1
|
Zhu Y, Li J, Lai Y, Cao Y, Li J, Wei Z, Yang L, Chen Z, Zou J. Accelerated photo-Fenton degradation of Ciprofloxacin on CoS x@TiO 2 amorphous-crystalline interface with S-O bond bridging. ENVIRONMENTAL RESEARCH 2025:121785. [PMID: 40335003 DOI: 10.1016/j.envres.2025.121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/21/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Photo-Fenton reaction integrates the benefits of photocatalysis with traditional Fenton chemistry, producing highly reactive hydroxyl radicals for oxidizing organic pollutants into CO2 and H2O. In this study, a unique and novel interface was constructed between amorphous CoSx (cobalt sulfide) and crystalline anatase TiO2 (titanium dioxide): ultra-thin CoSx nanoflakes were directly deposited onto TiO2 nanowires. S-O bonds formed between CoSx and TiO2 establish pathways for the orderly transfer of electrons along the heterojunction interface, facilitating in-situ generation of H2O2 and realizing the high photo-Fenton activity for degrading ciprofloxacin. Under optimal conditions, the elimination rate of ciprofloxacin can reach 100% within 100 min, and the CoSx@TiO2 composite demonstrates sustained catalytic performance over eight consecutive cycles. Density Functional Theory (DFT) calculations results confirm that CoSx@TiO2 exhibits a more favorable free energy profile compared to single TiO2 during the oxidation of water to produce *OH radicals. Under irradiation, integrating CoSx and TiO2 contributes mostly to generate abundant ‧OH radicals. This research provides innovative insights into optimizing photo-Fenton performance by strategically designing amorphous-crystal interfaces connected via electron-conducting bridges.
Collapse
Affiliation(s)
- Yani Zhu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jinyang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yuhang Lai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yisheng Cao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jiayi Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Zhihui Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Lixia Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Zhenglin Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Janping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Reuse, Nanchang Hangkong University, Nanchang 330063, P. R. China
| |
Collapse
|
2
|
Wang C, Wang X, Du J, Deng R, Ren B, Zhou S, Hou B, Huang Y, Zhao Z. Vacuum UV-based processes for water and wastewater purification: From unitary to multicomponent systems. WATER RESEARCH 2025; 275:123175. [PMID: 39889444 DOI: 10.1016/j.watres.2025.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Vacuum ultraviolet (VUV) is profitable to strengthen the efficiencies of UV and reduce chemicals use, attracting more attention to water and wastewater purification. Herein, VUV-based water treatment processes from unitary VUV to multicomponent systems were reviewed for the first time to promote VUV applications. The rate of pollutant removal by unitary VUV was 1.3-57 times that of UV, in which hydroxyl radical oxidation was dominant. And the reducibility of hydrated electron and hydrogen atom radical in unitary VUV dehalogenated organics and reduced metal ions. Besides, VUV-based binary systems mainly included processes of VUV/H2O2, VUV/persulfate, VUV/ozone, VUV/chlorine, VUV/sulfite, VUV/iron ion, and VUV-based heterogeneous oxidation. VUV-based ternary systems basically contained three types: VUV-based Fenton-like, VUV coupling dual oxidants, and VUV combined with other technologies activating oxidants. Performance, characteristics, reactive species, and mechanisms of VUV-based binary and ternary systems were summarized. Moreover, the characterization, contribution, and role of reactive species in VUV-based processes were analyzed, and the combination of multiple methods was conducive to accurately identifying the mechanism of reactive species. Furthermore, the combination of VUV and other technologies expanded the application potential of VUV. Compared to UV-based processes, VUV-based processes significantly reduced energy consumption and were more promising in removing contaminants in actual waters. Finally, hot spots and directions (develop new techniques, reduce by-products, combine simulation and experiment, broaden removal objects, enhance pilot studies) of VUV-based water treatment technologies in future were prospected. Overall, VUV-based advanced oxidation processes are expected to be used in water treatment to improve process efficiency.
Collapse
Affiliation(s)
- Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Xiaohui Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Jinying Du
- Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan 411201, PR China.
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Saijun Zhou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Yaoyao Huang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Wu X, Shen T, Liu X, Zhang G, Qian X, Yang W. Unveiling the mechanisms of ultrasonic radiation-induced free radical stress on algal communities: Insights into growth inhibition, photosynthetic disruption, and antioxidant defense responses. ULTRASONICS SONOCHEMISTRY 2025; 115:107297. [PMID: 40048989 PMCID: PMC11924934 DOI: 10.1016/j.ultsonch.2025.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Algal blooms pose a significant threat to global environmental health, compromising water quality and public safety. Ultrasonic radiation has emerged as a promising, eco-friendly strategy for controlling these blooms, but the underlying mechanisms remain unclearly understood. This study investigated the effects of ultrasonic radiation on the growth, photosynthetic performance, and antioxidant defense systems of an algal mixture over a 5-day period. Analysis techniques, including scanning electron microscopy (SEM), excitation-emission matrix (EEM) analysis, and transcriptomic profiling, were employed to elucidate the multifaceted responses of algal cells to ultrasonic treatment. Ultrasonic radiation induced significant free radical generation, primarily hydroxyl radicals (·OH), which played a critical role in cellular damage. Within 24 h, treatment led to a 50% reduction in algal cell counts, a 30% decline in chlorophyll-a levels, and a 25% decrease in photosynthetic efficiency. Phycocyanin, a vital pigment for cyanobacteria, exhibited heightened sensitivity to a single ultrasonic treatment, while subsequent treatments showed no additional reduction, suggesting that Microcystis aeruginosa is particularly susceptible to the ultrasonic damage. EEM analysis revealed significant changes in the fluorescence intensity of extracellular organic matter (EOM) and intracellular organic matter (IOM) peaks, indicative of oxidative stress and metabolic disruption. Transcriptomic analysis of Microcystis aeruginosa revealed a profound reprogramming of gene expression in response to sonication. Stress response genes, particularly those involved in antioxidant defense, were upregulated, while photosynthesis-related genes were downregulated. Our research indicates that short-term ultrasonic radiation has a long-term stress effect on algal cells, and this might be able to prevent the tendency of cyanobacteria blooms.
