gao YD. Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model. Int Immunopharmacol 2025; 146:113921. [PMID: 39732106 DOI: 10.1016/j.intimp.2024.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects. Due to their hydrophobicity, MPs can act as a carrier for other pollutants, pathogens, and allergens. This carrier effect of MPs may adsorb allergens and thus make the body exposed to MPs and a large number of allergens simultaneously. We hypothesized that co-exposure to inhaled MPs and aeroallergens may promote the development of airway inflammation of asthma by disrupting the airway epithelial barrier. METHODS The effects of co-exposure to Polyethylene microplastics (PE-MPs) and allergens on allergic airway inflammation and airway epithelial barrier were examined in a mouse model of asthma. The mice were divided into four groups: (i) Control group, treated only with PBS; (ii) MP group, exposed to PE-MPs and PBS; (iii) HDM group, mice were sensitized and challenged with HDM, and intranasally treated with PBS; (iv) HDM + MP group, mice were sensitized and challenged with HDM, and intranasally treated with PE-MPs. Histology and ELISA assays were used to evaluate the severity of airway inflammation. FITC-dextran permeability assay, immunofluorescence assay, and RT-PCR were used to evaluate the airway epithelial barrier function and the expression of relevant molecules. Transcriptomics analysis with lung tissue sequencing was conducted to identify possible pathways responsible for the effects of PE-MPs. RESULTS Co-exposure of mice to PE-MPs and HDM induced a higher degree of inflammatory cell infiltration, bronchial goblet cell hyperplasia, collagen deposition, allergen sensitization, and Th2 immune bias than exposure to HDM alone. Co-exposure to PE-MPs and HDM aggravated oxidative stress injury in the lung and the production of cytokine IL-33 in the BALF. In addition, co-exposure of mice to PE-MPs and HDM resulted in a more pronounced decrease in the expression of relevant molecules of the airway epithelial barrier and more significant increase in the permeability of airway epithelia. Lung tissue transcriptomics analysis revealed that PE-MPs exposure was associated with CXCL1 signaling and neutrophil activation. CONCLUSION Co-exposure to MPs and HDM may promote airway inflammation and airway epithelial barrier disruption and induce immune responses characterized by CXCL1 signaling and neutrophilic inflammation.
Collapse
Affiliation(s)
- Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chang-Chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ru-Xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shi-Quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
20
|
Niari MH, Ghobadi H, Amani M, Aslani MR, Fazlzadeh M, Matin S, Takaldani AHS, Hosseininia S. Characteristics and assessment of exposure to microplastics through inhalation in indoor air of hospitals. AIR QUALITY, ATMOSPHERE & HEALTH 2025; 18:253-262. [DOI: 10.1007/s11869-024-01640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024]
|
21
|
Ghosh A, Gorain B. Mechanistic insight of neurodegeneration due to micro/nano-plastic-induced gut dysbiosis. Arch Toxicol 2025; 99:83-101. [PMID: 39370473 DOI: 10.1007/s00204-024-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Despite offering significant conveniences, plastic materials contribute substantially in developing environmental hazards and pollutants. Plastic trash that has not been adequately managed may eventually break down into fragments caused by human or ecological factors. Arguably, the crucial element for determining the biological toxicities of plastics are micro/nano-forms of plastics (MPs/NPs), which infiltrate the mammalian tissue through different media and routes. Infiltration of MPs/NPs across the intestinal barrier leads to microbial architectural dysfunction, which further modulates the population of gastrointestinal microbes. Thereby, it triggers inflammatory mediators (e.g., IL-1α/β, TNF-α, and IFN-γ) by activating specific receptors located in the gut barrier. Mounting evidence indicates that MPs/NPs disrupt host pathophysiological function through modification of junctional proteins and effector cells. Moreover, the alteration of microbial diversity by MPs/NPs causes the breakdown of the blood-brain barrier and translocation of metabolites (e.g., SCFAs, LPS) through the vagus nerve. Potent penetration affects the neuronal networks, neuronal protein accumulation, acceleration of oxidative stress, and alteration of neurofibrillary tangles, and hinders distinctive communicating pathways. Conclusively, alterations of these neurotoxic factors are possibly responsible for the associated neurodegenerative disorders due to the exposure of MPs/NPs. In this review, the hypothesis on MPs/NPs associated with gut microbial dysbiosis has been interlinked to the distinct neurological impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
22
|
Gautam RK, Laltanpuia, Singh N, Kushwaha S. A particle of concern: explored and proposed underlying mechanisms of microplastic-induced lung damage and pulmonary fibrosis. Inhal Toxicol 2025; 37:1-17. [PMID: 39932476 DOI: 10.1080/08958378.2025.2461048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE In the past decade, microplastics (MPs) have drawn significant attention as widespread environmental contaminants, with research increasingly highlighting their harmful effects on respiratory health in aquatic and terrestrial organisms. Findings revealed microplastics in human lung tissues, raising concerns about their potential role in damaging lung tissue integrity and contributing to pulmonary fibrosis-a chronic inflammatory condition characterized by scarring of lung epithelial tissues due to accumulated extracellular matrix, triggered by factors such as alcohol, pathogens, genetic mutations, and environmental pollutants. OBJECTIVE In this review, we explore both well-studied and lesser-studied mechanisms and signaling pathways, aiming to shed light on how microplastics might act as mediators that activate distinct, often overlooked signaling cascades. MATERIALS AND METHODS This review searched PubMed and Google Scholar using keywords like "plastic," "microplastic," "lung fibrosis," "pulmonary system," "exposure route," and "signaling pathways," combined with "OR" and "AND" in singular and plural forms. RESULTS These pathways could not only induce lung damage but also play a significant role in the development of pulmonary fibrosis. DISCUSSION AND CONCLUSIONS These signaling pathways could also be targeted to reduce microplastic-induced pulmonary fibrosis, opening new avenues for future treatments.
Collapse
Affiliation(s)
- Rohit Kumar Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Laltanpuia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Nishant Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
23
|
Masciarelli E, Casorri L, Di Luigi M, Beni C, Valentini M, Costantini E, Aielli L, Reale M. Microplastics in Agricultural Crops and Their Possible Impact on Farmers' Health: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 22:45. [PMID: 39857498 PMCID: PMC11765068 DOI: 10.3390/ijerph22010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
The indiscriminate use of plastic products and their inappropriate management and disposal contribute to the increasing presence and accumulation of this material in all environmental zones. The chemical properties of plastics and their resistance to natural degradation lead over time to the production of microplastics (MPs) and nanoplastics, which are dispersed in soil, water, and air and can be absorbed by plants, including those grown for food. In agriculture, MPs can come from many sources (mulch film, tractor tires, compost, fertilizers, and pesticides). The possible effects of this type of pollution on living organisms, especially humans, increase the need to carry out studies to assess occupational exposure in agriculture. It would also be desirable to promote alternative materials to plastic and sustainable agronomic practices to protect the safety and health of agricultural workers.
