1
|
Kim D, Kweon HS, An YJ. Grandparental transfer of nanoplastics in pea plants (Pisum sativum): Transmission from soil to third generations. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138198. [PMID: 40215932 DOI: 10.1016/j.jhazmat.2025.138198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/17/2025] [Accepted: 04/05/2025] [Indexed: 05/15/2025]
Abstract
With the increase in micro- and nanoplastic abundance in the soil environment, there has been growing concern regarding the translocation of nanoplastics to the soil biota. To this end, this study aimed to determine the multigenerational transfer of nanoplastics in plants by chronic exposure to nanoplastics (200 nm, polystyrene). Only the first generation (F0) of pea plants was exposed to nanoplastics, and subsequent generations (F1 and F2) were replanted in clean soil without nanoplastics. Pea fruits and plants of the F2 generation were examined using confocal laser scanning microscopy and transmission electron microscopy. Green fluorescence of the nanoplastics was observed in contrast to the control. Nanoplastics were located in intracellular as well as intercellular spaces and enclosed within the endoplasmic reticulum and vacuoles. Nanoplastic fluorescence detected in F2 plants confirmed that nanoplastics can be transferred not just to daughter but also to third generations. Our results suggest that nanoplastics exposed to the first generation can be continuously transferred to subsequent generations and further emphasize that they can be continuously circulated in soil ecosystems. It also shows that nanoplastics can reach humans through food and calls for improved food safety measures against micro- and nanoplastics.
Collapse
Affiliation(s)
- Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Human and Eco Care Center (HECC), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Human and Eco Care Center (HECC), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Nthunya LN, Mosai AK, López-Maldonado EA, Bopape M, Dhibar S, Nuapia Y, Ajiboye TO, Buledi JA, Solangi AR, Sherazi STH, Ndungu PN, Mahlangu OT, Mamba BB. Unseen threats in aquatic and terrestrial ecosystems: Nanoparticle persistence, transport and toxicity in natural environments. CHEMOSPHERE 2025; 382:144470. [PMID: 40378499 DOI: 10.1016/j.chemosphere.2025.144470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/24/2025] [Accepted: 05/03/2025] [Indexed: 05/19/2025]
Abstract
Although nanoparticles (NPs) are increasingly used in various industries, their uncontrolled environmental release presents a potential risk to water bodies, vegetation and human health. Although previous review studies evaluated the toxicity and bioaccumulation of NPs, their long-term ecological impacts and transport dynamics in aquatic and terrestrial systems remain unexplored. The current review examined the mechanistic bioaccumulation, transport and environmental persistence of NPs, highlighting the need for concurrent risk assessment, regulation and management strategies. The multifaceted nature of nanotechnology necessitates a balanced approach considering both the benefits of NPs and their potential environmental and health risks, requiring comprehensive risk assessment and management strategies. The complexities of NPs risk assessment, emphasizing the unique properties of NPs influencing their toxicity and environmental behavior are critically addressed. Strategies to mitigate NPs' environmental impact include advanced monitoring techniques, regulatory frameworks tailored to NPs' unique properties, promotion of green nanotechnology practices, and NP remediation technologies. Given the complexity and uncertainty surrounding NPs, integration of regulatory, technological, and research-based strategies is imperative. This involves detailed NPs characterization techniques providing basic data for environmental fate prediction models and understanding of biologically relevant risk assessment models to safeguard our environment and public health. In this study, the recent advances in NPs persistence, environmental transport modelling and toxicity mechanisms are uniquely integrated, providing a framework to ecological risk assessment and regulatory approaches.
Collapse
Affiliation(s)
- Lebea N Nthunya
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa.
| | - Alseno K Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | | | - Mokgadi Bopape
- Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Private Bag x680, Pretoria, 0001, South Africa
| | - Subhendu Dhibar
- Department of Chemistry, The University of Burdwan, Burdwan, 713104, WB, India
| | - Yannick Nuapia
- Pharmacy Department, School of Healthcare Sciences, University of Limpopo, Polokwane, South Africa
| | - Timothy O Ajiboye
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6019, Gqeberha, South Africa
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Syed Tufail H Sherazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Patrick N Ndungu
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Oranso T Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa
| |
Collapse
|
3
|
Pradel A, Hufenus R, Schneebeli M, Mitrano DM. Impact of contaminant size and density on their incorporation into sea ice. Nat Commun 2025; 16:4375. [PMID: 40355447 PMCID: PMC12069638 DOI: 10.1038/s41467-025-59608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/25/2025] [Indexed: 05/14/2025] Open
Abstract
Sea ice accumulates contaminants and redistributes them laterally as the ice drifts and vertically as it melts. Contaminant incorporation into sea ice must be better understood to resolve contaminant cycling and exposure to polar organisms. Here we develop an experimental method that mimics the formation of young sea ice and enables the quantification of model contaminants separately in the ice matrix and brine. Several limitations inherent in field studies are overcome using this approach. Results show that dissolved contaminants (<1 nm) and dispersed colloidal contaminants (1 nm-1 μm) follow the same behavior as sea salts. When colloids aggregate they follow a similar transport pathway to high-density particulate contaminants (>1 μm). While high-density particles are depleted in sea ice and low-density particles are enriched relative to their initial concentration in seawater, both are engulfed and can travel in wide brine channels. These results can also help to predict the incorporation of natural species in sea ice.