Collapse
Affiliation(s)
- Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Tingting Shen
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaoyang Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xiaoqing Qian
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Wenlan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Cai Y, Zhao Y, Wang C, Yadav AK, Wei T, Kang P. Ozone disinfection of waterborne pathogens: A review of mechanisms, applications, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60709-60730. [PMID: 39392580 DOI: 10.1007/s11356-024-34991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Water serves as a critical vector for the transmission of pathogenic microorganisms, playing a pivotal role in the emergence and propagation of numerous diseases. Ozone (O3) disinfection technology offers promising potential for mitigating the spread of these pathogens in aquatic environments. However, previous studies have only focused on the inactivated effect of O3 on a single pathogenic microorganism, lacking a comprehensive comparative analysis of various influencing factors and different types of pathogens, while the cost-effectiveness of O3 technology has not been mentioned. This review synthesized the migration characteristics of various pathogenic microorganisms in water bodies and examined the properties, mechanisms, and influencing factors of O3 inactivation. It evaluated the efficacy of O3 against diverse pathogens, namely bacteria, viruses, protozoa, and fungi, and provided a comparative analysis of their sensitivities to O3. The formation and impact of harmful disinfection by-products (DBPs) during the O3 inactivation process were assessed, alongside an analysis of the cost-effectiveness of this method. Additionally, potential synergistic treatment processes involving O3 were proposed. Based on these findings, recommendations were made for optimizing the utilization of O3 in water inactivation in order to formulate better inactivation strategies in the post-pandemic eras.
Collapse
Affiliation(s)
- Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China.
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China.
| | - Cong Wang
- Xi'an Aerospace City Water Environment Co., Ltd., Xi'an, 710199, P.R. China
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
- Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751 013, Odisha, India
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
| |
Collapse
|
5
|
Luo D, Lin H, Li X, Wang Y, Ye L, Mai Y, Wu P, Ni Z, Lin Q, Qiu R. The Dual Role of Natural Organic Matter in the Degradation of Organic Pollutants by Persulfate-Based Advanced Oxidation Processes: A Mini-Review. TOXICS 2024; 12:770. [PMID: 39590951 PMCID: PMC11598379 DOI: 10.3390/toxics12110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) are widely used to degrade significant amounts of organic pollutants (OPs) in water and soil matrices. The effectiveness of these processes is influenced by the presence of natural organic matter (NOM), which is ubiquitous in the environment. However, the mechanisms by which NOM affects the degradation of OPs in PS-AOPs remain poorly documented. This review systematically summarizes the dual effects of NOM in PS-AOPs, including inhibitory and promotional effects. It encompasses the entire process, detailing the interaction between PS and its activators, the fate of reactive oxygen species (ROS), and the transformation of OPs within PS-AOPs. Specifically, the inhibiting mechanisms include the prevention of PS activation, suppression of ROS fate, and conversion of intermediates to their parent compounds. In contrast, the promoting effects involve the enhancement of catalytic effectiveness, contributions to ROS generation, and improved interactions between NOM and OPs. Finally, further studies are required to elucidate the reaction mechanisms of NOM in PS-AOPs and explore the practical applications of PS-AOPs using actual NOM rather than model compounds.
Collapse
Affiliation(s)
- Dan Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Hansen Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Xingzhen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Yu Wang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Long Ye
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Yuebang Mai
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Peihao Wu
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Wang M, He C, Zhang Z, Zhang C, Xiong H, Xie X, Zhu C, Xu Y, Li J. Degradation of UV328 by ozone/peroxymonosulfate system: Performance and mechanisms. CHEMOSPHERE 2024; 365:143382. [PMID: 39317243 DOI: 10.1016/j.chemosphere.2024.143382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV328) is an emerging persistent organic pollutant ubiquitously found in environmental matrices. Though some advanced oxidation processes have been tested to degrade UV328 in waste streams, the degradation mechanisms are largely unknown. In this study, the degradation of UV328 by ozone (O3) and peroxymonosulfate (PMS) was systemically investigated. At neutral pH, 97.0% UV328 was removed in 5 min with 6.4 mg/min O3 and 2 mM PMS, and the degradation rate was positively correlated with the concentration of oxidants. Hydroxyl radical (•OH), sulfate radical (SO4•-) and singlet oxygen (1O2) participated in the degradation of UV328, in which 1O2 played a key role. Based on the identified transformation intermediates and density functional theory simulations, three degradation pathways of dehydrogenation, cycloaddition and hydroxylation were proposed. •OH and SO4•- radicals could attack UV328 through hydrogen atom abstraction channel. 1O2-mediated cycloaddition reaction is favorable, and •OH could react with UV328 via radical adduct formation pathway. Toxicity assessment indicated that O3/PMS treatment mitigated the ecological risks of UV328.
Collapse
Affiliation(s)
- Mengyu Wang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Can He
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery, China National Light Industry, Beijing, 100089, China.
| | - Zhongguo Zhang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China; Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery, China National Light Industry, Beijing, 100089, China.
| | - Chenfei Zhang
- National Engineering Laboratory of Circular Economy, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Huiqin Xiong
- Nanjing Jianye District Water Bureau, Nanjing, 210017, China.
| | - Xin Xie
- Nanjing Jianye District Water Facilities Comprehensive Maintenance Center, Nanjing, 210017, China.
| | - Cheng Zhu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China.
| | - Yuanmin Xu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China.