Collapse
Affiliation(s)
- Eva Masciarelli
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Via R. Ferruzzi, 38/40, 00143 Rome, Italy; (E.M.); (L.C.)
| | - Laura Casorri
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Via R. Ferruzzi, 38/40, 00143 Rome, Italy; (E.M.); (L.C.)
| | - Marco Di Luigi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance Against Accidents at Work, Via di Fontana Candida, 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Claudio Beni
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Economics, Via della Pascolare, 16, Monterotondo, 00015 Rome, Italy;
| | - Massimiliano Valentini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Via Ardeatina, 546, 00178 Rome, Italy;
| | - Erica Costantini
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| | - Lisa Aielli
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| | - Marcella Reale
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| |
Collapse
|
24
|
Ruggieri L, Amato O, Marrazzo C, Nebuloni M, Dalu D, Cona MS, Gambaro A, Rulli E, La Verde N. Rising Concern About the Carcinogenetic Role of Micro-Nanoplastics. Int J Mol Sci 2024; 26:215. [PMID: 39796071 PMCID: PMC11720132 DOI: 10.3390/ijms26010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, awareness regarding micro-nanoplastics' (MNPs) potential effects on human health has progressively increased. Despite a large body of evidence regarding the origin and distribution of MNPs in the environment, their impact on human health remains to be determined. In this context, there is a major need to address their potential carcinogenic risks, since MNPs could hypothetically mediate direct and indirect carcinogenic effects, the latter mediated by particle-linked chemical carcinogens. Currently, evidence in this field is scarce and heterogeneous, but the reported increased incidence of malignant tumors among younger populations, together with the ubiquitous environmental abundance of MNPs, are rising a global concern regarding the possible role of MNPs in the development and progression of cancer. In this review, we provide an overview of the currently available evidence in eco-toxicology, as well as methods for the identification and characterization of environmental MNP particulates and their health-associated risks, with a focus on cancer. In addition, we suggest possible routes for future research in order to unravel the carcinogenetic potential of MNP exposure and to understand prognostic and preventive implications of intratumoral MNPs.
Collapse
Affiliation(s)
- Lorenzo Ruggieri
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Ottavia Amato
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Cristina Marrazzo
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Manuela Nebuloni
- Pathology Unit, Luigi University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy;
| | - Davide Dalu
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Maria Silvia Cona
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Anna Gambaro
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Eliana Rulli
- Methodology for Clinical Research Laboratory, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Nicla La Verde
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| |
Collapse
|
25
|
Jung CC, Chao YC, Hsu HT, Gong DW. Spatial and seasonal variations of atmospheric microplastics in high and low population density areas at the intersection of tropical and subtropical regions. ENVIRONMENTAL RESEARCH 2024; 263:119996. [PMID: 39284491 DOI: 10.1016/j.envres.2024.119996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
There is limited information regarding spatial and seasonal variations of atmospheric microplastics (MPs) and factors influencing MPs at the intersection of tropical and subtropical regions. A one-year study was conducted at sites in a high-population-density village (HPDV) and a low-population-density village (LPDV) in Taiwan to investigate the characteristics and influencing factors of airborne MPs. The predominant shapes, sizes, and polymer compositions of MPs were fragments, 3 to 25 and 26-50 μm, and polyamide at both sites. Seasonal variation in MP morphologies was not significant. Average MP concentrations were 2.20 ± 2.97 particles/m3 and 1.92 ± 2.35 particles/m3 at the HPDV and LPDV sites, respectively, and did not differ significantly. Higher concentrations and smaller sizes of MPs were found during the summer at both sites, while the predominant wind direction was southerly or southwesterly. In samples with temperatures exceeding 25 °C, the temperature was positively associated with MP concentrations at both the HPDV and LPDV sites. These results reflect that temperature influences the variations in the concentrations and sizes of MPs at our study site. Future research should consider the adverse risks of MP inhalation during the hot season. Moreover, when sites with different population densities and levels of human activity are closed, MP concentrations will not differ significantly between these areas since airflow can transport these particles from high-population-density areas into low-population-density areas in a short time.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City, 40640, Taiwan.
| | - Yuan-Chen Chao
- Department of Occupational Safety and Health, China Medical University, Taichung City, 40640, Taiwan.
| | - Hui-Tsung Hsu
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City, 40640, Taiwan.
| | - Da-Wei Gong
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City, 40640, Taiwan.
| |
Collapse
|
26
|
Zhang S, Sun J, Zhou Q, Feng X, Yang J, Zhao K, Zhang A, Zhang S, Yao Y. Microplastic contamination in Chinese topsoil from 1980 to 2050. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176918. [PMID: 39447912 DOI: 10.1016/j.scitotenv.2024.176918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
China's soil is experiencing significant microplastic contamination. We developed a machine-learning model to assess microplastic pollution from 1980 to 2050. Our results showed that the average abundance of microplastics in topsoil increased from 45 items per kilogram of soil in 1980 to 1156 items by 2018, primarily due to industrial growth (39 %), agricultural film usage (30 %), tire wear (17 %), and domestic waste (14 %). During the same period, microplastic levels in cropland rose from 98 to 2401 items per kilogram of soil, and exposure levels for the Chinese population increased from 808 to 3168 items per kilogram. By 2050, a reduction in the use of agricultural films is expected to decrease cropland contamination by half. However, overall levels are anticipated to remain steady due to other persistent sources, indicating a continued spread of microplastics into subterranean environments, water bodies, and human systems. This study highlights China's microplastic challenges and suggests potential global trends, emphasizing the need for increased awareness and intervention worldwide.
