1
|
Wang YN, Cai TG, Li Y, Dai WC, Lin D, Zheng JT, Wang YF, Zhu D. Warming exacerbates the effects of pesticides on the soil collembolan gut microbiome and antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138294. [PMID: 40245716 DOI: 10.1016/j.jhazmat.2025.138294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
In the context of global climate warming, studies have yet to fully clarify how pollutants affect the gut microbiome and antibiotic resistance genes (ARGs) in nontarget soil fauna. This study investigates the interactive effects of pesticide exposure (imidacloprid) and elevated temperature on the gut bacterial community and ARGs in the model soil collembolan Folsomia candida. Our results demonstrate warming exacerbates the toxicity of imidacloprid in collembolans. While exposure to both warming and pesticide significantly altered the gut microbial composition of F. candida, impairing microbial metabolic diversity and potential host defense mechanisms, it also increased collembolan mortality. This combined exposure significantly enhanced the abundance and diversity of ARGs in the collembolan gut. A notable correlation between ARGs and mobile genetic elements (MGEs) underscores the potential risk of ARG transmission. Co-occurrence network analysis identified 52 bacterial genera as potential ARG hosts. Additionally, pure-culture exposure experiments with the isolated bacterium Serratia liquefaciens revealed the adaptability of ARG hosts to pesticide and warming stress plays an important role in driving the observed increase in ARGs. In conclusion, this study highlights the synergistic effects of climate warming and pesticide contamination on nontarget soil organisms, emphasizing the potential long-term risks to soil ecosystem health and stability.
Collapse
Affiliation(s)
- Ya-Ning Wang
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Gui Cai
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Wen-Cai Dai
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Da Lin
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Ting Zheng
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Fei Wang
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Dong Zhu
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
2
|
Gillett DL, Selinidis M, Seamons T, George D, Igwe AN, Del Valle I, Egbert RG, Hofmockel KS, Johnson AL, Matthews KRW, Masiello CA, Stadler LB, Chappell J, Silberg JJ. A roadmap to understanding and anticipating microbial gene transfer in soil communities. Microbiol Mol Biol Rev 2025:e0022524. [PMID: 40197024 DOI: 10.1128/mmbr.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
SUMMARYEngineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measures in situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.
Collapse
Affiliation(s)
- David L Gillett
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Malyn Selinidis
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Travis Seamons
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Dalton George
- Department of Biosciences, Rice University, Houston, Texas, USA
- School for the Future of Innovation in Society, Arizona State University, Tempe, Arizona, USA
| | - Alexandria N Igwe
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ilenne Del Valle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alicia L Johnson
- Baker Institute for Public Policy, Rice University, Houston, Texas, USA
| | | | - Caroline A Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | |
Collapse
|
3
|
Hacopian MT, Barrón‐Sandoval A, Romero‐Olivares AL, Berlemont R, Treseder KK. Warming is Associated With More Encoded Antimicrobial Resistance Genes and Transcriptions Within Five Drug Classes in Soil Bacteria: A Case Study and Synthesis. Environ Microbiol 2025; 27:e70097. [PMID: 40262767 PMCID: PMC12014264 DOI: 10.1111/1462-2920.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025]
Abstract
The effect of warming on anti-microbial resistance (AMR) genes in the environment has critical implications for public health but is little studied. We collected published soil bacterial genomes from the BV-BRC database and tested the correlation between reported optimal growth temperature and the number of encoded AMR genes. Furthermore, we tested the relationship between temperature and AMR gene transcription in a natural ecosystem by analysing soil transcriptomes from a warming manipulation experiment in an Alaskan boreal forest. We hypothesised that there is a positive relationship between warming and AMR prevalence in gene content in bacterial genomes and transcriptomic sequences, and that this effect would vary by drug class. Regarding the bacterial genomes, we found a positive relationship between the fraction of encoded AMR genes and the reported optimal temperature of soil bacteria. The drug classes tetracycline and lincosamide/macrolide/streptogramin had the strongest positive relationship with reported optimal temperature. For the case study in a natural ecosystem, we found 61 significantly upregulated AMR gene-associated transcripts spanning eight drug classes in warmed plots. In the Alaskan soil samples, we found that warming elicited the strongest positive effect on transcripts targeting lincosamide/streptogramin, beta-lactam and phenicol/quinolone antibiotics. Overall, higher temperatures were linked to AMR gene prevalence.
Collapse
Affiliation(s)
- Melanie T. Hacopian
- Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Alberto Barrón‐Sandoval
- Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | | | - Renaud Berlemont
- Department of Biological SciencesCalifornia State University, Long BeachLong BeachCaliforniaUSA
| | - Kathleen K. Treseder
- Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| |
Collapse
|
4
|
Wang X, Wu W, Ao G, Han M, Liu M, Yin R, Feng J, Zhu B. Minor Effects of Warming on Soil Microbial Diversity, Richness and Community Structure. GLOBAL CHANGE BIOLOGY 2025; 31:e70104. [PMID: 40035386 DOI: 10.1111/gcb.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Climate warming has caused widespread global concern. However, how warming affects soil microbial diversity, richness, and community structure on a global scale remains poorly understood. Here we conduct a meta-analysis of 945 observations from 100 publications by collecting relevant data. The results show that field warming experiments significantly modify soil temperature (+1.8°C), soil water content (-3.2%), and soil pH (-0.04). However, field warming does not significantly alter the diversity, richness, and community structure of soil bacteria and fungi. Warming-induced changes in soil variables (i.e., ΔSoil water content, ΔpH), ΔTemperature and experimental duration are important factors influencing the microbial responses to warming. In addition, soil bacterial α-diversity (Shannon index) decreases significantly (-3.4%) when the warming duration is 3-6 years, and bacterial β-diversity increases significantly (35.2%) when warming exceeds 6 years. Meta-regression analysis reveals a positive correlation between the change of bacterial Shannon index and ΔpH. Moreover, warming produces more pronounced effects on fungal Shannon index and β-diversity in experimental sites with moderate mean annual temperature (MAT, 0°C-10°C) than in higher (> 10°C) or lower (< 0°C) MAT. Overall, this study provides a global perspective on the response of soil microorganisms to climate warming and improves our knowledge of the factors influencing the response of soil microorganisms to warming.