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
7
|
Zhang XY, Liu TS, Hu JY. Antibiotics removal and antimicrobial resistance control by ozone/peroxymonosulfate-biological activated carbon: A novel treatment process. WATER RESEARCH 2024; 261:122069. [PMID: 39003878 DOI: 10.1016/j.watres.2024.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Biological activated carbon (BAC) is one of the important treatment processes in wastewater and advanced water treatment. However, the BAC process has been reported to have antimicrobial resistance (AMR) risks. In this study, a new BAC-related treatment process was developed to reduce AMR caused by BAC treatment: ozone/peroxymonosulfate-BAC (O3/PMS-BAC). The O3/PMS-BAC showed better treatment performance on the targeted five antibiotics and dissolved organic matter removal than O3-BAC and BAC treatments. The O3/PMS-BAC process had better control over the AMR than the O3-BAC and BAC processes. Specifically, the amount of targeted antibiotic-resistant bacteria in the effluent and biofilm of O3/PMS-BAC was only 0.01-0.03 and 0.11-0.26 times that of the BAC process, respectively. Additionally, the O3/PMS-BAC process removed 1.76 %-62.83 % and 38.14 %-99.27 % more of the targeted ARGs in the effluent and biofilm than the BAC process. The total relative abundance of the targeted 12 ARGs in the O3/PMS-BAC effluent was decreased by 86 % compared to the effluent after BAC treatment. In addition, Proteobacteria and Bacteroidetes were probably the main hosts for transmitting ARGs in this study, and their relative abundance decreased by 9.6 % and 6.0 % in the effluent of the O3/PMS-BAC treatment compared to that in BAC treatment. The relationship analysis revealed that controlling antibiotic discharge was crucial for managing AMR, as antibiotics were closely related to both ARGs and bacteria associated with their emergence. The results showed that the newly developed treatment process could reduce AMR caused by BAC treatment while ensuring effluent quality. Therefore, O3/PMS-BAC is a promising alternative to BAC treatment for future applications.
Collapse
Affiliation(s)
- Xin Yang Zhang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Tai Shan Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiang Yong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
8
|
Zhang W, Jiang Y, Wen Q, Zhao Y, Wu B, Huang W. Inhibit or promote? Trade-off effect of dissolved organic matter on the laccase-mediator system. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134595. [PMID: 38761769 DOI: 10.1016/j.jhazmat.2024.134595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
A biocatalytic system comprising fungal laccase and mediators can generate phenol radicals and efficiently eliminate various triarylmethane dyes. This study systematically explores the kinetic impact of dissolved organic matter (DOM), represented by humic substance (HS consisting of 90% fulvic acid, from lignite), on the decolorization of seven typical triarylmethane dyes by Trametes versicolor laccase and twenty natural mediators. Among these, 4-hydroxybenzyl alcohol (4-HA) and methyl violet (MV) undergo in-depth investigation regarding degradation products, pathways, and reaction mechanisms. In instances where HS hampers laccase-alone decolorization, such as malachite green, Coomassie brilliant blue, bromophenol blue, and acid magenta, this inhibition may persist despite mediator introduction. Conversely, in cases where HS facilitates decolorization, such as crystalline violet and ethyl violet, most laccase-mediator systems (LMSs) can still benefit. For MV decolorization by laccase and 4-HA, HS's kinetic effect is controlled by concentration and reaction time. A 5 mg/L HS increased the decolorization rate from 50% to 67% within the first hour, whereas 10 mg/L HS only achieved 45%. After 16 h of reaction, HS's impact on decolorization rate diminishes. Furthermore, the addition of HS enhances precipitation production, probably due to its involvement in polymerization with MV and mediator. Computational simulations and spectral monitoring reveal that low HS concentrations accelerate laccase-mediated demethylation by disrupting the chromophores bound to MV, thus promoting the decolorization of MV. Conversely, inhibition by high HS concentrations stems from the competitive binding of the enzyme pocket to the mediator, and the reduction of phenol free radicals in the system. Molecular docking and kinetic simulations revealed that laccase forms complexes with both the mediator and MV. Interestingly, the decolorization of MV occurred through a non-radical mechanism in the presence of HS. This work provided a reference for screening of high catalytic performance mediators to remove triarylmethane dyes in the actual water environment.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Yunlin Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, People's Republic of China
| | - Qingqi Wen
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Yue Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, People's Republic of China.
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, People's Republic of China.
| |
Collapse
|
9
|
Wang WL, Jing ZB, Zhang YL, Wu QY, Drewes JE, Lee MY, Hübner U. Assessing the Chemical-Free Oxidation of Trace Organic Chemicals by VUV/UV as an Alternative to Conventional UV/H 2O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7113-7123. [PMID: 38547102 DOI: 10.1021/acs.est.3c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.