Collapse
Affiliation(s)
- Shuyou Zhang
- College of Environment, Hohai University, Nanjing 210024, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Sun
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kankan Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anping Zhang
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Songhe Zhang
- College of Environment, Hohai University, Nanjing 210024, China
| | - Yijun Yao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Zhang M, Liu T, Zhang L, Hua Z, Guo Z, Dong J, Tan Q, Xie Y, Yin X, Yan L, Pan G, Sun W. Assessment of microplastic exposure in nasal lavage fluid and the influence of face masks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136069. [PMID: 39383697 DOI: 10.1016/j.jhazmat.2024.136069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Microplastics (MPs) can enter the human body through respiration and pose a hazard to human health. Wearing masks has become a routine behavior during the COVID-19 pandemic. The level of respirational exposure and the influence of wearing masks are currently unknown. We recruited 113 college students and divided them into natural exposure (NE), surgical mask (SM), and cotton mask (CM) groups. Nasal lavage fluid (NLF) was collected and MPs characteristics were analyzed using polarized light microscopy and laser direct infrared system. We found a relatively high abundance of MPs in NLF in the SM group (41.24 ± 1.73 particles/g). The particle size distribution and fibrous MP percentage significantly differed among the three groups. The main components in the NE, SM, and CM groups were polypropylene (58.70 %),polycarbonate (PC, 49.49 %),and PC (54.29 %). Components such as polyamide, polyethylene and polyethylene terephthalate were also detected. Wearing surgical masks increased the MP abundance in NLF (β = 0.36, P < 0.01). As the wear time increased, the abundance of MPs also rose (β = 0.28, P < 0.05). However, those who used bedding containing synthetic fibers had lower MP abundance in their NLF. This study highlights the use of NLF to evaluate MP exposure, which is associated with potential health risks.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Tingting Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Lujing Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Zhenggang Hua
- Institute of Preventive Medicine, China Medical University, Shenyang, PR China; Institute of Inspection and Testing, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, PR China
| | - Ziqi Guo
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Jiaxin Dong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Qinyue Tan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Yifei Xie
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Xingru Yin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Lingjun Yan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China
| | - Guowei Pan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China.
| | - Wei Sun
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, PR China; Research Center for Universal Health, School of Public Health, China Medical University, Shenyang, PR China; Liaoning Provincial Key Laboratory of Early Warning, Intervention Technology and Countermeasure Research for Major Public Health Events, Shenyang, PR China.
| |
Collapse
|
28
|
Gou Z, Wu H, Li S, Liu Z, Zhang Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol 2024; 21:50. [PMID: 39633457 PMCID: PMC11616207 DOI: 10.1186/s12989-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Airborne micro- and nanoplastics (AMNPs) are ubiquitously present in human living environments and pose significant threats to respiratory health. Currently, much research has been conducted on the relationship between micro- and nanoplastics (MNPs) and cardiovascular and gastrointestinal diseases, yet there is a clear lack of understanding regarding the link between AMNPs and respiratory diseases. Therefore, it is imperative to explore the relationship between the two. Recent extensive studies by numerous scholars on the characteristics of AMNPs and their relationship with respiratory diseases have robustly demonstrated that AMNPs from various sources significantly influence the onset and progression of respiratory conditions. Thus, investigating the intrinsic mechanisms involved and finding necessary preventive and therapeutic measures are crucial. In this review, we primarily describe the fundamental characteristics of AMNPs, their impact on the respiratory system, and the intrinsic toxic mechanisms that facilitate disease development. It is hoped that this article will provide new insights for further research and contribute to the advancement of human health.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Haonan Wu
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shanyu Li
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
29
|
Chang J, Zhu Y, Yang Z, Wang Z, Wang M, Chen L. Airborne polystyrene nanoplastics exposure leads to heart failure via ECM-receptor interaction and PI3K/AKT/BCL-2 pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176469. [PMID: 39317253 DOI: 10.1016/j.scitotenv.2024.176469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Environmental contamination has been recognized as a significant threat to human well-being, and recent findings of microplastic presence in human cardiac tissues have raised concerns. However, research on the effects of airborne nanoplastics (NPs) on cardiac physiology remains limited. We utilized a comprehensive body exposure apparatus to simulate the impact of airborne polystyrene NPs pollution, focusing on understanding how airborne NPs affect cardiac morphology and function. Following two weeks of NPs exposure, mice exhibited a 23.89 ± 8.30 % reduction in heart mass, a 20.05 ± 2.97 % decrease in heart rate as detected, and a myocardial electrical conduction block. Echocardiography showed significant changes in cardiac contractility, with increases in cardiac ejection fraction and stroke volume of 13.00 ± 3.00 % and 43.00 ± 17.00 %, respectively. In addition, histologic assessments revealed signs of ventricular hypertrophy, ventricular myocardial hypertrophy, and myocardial necrotic fibrosis. Of particular interest, our mechanistic investigations highlighted the harmful effects of NPs on cardiac structure and function, mediated through extracellular matrix (ECM) receptor interactions and the PI3K/AKT/BCL-2 signaling pathway. The insights gained provide a foundation for understanding the risks posed by airborne NPs to human cardiac health, emphasizing the need for increased vigilance and implementation of mitigation strategies in environmental management.
Collapse
Affiliation(s)
- Jinghao Chang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Yuchen Zhu
- Medical School, Tianjin University, Tianjin 300072, China
| | - Ziye Yang
- Medical School, Tianjin University, Tianjin 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Ziqi Wang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Meixue Wang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Liqun Chen
- Medical School, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
30
|
Yu HR, Tsai CY, Chen WL, Liu PY, Tain YL, Sheen JM, Huang YS, Tiao MM, Chiu CY. Exploring Oxidative Stress and Metabolic Dysregulation in Lung Tissues of Offspring Rats Exposed to Prenatal Polystyrene Microplastics: Effects of Melatonin Treatment. Antioxidants (Basel) 2024; 13:1459. [PMID: 39765788 PMCID: PMC11672973 DOI: 10.3390/antiox13121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolomics research provides a clearer understanding of an organism's metabolic state and enables a more accurate representation of its functional performance. This study aimed to investigate changes in the metabolome of lung tissues resulting from prenatal exposure to polystyrene microplastics (PS-MPs) and to understand the underlying mechanisms of lung damage in rat offspring. We conducted metabolomic analyses of lung tissue from seven-day-old rat pups exposed to prenatal PS-MPs. Our findings revealed that prenatal exposure to PS-MPs led to significantly increased oxidative stress in lung tissues, characterized by notable imbalances in nucleic acid metabolism and altered profiles of specific amino acids. Furthermore, we evaluated the therapeutic effects of melatonin treatment on lung function in 120-day-old offspring and found that melatonin treatment significantly improved lung function and histologic change in the affected offspring. This study provides valuable biological insights into the mechanisms underlying lung damage caused by prenatal PS-MPs exposure. Future studies should focus on validating the results of animal experiments in humans, exploring additional therapeutic mechanisms of melatonin, and developing suitable protocols for clinical use.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Wei-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Yu Liu
- School of Medicine, College of Medicine, The Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 807, Taiwan;
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Jiunn-Ming Sheen
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yi-Siang Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Yung Chiu
- Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
31
|
Zhang S, Zhang H, Li Y, Sun Z, Chen Y. Recent advances on transport and transformation mechanism of nanoplastics in lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175881. [PMID: 39218119 DOI: 10.1016/j.scitotenv.2024.175881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Microplastics (MPs) are solid plastic particles less than or equal to 5 mm in size that are insoluble in water, and when the diameter is further reduced to <1 micrometer (μm), we call them nanoplastics (NPs). MPs and NPs are widely present in the atmosphere, and plastic particles have also been detected in the sputum of patients with respiratory diseases. This warns us that these tiny plastic particles are a potential threat to human respiratory health. The lungs, as the main organs of the respiratory system, are more likely to be adversely affected by inhaled NPs. However, the mechanism of transport and transformation of NPs in the lung is not clear, so our review mainly focuses on a series of effects and mechanisms of NPs on lung cells through absorption, distribution, metabolism, excretion (ADME) after inhalation into the human body. The most commonly used models in these experimental studies we focus on are A549 and BEAS-2B cells, which are used to model the lung cell response to plastic particles. In addition, we also summarize some shortcomings of these experiments and prospects for future studies, hoping to provide further clues for future studies and contribute to the prevention of related hazards and diseases.