Collapse
Affiliation(s)
- Alice Pradel
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Rudolf Hufenus
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Advanced Fibers, St. Gallen, Switzerland
| | - Martin Schneebeli
- WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Denise M Mitrano
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Tang J, Eltaweil AS, Adeyemi AS, Jacobson AR, Britt DW, McLean JE, Su Y. Tracking the translocation of nanoplastics from soil to plant: Comparison of different analytical techniques. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137357. [PMID: 39889607 DOI: 10.1016/j.jhazmat.2025.137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Nanoplastics (NPs) are increasingly prevalent in the environment, posing potential risks to agricultural systems and the food web. Despite this, currently it lacks comprehensive evaluation on NPs detection and quantification techniques, which is critical for quantitatively understanding the fate and transport of NPs. To address this gap, our study systematically assesses and compares advanced analytical tools for tracking different types of NPs (derived from both top-down and bottom-up approaches) from soil to plants. For identifying and quantifying NPs from environmental samples, pyrolysis - gas chromatography - mass spectrometry (Py-GC-MS) and confocal-Raman spectroscopy demonstrate promise. For laboratory study, inductively coupled plasma mass spectrometry (ICP-MS) along with metal doped NPs enables good sensitivity for tracking NPs in plant system. Our results demonstrated a substantial NPs internalization, 1.09 × 10 ¹ ¹ NPs per gram in shoots and 1.52 × 10 ¹ ¹ NPs per gram in roots, by wheat seedlings after five days of exposure, leading to a notable 77.26 % reduction in biomass. This study highlights the importance of integrating multiple techniques to overcome the limitations of each individual technique and provides quantitative insight into the detection of NPs within plant systems, contributing to the improvement of methodology for NPs related research in environmental and agricultural fields.
Collapse
Affiliation(s)
- Junjie Tang
- Utah Water Research Laboratory, Utah State University, Logan, UT 84322, United States
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Adeleye S Adeyemi
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027-6623, United States
| | - Astrid R Jacobson
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT 84322, United States
| | - David W Britt
- Department of Biological Engineering, Utah State University, Logan, UT 84322, United States
| | - Joan E McLean
- Utah Water Research Laboratory, Utah State University, Logan, UT 84322, United States
| | - Yiming Su
- Utah Water Research Laboratory, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
5
|
Liu H, Ciric L, Bhatti M. Effects of nanoplastics and compound pollutants containing nanoplastics on plants, microorganisms and rhizosphere systems: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118084. [PMID: 40158378 DOI: 10.1016/j.ecoenv.2025.118084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Nanoplastics (NPs) are the most widespread and least detectable type of plastic pollutant due to their extremely small particle size. The root system of plants has become an important pathway for NPs to enter the food chain from the natural environment. By combining with heavy metals or organic pollutants, NPs can exhibit greater biological toxicity compared to single pollutants. Although many studies have focused on the phytotoxicity and microbial toxicity of NPs separately, to the best of our knowledge, no review summarizes the toxicity of NPs from the perspective of the plant rhizosphere system with a combination of pollutants. By summarizing samples from 2015 to 2025, this review highlights that NPs can affect photosynthesis, gene transcription, and enzyme activity in both plants and microorganisms. NPs with large particle size can also disrupt the chemical balance of the rhizosphere environment and intensify competition for nutrients between plants and microorganisms, ultimately affecting the geochemical cycle. NPs of different particle sizes and concentrations can poison various biological structures, from surface layers to genetic material. In compound pollutants, where NPs combine with other contaminants, they can further disrupt elemental cycles in plants, reduce microbial community diversity, and increase the accumulation of other pollutants in the rhizosphere system compared to single pollutants. These findings provide new insights into the biotoxicity of NPs and the degradation of compound pollutants containing NPs. In addition, combined with the research results of this review, some research prospects on the relationship between NPs and rhizosphere systems are given.
Collapse
Affiliation(s)
- Haoran Liu
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Lena Ciric
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Manpreet Bhatti
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom.
