1
|
Yao W, Wang T, Sun W, Zhang X, Xiong H, Yin J, Liu L, Liu X, Wang X, Jiang H. Mature biofilm-sensitive lysozyme-grafted Bi-guanidine backbone porphyrin nanorods for deep penetration and double phototherapy. Biomaterials 2025; 323:123431. [PMID: 40435816 DOI: 10.1016/j.biomaterials.2025.123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/11/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025]
Abstract
The efficacy of antibacterial therapy was largely vitiated because of the shield of bacteria by the intricate architecture of biofilms. For emerging phototherapy strategies like photothermal therapy (PTT) and photodynamic therapy (PDT), dense biofilms can substantially impede the permeation of photo-agents, ultimately compromising the thermal conductivity and reactive oxygen species (ROS) diffusion. To address these challenges, we have proposed a biofilm-sensitive MT nanorod with dual phototherapy, based on the ordered directional assembly of photosensitizer meso-tetra(4-carboxyphenyl) porphine (TCPP) molecules by metformin hydrochloride (MET) as functional backbone. The formed MT nanorod avoids the uncontrollable aggregation of TCPP, producing pleased water-solubility with efficient fluorescent emission and allowing simultaneous PTT-PDT effects under a single laser. The grafted MT-LYZ by conjugation of lysozyme (LYZ) to MT nanorods can be used for acidic environment guided deep biofilm penetration and LYZ-assisted dual phototherapy for effective elimination of mature biofilm, with MT-LYZ acquires adaptive conversion from negative to positive charges in biofilm. Because of effective bacterial ablation within biofilms and gene regulation in bacterial quorum, MT-LYZ was successfully utilized for the treatment of deep-seated MRSA biofilm infections with minimized side effects, which promotes the repair of the MRSA biofilm infected wounds in mice and displays anti-inflammatory features, providing an alternative approach for effectively combating biofilm infections.
Collapse
Affiliation(s)
- Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tingya Wang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyang Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiajia Yin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
2
|
Qi J, Si C, Liu H, Li H, Kong C, Wang Y, Chang B. Advances of Metal-Based Nanomaterials in the Prevention and Treatment of Oral Infections. Adv Healthc Mater 2025; 14:e2500416. [PMID: 40244139 DOI: 10.1002/adhm.202500416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/29/2025] [Indexed: 04/18/2025]
Abstract
The complicated environment of the oral cavity presents significant challenges to traditional antibacterial approaches, which has driven the exploration of novel therapeutic strategies. Metal-based nanomaterials (MNMs), with diverse antibacterial mechanisms (e.g., membrane disruption, oxidative stress) and evolution from empirical to theory-guided design, exhibit immense potential. This review introduces the pioneering Hierarchical Response Strategy Framework, systematically classifying MNM therapeutic systems into three progressive levels: Primary category, comprising MNMs that exert spontaneous antibacterial effects based on inherent physicochemical properties (e.g., ion release); Secondary category, including MNMs with precisely controlled antibacterial actions by microenvironmental or stimulus-responsive mechanisms (e.g., light-induced ROS); and Tertiary category, encompassing MNMs that integrate antibacterial and regenerative functions for multidimensional therapy (e.g., remineralization). Through this framework, the authors elucidate MNMs' transition from single-function to precision-controlled, multifunctional synergy, analyze the impact of metal elements and structural design on efficacy, and summarize their applications in dental caries, endodontic infections, and periodontal disease, etc. This framework offers a novel perspective on existing research and a theoretical foundation for the rational design of next-generation precise, smart, and comprehensive anti-infective materials.
Collapse
Affiliation(s)
- Junnan Qi
- Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun, 130021, China
| | - Chao Si
- Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun, 130021, China
| | - Haofeng Liu
- Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun, 130021, China
| | - Huen Li
- Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun, 130021, China
| | - Chunru Kong
- Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun, 130021, China
| | - Yawen Wang
- Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun, 130021, China
| | - Bei Chang
- Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
- Hospital of Stomatology, Department of Pediatric Dentistry, Jilin University, Changchun, 130021, China
| |
Collapse
|
3
|
Lan J, Zou J, Xin H, Sun J, Han T, Sun M, Niu M. Nanomedicines as disruptors or inhibitors of biofilms: Opportunities in addressing antimicrobial resistance. J Control Release 2025; 381:113589. [PMID: 40032007 DOI: 10.1016/j.jconrel.2025.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
The problem of antimicrobial resistance (AMR) has caused global concern due to its great threat to human health. Evidences are emerging for a critical role of biofilms, one of the natural protective mechanisms developed by bacteria during growth, in resisting commonly used clinical antibiotics. Advances in nanomedicines with tunable physicochemical properties and unique anti-biofilm mechanisms provide opportunities for solving AMR risks more effectively. In this review, we summarize the five "A" stages (adhesion, amplification, alienation, aging and allocation) of biofilm formation and mechanisms through which they protect the internal bacteria. Aimed at the characteristics of biofilms, we emphasize the design "THAT" principles (targeting, hacking, adhering and transport) of nanomedicines in their interactions with biofilms and internal bacteria. Furthermore, recent progresses in multimodal antibacterial nanomedicines, including biofilms disruption and bactericidal activity, and the types of currently available antibiofilm nanomedicines contained organic and inorganic nanomedicines are outlined and highlighted their potential applications in the development of preclinical research. Last but not least, we offer a perspective for the effectiveness of nanomedicines designed to address AMR and challenges associated with their clinical translation.