Collapse
Affiliation(s)
- Simeng Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Hangxi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yichen Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
32
|
Liu M, Chen J, Sun M, Zhang L, Yu Y, Mi W, Ma Y, Wang G. Protection of Ndrg2 deficiency on renal ischemia-reperfusion injury via activating PINK1/Parkin-mediated mitophagy. Chin Med J (Engl) 2024; 137:2603-2614. [PMID: 38407220 PMCID: PMC11556958 DOI: 10.1097/cm9.0000000000002957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Renal ischemia-reperfusion (R-I/R) injury is the most prevalent cause of acute kidney injury, with high mortality and poor prognosis. However, the underlying pathological mechanisms are not yet fully understood. Therefore, this study aimed to investigate the role of N-myc downstream-regulated gene 2 ( Ndrg2 ) in R-I/R injury. METHODS We examined the expression of Ndrg2 in the kidney under normal physiological conditions and after R-I/R injury by immunofluorescence staining, real-time polymerase chain reaction, and western blotting. We then detected R-I/R injury in Ndrg2-deficient ( Ndrg2-/- ) mice and wild type ( Ndrg2+/+ ) littermates in vivo , and detected oxygen and glucose deprivation and reperfusion (OGD-R) injury in HK-2 cells. We further conducted transcriptomic sequencing to investigate the role of Ndrg2 in R-I/R injury and detected levels of oxidative stress and mitochondrial damage by dihydroethidium staining, biochemical assays, and western blot. Finally, we measured the levels of mitophagy in Ndrg2+/+ and Ndrg2-/- mice after R-I/R injury or HK-2 cells in OGD-R injury. RESULTS Ndrg2 was primarily expressed in renal proximal tubules and its expression was significantly decreased 24 h after R-I/R injury. Ndrg2-/- mice exhibited significantly attenuated R-I/R injury compared to Ndrg2+/+ mice. Transcriptomics profiling showed that Ndrg2 deficiency induced perturbations of multiple signaling pathways, downregulated inflammatory responses and oxidative stress, and increased autophagy following R-I/R injury. Further studies revealed that Ndrg2 deficiency reduced oxidative stress and mitochondrial damage. Notably, Ndrg2 deficiency significantly activated phosphatase and tensin homologue on chromosome ten-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy. The downregulation of NDRG2 expression significantly increased cell viability after OGD-R injury, increased the expression of heme oxygenase-1, decreased the expression of nicotinamide adenine dinucleotide phosphate oxidase 4, and increased the expression of the PINK1/Parkin pathway. CONCLUSION Ndrg2 deficiency might become a therapy target for R-I/R injury by decreasing oxidative stress, maintaining mitochondrial homeostasis, and activating PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jianwen Chen
- Department of Nephrology, The First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Miao Sun
- Department of Anesthesiology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Lixia Zhang
- Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yao Yu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Weidong Mi
- Department of Anesthesiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
33
|
Dzierżyński E, Gawlik PJ, Puźniak D, Flieger W, Jóźwik K, Teresiński G, Forma A, Wdowiak P, Baj J, Flieger J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers (Basel) 2024; 16:3703. [PMID: 39518141 PMCID: PMC11545399 DOI: 10.3390/cancers16213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Humans cannot avoid plastic exposure due to its ubiquitous presence in the natural environment. The waste generated is poorly biodegradable and exists in the form of MPs, which can enter the human body primarily through the digestive tract, respiratory tract, or damaged skin and accumulate in various tissues by crossing biological membrane barriers. There is an increasing amount of research on the health effects of MPs. Most literature reports focus on the impact of plastics on the respiratory, digestive, reproductive, hormonal, nervous, and immune systems, as well as the metabolic effects of MPs accumulation leading to epidemics of obesity, diabetes, hypertension, and non-alcoholic fatty liver disease. MPs, as xenobiotics, undergo ADMET processes in the body, i.e., absorption, distribution, metabolism, and excretion, which are not fully understood. Of particular concern are the carcinogenic chemicals added to plastics during manufacturing or adsorbed from the environment, such as chlorinated paraffins, phthalates, phenols, and bisphenols, which can be released when absorbed by the body. The continuous increase in NMP exposure has accelerated during the SARS-CoV-2 pandemic when there was a need to use single-use plastic products in daily life. Therefore, there is an urgent need to diagnose problems related to the health effects of MP exposure and detection. Methods: We collected eligible publications mainly from PubMed published between 2017 and 2024. Results: In this review, we summarize the current knowledge on potential sources and routes of exposure, translocation pathways, identification methods, and carcinogenic potential confirmed by in vitro and in vivo studies. Additionally, we discuss the limitations of studies such as contamination during sample preparation and instrumental limitations constraints affecting imaging quality and MPs detection sensitivity. Conclusions: The assessment of MP content in samples should be performed according to the appropriate procedure and analytical technique to ensure Quality and Control (QA/QC). It was confirmed that MPs can be absorbed and accumulated in distant tissues, leading to an inflammatory response and initiation of signaling pathways responsible for malignant transformation.