| |
Collapse
|
6
|
Murazzi ME, Pradel A, Schefer RB, Gessler A, Mitrano DM. Uptake and physiological impacts of nanoplastics in trees with divergent water use strategies. ENVIRONMENTAL SCIENCE. NANO 2024; 11:3574-3584. [PMID: 39131542 PMCID: PMC11309015 DOI: 10.1039/d4en00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/18/2024] [Indexed: 08/13/2024]
Abstract
Anthropogenic contaminants can place significant stress on vegetation, especially when they are taken up into plants. Plastic pollution, including nanoplastics (NPs), could be detrimental to tree functioning, by causing, for example, oxidative stress or reducing photosynthesis. While a number of studies have explored the capacity of plants to take up NPs, few have simultaneously assessed the functional damage due to particulate matter uptake. To quantify NPs uptake by tree roots and to determine whether this resulted in subsequent physiological damage, we exposed the roots of two tree species with different water use strategies in hydroponic cultures to two concentrations (10 mg L-1 and 30 mg L-1) of model metal-doped polystyrene NPs. This approach allowed us to accurately quantify low concentrations of NPs in tissues using standard approaches for metal analysis. The two contrasting tree species included Norway spruce (Picea abies [L.] Karst), a water conservative tree, and wild service tree (Sorbus torminalis [L.] Crantz), an early successional tree with a rather water spending strategy. At both exposure concentrations and at each of the experimental time points (two and four weeks), NPs were highly associated and/or concentrated inside the tree roots. In both species, maximum concentrations were observed after 2 weeks in the roots of the high concentration (HC) treatment (spruce: 2512 ± 304 μg NPs per g DW (dry weight), wild service tree: 1190 ± 823 μg NPs per g DW). In the aboveground organs (stems and leaves or needles), concentrations were one to two orders of magnitude lower than in the roots. Despite relatively similar NPs concentrations in the tree aboveground organs across treatments, there were different temporal impacts on tree physiology of the given species. Photosynthetic efficiency was reduced faster (after 2 weeks of NPs exposure) and more intensively (by 28% in the HC treatment) in wild service trees compared to Norway spruce (ca. 10% reduction only after 4 weeks). Our study shows that both, evergreen coniferous as well as deciduous broadleaf tree species are negatively affected in their photosynthesis by NPs uptake and transport to aboveground organs. Given the likelihood of trees facing multiple, concurrent stressors from anthropogenic pollution and climate change, including the impact of NPs, it is crucial to consider the cumulative effects on vegetation in future.
Collapse
Affiliation(s)
- Maria Elvira Murazzi
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research Zürcherstrasse 111 8903 Birmensdorf Switzerland
- Department of Environmental Systems Science, ETH Zurich Universitätstrasse 16 8092 Zurich Switzerland
| | - Alice Pradel
- Department of Environmental Systems Science, ETH Zurich Universitätstrasse 16 8092 Zurich Switzerland
| | - Roman B Schefer
- Department of Environmental Systems Science, ETH Zurich Universitätstrasse 16 8092 Zurich Switzerland
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research Zürcherstrasse 111 8903 Birmensdorf Switzerland
- Department of Environmental Systems Science, ETH Zurich Universitätstrasse 16 8092 Zurich Switzerland
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich Universitätstrasse 16 8092 Zurich Switzerland
| |
Collapse
|
7
|
Prokisch J, Nguyen DHH, Muthu A, Ferroudj A, Singh A, Agrawal S, Rajput VD, Ghazaryan K, El-Ramady H, Rai M. Carbon Nanodot-Microbe-Plant Nexus in Agroecosystem and Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1249. [PMID: 39120354 PMCID: PMC11314255 DOI: 10.3390/nano14151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The intensive applications of nanomaterials in the agroecosystem led to the creation of several environmental problems. More efforts are needed to discover new insights in the nanomaterial-microbe-plant nexus. This relationship has several dimensions, which may include the transport of nanomaterials to different plant organs, the nanotoxicity to soil microbes and plants, and different possible regulations. This review focuses on the challenges and prospects of the nanomaterial-microbe-plant nexus under agroecosystem conditions. The previous nano-forms were selected in this study because of the rare, published articles on such nanomaterials. Under the study's nexus, more insights on the carbon nanodot-microbe-plant nexus were discussed along with the role of the new frontier in nano-tellurium-microbe nexus. Transport of nanomaterials to different plant organs under possible applications, and translocation of these nanoparticles besides their expected nanotoxicity to soil microbes will be also reported in the current study. Nanotoxicity to soil microbes and plants was investigated by taking account of morpho-physiological, molecular, and biochemical concerns. This study highlights the regulations of nanotoxicity with a focus on risk and challenges at the ecological level and their risks to human health, along with the scientific and organizational levels. This study opens many windows in such studies nexus which are needed in the near future.
Collapse
Affiliation(s)
- József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat 66000, Vietnam
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Arjun Muthu
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Aya Ferroudj
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Animal Husbandry, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov on Don 344006, Russia;
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Hassan El-Ramady
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahendra Rai
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| |
Collapse
|
8
|
Wang Y, Bai JJ, Wei YJ, Zhao CX, Shao Z, Chen ML, Wang JH. Tracking and imaging nano-plastics in fresh plant using cryogenic laser ablation inductively coupled plasma mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133029. [PMID: 38042005 DOI: 10.1016/j.jhazmat.2023.133029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
Tracking and imaging of nano-plastics are extremely challenging, especially in fresh biological samples. Here, we propose a new strategy in which polystyrene (PS) was doped with the europium chelate Eu (DBM)3bpy to quantify, track, and in situ image nano-plastics in fresh cucumber based on inherent metals using cryogenic laser ablation inductively coupled plasma mass spectrometry (cryo-LA-ICP-MS). The cryogenic conditions provide a stable condition for imaging fresh cucumber, suppressing the evaporation of water in fresh plants, and maintaining the original structure of plants with respect to room temperature imaging in LA-ICP-MS. The plants were cultivated in two types of nano-plastics solutions with low (50 mg/L) and high (200 mg/L) concentrations for 9 days. The results showed that nano-plastics mainly enrich the roots and have negative effects, which decrease the trace elements of Zn, Mn, and Cu in cucumber. Smaller PS particles are able to penetrate the plant more easily and inflict serious damage. Novel imaging method provides a novel insight into the tracking and imaging of nano-plastics in fresh plant samples. The results illustrated that nano-plastics deposition on plants has the potential to have direct ecological effects as well as consequences for potential health.