Collapse
Affiliation(s)
- Jiaming Lan
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jingyu Zou
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - He Xin
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
4
|
Afrasiabi S, Partoazar A, Goudarzi R, Dehpour AR. Carbon-Based Nanomaterials Alter the Behavior and Gene Expression Patterns of Bacteria. J Basic Microbiol 2025; 65:e2400545. [PMID: 39895035 DOI: 10.1002/jobm.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025]
Abstract
One of the most dangerous characteristics of bacteria is their propensity to form biofilms and their resistance to the drugs used in clinical practice today. The total number of genes that can be categorized as virulence genes ranges from a few hundred to more than a thousand. The bacteria employ a variety of mechanisms to regulate the expression of these genes in a coordinated manner during infection. The search for new agents with anti-virulence capacity is therefore crucial. Nanotechnology provides safe platforms for targeted therapies to combat a broad spectrum of microbial infections. As a new class of innovative materials, carbon-based nanomaterials (CBNs), which include carbon dots, carbon nanotubes, graphene, and fullerenes can have strong antibacterial activity. Exposure to CBNs has been shown to affect bacterial gene expression patterns. This study investigated the effect of CBNs on the repression of specific genes related to bacterial virulence/pathogenicity.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, California, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Hu H, Hua S, Lu F, Zhang W, Zhang Z, Cui J, Lei X, Xia J, Xu F, Zhou M. Mucous Permeable Nanoparticle for Inducing Cuproptosis-Like Death In Broad-Spectrum Bacteria for Nebulized Treatment of Acute Pneumonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408580. [PMID: 39985298 PMCID: PMC12005761 DOI: 10.1002/advs.202408580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/11/2024] [Indexed: 02/24/2025]
Abstract
The emergence of antibiotic-resistant bacteria has exacerbated the challenge of treating infectious diseases. Quorum sensing (QS), a bacterial communication system regulating virulence and biofilm formation, presents a target for novel therapies. Cuproptosis death is a innovation mode of death, however, this effect may be partially inhibited by glutathione (GSH). Buthionine sulfoximine (BSO) is responsible for GSH biosynthesis and has been identified as a potential promoter of cuproptosis death. Here, Cu2O-BSO NPs with lung adhesion and mucus penetration ability are synthesized by incorporating BSO onto Cu2O, and modifying it with DOPA and PEG. Cu2O-BSO NPs demonstrated a broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria, making it a viable treatment option for MRSA-induced acute pneumonia. Specifically, Cu2O-BSO NPs can synergistically enhance bacterial cuproptosis-like death, hinder the QS system, eradicate biofilms, reduce the virulence of strains, stimulate the chemotaxis and phagocytosis of macrophages, and ultimately improve in mice with severe pneumonia. This research demonstrated the potential of Cu2O-BSO NPs for a wide-ranging antibacterial alternative, providing promise for addressing microbial resistance and combatting biofilm formation. Additionally, it established a target and theoretical foundation for the clinical treatment of numerous challenging cases of acute drug-resistant bacteria.