Collapse
Affiliation(s)
- Eliasz Dzierżyński
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Piotr J. Gawlik
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Damian Puźniak
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Wojciech Flieger
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
- Doctoral School, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Katarzyna Jóźwik
- Department of Neurosurgery and Paediatric Neurosurgery, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Paulina Wdowiak
- Institute of Medical Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland
| |
Collapse
|
34
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
35
|
Cheng Y, Yang Y, Bai L, Cui J. Microplastics: an often-overlooked issue in the transition from chronic inflammation to cancer. J Transl Med 2024; 22:959. [PMID: 39438955 PMCID: PMC11494930 DOI: 10.1186/s12967-024-05731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The presence of microplastics within the human body has raised significant concerns about their potential health implications. Numerous studies have supported the hypothesis that the accumulation of microplastics can trigger inflammatory responses, disrupt the microbiome, and provoke immune reactions due to their physicochemical properties. Chronic inflammation, characterized by tissue damage, angiogenesis, and fibrosis, plays a crucial role in cancer development. It influences cancer progression by altering the tumor microenvironment and impairing immune surveillance, thus promoting tumorigenesis and metastasis. This review explores the fundamental properties and bioaccumulation of microplastics, as well as their potential role in the transition from chronic inflammation to carcinogenesis. Additionally, it provides a comprehensive overview of the associated alterations in signaling pathways, microbiota disturbances, and immune responses. Despite this, the current understanding of the toxicity and biological impacts of microplastics remains limited. To mitigate their harmful effects on human health, there is an urgent need to improve the detection and removal methods for microplastics, necessitating further research and elucidation.
Collapse
Affiliation(s)
- Yicong Cheng
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
| | - Ling Bai
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| |
Collapse
|
36
|
Li Y, Chen L, Zhou N, Chen Y, Ling Z, Xiang P. Microplastics in the human body: A comprehensive review of exposure, distribution, migration mechanisms, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174215. [PMID: 38914339 DOI: 10.1016/j.scitotenv.2024.174215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Microplastics (MPs) are pervasive across ecosystems, presenting substantial risks to human health. Developing a comprehensive review of MPs is crucial due to the growing evidence of their widespread presence and potential harmful effects. Despite the growth in research, considerable uncertainties persist regarding their transport dynamics, prevalence, toxicological impacts, and the potential long-term health effects they may cause. This review thoroughly evaluates recent advancements in research on MPs and their implications for human health, including estimations of human exposure through ingestion, inhalation, and skin contact. It also quantifies the distribution and accumulation of MPs in various organs and tissues. The review discusses the mechanisms enabling MPs to cross biological barriers and the role of particle size in their translocation. To ensure methodological rigor, this review adheres to the PRISMA guidelines, explicitly detailing the literature search strategy, inclusion criteria, and the quality assessment of selected studies. The review concludes that MPs pose significant toxicological risks, identifies critical gaps in current knowledge, and recommends future research directions to elucidate the prolonged effects of MPs on human health. This work aims to offer a scientific framework for mitigating MP-related hazards and establishes a foundation for ongoing investigation.
Collapse
Affiliation(s)
- Yue Li
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China.
| | - Liping Chen
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China
| | - Nonglin Zhou
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
| | - Yuyuan Chen
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China
| | - Zhichen Ling
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
37
|
Yang J, Peng Z, Sun J, Chen Z, Niu X, Xu H, Ho KF, Cao J, Shen Z. A review on advancements in atmospheric microplastics research: The pivotal role of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173966. [PMID: 38897457 DOI: 10.1016/j.scitotenv.2024.173966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs), recognized as emerging pollutants, pose significant potential impacts on the environment and human health. The investigation into atmospheric MPs is nascent due to the absence of effective characterization methods, leaving their concentration, distribution, sources, and impacts on human health largely undefined with evidence still emerging. This review compiles the latest literature on the sources, distribution, environmental behaviors, and toxicological effects of atmospheric MPs. It delves into the methodologies for source identification, distribution patterns, and the contemporary approaches to assess the toxicological effects of atmospheric MPs. Significantly, this review emphasizes the role of Machine Learning (ML) and Artificial Intelligence (AI) technologies as novel and promising tools in enhancing the precision and depth of research into atmospheric MPs, including but not limited to the spatiotemporal dynamics, source apportionment, and potential health impacts of atmospheric MPs. The integration of these advanced technologies facilitates a more nuanced understanding of MPs' behavior and effects, marking a pivotal advancement in the field. This review aims to deliver an in-depth view of atmospheric MPs, enhancing knowledge and awareness of their environmental and human health impacts. It calls upon scholars to focus on the research of atmospheric MPs based on new technologies of ML and AI, improving the database as well as offering fresh perspectives on this critical issue.
Collapse
Affiliation(s)
- Jiaer Yang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhi Peng
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwen Chen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
38
|
Roy D, Kim J, Lee M, Kim S, Park J. PM10-bound microplastics and trace metals: A public health insight from the Korean subway and indoor environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135156. [PMID: 39079300 DOI: 10.1016/j.jhazmat.2024.135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024]
Abstract
Inhalable airborne microplastics (MPs) presented in indoor and outdoor environments, can deeply penetrate the lungs, potentially triggering inflammation and respiratory illnesses. The present study aims to evaluate human health risks from respirable particulate matter (PM)-bound trace metals and MPs in indoor (SW- subway and IRH- indoor residential houses) and outdoor (OD) environments. This research provides an initial approach to human respiratory tract (HRT) mass depositions of PM10-bound total MPs and nine specific MP types to predict potential human health threats from inhalation exposure. Results indicate that PM-bound trace metals and MPs were around 4 times higher in SW microenvironments compared to OD locations. In IRH, cancer risk (CR) levels were estimated 9 and 4 times higher for PM10 and PM2.5, respectively. Additionally, MP particle depositions per gram of lung cell weight were highest in IRH (23.77), followed by OD and SW. Whereas, lifetime alveoli depositions of MPs were estimated at 13.73 MP/g, which exceeds previously reported respiratory disease fatality cases by 10 to 5 times. Prolonged exposure duration at IRH emerged as a key factor contributing to increased CR and MP lung deposition levels. This research highlights severe lung risks from inhaling PM-bound MPs and metals, offering valuable health insights.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunga Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
39
|
Richard CMC, Dejoie E, Wiegand C, Gouesbet G, Colinet H, Balzani P, Siaussat D, Renault D. Plastic pollution in terrestrial ecosystems: Current knowledge on impacts of micro and nano fragments on invertebrates. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135299. [PMID: 39067293 DOI: 10.1016/j.jhazmat.2024.135299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
The increasing accumulation of small plastic particles, in particular microplastics (>1 µm to 5 mm) and nanoplastics (< 1 µm), in the environment is a hot topic in our rapidly changing world. Recently, studies were initiated to better understand the behavior of micro- and nanoplastics (MNP) within complex matrices like soil, as well as their characterization, incorporation and potential toxicity to terrestrial biota. However, there remains significant knowledge gaps in our understanding of the wide-extent impacts of MNP on terrestrial invertebrates. We first summarized facts on global plastic pollution and the generation of MNP. Then, we focused on compiling the existing literature examining the consequences of MNP exposure in terrestrial invertebrates. The diversity of investigated biological endpoints (from molecular to individual levels) were compiled to get a better comprehension of the effects of MNP according to different factors such as the shape, the polymer type, the organism, the concentration and the exposure duration. The sublethal effects of MNP are acknowledged in the literature, yet no general conclusion was drawn as their impacts are highly dependent on their characteristic and experimental design. Finally, the synthesis highlighted some research gaps and remediation strategies, as well as a protocol to standardize ecotoxicological studies.