Collapse
Affiliation(s)
- Yu Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jun-Jie Bai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yu-Jia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chen-Xi Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhen Shao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
9
|
Peng M, Félix RC, Canário AVM, Power DM. The physiological effect of polystyrene nanoplastic particles on fish and human fibroblasts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169979. [PMID: 38215851 DOI: 10.1016/j.scitotenv.2024.169979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Numerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.1), human male newborn (BJ-5ta) and female adult (HDF/TERT164) and their response to polystyrene NP (PS-NPs) exposure is characterized. Cells were exposed to environmentally relevant PS-NP sizes (50, 500 and 1000 nm) and concentrations (0.001 to 10 μg/ml) and their uptake (1000 nm), and effect on cell viability, proliferation, migration, reactive oxygen species (ROS) production, apoptosis, alkaline phosphatase (ALP) and acid phosphatase (AP) determined. All fibroblasts took up PS-NPs, and a relationship between PS-NP particle size and concentration and the inhibition of proliferation and cell migration was identified. The inhibitory effect of PS-NPs on proliferation was more pronounced for human skin fibroblasts. The presence of PS-NPs negatively affected fibroblast migration in a time-, size- and concentration-dependent manner with larger PS-NPs at higher concentrations causing a more significant inhibition of cell migration, with human fibroblasts being the most affected. No major changes were detected in ROS production or apoptosis in NP challenged fibroblasts. While the ALP activity was increased in all fibroblast cell lines, only fish fibroblasts showed a significant increase in AP activity. The heterogeneous response of fibroblasts induced by PS-NPs was clearly revealed by the segregation of HDF, BJ.5ta and SJD.1 fibroblasts in principal component analysis. Our results demonstrate that PS-NP exposure adversely affected cellular processes in a cell-type and dose-specific manner in distinct fibroblast cell lines, emphasizing the need for further exploration of NP interactions with different cell types to better understand potential implications for human health.
Collapse
Affiliation(s)
- Maoxiao Peng
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rute C Félix
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
10
|
Yu Z, Xu X, Guo L, Jin R, Lu Y. Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168155. [PMID: 37898208 DOI: 10.1016/j.scitotenv.2023.168155] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pervasive dispersion of micro/nanoplastics in various environmental matrices has raised concerns regarding their potential intrusion into terrestrial ecosystems and, notably, plants. In this comprehensive review, we focus on the interaction between these minute plastic particles and plants. We delve into the current methodologies available for detecting micro/nanoplastics in plant tissues, assess the accumulation and distribution of these particles within roots, stems, and leaves, and elucidate the specific uptake and transport mechanisms, including endocytosis, apoplastic transport, crack-entry mode, and stomatal entry. Moreover, uptake and transport of micro/nanoplastics are complex processes influenced by multiple factors, including particle size, surface charge, mechanical properties, and physiological characteristics of plants, as well as external environmental conditions. In conclusion, this review paper provided valuable insights into the current understanding of these mechanisms, highlighting the complexity of the processes and the multitude of factors that can influence them. Further research in this area is warranted to fully comprehend the fate of micro/nanoplastics in plants and their implications for environmental sustainability.
Collapse
Affiliation(s)
- Zhefu Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaolu Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liang Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yin Lu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
11
|
Li Y, Zhao L, An Y, Qin L, Qiao Z, Chen D, Li Y, Geng H, Yang Y. Bibliometric analysis and systematic review of the adherence, uptake, translocation, and reduction of micro/nanoplastics in terrestrial plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167786. [PMID: 37848143 DOI: 10.1016/j.scitotenv.2023.167786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Micro/nanoplastics are emerging agricultural pollutants globally. Micro/nanoplastics can adhere to terrestrial plant surfaces, be absorbed and transported by plants, and accumulate in the edible parts of plants, leading to the possibility of enrichment and transmission through the food chain and threatening human health. However, the underlying mechanism remains unclear. With increased studies on the internalization of micro/nanoplastics in terrestrial plants, a comprehensive and systematic review summarizing the current research trends and progress is warranted to provide a reference for further relevant research. Based on bibliometric analysis, this study focused on the mechanisms, study methods, and reduction techniques of micro/nanoplastics adherence, uptake, and translocation by terrestrial plants. The results showed that micro/nanoplastics can adhere to the surfaces of plant tissues such as seeds, roots, and leaves. Root uptake (root-to-leaf translocation) and foliar uptake (leaf-to-root translocation) are the two simultaneous internalization pathways of MNPs in plants. The observation methods included scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), and inductively coupled plasma-mass spectrometry (ICP-MS). We highlighted the necessity and urgency of reducing the uptake and translocation of MNPs by plants and found that the application of silicon may be a promising approach for reducing internalization. This study identifies current knowledge gaps and proposes possible future needs.