Collapse
Affiliation(s)
- Huiqun Hu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Shiyuan Hua
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang University School of MedicineZhejiang UniversityHaining314400China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
| | - Feng Lu
- Department of OrthopedicsThe Affiliated Changzhou No.2 People's Hospital of Nanjing Medical UniversityChangzhou213003China
| | - Wenting Zhang
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Zengwen Zhang
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Jiarong Cui
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang University School of MedicineZhejiang UniversityHaining314400China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
| | - Xiaoyue Lei
- The Affiliated Hospital of StomatologySchool of StomatologyZhejiang University School of Medicineand Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhou310006China
| | - Jingyan Xia
- Department of Radiation OncologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Feng Xu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhou310053China
| | - Min Zhou
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang University School of MedicineZhejiang UniversityHaining314400China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhou310053China
- The National Key Laboratory of Biobased Transportation Fuel TechnologyZhejiang UniversityHangzhou310027China
| |
Collapse
|
6
|
Wang M, Peng N, Qin W, Zhu H, Abbas K, Li Y, Li Z, Wang J, Bi H. "Self-Capped" Carbon Dots with Excellent Anti-Bacteria Effect and an Extremely Low Cytotoxicity Applied for Hand Sanitizer. Adv Healthc Mater 2025; 14:e2404770. [PMID: 39962832 DOI: 10.1002/adhm.202404770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Indexed: 04/18/2025]
Abstract
The increasing challenge of antibiotic resistance necessitates the development of novel antibacterial strategies. In this study, a novel kind of self-capped carbon dots is synthesized from methylene blue (MB) and cetyltrimethylammonium chloride (CTAC), and named as MC-CDs that are specifically designed for enhanced photodynamic antibacterial activity. Under 660 nm laser irradiation, MC-CDs demonstrate high inactivation rates of Escherichia coli (96.83%) and Staphylococcus aureus (94.44%) at 14 and 18 µg mL-1 effectively, disrupting bacterial cell membranes. The incorporation of zinc cations (Zn2+) doping further enhances the antibacterial potential of MC-CDs, enabling substantial efficacy even in the absence of light due to improved electrostatic interactions with bacterial membranes. In comparison to commercial agents such as salicylic acid, p-chloro-m-xylenol, and triclosan, Zn@MC-CDs exhibit superior antibacterial performance. When formulated into a hand sanitizer, Zn@MC-CDs maintained over 90% efficacy, displaying excellent stability and extremely low cytotoxicity, highlighting their potential for safe and effective use in personal hygiene products. This study introduces self-capped carbon dot as a promising antibacterial agent, addressing a critical need for advanced and reliable solutions in infection control.
Collapse
Affiliation(s)
- Meiyan Wang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Nannan Peng
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Weixia Qin
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Haimei Zhu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Khurram Abbas
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Yan Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
7
|
Cai R, Cheng Q, Zhao J, Zhou P, Wu Z, Ma X, Hu Y, Wang H, Lan X, Zhou J, Tao G. Sericin-Assisted Green Synthesis of Gold Nanoparticles as Broad-Spectrum Antimicrobial and Biofilm-Disrupting Agents for Therapy of Bacterial Infection. Int J Nanomedicine 2025; 20:3559-3574. [PMID: 40125431 PMCID: PMC11930024 DOI: 10.2147/ijn.s494616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Background Tens of millions of people die from wound infections globally each year, and nearly 80% of tissue infections are associated with bacterial biofilms. However, overuse of antibiotics can lead to bacterial resistance. Therefore, it is critical to develop simple and effective strategies to kill bacteria and remove biofilms. Methods The present study used sericin as a reducing and stabilizing agent to synthesize sericin-gold nanoparticles (Ser-Au NPs) and tested its colloidal stability under different pH and salt concentration conditions. Subsequently, functional gold nanocomposites (Ser-Au@MMI) were synthesized by combining Ser-Au NPs with 2-mercapto-1-methylimidazole (MMI). The antimicrobial effect of Ser-Au@MMI was checked by MIC, antimicrobial activity test, and in vitro cytotoxicity was assessed using CCK-8 assay. In vitro anti-biofilm effect was observed by fluorescence microscopy and SEM. Finally, the anti-infective therapeutic efficacy of Ser-Au@MMI was determined in an in vivo rat-infected wound model. Results Sericin as a reducing and stabilizing agent to synthesize Ser-Au NPs exhibited excellent colloidal stability under different pH and salt concentration conditions. The TEM, EDS, and XPS analyses confirmed the successful synthesis of Ser-Au@MMI. It exhibited higher antibacterial activity due to the synergistic effect of MMI and AuNP, which can achieve a bactericidal effect by destroying the integrity of bacterial cell walls and structure. In addition, Ser-Au@MMI10 (HAuCl4:MMI =1:10) concentration (64 μg/mL) could effectively disrupt biofilms formed by four species of bacteria and kill them, including P. aeruginosa, B. subtilis, E. coli, and S. aureus, but was not cytotoxic to mouse fibroblasts (L929) cells. Infected wound modeling showed that Ser-Au@MMI10 accelerated infected wound healing in vivo. Conclusion Ser-Au@MMI nanocomposites are prepared through a facile and environmentally friendly strategy and have the advantages of excellent bactericidal effect and low toxicity, which has the potential for application as a broad-spectrum antimicrobial agent and biofilm disrupting agent in healthcare.