Collapse
Affiliation(s)
- Xudong Wang
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wenao Wu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Gukailin Ao
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mengguang Han
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mengli Liu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Rui Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jiguang Feng
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
- National Key Laboratory of Water Disaster Prevention, Key Laboratory of Soil and Water Processes in Watershed, College of Geography and Remote Sensing, Hohai University, Nanjing, China
| | - Biao Zhu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Li HZ, Breed M, Tang Z, Cui L, Zhu YG, Sun X. Soil warming increases the active antibiotic resistome in the gut of invasive giant African snails. MICROBIOME 2025; 13:42. [PMID: 39915809 PMCID: PMC11800439 DOI: 10.1186/s40168-025-02044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Global warming is redrawing the map for invasive species, spotlighting the globally harmful giant African snail as a major ecological disruptor and public health threat. Known for harboring extensive antibiotic resistance genes (ARGs) and human pathogens, it remains uncertain whether global warming exacerbates these associated health risks. METHODS We use phenotype-based single-cell Raman with D2O labeling (Raman-D2O) and genotype-based metagenomic sequencing to investigate whether soil warming increases active antibiotic-resistant bacteria (ARBs) in the gut microbiome of giant African snails. RESULTS We show a significant increase in beta-lactam phenotypic resistance of active ARBs with rising soil temperatures, mirrored by a surge in beta-lactamase genes such as SHV, TEM, OCH, OKP, and LEN subtypes. Through a correlation analysis between the abundance of phenotypically active ARBs and genotypically ARG-carrying gut microbes, we identify species that contribute to the increased activity of antibiotic resistome under soil warming. Among 299 high-quality ARG-carrying metagenome-assembled genomes (MAGs), we further revealed that the soil warming enhances the abundance of "supercarriers" including human pathogens with multiple ARGs and virulence factors. Furthermore, we identified elevated biosynthetic gene clusters (BGCs) within these ARG-carrying MAGs, with a third encoding at least one BGC. This suggests a link between active ARBs and secondary metabolism, enhancing the environmental adaptability and competitive advantage of these organisms in warmer environments. CONCLUSIONS The study underscores the complex interactions between soil warming and antibiotic resistance in the gut microbiome of the giant African snail, highlighting a potential escalation in environmental health risks due to global warming. These findings emphasize the urgent need for integrated environmental and health strategies to manage the rising threat of antibiotic resistance in the context of global climate change. Video Abstract.
Collapse
Affiliation(s)
- Yiyue Zhang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
| | - Hong-Zhe Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
| | - Martin Breed
- College of Science & Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Zhonghui Tang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- School of Life Sciences, Hebei University, Baoding, 071000, Hebei, People's Republic of China
| | - Li Cui
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Yong-Guan Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Xin Sun
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, People's Republic of China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| |
Collapse
|
6
|
Zhao W, Zhang B, Zheng S, Yan W, Yu X, Ye C. High temperatures promote antibiotic resistance genes conjugative transfer under residual chlorine: Mechanisms and risks. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136675. [PMID: 39603126 DOI: 10.1016/j.jhazmat.2024.136675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
The impact of residual chlorine on the dissemination of antibiotic resistance during the distribution and storage of water has become a critical concern. However, the influence of rising temperatures attributed to global warming on this process remains ambiguous, warranting further investigation. This study investigated the effects of different temperatures (17, 27, 37, and 42°C) on the conjugative transfer of antibiotic resistance genes (ARGs) under residual chlorine (0, 0.1, 0.3, and 0.5 mg/L). The results indicated that high temperatures significantly increased the conjugative transfer frequency of ARGs in intra-species under residual chlorine. Compared to 17°C, the transfer frequencies at 27°C, 37°C, and 42°C increased by 1.07-2.43, 1.20-4.80, and 1.24-2.82 times, respectively. The promoting effect of high temperatures was mainly due to the generation of reactive oxygen species, the triggered SOS response, and the formation of pilus channels. Transcriptomic analysis demonstrated that higher temperature stimulates the electron transport chain, thereby enhancing ATP production and facilitating the processes of conjugative, as confirmed by inhibitor validation. Additionally, rising temperatures similarly promoted the frequency of conjugative transfer in inter-species and communities under residual chlorine. These further highlighted the risk of antibiotic resistance spread in extreme and prolonged high-temperature events. The increased risk of antibiotic resistance in the process of drinking water transmission under the background of climate warming is emphasized.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Binghuang Zhang
- College of the Energy, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Wanli Yan
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China.
| |
Collapse
|
7
|
Wepking C, Lucas JM, Boulos VS, Strickland MS. Antibiotic legacies shape the temperature response of soil microbial communities. Front Microbiol 2024; 15:1476016. [PMID: 39777145 PMCID: PMC11703895 DOI: 10.3389/fmicb.2024.1476016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Soil microbial communities are vulnerable to anthropogenic disturbances such as climate change and land management decisions, thus altering microbially-mediated ecosystem functions. Increasingly, multiple stressors are considered in investigations of ecological response to disturbances. Typically, these investigations involve concurrent stressors. Less studied is how historical stressors shape the response of microbial communities to contemporary stressors. Here we investigate how historical exposure to antibiotics drives soil microbial response to subsequent temperature change. Specifically, grassland plots were treated with 32-months of manure additions from cows either administered an antibiotic or control manure from cows not treated with an antibiotic. In-situ antibiotic exposure initially increased soil respiration however this effect diminished over time. Following the 32-month field portion, a subsequent incubation experiment showed that historical antibiotic exposure caused an acclimation-like response to increasing temperature (i.e., lower microbial biomass at higher temperatures; lower respiration and mass-specific respiration at intermediate temperatures). This response was likely driven by a differential response in the microbial community of antibiotic exposed soils, or due to indirect interactions between manure and soil microbial communities, or a combination of these factors. Microbial communities exposed to antibiotics tended to be dominated by slower-growing, oligotrophic taxa at higher temperatures. Therefore, historical exposure to one stressor is likely to influence the microbial community to subsequent stressors. To predict the response of soils to future stress, particularly increasing soil temperatures, historical context is necessary.