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhi Qiao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Xing GW, Gao J, Wang H, Liu YC. New Fluorophore and Its Applications in Visualizing Polystyrene Nanoplastics in Bean Sprouts and HeLa Cells. Molecules 2023; 28:7102. [PMID: 37894580 PMCID: PMC10609485 DOI: 10.3390/molecules28207102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In the domain of environmental science, pollutants of nanoscale plastic dimensions are acknowledged as subjects of intricate significance. Such entities, though minuscule, present formidable challenges to ecological systems and human health. The diminutive dimensions of these contaminants render their detection arduous, thus demanding the inception of avant-garde methodologies. The present manuscript postulates the employment of the tetraphenylethylene functional group with a fused xanthene (TPEF), a distinguished fluorophore, as an exemplary system for the discernment of nanoplastic particulates. The synthesis and characterization of TPEF have been exhaustively elucidated, revealing its paramount fluorescence attributes and inherent affinity for interaction with nanoplastics. When subjected to comparison with TPEF, nanoplastics are observed to manifest a more pronounced fluorescent luminescence than when associated with the conventional Nile Red (NR). Particularly, the TPEF has shown exceptional affinity for polystyrene (PS) nanoplastics. Further, the resilience of nanoplastics within the hypocotyl epidermis of soybeans, as well as their persistence in mung bean sprouts subsequent to rigorous rinsing protocols, has been meticulously examined. Additionally, this investigation furnishes empirical data signifying the existence of nano-dimensional plastic contaminants within HeLa cellular structures. The urgency of addressing the environmental ramifications engendered by these diminutive yet potent plastic constituents is emphatically highlighted in this manuscript. TPEF paves the way for prospective explorations, with the aspiration of devising efficacious mitigation strategies. Such strategies might encompass delineating the trajectories undertaken by nanoplastics within trophic networks or their ingress into human cellular architectures.
Collapse
Affiliation(s)
- Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing 100875, China;
| | - Jerry Gao
- Beijing No. 80 High School, Beijing 100102, China; (J.G.); (H.W.)
| | - Heng Wang
- Beijing No. 80 High School, Beijing 100102, China; (J.G.); (H.W.)
| | - Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
13
|
Zhang HJ, Zhou HR, Pan W, Wang C, Liu YY, Yang L, Tsz-Ki Tsui M, Miao AJ. Accumulation of nanoplastics in human cells as visualized and quantified by hyperspectral imaging with enhanced dark-field microscopy. ENVIRONMENT INTERNATIONAL 2023; 179:108134. [PMID: 37595538 DOI: 10.1016/j.envint.2023.108134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Nanoplastic (NP) pollution is receiving increasing attention regarding its potential effects on human health. The identification and quantification of intracellular NPs are prerequisites for an accurate risk assessment, but appropriate methods are lacking. Here we present a label-free technique to simultaneously visualize and quantify the bioaccumulation of NPs based on hyperspectral imaging with enhanced dark-field microscopy (HSI-DFM). Using polystyrene NPs (PS NPs) as representative particles, the construction of a hyperspectral library was optimized first with more accurate NP identification achieved when the library was based on intracellular instead of extracellular PS NPs. The PS NPs used herein were labeled with a green fluorescent dye so that the accuracy of HSI-DFM in identifying and quantifying intracellular NPs can be evaluated, by comparing the results with those obtained by fluorescence microscopy and flow cytometry. The validation of HSI-DFM for use in determinations of the NP concentration at the single-cell level allows analyses of the accumulation kinetics of NPs in single living cells. The utility of HSI-DFM in different cell lines and with NPs differing in their chemical composition was also demonstrated. HSI-DFM therefore provides a new approach to studies of the accumulation and distribution of NPs in human cells.
Collapse
Affiliation(s)
- Hong-Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Hao-Ran Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China; Bureau of Hydrology, Changjiang Water Resources Commission, Ministry of Water Resources of People's Republic of China, Wuhan 430010, China
| | - Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Chuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Yue-Yue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, Earth and Environmental Sciences Programme, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
14
|
Wang L, Liu B, Zhang W, Li Q, Lin B, Wei C. An unrecognized entry pathway of submicrometre plastics into crop root: The split of hole in protective layer. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131732. [PMID: 37295328 DOI: 10.1016/j.jhazmat.2023.131732] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Threats to food safety caused by the continuous accumulation of plastic particles in the terrestrial environment is currently a worldwide concern. To date, descriptions of how plastic particles pass the external biological barrier of crop root have been vague. Here, we demonstrated that submicrometre polystyrene particles passed unimpededly the external biological barrier of maize through the split of holes in the protective layer. We identified plastic particles induced the apical epidermal cells of root tips become round, thereby expanding the intercellular space. It further pulled apart the protective layer between the epidermal cells, and eventually formed the entry pathway for plastic particles. The enhancement of oxidative stress level induced by plastic particles was the main reason for the deformation of the apical epidermal cells (increased roundness values: 15.5%), comparing to the control. Our findings further indicated that the presence of cadmium was conducive to the "holes" formation. Our results highlighted the critical insights into the fracture mechanisms of plastic particles for the external biological barriers of crop roots, providing a strong incentive to access the risk of plastic particles in agriculture security.