Collapse
Affiliation(s)
- Chloé M C Richard
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Elsa Dejoie
- Groupe de Recherche en Écologie de la MRC Abitibi, Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Amos, Québec J9T 2L8, Canada
| | - Claudia Wiegand
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France.
| |
Collapse
|
40
|
Zha H, Han S, Tang R, Cao D, Chang K, Li L. Polylactic acid micro/nanoplastic-induced hepatotoxicity: Investigating food and air sources via multi-omics. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100428. [PMID: 38800715 PMCID: PMC11127520 DOI: 10.1016/j.ese.2024.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Micro/nanoplastics (MNPs) are detected in human liver, and pose significant risks to human health. Oral exposure to MNPs derived from non-biodegradable plastics can induce toxicity in mouse liver. Similarly, nasal exposure to non-biodegradable plastics can cause airway dysbiosis in mice. However, the hepatotoxicity induced by foodborne and airborne biodegradable MNPs remains poorly understood. Here we show the hepatotoxic effects of biodegradable polylactic acid (PLA) MNPs through multi-omics analysis of various biological samples from mice, including gut, fecal, nasal, lung, liver, and blood samples. Our results show that both foodborne and airborne PLA MNPs compromise liver function, disrupt serum antioxidant activity, and cause liver pathology. Specifically, foodborne MNPs lead to gut microbial dysbiosis, metabolic alterations in the gut and serum, and liver transcriptomic changes. Airborne MNPs affect nasal and lung microbiota, alter lung and serum metabolites, and disrupt liver transcriptomics. The gut Lachnospiraceae_NK4A136_group is a potential biomarker for foodborne PLA MNP exposure, while nasal unclassified_Muribaculaceae and lung Klebsiella are potential biomarkers for airborne PLA MNP exposure. The relevant results suggest that foodborne PLA MNPs could affect the "gut microbiota-gut-liver" axis and induce hepatoxicity, while airborne PLA MNPs could disrupt the "airway microbiota-lung-liver" axis and cause hepatoxicity. These findings have implications for diagnosing PLA MNPs-induced hepatotoxicity and managing biodegradable materials in the environment. Our current study could be a starting point for biodegradable MNPs-induced hepatotoxicity. More research is needed to verify and inhibit the pathways that are crucial to MNPs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Lin Z, Li Z, Ji S, Lo HS, Billah B, Sharmin A, Han X, Lui WY, Tse WKF, Fang JKH, Zhang C, Shang X, Lai KP, Li L. Size-dependent deleterious effects of nano- and microplastics on sperm motility. Toxicology 2024; 506:153834. [PMID: 38763425 DOI: 10.1016/j.tox.2024.153834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Growing concerns regarding the reproductive toxicity associated with daily life exposure to micro-/nano-plastics (abbreviated as MNPs) have become increasingly prevalent. In reality, MNPs exposure involves a heterogeneous mixture of MNPs of different sizes rather than a single size. METHODS In this study, an oral exposure mouse model was used to evaluate the effects of MNPs of four size ranges: 25-30 nm, 1-5 µm, 20-27 µm, and 125-150 µm. Adult male C57BL/6 J mice were administered environmentally relevant concentrations of 0.1 mg MNPs/day for 21 days. After that, open field test and computer assisted sperm assessment (CASA) were conducted. Immunohistochemical analyses of organ and cell type localization of MNPs were evaluated. Testicular transcriptome analysis was carried out to understand the molecular mechanisms. RESULTS Our result showed that MNPs of different size ranges all impaired sperm motility, with a decrease in progressive sperm motility, linearity and straight-line velocity of sperm movement. Alterations did not manifest in animal locomotion, body weight, or sperm count. Noteworthy effects were most pronounced in the smaller MNPs size ranges (25-30 nm and 1-5 µm). Linear regression analysis substantiated a negative correlation between the size of MNPs and sperm curvilinear activity. Immunohistochemical analysis unveiled the intrusions of 1-5 µm MNPs, but not 20-27 µm and 125-150 µm MNPs, into Leydig cells and testicular macrophages. Further testicular transcriptomic analysis revealed perturbations in pathways related to spermatogenesis, oxidative stress, and inflammation. Particularly within the 1-5 µm MNPs group, a heightened perturbation in pathways linked to spermatogenesis and oxidative stress was observed. CONCLUSIONS Our data support the size-dependent impairment of MNPs on sperm functionality, underscoring the pressing need for apprehensions about and interventions against the escalation of environmental micro-/nano-plastics contamination. This urgency is especially pertinent to small-sized MNPs.
Collapse
Affiliation(s)
- Ziyi Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqin Ji
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hoi Shing Lo
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Ayesha Sharmin
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Xiaofang Han
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region of China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Chunqiu Zhang
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Xuejun Shang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China.