Collapse
Affiliation(s)
- Carl Wepking
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Jane M. Lucas
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, United States
- Cary Institute of Ecosystem Studies, Millbrook, NY, United States
| | - Virginia S. Boulos
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Michael S. Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, United States
| |
Collapse
|
8
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Occurrence and human exposure risk of antibiotic resistance genes in tillage soils of dryland regions: A case study of northern Ningxia Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135790. [PMID: 39276744 DOI: 10.1016/j.jhazmat.2024.135790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Agricultural soils are important source and sink of antibiotic resistance genes (ARGs). However, little is known about the fate of ARGs in dryland soils, while its human exposure risks were seriously overlooked. Taking the northern Ningxia Plain as a case, this study explored the occurrence of ARGs and its relationship with mobile genetic elements (MGEs), pathogens, and environmental factors. Furthermore, the concentrations of airborne ARGs by soil wind erosion and the human exposure doses of soil ARGs were evaluated. The results showed the abundances of different regions ranged from 4.0 × 105 to 1.6 × 106 copies/g. Soil ARGs are driven by MGEs, but multiply impacted by soil properties, nutrition, and bacterial community. Vibrio metschnikovii, Acinetobacter schindleri, and Serratia marcescens are potential pathogenic hosts for ARGs. Further exploration revealed the concentration of ARGs loaded in dust by soil wind erosion reached more than 105 copies/m3, which were even higher than those found in sewage treatment plants and hospitals. Skin contact is the primary route of ARGs exposure, with a maximum dose of 24071.33 copies/kg/d, which is largely attributed to ARGs loaded in dust. This study bridged the gap on ARGs in dryland soils, and provided reference for human exposure risk assessment of soil ARGs.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China.
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
9
|
Wang Y, Ren Z, Wu Y, Li Y, Han S. Antibiotic resistance genes transfer risk: Contributions from soil erosion and sedimentation activities, agricultural cycles, and soil chemical contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136227. [PMID: 39454331 DOI: 10.1016/j.jhazmat.2024.136227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
The transfer of antibiotic resistance genes (ARGs) pose environmental risks that are influenced by soil activity and pollution. Soil erosion and sedimentation accelerate degradation and migration, thereby affecting soil distribution and contamination. This study quantified the vertical and horizontal transfer capabilities of ARGs and simulated soil environments under various scenarios, such as erosion, agricultural cycles, and chemical pollution. The results showed that slope, runoff, and sediment volume significantly affected soil erosion and ARG transfer risks. The response of environmental factors to the transfer risk of ARGs is as follows: the promotion effect of soil deposition (average: 21.41 %) is significantly greater than the inhibitory effect of soil erosion (average: -11.31 %); the planting period (average: -64.654) is greater than the harvest period (average: -56.225); the response to soil chemical pollution is: the impact of phosphate fertilizer residues, antibiotics, and pesticide pollution is more significant. This study constructed a vertical and horizontal transfer system of ARGs in soil erosion and sedimentation environments and proposed a response analysis method for the impact of factors, such as soil erosion and sedimentation activities, agricultural cycles, and soil chemical pollution, on ARGs transfer capabilities.
Collapse
Affiliation(s)
- Yingwei Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Jilin Emergency Management, Changchun Institute of Technology, Changchun 130012, China.
| | - Yuhan Wu
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Yufei Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Ding Y, Ma R, Zhang R, Zhang H, Zhang J, Li S, Zhang S. Increased antibiotic resistance gene abundance linked to intensive bacterial competition in the phyllosphere across an elevational gradient. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70042. [PMID: 39572861 PMCID: PMC11581953 DOI: 10.1111/1758-2229.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
Antibiotic resistance genes (ARGs) are ancient and widespread in natural habitats, providing survival advantages for microbiomes under challenging conditions. In mountain ecosystems, phyllosphere bacterial communities face multiple stress conditions, and the elevational gradients of mountains represent crucial environmental gradients for studying biodiversity distribution patterns. However, the distribution patterns of ARGs in the phyllosphere along elevational gradients, and their correlation with bacterial community structures, remain poorly understood. Here, we applied metagenomic analyses to investigate the abundance and diversity of ARGs in 88 phyllosphere samples collected from Mount Tianmu, a national natural reserve. Our results showed that the abundance of ARGs in the phyllosphere increased along elevational gradients and was dominated by multidrug resistance and efflux pumps. The composition of bacterial communities, rather than plant traits or abiotic factors, significantly affected ARG abundance. Moreover, increased ARG abundance was correlated with greater phylogenetic overdispersion and a greater proportion of negative associations in the bacterial co-occurrence networks, suggesting that bacterial competition primarily shapes phyllosphere resistomes. These findings constitute a major advance in the biodiversity of phyllosphere resistomes along elevations, emphasizing the significant impact of bacterial community structure and assembly on ARG distribution, and are essential for understanding the emergence of ARGs.
Collapse
Affiliation(s)
- Yihui Ding
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Rui‐Ao Ma
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Ran Zhang
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Hongwei Zhang
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Jian Zhang
- School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Shaopeng Li
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Si‐Yu Zhang
- School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
11
|
Makumbi JP, Leareng SK, Pierneef RE, Makhalanyane TP. Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. MICROBIAL ECOLOGY 2024; 87:150. [PMID: 39611949 PMCID: PMC11607014 DOI: 10.1007/s00248-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies.