Collapse
Affiliation(s)
- Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zi-Bo Jing
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi-Lin Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| |
Collapse
|
10
|
Wang JJ, Zhou YY, Xiang JL, Du HS, Zhang J, Zheng TG, Liu M, Ye MQ, Chen Z, Du Y. Disinfection of wastewater by a complete equipment based on a novel ultraviolet light source of microwave discharge electrodeless lamp: Characteristics of bacteria inactivation, reactivation and full-scale studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170200. [PMID: 38296065 DOI: 10.1016/j.scitotenv.2024.170200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024]
Abstract
Ultraviolet (UV) light is widely used for wastewater disinfection. Traditional electrode-excited UV lamps, such as low-pressure mercy lamps (LPUV), encounter drawbacks like electrode aging and rapid light attenuation. A novel UV source of microwave discharge electrodeless lamp (MDEL) has aroused attention, yet its disinfection performance is unclear and still far from practical application. Here, we successfully developed a complete piece of equipment based on MDELs and achieved the application for disinfection in wastewater treatment plants (WWTPs). The light emitted by an MDEL (MWUV) shared a spectrum similar to that of LPUV, with the main emission wavelength at 254 nm. The inactivation rate of Gram-negative E. coli by MWUV reached 4.5 log at an intensity of 1.6 mW/cm2 and a dose of 20 mJ/cm2. For Gram-positive B. subtilis, an MWUV dose of 50 mJ/cm2 and a light intensity of 1.2 mW/cm2 reached an inactivation rate of 3.4 log. A higher MWUV intensity led to a better disinfection effect and a lower photoreactivation rate of E. coli. When inactivated by MWUV with an intensity of 1.2 mW/cm2 and a dose of 16 mJ/cm2, the maximum photoreactivation rate and reactivation rate constant Kmax of E. coli were 0.63 % and 0.11 % h-1 respectively. Compared with the photoreactivation, the dark repair of E. coli was insignificant. The full-scale application of the MDEL equipment was conducted in two WWTPs (10,000 m3/d and 15,000 m3/d). Generally 2-3 log inactivation rates of fecal coliforms in secondary effluent were achieved within 5-6 s contact time, and the disinfected effluent met the emission standard (1000 CFU/L). This study successfully applied MDEL for disinfection in WWTPs for the first time and demonstrated that MDEL has broad application prospects.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Yun-Yi Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621022, China
| | - Ti-Gang Zheng
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621022, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ming-Qi Ye
- Everbright Water (Shenzhen) Limited, Shenzhen 518000, China
| | - Zhuo Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
11
|
Song Y, Bao Z, Gu Y. Photocatalytic Enhancement Strategy with the Introduction of Metallic Bi: A Review on Bi/Semiconductor Photocatalysts. CHEM REC 2024; 24:e202300307. [PMID: 38084448 DOI: 10.1002/tcr.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/17/2023] [Indexed: 03/10/2024]
Abstract
Semiconductor photocatalysis has great potential in the fields of solar fuel production and environmental remediation. Nevertheless, the photocatalytic efficiency still constrains its practical production applications. The development of new semiconductor materials is essential to enhance the solar energy conversion efficiency of photocatalytic systems. Recently, the research on enhancing the photocatalytic performance of semiconductors by introducing bismuth (Bi) has attracted widespread attention. In this review, we briefly overview the main synthesis methods of Bi/semiconductor photocatalysts and summarize the control of the micromorphology of Bi in Bi/semiconductors and the key role of Bi in the catalytic system. In addition, the promising applications of Bi/semiconductors in photocatalysis, such as pollutant degradation, sterilization, water separation, CO2 reduction, and N2 fixation, are outlined. Finally, an outlook on the challenges and future research directions of Bi/semiconductor photocatalysts is given. We aim to offer guidance for the rational design and synthesis of high-efficiency Bi/semiconductor photocatalysts for energy and environmental applications.
Collapse
Affiliation(s)
- Yankai Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zongqi Bao
- Foreign Language Department, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yingying Gu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
12
|
Xiang JL, Wang JJ, Wu ZJ, Xu BJ, Du HS, Chen Y, Liu M, Lee MY, Wang WL, Du Y. Efficient wastewater disinfection using a novel microwave discharge electrodeless ultraviolet system with ozone at an ultra-low dose. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133011. [PMID: 37988868 DOI: 10.1016/j.jhazmat.2023.133011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Microwave discharge electrodeless lamp (MDEL) is a novel ultraviolet (UV) light source. Synergistic disinfection using UV light emitted by MDEL (MWUV) coupled with ozone (O3) at an ultra-low dose was investigated. Escherichia coli and Bacillus subtilis were deactivated more effectively by MWUV/O3 than by either MWUV or O3 alone. MWUV/O3 treatment using an O3 concentration of 0.4 mg/L gave an E. coli inactivation rate of 5.52 log. The photoreactivation degree and rate of E. coli were lower after inactivation by MWUV/O3 treatment than after MWUV treatment alone. The maximum photoreactivation rates after the MWUV/O3 and MWUV treatments were 2.90% and 16.08%, respectively. MWUV/O3 disinfection also inhibited dark resurrection of E. coli and gave a maximum dark resurrection rate of 0.0036%. Electron paramagnetic resonance spectroscopy indicated that more hydroxyl radicals were generated during MWUV/O3 treatment. Scanning electron microscopy and laser confocal scanning microscopy observations indicated that O3 played a key role in breaking down the cell structure. MWUV/O3 treatment gave a good disinfection effect on fecal coliform bacteria in actual domestic wastewater. The results indicated that inactivation of bacteria can be more effectively achieved by MWUV treatment with O3.
Collapse
Affiliation(s)
- Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zhi-Jing Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Bao-Jun Xu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
13
|
Han J, Zhai H, Zhang X, Liu J, Sharma VK. Effects of ozone dose on brominated DBPs in subsequent chlor(am)ination: A comprehensive study of aliphatic, alicyclic and aromatic DBPs. WATER RESEARCH 2024; 250:121039. [PMID: 38142503 DOI: 10.1016/j.watres.2023.121039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Ozone‒chlor(am)ine is a commonly used combination of disinfectants in drinking water treatment. Although there are quite a few studies on the formation of some individual DBPs in the ozone‒chlor(am)ine disinfection, an overall picture of the DBP formation in the combined disinfection is largely unavailable. In this study, the effects of ozone dose on the formation and speciation of organic brominated disinfection byproducts (DBPs) in subsequent chlorination, chloramination, or chlorination‒chloramination of simulated drinking water were investigated. High-molecular-weight, aliphatic, alicyclic and aromatic brominated DBPs were selectively detected and studied using a powerful precursor ion scan method with ultra performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (UPLC/ESI-tqMS). Two groups of unregulated yet relatively toxic DBPs, dihalonitromethanes and dihaloacetaldehydes, were detected by the UPLC/ESI-tqMS for the first time. With increasing ozone dose, the levels of high-molecular-weight (m/z 300-500) and alicyclic and aromatic brominated DBPs generally decreased, the levels of brominated aliphatic acids were slightly affected, and the levels of dihalonitromethanes and dihaloacetaldehydes generally increased in the subsequent disinfection processes. Despite different molecular compositions of the detected DBPs, increasing ozone dose generally shifted the formation of DBPs from chlorinated ones to brominated analogues in the subsequent disinfection processes. This study provided a comprehensive analysis of the impact of ozone dose on the DBP formation and speciation in subsequent chlor(am)ine disinfection.