Collapse
Affiliation(s)
- Luya Wang
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China
| | - Beibei Liu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China
| | - Wen Zhang
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China
| | - Qinfen Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China
| | - Bigui Lin
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China.
| | - Chaoxian Wei
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China.
| |
Collapse
|
15
|
Heinlaan M, Viljalo K, Richter J, Ingwersen A, Vija H, Mitrano DM. Multi-generation exposure to polystyrene nanoplastics showed no major adverse effects in Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121213. [PMID: 36740165 DOI: 10.1016/j.envpol.2023.121213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Long-term impacts of plastics exposure to organisms, especially to the smallest plastics fraction, nanoplastics (NPs; ≤1 μm), are yet to be fully understood. The data concerning multiple generations are especially rare - an exposure scenario that is the most relevant from the standpoint of environmental reality aspect. Using Pd-doped 200 nm polystyrene NPs, which allowed for quantification of NPs in trace concentrations, the aim of the study was to evaluate the multigenerational impact of NPs for the freshwater crustacean Daphnia magna. Four consecutive 21-day exposures involving F0-F3 generations of D. magna were conducted according to OECD211. NPs impact (at 0.1 mg/L and 1 mg/L) was assessed in parallel to a comparative particle mesoporous SiO2 of similar size and shape (at 1 mg/L) to deconvolute impacts of variable particle chemistry. D. magna mortality, reproductive endpoints, body length (adults and offspring) and lipid content (offspring) were assessed upon NPs and SiO2 exposures. NPs association with adults and offspring was quantified by ICP-MS through the NPs Pd-dopant. The results showed no NPs impact on D. magna at 0.1 mg/L. At 1 mg NPs/L, the only statistically significant effect on adult organisms was increased fertility in the F3 generation. Conversely, SiO2 induced 80% mortality in F3 adult D. magna and the survived adults were significantly smaller and less fertile than those of other treatments. Both particles induced decreased size and lipid content in F3 offspring. The average NPs body burdens (ng NPs/mg D. magna dwt) for the adult and offspring D. magna were 105 ± 12 and 823 ± 440, respectively at 0.1 mg/L exposure and 503 ± 176 and 621 ± 235, respectively at 1 mg/L exposure. Finally, the results of this study add to the previous findings showing that multi-generation exposure to synthetic nano-sized particles of different chemistries may disturb the energy balance of D. magna.
Collapse
Affiliation(s)
- Margit Heinlaan
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Kärt Viljalo
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Jelizaveta Richter
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Anna Ingwersen
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 16, 8092 Zurich, Switzerland
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
16
|
Tamayo-Belda M, Pérez-Olivares AV, Pulido-Reyes G, Martin-Betancor K, González-Pleiter M, Leganés F, Mitrano DM, Rosal R, Fernández-Piñas F. Tracking nanoplastics in freshwater microcosms and their impacts to aquatic organisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130625. [PMID: 37056024 DOI: 10.1016/j.jhazmat.2022.130625] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/19/2023]
Abstract
In this work, we used palladium-doped polystyrene NPLs (PS-NPLs with a primary size of 286 ± 4 nm) with an irregular surface morphology which allowed for particle tracking and evaluation of their toxicity on two primary producers (cyanobacterium, Anabaena sp. PCC7120 and green algae, Chlamydomonas reinhardtii) and one primary consumer (crustacean, Daphnia magna). the concentration range for Anabaena and C. reinhardtii was from 0.01 to 1000 mg/L and for D. magna, the range was from 7.5 to 120 mg/L.EC50 s ranged from 49 mg NPLs/L for D. magna (48hEC50 s) to 248 mg NPLs/L (72hEC50 s for C. reinhardtii). PS-NPLs induced dose-dependent reactive oxygen species overproduction, membrane damage and metabolic alterations. To shed light on the environmental fate of PS-NPLs, the short-term distribution of PS-NPLs under static (using lake water and sediments) and stirring (using river water and sediments) conditions was studied at laboratory scale. The results showed that most NPLs remained in the water column over the course of 48 h. The maximum percentage of settled particles (∼ 30 %) was found under stirring conditions in comparison with the ∼ 10 % observed under static ones. Natural organic matter increased the stability of the NPLs under colloidal state while organisms favored their settlement. This study expands the current knowledge of the biological effects and fate of NPLs in freshwater environments.
Collapse
Affiliation(s)
- Miguel Tamayo-Belda
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | - Gerardo Pulido-Reyes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland; Department of Environment and Agronomy, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Crta. de la Coruña, km 7.5, 28040 Madrid, Spain
| | - Keila Martin-Betancor
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, 8092 Zurich, Switzerland
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
17
|
Gao M, Chang J, Wang Z, Zhang H, Wang T. Advances in transport and toxicity of nanoparticles in plants. J Nanobiotechnology 2023; 21:75. [PMID: 36864504 PMCID: PMC9983278 DOI: 10.1186/s12951-023-01830-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
In recent years, the rapid development of nanotechnology has made significant impacts on the industry. With the wide application of nanotechnology, nanoparticles (NPs) are inevitably released into the environment, and their fate, behavior and toxicity are indeterminate. Studies have indicated that NPs can be absorbed, transported and accumulated by terrestrial plants. The presence of NPs in certain edible plants may decrease harvests and threaten human health. Understanding the transport and toxicity of NPs in plants is the basis for risk assessment. In this review, we summarize the transportation of four types of NPs in terrestrial plants, and the phytotoxicity induced by NPs, including their impacts on plant growth and cell structure, and the underlying mechanisms such as inducing oxidative stress response, and causing genotoxic damage. We expect to provide reference for future research on the effects of NPs on plants.