| | - Lei Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
42
|
Wu Q, Li R, You Y, Cheng W, Li Y, Feng Y, Fan Y, Wang Y. Lung microbiota participated in fibrous microplastics (MPs) aggravating OVA-induced asthma disease in mice. Food Chem Toxicol 2024; 190:114776. [PMID: 38851522 DOI: 10.1016/j.fct.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Environmental pollution is one of the risk factors for asthma. Currently, whether micro-plastics could aggravate asthma, is still unclear. In the air, fibrous MPs are the predominant shape. Since fibrous micro-plastics are reported to be detected in the lower respiratory tract and other body parts, the relationship of fibrous MP and asthma, as well as the potential mechanism is not well investigated. In this study, we produced fibrous MPs, whose lengths and widths were in accordance with the natural environment, and further, investigated the potential adverse effect of which on the asthma in a OVA (ovalbumin)-induced mice model, aiming at exploring the true life hazard of MP to the respiratory system. Following nasal exposure to fibrous MPs, the airway inflammation, mucus hypersecretion and fibrosis were aggravated in asthmatic mice. Fibrous MPs exposure also significantly increased the levels of total IgE, and, cardinal Th2 and Th1 pro-inflammatory cytokines participated in the etiopathogenesis of allergic airway inflammation. In addition, MP fibers exposure induced lung epithelial cells apoptosis, disruption of epithelial barrier integrity and activation of NLRP3 related signaling pathways. Moreover, fibrous MPs significantly altered the bacterial composition at the genus level. Compared to the control group, the relative abundance of Escherichia-Shigella and Uncultured were decreased to 4.47% and 0.15% in OVA group, while Blautia and Prevotella were elevated to 4.96% and 2.94%. For the OVA + MPs group, the relative abundance of Blautia and Uncultured were decreased to 2.27% and 0.006%, while Prevotella was increased to 3.05%. Our study highlights the detrimental effect of fibrous MPs on asthmatic population and facilitates an indication of the latent mechanisms of fibrous MPs induced airway pathology.
Collapse
Affiliation(s)
- Qian Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Rui Li
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, China.
| | - Yifei You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yuqin Fan
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, China
| | - Yan Wang
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
43
|
He J, Xiong S, Zhou W, Qiu H, Rao Y, Liu Y, Shen G, Zhao P, Chen G, Li J. Long-term polystyrene nanoparticles exposure reduces electroretinal responses and exacerbates retinal degeneration induced by light exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134586. [PMID: 38776811 DOI: 10.1016/j.jhazmat.2024.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.
Collapse
Affiliation(s)
- Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Guangquan Chen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China.
| |
Collapse
|
44
|
Agache I, Annesi-Maesano I, Cecchi L, Biagioni B, Chung KF, Clot B, D'Amato G, Damialis A, Del Giacco S, Dominguez-Ortega J, Galàn C, Gilles S, Holgate S, Jeebhay M, Kazadzis S, Nadeau K, Papadopoulos N, Quirce S, Sastre J, Tummon F, Traidl-Hoffmann C, Walusiak-Skorupa J, Jutel M, Akdis CA. EAACI guidelines on environmental science for allergy and asthma: The impact of short-term exposure to outdoor air pollutants on asthma-related outcomes and recommendations for mitigation measures. Allergy 2024; 79:1656-1686. [PMID: 38563695 DOI: 10.1111/all.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
The EAACI Guidelines on the impact of short-term exposure to outdoor pollutants on asthma-related outcomes provide recommendations for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management and for policymakers and regulators as an evidence-informed reference to help setting legally binding standards and goals for outdoor air quality at international, national and local levels. The Guideline was developed using the GRADE approach and evaluated outdoor pollutants referenced in the current Air Quality Guideline of the World Health Organization as single or mixed pollutants and outdoor pesticides. Short-term exposure to all pollutants evaluated increases the risk of asthma-related adverse outcomes, especially hospital admissions and emergency department visits (moderate certainty of evidence at specific lag days). There is limited evidence for the impact of traffic-related air pollution and outdoor pesticides exposure as well as for the interventions to reduce emissions. Due to the quality of evidence, conditional recommendations were formulated for all pollutants and for the interventions reducing outdoor air pollution. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but global measures for clean air are needed to achieve significant impact.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit San Giovanni di Dio Hospital, Florence, Italy
| | - Kian Fan Chung
- National Hearth & Lung Institute, Imperial College London, London, UK
| | - Bernard Clot
- Federal office of meteorology and climatology MeteoSwiss, Payerne, Switzerland
| | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Javier Dominguez-Ortega
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Carmen Galàn
- Inter-University Institute for Earth System Research (IISTA), International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Stelios Kazadzis
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies, Department of Environmental Health, Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikolaos Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Fiona Tummon
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, and ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
45
|
Li H, Liu H, Bi L, Liu Y, Jin L, Peng R. Immunotoxicity of microplastics in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109619. [PMID: 38735599 DOI: 10.1016/j.fsi.2024.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.
Collapse
Affiliation(s)
- Huiqi Li
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
46
|
Jang Y, Nyamjav I, Kim HR, Suh DE, Park N, Lee YE, Lee S. Identification of plastic-degrading bacteria in the human gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172775. [PMID: 38670383 DOI: 10.1016/j.scitotenv.2024.172775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Environmental pollution caused by the excessive use of plastics has resulted in the inflow of microplastics into the human body. However, the effects of microplastics on the human gut microbiota still need to be better understood. To determine whether plastic-degrading bacteria exist in the human gut, we collected the feces of six human individuals, did enrichment cultures and screened for bacterial species with a low-density polyethylene (LDPE) or polypropylene (PP)-degrading activity using a micro-spray method. We successfully isolated four bacterial species with an LDPE-degrading activity and three with a PP-degrading activity. Notably, all bacterial species identified with an LDPE or PP-degrading activity were opportunistic pathogens. We analyzed the microbial degradation of the LDPE or PP surface using scanning electron microscopy and confirmed that each bacterial species caused the physical changes. Chemical structural changes were further investigated using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy, confirming the oxidation of the LDPE or PP surface with the formation of carbonyl groups (C=O), ester groups (CO), and hydroxyl groups (-OH) by each bacterial species. Finally, high temperature gel permeation chromatography (HT-GPC) analysis showed that these bacterial species performed to a limited extent depolymerization. These results indicate that, as a single species, these opportunistic pathogens in the human gut have a complete set of enzymes and other components required to initiate the oxidation of the carbon chains of LDPE or PP and to degrade them. Furthermore, these findings suggest that these bacterial species can potentially biodegrade and metabolize microplastics in the human gut.