Collapse
Affiliation(s)
- Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jiaqi Liu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Environmental and Occupational Health, Texas A&M University, TX, USA
| | - Virender K Sharma
- Department of Environmental and Occupational Health, Texas A&M University, TX, USA
| |
Collapse
|
14
|
Du J, Wang C, Sun M, Chen G, Liu C, Deng X, Chen R, Zhao Z. Novel vacuum UV/ozone/peroxymonosulfate process for efficient degradation of levofloxacin: Performance evaluation and mechanism insight. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132916. [PMID: 37951169 DOI: 10.1016/j.jhazmat.2023.132916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Vacuum UV (VUV) irradiation has advantage in coupling oxidants for organics removal because VUV can dissociate water to produce reactive oxygen species (ROS) in situ and decompose oxidants rapidly. In this study, the synergistic activation of peroxymonosulfate (PMS) by VUV and ozone (O3) was explored via developing a novel integrated VUV/O3/PMS process, and the performance and mechanisms of VUV/O3/PMS for levofloxacin (LEV) degradation were investigated systematically. Results indicated that VUV/O3/PMS could effectively degrade LEV, and the degradation rate was 1.67-18.79 times of its sub-processes. Effects of PMS dosage, O3 dosage, solution pH, anions, and natural organic matter on LEV removal by VUV/O3/PMS were also studied. Besides, hydroxyl radical and sulfate radical were main ROS with contributions of 49.7% and 17.4%, respectively. Moreover, the degradation pathways of LEV in VUV/O3/PMS process were speculated based on density functional theory calculation and by-products detection. Furthermore, synergistic reaction mechanisms in VUV/O3/PMS process were proposed. The energy consumption of VUV/O3/PMS decreased by 22.6%- 88.1% compared to its sub-processes. Finally, the integrated VUV/O3/PMS process showed satisfactory results in removing LEV in actual waters, manifesting VUV/O3/PMS had great application potential and feasibility in removing organics in wastewater reuse.
Collapse
Affiliation(s)
- Jinying Du
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.
| | - Meilin Sun
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Guoliang Chen
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Chenglin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiaoyong Deng
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Rui Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhiwei Zhao
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
15
|
Zou J, Liu Y, Han Q, Tian Y, Shen F, Kang L, Feng L, Ma J, Zhang L, Du Z. Importance of Chain Length in Propagation Reaction on •OH Formation during Ozonation of Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18811-18824. [PMID: 37428486 DOI: 10.1021/acs.est.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During the ozonation of wastewater, hydroxyl radicals (•OH) induced by the reactions of ozone (O3) with effluent organic matters (EfOMs) play an essential role in degrading ozone-refractory micropollutants. The •OH yield provides the absolute •OH formation during ozonation. However, the conventional "tert-Butanol (t-BuOH) assay" cannot accurately determine the •OH yield since the propagation reactions are inhibited, and there have been few studies on •OH production induced by EfOM fractions during ozonation. Alternatively, a "competitive method", which added trace amounts of the •OH probe compound to compete with the water matrix and took initiation reactions and propagation reactions into account, was used to determine the actual •OH yields (Φ) compared with that obtained by the "t-BuOH assay" (φ). The Φ were significantly higher than φ, indicating that the propagation reactions played important roles in •OH formation. The chain propagation reactions facilitation of EfOMs and fractions can be expressed by the chain length (n). The study found significant differences in Φ for EfOMs and fractions, precisely because they have different n. The actual •OH yield can be calculated by n and φ as Φ = φ (1 + n)/(nφ + 1), which can be used to accurately predict the removal of micropollutants during ozonation of wastewater.
Collapse
Affiliation(s)
- Jinru Zou
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yajun Tian
- College of Environment, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Fangfang Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Longfei Kang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Du
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
16
|
Zhang X, Guo J, Huang Y, Lu G. Toxicity evolution and control for the UV/H 2O 2 degradation of nitrogen-containing heterocyclic compounds: SDZ and PMM. CHEMOSPHERE 2023; 338:139541. [PMID: 37467855 DOI: 10.1016/j.chemosphere.2023.139541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
This study aimed to achieve toxicity control of sulfadiazine (SDZ) and pirimiphos-methyl (PMM) via the UV/H2O2 process by optimizing the reaction parameters. The results show that both drugs had a good degradation effect under the following parameters: a H2O2 molar ratio of 1:200, and neutral conditions. SDZ and PMM could be degraded by more than 99% within 3 min, respectively. In the Daphnia magna acute toxicity assay and Vibrio fischeri inhibition assay, both SDZ and PMM exhibited a phenomenon of increasing toxicity. Additionally, through the use of density functional theory (DFT) calculation and HPLC-QTOF-MS, 21 transformation products (TPs) were identified, and the principal degradation pathways were proposed. The toxicity of the TPs was determined by comparing the QSAR prediction results with toxicity test data. As a result, under the higher UV light intensity (2300 μW/cm2) and neutral conditions, SDZ showed highest toxicity, whereas PMM showed lowest toxicity under the lowest UV light intensity (450 μW/cm2) and neutral conditions. Four main toxic TPs were identified, and their yields could be reduced by adjusting the reaction parameters. Therefore, the selection of appropriate reaction parameters could reduce the production of toxic TPs and ensure the safety of water environment.