Collapse
Affiliation(s)
- Mingyang Gao
- grid.410585.d0000 0001 0495 1805Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Jia Chang
- grid.410585.d0000 0001 0495 1805Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Zhongtang Wang
- grid.410585.d0000 0001 0495 1805Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Hongyan Zhang
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Tian Wang
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
18
|
Pérez-Reverón R, Álvarez-Méndez SJ, González-Sálamo J, Socas-Hernández C, Díaz-Peña FJ, Hernández-Sánchez C, Hernández-Borges J. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120788. [PMID: 36481462 DOI: 10.1016/j.envpol.2022.120788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Soils play a very important role in ecosystems sustainability, either natural or agricultural ones, serving as an essential support for living organisms of different kinds. However, in the current context of extremely high plastic pollution, soils are highly threatened. Plastics can change the chemical and physical properties of the soils and may also affect the biota. Of particular importance is the fact that plastics can be fragmented into microplastics and, to a final extent into nanoplastics. Due to their extremely low size and high surface area, nanoplastics may even have a higher impact in soil ecosystems. Their transport through the edaphic environment is regulated by the physicochemical properties of the soil and plastic particles themselves, anthropic activities and biota interactions. Their degradation in soils is associated with a series of mechanical, photo-, thermo-, and bio-mediated transformations eventually conducive to their mineralisation. Their tiny size is precisely the main setback when it comes to sampling soils and subsequent processes for their identification and quantification, albeit pyrolysis coupled with gas chromatography-mass spectrometry and other spectroscopic techniques have proven to be useful for their analysis. Another issue as a consequence of their minuscule size lies in their uptake by plants roots and their ingestion by soil dwelling fauna, producing morphological deformations, damage to organs and physiological malfunctions, as well as the risks associated to their entrance in the food chain, although current conclusions are not always consistent and show the same pattern of effects. Thus, given the omnipresence and seriousness of the plastic menace, this review article pretends to provide a general overview of the most recent data available regarding nanoplastics determination, occurrence, fate and effects in soils, with special emphasis on their ecological implications.
Collapse
Affiliation(s)
- Raquel Pérez-Reverón
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Sergio J Álvarez-Méndez
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Francisco Sánchez, s/n, 38206 La Laguna, Tenerife, Spain; Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Cristina Socas-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Avenida Catalunya, 21, 46020, Valencia, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto 2, 38001, Santa Cruz de Tenerife, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
19
|
Clark NJ, Khan FR, Crowther C, Mitrano DM, Thompson RC. Uptake, distribution and elimination of palladium-doped polystyrene nanoplastics in rainbow trout (Oncorhynchus mykiss) following dietary exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158765. [PMID: 36113800 DOI: 10.1016/j.scitotenv.2022.158765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The ingestion of nanoplastics (NPs) by fish has led to concerns regarding fish health and food chain transfer, but analytical constraints have hindered quantitative data collection on their uptake and depuration. We used palladium-doped polystyrene nanoplastics (PS-Pd NPs, ~200 nm) to track particle fate in rainbow trout (Oncorhynchus mykiss) during a week-long dietary exposure and subsequent 7-day depuration period on a control diet (no added PS-Pd NPs). At Day 3 and 7 of the exposure, and after depuration, the mid intestine, hind intestine, liver, gallbladder, kidney, gill and carcass were sampled. All organs and the carcass were analysed for total Pd content by inductively couple plasma mass spectrometry. After 3 days of exposure, the mid (32.5 ± 8.3 ng g-1) and hind (42.3 ± 8.2 ng g-1) intestine had significantly higher total Pd concentrations compared to the liver and carcass (1.3 ± 0.4 and 3.4 ± 1.1 ng g-1, respectively). At Day 7, there was no time-related difference in any organ (or the carcass) total Pd concentrations compared to Day 3. When the total Pd content was expressed as a body distribution based on mass of tissue, the carcass contained the highest fraction with 72.5 ± 5.2 % at Day 7, which could raise concerns over transfer to higher trophic levels. The total number of particles that entered the fish over the 7 days was 94.5 ± 13.5 × 106 particles, representing 0.07 ± 0.01 % of the Pd the fish had been fed. Following depuration, there was no detectable Pd in any organ or the carcass, indicating clearance from the fish. These data indicate that these NPs are taken into the internal organs and carcass of fish, yet removal of the exposure results in substantial excretion to below the limit of detection.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway
| | - Charlotte Crowther
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, 8092, Switzerland
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
20
|
Ribeiro F, Mitrano DM, Hacker C, Cherek P, Brigden K, Kaserzon SL, Thomas KV, Galloway TS. Short Depuration of Oysters Intended for Human Consumption Is Effective at Reducing Exposure to Nanoplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16716-16725. [PMID: 36383416 DOI: 10.1021/acs.est.2c02269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoplastics (NPs; <1 μm) have greater availability to marine organisms than microplastics (1-5000 μm). Understanding NP uptake and depuration in marine organisms intended for human consumption is imperative for food safety, but until now it has been limited due to analytical constraints. Oysters (Crassostrea gigas) were exposed to polystyrene NPs doped with palladium (Pd), allowing the measurements of their uptake into tissues by inductively coupled plasma mass spectrometry (ICP-MS) combined with electron microscopy. Oysters were exposed for 6 days (d) to "Smooth" or "Raspberry" NPs, followed by 30 d of depuration with the aim of assessing the NP concentration in C. gigas following exposure, inferring the accumulation and elimination rates, and understanding the clearance of Pd NPs during the depuration period. After 6 d, the most significant accumulation was found in the digestive gland (106.6 and 135.3 μg g-1 dw, for Smooth and Raspberry NPs, respectively) and showed the most evident depuration (elimination rate constant KSmooth = 2 d-1 and KRaspberry = 0.2 d-1). Almost complete depuration of the Raspberry NPs occurred after 30 d. While a post-harvesting depuration period of 24-48 h for oysters could potentially reduce the NP content by 75%, more research to validate these findings, including depuration studies of oysters from the field, is required to inform practices to reduce human exposure through consumption.