Collapse
Affiliation(s)
- Yejin Jang
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Indra Nyamjav
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hong Rae Kim
- Department of Research and Development, Repla Inc., Suwon 16679, Republic of Korea
| | - Dong-Eun Suh
- Department of Research and Development, Repla Inc., Suwon 16679, Republic of Korea
| | - Nohyoon Park
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ye Eun Lee
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
47
|
Lin Z, Li Z, Ji S, Lo HS, Billah B, Sharmin A, Lui WY, Tse WKF, Fang JKH, Lai KP, Li L. Microplastics from face mask impairs sperm motility. MARINE POLLUTION BULLETIN 2024; 203:116422. [PMID: 38749155 DOI: 10.1016/j.marpolbul.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The COVID-19 pandemic has resulted in unprecedented plastic pollution from single-used personal protective equipment (PPE), especially face masks, in coastal and marine environments. The secondary pollutants, microplastics from face masks (mask MP), rise concern about their detrimental effects on marine organisms, terrestrial organisms and even human. Using a mouse model, oral exposure to mask MP at two doses, 0.1 and 1 mg MP/day for 21 days, caused no change in animal locomotion, total weight, or sperm counts, but caused damage to sperm motility with increased curvilinear velocity (VCL). The high-dose mask MP exposure caused a significant decrease in linearity (LIN) of sperm motility. Further testicular transcriptomic analysis revealed perturbed pathways related to spermatogenesis, oxidative stress, inflammation, metabolism and energy production. Collectively, our findings substantiate that microplastics from face masks yield adverse effects on mammalian reproductive capacity, highlighting the need for improved plastic waste management and development of environmentally friendly materials.
Collapse
Affiliation(s)
- Ziyi Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqin Ji
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hoi Shing Lo
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Ayesha Sharmin
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China.
| | - Lei Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
48
|
Baglivo I, Quaranta VN, Dragonieri S, Colantuono S, Menzella F, Selvaggio D, Carpagnano GE, Caruso C. The New Paradigm: The Role of Proteins and Triggers in the Evolution of Allergic Asthma. Int J Mol Sci 2024; 25:5747. [PMID: 38891935 PMCID: PMC11171572 DOI: 10.3390/ijms25115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Epithelial barrier damage plays a central role in the development and maintenance of allergic inflammation. Rises in the epithelial barrier permeability of airways alter tissue homeostasis and allow the penetration of allergens and other external agents. Different factors contribute to barrier impairment, such as eosinophilic infiltration and allergen protease action-eosinophilic cationic proteins' effects and allergens' proteolytic activity both contribute significantly to epithelial damage. In the airways, allergen proteases degrade the epithelial junctional proteins, allowing allergen penetration and its uptake by dendritic cells. This increase in allergen-immune system interaction induces the release of alarmins and the activation of type 2 inflammatory pathways, causing or worsening the main symptoms at the skin, bowel, and respiratory levels. We aim to highlight the molecular mechanisms underlying allergenic protease-induced epithelial barrier damage and the role of immune response in allergic asthma onset, maintenance, and progression. Moreover, we will explore potential clinical and radiological biomarkers of airway remodeling in allergic asthma patients.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Centro Malattie Apparato Digerente (CEMAD) Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Vitaliano Nicola Quaranta
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Silvano Dragonieri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Stefania Colantuono
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - David Selvaggio
- UOS di Malattie dell’Apparato Respiratorio Ospedale Cristo Re, 00167 Roma, Italy
| | - Giovanna Elisiana Carpagnano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Cristiano Caruso
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
49
|
Paul I, Mondal P, Haldar D, Halder G. Beyond the cradle - Amidst microplastics and the ongoing peril during pregnancy and neonatal stages: A holistic review. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133963. [PMID: 38461669 DOI: 10.1016/j.jhazmat.2024.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Advancements in research concerning the occurrence of microplastics (MPs) in human blood, sputum, urine, and breast milk samples have piqued the interest of the scientific community, prompting further investigation. MPs present in the placenta, amniotic fluid, and meconium raise concerns about interference with embryonic development, leading to preeclampsia, stillbirth, preterm birth, and spontaneous abortion. The challenges posed by MPs extend beyond pregnancy, affecting the digestive, reproductive, circulatory, immune, and central nervous systems. This has spurred scientists to examine the origins of MPs in distinct environmental layers, including air, water, and soil. These risks continue after birth, as neonates are continuously exposed to MPs through everyday items such as breast milk, cow milk and infant milk powder, as well as plastic-based products like feeding bottles and breast milk storage bags. It is the need of the hour to strike a balance amidst lifestyle changes, alternative choices to traditional plastic products, raising awareness about plastic-related health risks, and fostering collaboration between the scientific community and policymakers. This review aims to provide fresh insights into potential sources of MP pollution, with a specific focus on pregnancy and neonates. It is the first compilation of its kind so far that includes critical studies on recently reported discoveries.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata 700125, West Bengal, India
| | - Pritam Mondal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
50
|
Sun X, Xiao T, Qin J, Song Y, Lu K, Ding R, Shi W, Bian Q. Mechanism of circRNA_SMG6 mediating lung macrophage ECM degradation via miR-570-3p in microplastics-induced emphysema. ENVIRONMENT INTERNATIONAL 2024; 187:108701. [PMID: 38685156 DOI: 10.1016/j.envint.2024.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Microplastics (MPs) are plastic particles < 5 mm in diameter, of which polystyrene microplastics (PS-MPs) are representative type. The extracellular matrix (ECM) degradation of macrophages is associated with the development of emphysema. Additionally, circular RNAs (circRNAs) have a regulatory role in epigenetic mechanisms related to lung disease. However, the mechanisms of the ECM degradation and circRNAs in MPs-induced emphysema are still unclear. In our study, Sprague-Dawley (SD) rats were treated with 0, 0.5, 1.0 and 2.0 mg/m3 100 nm PS-MPs for 90 days in an inhalation experiment. PS-MPs-exposed rats showed elevated airway resistance and pulmonary dysfunction. Lung histopathology exhibited inflammatory cell infiltration, septal thickening and alveolar dilatation. Exposure to PS-MPs was able to induce elevated levels of ECM degradation-related markers MMP9 and MMP12, as well as reduced levels of elastin in rat lung tissues. CircRNA_SMG6 is a non-coding RNA (ncRNA) with a homologous circular structure in human, rat and mouse. The expression level of circRNA_SMG6 was decreased in both rat lung tissues exposed to PS-MPs and PS-MPs-treated THP-1 cells. The luciferase reporter gene demonstrated that circRNA_SMG6 combined with miR-570-3p and co-regulated PTEN, the target gene of miR-570-3p. Moreover, overexpression of circRNA_SMG6 or inhibition of miR-570-3p attenuated PS-MPs-induced ECM degradation in THP-1 cells. Taken together, circRNA_SMG6 may have a significant function in the deterioration of emphysema caused by PS-MPs-induced macrophage ECM degradation by regulating miR-570-3p. Our findings reveal a novel mechanism of emphysema caused by PS-MPs and provide valuable information for assessing the health risks of MPs.
Collapse
Affiliation(s)
- Xiaoxue Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tian Xiao
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Junjie Qin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Song
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
| | - Kuikui Lu
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Ruoheng Ding
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiqing Shi
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Qian Bian
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|