Collapse
Affiliation(s)
- John P Makumbi
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Samuel K Leareng
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Rian E Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
12
|
Murali R, Singh P, Ragunathan D, Damarla R, Kichenaradjou D, Surriyanarayanan KM, Jayaram SK, Chandramoorthy HC, Kumar A, Krishnan MEG, Gandhirajan RK. Antimicrobial Activity of Cold Atmospheric Plasma on Bacterial Strains Derived from Patients with Diabetic Foot Ulcers. J Microbiol Biotechnol 2024; 34:2353-2361. [PMID: 39403720 PMCID: PMC11637820 DOI: 10.4014/jmb.2407.07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024]
Abstract
Bacterial infections or their biofilms in diabetic foot ulcer (DFU) are a key cause of drug-resistant wounds and amputations. Cold atmospheric plasma (CAP) is well documented for its antibacterial effect and promoting wound healing. In the current study, we built an argon-based, custom CAP device and investigated its potential in eliminating laboratory and clinical bacterial strains derived from DFU. The CAP device performed as expected with generation of hydroxyl, reactive nitrogen species, and argon species as determined by optical emission spectroscopy. A dose-dependent increase in oxidation reduction potential (ORP) and nitrites in the liquid phase was observed. The CAP treatment eliminated both gram-positive (Staphylococcus aureus, Entrococcus faecalis) and negative bacteria (Pseudomonas aeruginosa, Proteus mirabilis) laboratory strains. Clinical samples collected from DFU patients exhibited a significant decrease in both types of bacteria, with gram-positive strains showing higher susceptibility to the CAP treatment in an ex vivo setting. Moreover, exposure to CAP of polymicrobial biofilms from DFU led to a notable disruption in biofilm and an increase in free bacterial DNA. The duration of CAP exposure used in the current study did not induce DNA damage in peripheral blood lymphocytes. These results suggest that CAP could serve as an excellent tool in treating patients with DFUs.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Pooja Singh
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Divya Ragunathan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Ramya Damarla
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Dharshini Kichenaradjou
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Kirtanna Malichetty Surriyanarayanan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Satish Kumar Jayaram
- Department of Plastic Surgery, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Harish C. Chandramoorthy
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Ashish Kumar
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mary Elizabeth Gnanambal Krishnan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| |
Collapse
|
13
|
Fernández Salgueiro M, Cernuda Martínez JA, Gan RK, Arcos González P. Climate change and antibiotic resistance: A scoping review. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70008. [PMID: 39267332 PMCID: PMC11393301 DOI: 10.1111/1758-2229.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
This scoping review aimed to investigate the potential association between climate change and the rise of antibiotic resistance while also exploring the elements of climate change that may be involved. A scoping review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews, comprehensively searching scientific literature up to 31 January 2024. Multiple databases were utilized, including MEDLINE, Web of Science and SCOPUS. Various search strategies were employed, and selection criteria were established to include articles relevant to antibiotic resistance and climate change. The review included 30 selected articles published predominantly after 2019. Findings from these studies collectively suggest that rising temperatures associated with climate change can contribute to the proliferation of antibiotic resistance, affecting diverse ecosystems. This phenomenon is observed in soil, glaciers, rivers and clinical settings. Rising temperatures are associated with a rise in the prevalence of antibiotic resistance across various environments, raising concerns for global health. However, these studies provide valuable insights but do not establish a definitive causal link between environmental temperature and antibiotic resistance. The selective pressure exerted by antibiotics and their residues in ecosystems further complicates the issue.
Collapse
Affiliation(s)
| | | | - Rick Kye Gan
- Unit for Research in Emergency and DisasterUniversity of OviedoOviedoSpain
| | | |
Collapse
|
14
|
Rillig MC, Li C, Rodríguez Del Río Á, Zhu YG, Jin L. Elevated levels of antibiotic resistance genes as a factor of human-caused global environmental change. GLOBAL CHANGE BIOLOGY 2024; 30:e17419. [PMID: 39023004 DOI: 10.1111/gcb.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Antibiotic resistance genes (ARGs) have moved into focus as a critically important response variable in global change biology, given the increasing environmental and human health threat posed by these genes. However, we propose that elevated levels of ARGs should also be considered a factor of global change, not just a response. We provide evidence that elevated levels of ARGs are a global change factor, since this phenomenon is linked to human activity, occurs globally, and affects biota. We explain why ARGs could be considered the global change factor, rather than the organisms containing them; and we highlight the difference between ARGs and the presence of antibiotics, which are not necessarily linked since elevated levels of ARGs are caused by multiple factors. Importantly, shifting the perspective to elevated levels of ARGs as a factor of global change opens new avenues of research, where ARGs can be the experimental treatment. This includes asking questions about how elevated ARG levels interact with other global change factors, or how ARGs influence ecosystem processes, biodiversity or trophic relationships. Global change biology stands to profit from this new framing in terms of capturing more completely the real extent of human impacts on this planet.
Collapse
Affiliation(s)
- Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Álvaro Rodríguez Del Río
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
15
|
Zain A, Sadarangani SP, Shek LPC, Vasoo S. Climate change and its impact on infectious diseases in Asia. Singapore Med J 2024; 65:211-219. [PMID: 38650059 PMCID: PMC11132621 DOI: 10.4103/singaporemedj.smj-2023-180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024]
Abstract
ABSTRACT Climate change, particularly increasing temperature, changes in rainfall, extreme weather events and changes in vector ecology, impacts the transmission of many climate-sensitive infectious diseases. Asia is the world's most populous, rapidly evolving and diverse continent, and it is already experiencing the effects of climate change. Climate change intersects with population, sociodemographic and geographical factors, amplifying the public health impact of infectious diseases and potentially widening existing disparities. In this narrative review, we outline the evidence of the impact of climate change on infectious diseases of importance in Asia, including vector-borne diseases, food- and water-borne diseases, antimicrobial resistance and other infectious diseases. We also highlight the imperative need for strategic intersectoral collaboration at the national and global levels and for the health sector to implement adaptation and mitigation measures, including responsibility for its own greenhouse gas emissions.