Collapse
Affiliation(s)
- Francisca Ribeiro
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, QLD 4102, Australia
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, U.K
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Christian Hacker
- Bioimaging Centre, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - Paulina Cherek
- Bioimaging Centre, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - Kevin Brigden
- Greenpeace Research Laboratories, College of Life and Environmental Sciences, Innovation Centre Phase 2, University of Exeter, Exeter EX4 4RN, U.K
| | - Sarit Leat Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Tamara S Galloway
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, U.K
| |
Collapse
|
21
|
From microbes to ecosystems: a review of the ecological effects of biodegradable plastics. Emerg Top Life Sci 2022; 6:423-433. [PMID: 36069649 DOI: 10.1042/etls20220015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Biodegradable plastics have been proposed as a potential solution to plastic pollution, as they can be biodegraded into their elemental components by microbial action. However, the degradation rate of biodegradable plastics is highly variable across environments, leading to the potential for accumulation of plastic particles, chemical co-contaminants and/or degradation products. This paper reviews the toxicological effects of biodegradable plastics on species and ecosystems, and contextualises these impacts with those previously reported for conventional polymers. While the impacts of biodegradable plastics and their co-contaminants across levels of biological organisation are poorly researched compared with conventional plastics, evidence suggests that individual-level effects could be broadly similar. Where differences in the associated toxicity may arise is due to the chemical structure of biodegradable polymers which should facilitate enzymatic depolymerisation and the utilisation of the polymer carbon by the microbial community. The input of carbon can alter microbial composition, causing an enrichment of carbon-degrading bacteria and fungi, which can have wider implications for carbon and nitrogen dynamics. Furthermore, there is the potential for toxic degradation products to form during biodegradation, however understanding the environmental concentration and effects of degradation products are lacking. As global production of biodegradable polymers continues to increase, further evaluation of their ecotoxicological effects on organisms and ecosystem function are required.
Collapse
|
22
|
Karalija E, Carbó M, Coppi A, Colzi I, Dainelli M, Gašparović M, Grebenc T, Gonnelli C, Papadakis V, Pilić S, Šibanc N, Valledor L, Poma A, Martinelli F. Interplay of plastic pollution with algae and plants: hidden danger or a blessing? JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129450. [PMID: 35999715 DOI: 10.1016/j.jhazmat.2022.129450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
In the era of plastic pollution, plants have been discarded as a system that is not affected by micro and nanoplastics, but contrary to beliefs that plants cannot absorb plastic particles, recent research proved otherwise. The presented review gives insight into known aspects of plants' interplay with plastics and how plants' ability to absorb plastic particles can be utilized to remove plastics from water and soil systems. Microplastics usually cannot be absorbed by plant root systems due to their size, but some reports indicate they might enter plant tissues through stomata. On the other hand, nanoparticles can enter plant root systems, and reports of their transport via xylem to upper plant parts have been recorded. Bioaccumulation of nanoplastics in upper plant parts is still not confirmed. The prospects of using biosystems for the remediation of soils contaminated with plastics are still unknown. However, algae could be used to degrade plastic particles in water systems through enzyme facilitated degradation processes. Considering the amount of plastic pollution, especially in the oceans, further research is necessary on the utilization of algae in plastic degradation. Special attention should be given to the research concerning utilization of algae with restricted algal growth, ensuring that a different problem is not induced, "sea blooming", during the degradation of plastics.
Collapse
Affiliation(s)
- Erna Karalija
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia.
| | - Tine Grebenc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia.
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| | - Vassilis Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, N. Plastira 100, GR-70013 Heraklion, Crete, Greece.
| | - Selma Pilić
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Nataša Šibanc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia.
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain.
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, Università degli Studi dell'Aquila, Laboratory of Genetics and Mutagenesis, via Vetoio 1, 67100 L'Aquila, Italy.
| | - Federico Martinelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121 Florence, Italy.
| |
Collapse
|