Collapse
Affiliation(s)
- Xinke Zhang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Junjie Guo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Wang X, Zhang L, Han C, Zhang Y, Zhuo J. Simulation study of oxytetracycline contamination remediation in groundwater circulation wells enhanced by nano-calcium peroxide and ozone. Sci Rep 2023; 13:9136. [PMID: 37277445 DOI: 10.1038/s41598-023-36310-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
The widespread use of antibiotics in recent years has led to increasing antibiotic contamination of shallow groundwater. As the most widely used tetracycline antibiotic, oxytetracycline has received a lot of attention from researchers due to its stable molecular structure and difficulty in degradation. Aiming at remediation of oxytetracycline pollution in shallow groundwater, nano-calcium peroxide (nCaO2) and ozone (O3) are used to enhance the degradation of oxytetracycline in groundwater circulation well (GCW). A three-dimensional sand box test device for circulation wells is designed to explore the repair efficiency of circulation wells strengthened by different oxidants. The results show that after nCaO2 and O3 enhancing circulation wells operate for 10 h, the average removal rate of OTC reaches 83%, and the highest removal rate is 88.13%, which is 79.23% and 13.96% respectively higher than that of nCaO2 and O3 enhanced circulation wells alone, and there is no rebound phenomenon after aeration stops. The in-situ treatment of enhanced GCW by nCaO2 and O3 has potential applications for the removal of OTC in groundwater environments.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Earth Science, Northeast Petroleum University, Daqing, 163319, Heilongjiang, China
| | - Lei Zhang
- School of Earth Science, Northeast Petroleum University, Daqing, 163319, Heilongjiang, China.
| | - Chunmei Han
- The Third Oil Plant of Daqing Oilfield Co.Ltd.Daqing, Daqing, 163113, Heilongjiang, China
| | - Yanyan Zhang
- The Third Oil Plant of Daqing Oilfield Co.Ltd.Daqing, Daqing, 163113, Heilongjiang, China
| | - Jiaxin Zhuo
- Shandong Academy of Environmental Science Environmental Testing Co., Ltd., Jinan, 250013, Shandong, China
| |
Collapse
|
18
|
Das K, Bariki R, Pradhan SK, Majhi D, Dash P, Mishra A, Dhiman R, Nayak B, Mishra BG. Boosting the photocatalytic performance of Bi 2Fe 4O 9 through formation of Z-scheme heterostructure with In 2S 3: Applications towards water decontamination. CHEMOSPHERE 2022; 306:135600. [PMID: 35809748 DOI: 10.1016/j.chemosphere.2022.135600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/18/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Design of biocompatible nano-heterostructure photocatalyst with broad UV-visible spectrum response and strong redox ability is a promising approach with potential application in micropollutant degradation and pathogen deactivation from aqueous sources. Herein, we have reported the facile fabrication of In2S3/Bi2Fe4O9 (ISxBFO) binary heterostructure by hydrothermally depositing In2S3 nanoparticles (20-40 nm) over Bi2Fe4O9 nanocuboids/nanoplates prepared by combustion synthesis route. In depth characterization study revealed broad spectrum UV-Vis absorption, large interfacial contact, improved charge carrier separation and mobility and a longer excited state life time (4.7 ns) for the ISxBFO heterostructure materials. The integration of In2S3 with Bi2Fe4O9 strongly boosts the optoelectrical and photocatalytic property of pristine Bi2Fe4O9. The ISxBFO heterostructure material exhibited enhanced photocatalytic efficiency for aqueous phase degradation of sulfamethoxazole antibiotics (kapp = 0.06 min-1) and phenyl urea herbicides (kapp = 0.028 min-1) with reaction rates 3-8 times higher than the pure BFO component. The MTT assay experiments confirmed non-cytotoxic nature of treated sulfamethoxazole and diuron solutions. The composite materials also displayed convincing antibacterial behavior towards toxigenic Vibrio cholerae pathogen. Haemagglutination assay study revealed excellent biocompatibility of the binary composite up to 200 mg L-1. Radical trapping study suggested expeditious generation of •OH and •O2- radicals over the ISxBFO surface which is nearly 3.8 and 2.3 times higher than pure BFO and In2S3 respectively. The occurrence of a direct Z-scheme mechanism is inferred from radical trapping and XPS study which accounted for the improved photocatalytic activity and strong radical generation property of the ISxBFO heterostructure material.