Collapse
Affiliation(s)
- Amanda Zain
- Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
| | - Sapna P Sadarangani
- National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lynette Pei-Chi Shek
- Centre for Sustainable Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
| | - Shawn Vasoo
- National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
16
|
Bagra K, Kneis D, Padfield D, Szekeres E, Teban-Man A, Coman C, Singh G, Berendonk TU, Klümper U. Contrary effects of increasing temperatures on the spread of antimicrobial resistance in river biofilms. mSphere 2024; 9:e0057323. [PMID: 38323843 PMCID: PMC10900892 DOI: 10.1128/msphere.00573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
River microbial communities regularly act as the first barrier of defense against the spread of antimicrobial resistance genes (ARGs) that enter environmental microbiomes through wastewater. However, how the invasion dynamics of wastewater-borne ARGs into river biofilm communities will shift due to climate change with increasing average and peak temperatures remains unknown. Here, we aimed to elucidate the effects of increasing temperatures on the naturally occurring river biofilm resistome, as well as the invasion success of foreign ARGs entering through wastewater. Natural biofilms were grown in a low-anthropogenic impact river and transferred to artificial laboratory recirculation flume systems operated at three different temperatures (20°C, 25°C, and 30°C). After 1 week of temperature acclimatization, significant increases in the abundance of the naturally occurring ARGs in biofilms were detected at higher temperatures. After this acclimatization period, biofilms were exposed to a single pulse of wastewater, and the invasion dynamics of wastewater-borne ARGs were analyzed over 2 weeks. After 1 day, wastewater-borne ARGs were able to invade the biofilms successfully with no observable effect of temperature on their relative abundance. However, thereafter, ARGs were lost at a far increased rate at 30°C, with ARG levels dropping to the initial natural levels after 14 days. Contrary to the lower temperatures, ARGs were either lost at slower rates or even able to establish themselves in biofilms with stable relative abundances above natural levels. Hence, higher temperatures come with contrary effects on river biofilm resistomes: naturally occurring ARGs increase in abundance, while foreign, invading ARGs are lost at elevated speeds.IMPORTANCEInfections with bacteria that gained resistance to antibiotics are taking millions of lives annually, with the death toll predicted to increase. River microbial communities act as a first defense barrier against the spread of antimicrobial resistance genes (ARGs) that enter the environment through wastewater after enrichment in human and animal microbiomes. The global increase in temperature due to climate change might disrupt this barrier effect by altering microbial community structure and functions. We consequently explored how increasing temperatures alter ARG spread in river microbial communities. At higher temperatures, naturally occurring ARGs increased in relative abundance. However, this coincided with a decreased success rate of invading foreign ARGs from wastewater to establish themselves in the communities. Therefore, to predict the effects of climate change on ARG spread in river microbiomes, it is imperative to consider if the river ecosystem and its resistome are dominated by naturally occurring or invading foreign ARGs.
Collapse
Affiliation(s)
- Kenyum Bagra
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
- Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - David Kneis
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Daniel Padfield
- Environment and Sustainability Institute, University of Exeter, Exeter, United Kingdom
| | - Edina Szekeres
- Institute of Biological Research Cluj, NIRDBS, Cluj-Napoca, Romania
| | - Adela Teban-Man
- Institute of Biological Research Cluj, NIRDBS, Cluj-Napoca, Romania
| | - Cristian Coman
- Institute of Biological Research Cluj, NIRDBS, Cluj-Napoca, Romania
| | - Gargi Singh
- Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Thomas U. Berendonk
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Yu Q, Han Q, Li T, Kou Y, Zhang X, Wang Y, Li G, Zhou H, Qu J, Li H. Metagenomics reveals the self-recovery and risk of antibiotic resistomes during carcass decomposition of wild mammals. ENVIRONMENTAL RESEARCH 2023; 238:117222. [PMID: 37778601 DOI: 10.1016/j.envres.2023.117222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Animal carcass decomposition may bring serious harm to the environment, including pathogenic viruses, toxic gases and metabolites, and antibiotic resistance genes (ARGs). However, how wild mammal corpses decomposition influence and change ARGs in the environment has less explored. Through metagenomics, 16S rRNA gene sequencing, and physicochemical analysis, this study explored the succession patterns, influencing factors, and assembly process of ARGs and mobile genetic elements (MGEs) in gravesoil during long-term corpse decomposition of wild mammals. Our results indicate that the ARG and MGE communities related to wildlife corpses exhibited a pattern of differentiation first and then convergence. Different from the farmed animals, the decomposition of wild animals first reduced the diversity of ARGs and MGEs, and then recovered to a level similar to that of the control group (untreated soil). ARGs and MGEs of the gravesoil are mainly affected by deterministic processes in different stages. MGEs and bacterial community are the two most important factors affecting ARGs in gravesoil. It is worth noting that the decomposition of wild animal carcasses enriched different high-risk ARGs at different stages (bacA, mecA and floR), which have co-occurrence patterns with opportunistic pathogens (Comamonas and Acinetobacter), thereby posing a great threat to public health. These results are of great significance for wildlife corpse management and environmental and ecological safety.
Collapse
Affiliation(s)
- Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongping Kou
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiao Zhang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huakun Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| | - Huan Li
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Zhou SYD, Huang FY, Su W, Lie Z, Liu Y, Lin C, Yang K, Meng Z, Liu Z, Neilson R, Su JQ, Liu J. Distinct patterns of the soil and phyllosphere antibiotic resistome in natural forest ecosystems under an altitudinal gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165346. [PMID: 37419346 DOI: 10.1016/j.scitotenv.2023.165346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Warming affects microbial functioning of soil and the phyllosphere across global ecosystems. However, little is known about the impact of increasing temperature on antibiotic resistome profiles in natural forests. To address this issue, we investigated antibiotic resistance genes (ARGs) in both soil and the plant phyllosphere using an experimental platform established in a forest ecosystem that delivers a temperature difference of 2.1 °C along an altitudinal gradient. Principal Coordinate Analysis (PCoA) showed that there were significant differences in the composition of soil and plant phyllosphere ARGs at different altitudes (P = 0.001). The relative abundance of phyllosphere ARGs and mobile genetic elements (MGEs) and soil MGEs increased with temperature. More resistance gene classes increased in abundance in the phyllosphere (10 classes) than soil (2 classes), and a Random Forest model analysis suggested that phyllosphere ARGs were more sensitive to temperature change than soil. Increasing temperature as a direct consequence of an altitudinal gradient, and the relative abundance of MGEs were the main drivers that shaped the profiles of ARGs in the phyllosphere and soil. Biotic and abiotic factors affected phyllosphere ARGs indirectly via MGEs. This study enhances our understanding of the influence of altitude gradients on resistance genes in natural environments.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Wei Su
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Zhongkai University of Agriculture and Engineering, 24 Dongsha Street, Haizhu District, Guangzhou 510225, China
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yue Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
19
|
Wu J, Guo S, Lin H, Li K, Li Z, Wang J, Gaze WH, Zou J. Uncovering the prevalence and drivers of antibiotic resistance genes in soils across different land-use types. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118920. [PMID: 37660639 DOI: 10.1016/j.jenvman.2023.118920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) in soil due to animal excreta and organic waste is a major threat to human health and ecosystems, and global efforts are required to tackle the issue. However, there is limited knowledge of the variation in ARG prevalence and diversity resulting from different land-use patterns and underlying driving factors in soils. This study aimed to comprehensively characterize the profile of ARGs and mobile genetic elements and their drivers in soil samples collected from 11 provinces across China, representing three different land-use types, using high-throughput quantitative polymerase chain reaction and 16S rRNA amplicon sequencing. Our results showed that agricultural soil had the highest abundance and diversity of ARGs, followed by tea plantation and forest land. A total of 124 unique ARGs were detected in all samples, with shared subtypes among different land-use patterns indicating a common origin or high transmission frequency. Moreover, significant differences in ARG distribution were observed among different geographical regions, with the greatest enrichment of ARGs found in southern China. Biotic and abiotic factors, including soil properties, climatic factors, and bacterial diversity, were identified as the primary drivers associated with ARG abundance, explaining 71.8% of total ARG variation. The findings of our study demonstrate that different land-use patterns are associated with variations in ARG abundance in soil, with agricultural practices posing the greatest risk to human health and ecosystems regarding ARGs. Our identification of biotic and abiotic drivers of ARG abundance provides valuable insights into strategies for mitigating the spread of these genes. This study emphasizes the need for coordinated and integrated approaches to address the global antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shumin Guo
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyan Lin
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kejie Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhutao Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyang Wang
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment & Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| | - Jianwen Zou
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
20
|
Lu Y, Pang L, Chatzisymeon E, Liu X, Xu K, Yang P, Gou M. Copper in different forms and tetracycline affect behavior and risk of antibiotic resistome in thermophilic anaerobic digestion of cattle manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108162-108175. [PMID: 37749471 DOI: 10.1007/s11356-023-29923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
The metagenomics-based behavior and risk of antibiotic resistance genes (ARGs) were investigated during cattle manure thermophilic anaerobic digestion with tetracycline and copper, namely, bulk-copper oxide, nano-copper oxide, and copper sulfate, which are common feed additives. Although bulk-copper oxide reduced ARGs' diversity, it enriched high-risk ARGs the most than the other two copper species, while copper sulfate could strongly mitigate the ARG risk by decreasing their abundances. Compared to corresponding individual effects, copper and tetracycline combinations may decrease ARGs' co-occurrence potential by 22.0%, and particularly, tetracycline combined separately with copper sulfate and nano-copper oxide reduces the ARGs' risk in abundance (by 7.2%) and human health (by 4.0%). These were mainly driven by bioavailable copper, volatile fatty acids, and pH, as well as the main potential hosts in phyla Firmicutes, Coprothermobacterota, and Euryarchaeota. Notably, the twin risks of pathogenicity and ARGs should be emphasized due to the ARGs' positive correlation with human pathogens of Clostridioides difficile and Arcobacter peruensis. These findings are important for understanding the potential ARGs' risk in treatments of livestock wastes containing feed additives of different sizes and speciation.
Collapse
Affiliation(s)
- Yuanyuan Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| | - Xuna Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Kailin Xu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
Song D, Tang X, Tariq A, Pan K, Li D. Regional distribution and migration potential of antibiotic resistance genes in croplands of Qinghai Tibet Plateau. ENVIRONMENTAL RESEARCH 2023; 231:116233. [PMID: 37236388 DOI: 10.1016/j.envres.2023.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Agricultural activities have recently disturbed the ecosystem of the Qinghai-Tibet Plateau and the shift of antibiotic resistance genes (ARGs) in the different types of farmlands is not well understood, so more comprehensive ecological barrier management measures cannot be provided for the region. This research was performed to exploring ARG pollution in cropland soil on the Qinghai-Tibet Plateau to obtain information on the geographical and climatic factors shaping the ARG distribution. Based on high-throughput quantitative PCR (HT-qPCR) analysis, the ARG abundance in farmland ranged from 5.66 × 105 to 6.22 × 107 copies per gram of soil higher than previous research at soil and wetland in Qinghai-Tibet plateau, and it was higher in wheat and barley soils than in corn soil. The distribution of ARGs exhibited regional features as ARG abundance was adversely affected by mean annual precipitation and temperature with lower temperature and less rainfall at high altitude. According to network analysis and structural equation modeling (SEM), mobile genetic elements (MGEs) and heavy metals are the key drivers of ARG dissemination on the Qinghai-Tibet Plateau as they show negative relationship with ARGs, and selection copressure from heavy metals in cropland soil increases the horizontal gene transfer (HGT) potential of ARGs through synergistic selection effects, each contribution to the ARGs was 19% and 29% respectively. This research suggests the need to focus on controlling heavy metals and MGEs to constrain the dissemination of ARGs, as arable soil is already slightly contaminated by heavy metals.