Collapse
Affiliation(s)
- Krishnendu Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ranjit Bariki
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sibun Kumar Pradhan
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Dibyananda Majhi
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Priyanka Dash
- Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Abtar Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Rohan Dhiman
- Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Bismita Nayak
- Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - B G Mishra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
19
|
Du J, Wang C, Zhao Z, Chen R, Zhang P, Cui F. Effect of vacuum ultraviolet/ozone pretreatment on alleviation of ultrafiltration membrane fouling caused by algal extracellular and intracellular organic matter. CHEMOSPHERE 2022; 305:135455. [PMID: 35753419 DOI: 10.1016/j.chemosphere.2022.135455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Algal blooms in source water can cause algal organic matter (AOM)-related membrane fouling in drinking water treatment. Herein, the effects of vacuum ultraviolet/ozone (VUV/O3) pretreatment on alleviating ultrafiltration membrane fouling caused by AOM, including extracellular organic matter (EOM) and intracellular organic matter (IOM), were investigated systematically. Compared to its sub-processes (UV/O3, O3, VUV, and UV), VUV/O3 pretreatment showed the best performance on AOM removal and membrane fouling mitigation. After VUV/O3 pretreatment, the DOC of EOM and IOM in feed decreased by 51.1% and 26.7%, respectively, and fluorescence components and UV254 of EOM and IOM in feed decreased obviously. Hence, the final specific fluxes of the membranes increased significantly under the impacts of VUV/O3, and VUV/O3 achieved 89.5% and 97.2% mitigation of reversible fouling caused by EOM and IOM, respectively. VUV/O3 pretreatment also reduced the foulants on membrane surface and surface roughness. Moreover, under the effects of reactive oxygen species oxidation, VUV photolysis, and direct O3 oxidation, VUV/O3 decreased organic load and changed the molecular weight distribution, hydrophilicity, and interaction-free energy of AOM, thus mitigating membrane fouling. Furthermore, the effects of O3 dosage and molecular weight cut-off of ultrafiltration membrane on membrane fouling mitigation by VUV/O3 were also investigated. All results highlighted that VUV/O3 pretreatment had huge potential in mitigating AOM-induced membrane fouling.
Collapse
Affiliation(s)
- Jinying Du
- College of Environmental and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zhiwei Zhao
- College of Environmental and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Rui Chen
- College of Environmental and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Pengfei Zhang
- College of Environmental and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Fuyi Cui
- College of Environmental and Ecology, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
20
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
21
|
Mahmoudi F, Saravanakumar K, Maheskumar V, Njaramba LK, Yoon Y, Park CM. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129074. [PMID: 35567810 DOI: 10.1016/j.jhazmat.2022.129074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In the recent years, perovskite oxides are gaining an increasing amount of attention owing to their unique traits such as tunable electronic structures, flexible composition, and eco-friendly properties. In contrast, their catalytic performance is not satisfactory, which hinders real wastewater remediation. To overcome this shortcoming, various strategies are developed to design new perovskite oxide-based materials to enhance their catalytic activities in advanced oxidation process (AOPs). This review article is to provide overview of basic principle and different methods of AOPs, while the strategies to design novel perovskite oxide-based composites for enhancing the catalytic activities in AOPs have been highlighted. Moreover, the recent progress of their synthesis and applications in wastewater remediation (pertaining to the period 2016-2022) was described, and the related mechanisms were thoroughly discussed. This review article helps scientists to have a clear outlook on the selection and design of new effective perovskite oxide-based materials for the application of AOPs. At the end of the review, perspective on the challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Farzaneh Mahmoudi
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Velusamy Maheskumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
22
|
Li X, Cheng S, Xu R, Li X, Xu Z, Lai S, Ding X, Liu G, Yao H. Structure–Activity Relationships of TiO2 nanoflower-coated Porous Ti Anodes in Electro-catazone process. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
23
|
Du J, Wang C, Zhao Z, Liu J, Deng X, Cui F. Mineralization, characteristics variation, and removal mechanism of algal extracellular organic matter during vacuum ultraviolet/ozone process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153298. [PMID: 35066049 DOI: 10.1016/j.scitotenv.2022.153298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Extracellular organic matter (EOM) produced by algal blooms in source water is detrimental to drinking water treatment processes and supplied water quality. Ozonation has been used to treat algal EOM, but it could not mineralize EOM effectively. In this study, mineralization and characteristics variation of EOM by vacuum ultraviolet/ozone (VUV/O3) and its sub-processes were comprehensively investigated. Results showed that EOM removal in different processes followed the order of VUV/O3 > UV/O3 > O3 > VUV > UV. For VUV/O3 process, removal efficiencies of dissolved organic carbon (DOC), UV254, protein, and polysaccharide at 50 min were 75.6%, 80.8%, 80.1%, and 78.0%, respectively, and fluorescence components received very high removal rates (≥92.8%, at 10 min). The yield of trichloromethane dropped from 102.0 to 30.1 μg/L after treating for 50 min by VUV/O3. Besides, effects of O3 dosage, initial pH, and water matrices on EOM removal in VUV/O3 process were investigated. Moreover, fluorescent molecular probe experiments confirmed that hydroxyl radical and superoxide radical were the main reactive oxygen species (ROS) in VUV/O3 process, and the transformation of ROS was proposed. The mechanism of EOM removal by VUV/O3 included VUV photolysis, direct O3 oxidation, and ROS oxidation. Furthermore, the removal of EOM in filtered water by VUV/O3 was satisfactory. All results indicated that VUV/O3 process had great application potential in treating EOM-rich filtered water.
Collapse
Affiliation(s)
- Jinying Du
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Chuang Wang
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiwei Zhao
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China.