Collapse
Affiliation(s)
- Dagang Song
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Risk Assessment Lab of the Quality Safety of Biomass Fermentation Products, Ministry of Agriculture and Rurals Affairs, Chengdu, 610041, China
| | - Xue Tang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Risk Assessment Lab of the Quality Safety of Biomass Fermentation Products, Ministry of Agriculture and Rurals Affairs, Chengdu, 610041, China
| | - Akash Tariq
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Kaiwen Pan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
22
|
González-Reguero D, Robas-Mora M, Fernández-Pastrana VM, Probanza-Lobo A, Jiménez-Gómez PA. Reduced Antibiotic Resistance in the Rhizosphere of Lupinus albus in Mercury-Contaminated Soil Mediated by the Addition of PGPB. BIOLOGY 2023; 12:801. [PMID: 37372086 PMCID: PMC10295369 DOI: 10.3390/biology12060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
The emergence of antibiotic resistance (AR) poses a threat to the "One Health" approach. Likewise, mercury (Hg) pollution is a serious environmental and public health problem. Its ability to biomagnify through trophic levels induces numerous pathologies in humans. As well, it is known that Hg-resistance genes and AR genes are co-selected. The use of plant-growth-promoting bacteria (PGPB) can improve plant adaptation, decontamination of toxic compounds and control of AR dispersal. The cenoantibiogram, a technique that allows estimating the minimum inhibitory concentration (MIC) of a microbial community, has been postulated as a tool to effectively evaluate the evolution of a soil. The present study uses the metagenomics of 16S rRNA gene amplicons to understand the distribution of the microbial soil community prior to bacterial inoculation, and the cenoantibiogram technique to evaluate the ability of four PGPB and their consortia to minimize antibiotic resistance in the rhizosphere of Lupinus albus var. Orden Dorado grown in Hg-contaminated soils. Results showed that the addition of A1 strain (Brevibacterium frigoritolerans) and its consortia with A2, B1 and B2 strains reduced the edaphic community´s MIC against cephalosporins, ertapenem and tigecycline. The metagenomic study revealed that the high MIC of non-inoculated soils could be explained by the bacteria which belong to the detected taxa,. showing a high prevalence of Proteobacteria, Cyanobacteria and Actinobacteria.
Collapse
Affiliation(s)
- Daniel González-Reguero
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain; (V.M.F.-P.)
| | - Marina Robas-Mora
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain; (V.M.F.-P.)
| | | | | | | |
Collapse
|
23
|
Xu M, Xiang Q, Xu F, Guo L, Carter LJ, Du W, Zhu C, Yin Y, Ji R, Wang X, Guo H. Elevated CO 2 alleviated the dissemination of antibiotic resistance genes in sulfadiazine-contaminated soil: A free-air CO 2 enrichment study. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131079. [PMID: 36857828 DOI: 10.1016/j.jhazmat.2023.131079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Climate change affects soil microbial communities and their genetic exchange, and subsequently modifies the transfer of antibiotic resistance genes (ARGs) among bacteria. However, how elevated CO2 impacts soil antibiotic resistome remains poorly characterized. Here, a free-air CO2 enrichment system was used in the field to investigate the responses of ARGs profiles and bacterial communities to elevated CO2 (+200 ppm) in soils amended with sulfadiazine (SDZ) at 0, 0.5 and 5 mg kg-1. Results showed that SDZ exposure induced the co-occurrence of beta-lactamase and tetracycline resistance genes, and SDZ at 5 mg kg-1 enhanced the abundance of aminoglycoside, sulfonamide and multidrug resistance genes. However, elevated CO2 weakened the effects of SDZ at 0.5 mg kg-1 following an observed reduction in the total abundance of ARGs and mobile genetic elements. Additionally, elevated CO2 significantly decreased the abundance of vancomycin resistance genes and alleviated the stimulation of SDZ on the dissemination of aminoglycoside resistance genes. Correlation analysis and structural equation models revealed that elevated CO2 could directly influence the spread of ARGs or impose indirect effects on ARGs by affecting soil properties and bacterial communities. Overall, our results furthered the knowledge of the dissemination risks of ARGs under future climate scenarios.
Collapse
Affiliation(s)
- Meiling Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lei Guo
- Department of Cadre Ward, Eastern Theater General Hospital of Chinese People's Liberation Army, Nanjing 210002, China
| | - Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
24
|
Yu Q, Han Q, Shi S, Sun X, Wang X, Wang S, Yang J, Su W, Nan Z, Li H. Metagenomics reveals the response of antibiotic resistance genes to elevated temperature in the Yellow River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160324. [PMID: 36410491 DOI: 10.1016/j.scitotenv.2022.160324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Climate warming may aggravate the threat of antibiotic resistance genes (ARGs) to environmental and human health. However, whether temperature can predict ARGs and influence their assembly processes remains unknown. Here, we used metagenomic sequencing to explore how gradually elevated water temperature (23 °C, 26 °C, 29 °C, 32 °C, 35 °C) influences ARG and mobile genetic element (MGE) profiles in the Yellow River. In total, 30 ARG types including 679 subtypes were detected in our water samples. Gradually increased temperature remarkably reduced ARG diversity but increased ARG abundance. Approximately 37 % of ARGs and 42 % of MGEs were predicted by temperature, while most others were not sensitive to temperature. For each 1 °C increase in temperature, the ARG abundance rose by 2133 TPM (Transcripts Per kilobase of exon model per Million mapped reads) abundance, and multidrug, tetracycline and peptide resistance genes had the fastest increases. Proteobacteria and Actinobacteria were the primary ARG hosts, with 558 and 226 ARG subtypes, respectively. Although ARG profiles were mainly governed by stochastic process, elevated temperature increased the deterministic process of ARGs in the Yellow River. The abundance of five high-risk ARGs (tetM, mecA, bacA, vatE and tetW) significantly increased with elevated water temperature, and these ARGs co-occurred with several opportunistic pathogens (Delftia, Legionella and Pseudomonas), implying that antibiotic resistance risk may increase under climate warming. Our study explored the possibility of predicting resistomes and their health risks through temperature, providing a novel approach to predict and control ARGs in water environments under climate warming.
Collapse
Affiliation(s)
- Qiaoling Yu
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microiome, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shunqin Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhibiao Nan
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microiome, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microiome, Lanzhou University, Lanzhou 730000, China; School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
25
|
Selvarajan R, Obize C, Sibanda T, Abia ALK, Long H. Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance. Antibiotics (Basel) 2022; 12:28. [PMID: 36671228 PMCID: PMC9855083 DOI: 10.3390/antibiotics12010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chinedu Obize
- Centre d’étude de la Forêt, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Timothy Sibanda
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Akebe Luther King Abia
- Department of Microbiology, Venda University, Thohoyando 1950, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
| | - Haijun Long
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
26
|
Pharmaceuticals and Personal Care Products in the Environment with Emphasis on Horizontal Transfer of Antibiotic Resistance Genes. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2022. [DOI: 10.2478/cdem-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Pharmaceuticals and personal care products (PPCPs) discharged into environment has several adverse impacts. PPCPs are widely utilised for veterinary as well as cosmetic and personal health reasons. These are members of the expanding class of substances known as Contaminants of Emerging Concern (CECs). Antibiotic resistance in the environment and garbage generated by PPCP endanger life. The World Health Organisation (WHO) now recognises antibiotic resistance as a significant global health problem due to the expected increase in mortality caused by it. In the past ten years, mounting data has led experts to believe that the environment has a significant impact on the development of resistance. For human diseases, the external environment serves as a source of resistance genes. It also serves as a major pathway for the spread of resistant bacteria among various habitats and human populations. Large-scale DNA sequencing methods are employed in this thesis to better comprehend the dangers posed by environmental antibiotic resistance. The quantification of the number is an important step in this process. Metagenomic measurement of the number of antibiotic resistance genes in various contexts is a crucial step in this process. However, it’s also crucial to put this data into a broader context by integrating things like taxonomic information, antibiotic concentrations, and the genomic locations of found resistance genes.
Collapse
|
27
|
Feng T, Han Q, Su W, Yu Q, Yang J, Li H. Microbiota and mobile genetic elements influence antibiotic resistance genes in dust from dense urban public places. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119991. [PMID: 35987288 DOI: 10.1016/j.envpol.2022.119991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Many contaminants were carried by dust, a common environment media that is easy to contact with human beings, and antibiotic resistance genes (ARGs) as an emergency pollutant also harbor in dust and pose serious threats to human health especially those carried by opportunistic pathogens because inactivation of antibiotics caused by ARGs may enhance pathogenicity. Considering there is a gap of investigation of dust ARGs, 16 S rRNA gene sequences and high-throughput quantitative PCR were employed to obtain information of microbial communities and accumulated ARGs in dust from different urban places, including the malls, hospitals, schools and parks, to investigate the distribution and influencing factors of ARGs and discover the potential hosts of ARGs in dust. Here, 9 types of ARGs such as sulfonamide, tetracycline, and beta-lactamase and 71 subtypes of ARGs like sul1, tetM-01, and drfA1 were detected in dust. ARGs had varying distribution in different public places and seasons in dust. The abundances of total ARGs, MLSB and tetracycline genes were higher in spring than summer. The diversity of ARGs was highest in malls, follow by hospitals, schools, and parks. Additionally, multi-drug resistance genes in dust were more abundant in hospitals than in schools and parks. The microbes were distinguished as the most important driving factors for ARGs in dust, followed by the mobile genetic elements (MGEs) and different places, while dust physicochemical parameters only exert a negligible impact. Notably, several opportunistic pathogens like the Streptococcus, Vibrio, and Pseudomonas were inferred as potential hosts of high-risk ARGs such as mecA, tetM-02, and tetO-01 in dust because of strongly positive co-occurrence. These results imply that dust is likely an important reservoir of ARGs. We should realize that ARGs may be harbored in some opportunistic pathogens occur in dust and endanger human health because of dust contacting to human easily.
Collapse
Affiliation(s)
- Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
28
|
Cheng JH, Tang XY, Cui JF. Distinct aggregate stratification of antibiotic resistome in farmland soil with long-term manure application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155088. [PMID: 35398129 DOI: 10.1016/j.scitotenv.2022.155088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Agricultural soils, which are closely linked to human health via food supply, have been recognized as an important reservoir for antibiotic resistance genes (ARGs). However, there is still a lack of knowledge regarding the role of soil aggregates in shaping ARG profile. In this study, we collected soils from long-term experimental farmland plots receiving inorganic and/or organic fertilizers and examined the patterns of antibiotic resistome distribution among differently sized soil aggregates using high-throughput quantitative polymerase chain reaction (HT-qPCR). Our results showed that the distribution of soil ARGs could be affected by manure application and aggregate size individually but not interactively. More diverse and abundant ARGs were found in the manured soils, compared to the non-manured soils. The aggregate size fraction of <53 μm exhibited the highest diversity and abundance of ARGs. Variation partitioning analysis revealed that soil traits, mobile genetic elements, and bacterial community collectively contributed to the variation of soil antibiotic resistance. The knowledge about aggregation stratification of soil ARGs obtained in this study is fundamental and essential to understanding the fate of soil ARGs at the microscale.
Collapse
Affiliation(s)
- Jian-Hua Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiang-Yu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jun-Fang Cui
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|