| | - Jie Liu
- Department of Military Facilities, Army Logistics University, Chongqing 401311, China
| | - Xiaoyong Deng
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Fuyi Cui
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
24
|
Liu D, Lin M, Chen W, Wang J, Guo X, Li X, Li L. Enhancing catalytic ozonation activity of MCM-41 via one-step incorporating fluorine and iron: The interfacial reaction induced by hydrophobic sites and Lewis acid sites. CHEMOSPHERE 2022; 292:133544. [PMID: 34998848 DOI: 10.1016/j.chemosphere.2022.133544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Fe-MCM-41 had been widely used as ozonation catalyst, however, the existence of large amount of hydrophilic silanol hindered its interfacial reaction with O3 and pollutants. To solve this problem, F-Fe-MCM-41 was synthesized by co-doping F and Fe into the framework of MCM-41 to replace silanol with Si-F groups through a one-step hydrothermal method. F introduced hydrophobic sites which contributed to more ibuprofen (IBP) chemisorption on the surface of F-Fe-MCM-41. Moreover, doping F also enhanced the acidity, which accelerated O3 decomposition into •OH. F-Fe-MCM-41/O3 exhibited notably activity with 96.6% IBP removal efficiency within 120 min, while only 78.5% and 80.9% in O3 alone and Fe-MCM-41/O3, respectively. Surface Lewis acid sites and metal hydroxyl groups were considered as important factors for O3 activation and •OH generation. F-Fe-MCM-41 exhibited excellent catalytic performance under acidic and alkaline conditions. Comparative experiments revealed that F doping improved the interfacial reaction, especially the interfacial electron transfer, which resulted in the high catalytic activity of F-Fe-MCM-41. F-Fe-MCM-41 possessed good stability and reusability, with only 5.7% decline for IBP removal in five successive cycles. Furthermore, the possible degradation path of IBP was proposed according to DFT calculation and GC-MS analysis.
Collapse
Affiliation(s)
- Dongpo Liu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Muxin Lin
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Weirui Chen
- School of Environment, South China Normal University, Guangzhou, 510006, China; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China.
| | - Jing Wang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Xingmei Guo
- School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Xukai Li
- School of Environment, South China Normal University, Guangzhou, 510006, China; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangzhou, 510006, China; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Yang ZW, Wang WL, Lee MY, Wu QY, Guan YT. Synergistic effects of ozone/peroxymonosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118626. [PMID: 34864102 DOI: 10.1016/j.envpol.2021.118626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Synergistic effects of ozone (O3) and peroxymonosulfate (PMS, HSO5-) for isothiazolinone biocides degradation was studied. The synergistic ozonation process (O3/PMS) increased the efficiency of methyl-isothiazolinone (MIT) and chloro-methyl-isothiazolinone (CMIT) degradation to 91.0% and 81.8%, respectively, within 90 s at pH 7.0. This is 30.6% and 62.5% higher than the corresponding ozonation efficiency, respectively. Total radical formation value (Rct,R) for the O3/PMS process was 24.6 times that of ozonation alone. Calculated second-order rate constants for the reactions between isothiazolinone biocides and (kSO4-,MIT and kSO4-,CMIT) were 8.15 × 109 and 4.49 × 109 M-1 s-1, respectively. Relative contributions of O3, hydroxyl radical (OH) and oxidation to MIT and CMIT removal were estimated, which were 15%, 45%, and 40% for O3, OH and oxidation to MIT, and 1%, 67%, and 32% for O3, OH and oxidation to CMIT at pH 7.0, respectively. Factors influencing the O3/PMS process, namely the solution pH, chloride ions (Cl-), and bicarbonate (HCO3-), were evaluated. Increasing the solution pH markedly accelerated O3 decay and OH and formation, thus weakening the relative contribution of O3 oxidation while enhancing that of OH and . Cl- had a negligible effect on MIT and CMIT degradation. Under the dual effect of bicarbonate (HCO3-) as inhibitor and promoter, low concentrations (1-2 mM) of bicarbonate weakly promoted MIT and CMIT degradation, while high concentrations (10-20 mM) induced strong inhibition. Lastly, oxidation performance of O3 and O3/PMS processes for MIT and CMIT degradation in different water matrices was compared.
Collapse
Affiliation(s)
- Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Min-Yong Lee
- Department of Environmental Resources Research, National Institute of Environmental Research, Seogu, Incheon, 22689, Republic of Korea
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Yun-Tao Guan
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
26
|
Bröcker JHL, Stone W, Carstens A, Wolfaardt GM. Micropollutant transformation and toxicity: Electrochemical ozonation versus biological metabolism. TOXICOLOGY RESEARCH AND APPLICATION 2022. [DOI: 10.1177/23978473221122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Environmental water sources are constantly polluted by anthropogenic compounds, not always minimized by conventional water treatment methods to remove these compounds at the micro- and nano-range. The absolute concentrations of a suite of seven representative environmental micropollutants were compared pre- and post-treatment with both ozone and microbial biofilms, in terms of removal efficiencies and toxicity assays. Both synthetic micropollutant mixes and environmental water samples were evaluated. The study started with two representative micropollutants (carbamazepine, CBZ, and sulfamethoxazole, SMX), and broadened into a suite of pollutants, evaluating whole-sample eco-toxicological footprints. An ozone concentration of 4.24 ± 0.27 mg/L in tap water, resulted in an 87.9% and 96.5% removal of CBZ and SMX, respectively, within 1 min. Despite almost immediate removal of parent micropollutants by oxidation, endocrine disruption potential (anti-estrogenicity) of CBZ and SMX required up to 240 min of ozone treatment to show no assay effect. A broader suite of micropollutants in more complex environmental matrices showed scavenging of ozone (2.95 ± 0.17–0.25 ± 0.03 mg/L) and varying micropollutant recalcitrance to oxidation. Lower matrix pollution led to lower reduction in eco-toxicity. Microbial degradation of CBZ and SMX (56% and 70% versus 19% and 79%, respectively, in duplicate biofilms) by nutrient-limited biofilms showed less removal than ozonation, with marked variation due to the stochastic nature of biofilm sloughing. Microbial degradation of CBZ and SMX resulted in an increase of >90% in both estrogenicity and Aliivibrio inhibition. The results obtained from this study address a gap in understanding the removal efficiency of micropollutants, where the removal process often receives more attention than the comparative reduction of toxicological effects. This shift from a controlled laboratory environment to real-world scenarios also provided comparative insights into the removal of micropollutants and the eco-toxicity of the transformation by-products of each process.
Collapse
Affiliation(s)
- JHL Bröcker
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - W Stone
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - A Carstens
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - GM Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|