Collapse
Affiliation(s)
- Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qian Cheng
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiayu Zhao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Peirong Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zhaodan Wu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xuemin Ma
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yajuan Hu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Huiyue Wang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jing Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
8
|
Parvin N, Joo SW, Mandal TK. Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications. Antibiotics (Basel) 2025; 14:207. [PMID: 40001450 PMCID: PMC11852044 DOI: 10.3390/antibiotics14020207] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid rise of antibiotic resistance has become a global health crisis, necessitating the development of innovative strategies to combat multidrug-resistant (MDR) pathogens. Nanomaterials have emerged as promising tools in this fight, offering unique physicochemical properties that enhance antibiotic efficacy, overcome resistance mechanisms, and provide alternative therapeutic approaches. This review explores the diverse nanomaterial-based strategies used to combat antibiotic resistance, focusing on their mechanisms of action and practical applications. Nanomaterials such as metal nanoparticles, carbon-based nanomaterials, and polymeric nanostructures exhibit antibacterial properties through various pathways, including the generation of reactive oxygen species (ROS), disruption of bacterial membranes, and enhancement of antibiotic delivery. Additionally, the ability of nanomaterials to bypass traditional resistance mechanisms, such as biofilm formation and efflux pumps, has been demonstrated in numerous studies. This review also discusses the synergistic effects observed when nanomaterials are combined with conventional antibiotics, leading to increased bacterial susceptibility and reduced required dosages. By highlighting the recent advancements and clinical applications of nanomaterial-antibiotic combinations, this paper provides a comprehensive overview of how nanomaterials are reshaping the future of antibacterial therapies. Future research directions and challenges, including toxicity and scalability, are also addressed to guide the development of safer, more effective nanomaterial-based antibacterial treatments.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas K. Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
9
|
Bhavsar A, Pati F, Chakraborty P. Supramolecular Conductive Hydrogels for Tissue Engineering Applications. Chembiochem 2025; 26:e202400733. [PMID: 39462202 DOI: 10.1002/cbic.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Owing to their unique attributes, including reversibility, specificity, directionality, and tunability, supramolecular biomaterials have evolved as an excellent alternative to conventional biomaterials like polymers, ceramics, and metals. Supramolecular hydrogels, in particular, have garnered significant interest because their fibrous architecture, high water content, and interconnected 3D network resemble the extracellular matrix to some extent. Consequently, supramolecular hydrogels have been used to develop biomaterials for tissue engineering. Supramolecular conductive hydrogels combine the advantages of supramolecular soft materials with the electrical properties of metals, making them highly relevant for electrogenic tissue engineering. Given the versatile applications of these hydrogels, it is essential to periodically review high-quality research in this area. In this review, we focus on recent advances in supramolecular conductive hydrogels, particularly their applications in tissue engineering. We discuss the conductive components of these hydrogels and highlight notable reports on their use in cardiac, skin, and neural tissue engineering. Additionally, we outline potential future developments in this field.
Collapse
Affiliation(s)
- Aashwini Bhavsar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
10
|
Kaur N, Sahoo J, De M. Development of Nanomaterials-Based Agents for Selective Antibacterial Activity. Chembiochem 2025; 26:e202400693. [PMID: 39632741 DOI: 10.1002/cbic.202400693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/26/2024] [Indexed: 12/07/2024]
Abstract
Bacterial infections continue to threaten public health due to limitations in rapid and accurate diagnostic techniques. While broad-spectrum antibiotics offer empirical treatment, their overuse has fuelled the emergence of antimicrobial resistance (AMR) pathogens, posing a critical global public health challenge. In this critical scenario, nanomaterial-based antibacterial agents emerge as a promising solution to combat bacteria and inhibit their proliferation. However, selective elimination of pathogenic bacteria is paramount. This review highlights recent advancements in developing nanomaterials for selective antibacterial activity. We categorize these agents based on their mode of action, exploring how they selectively interact with bacteria and their potential antibacterial mechanisms. This review offers crucial insights for researchers exploring the potential of nanotechnology to address the growing threat of AMR.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
11
|
Alves VF, Tadielo LE, Pires ACMDS, Pereira MG, Bersot LDS, De Martinis ECP. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods 2024; 13:3994. [PMID: 39766937 PMCID: PMC11675819 DOI: 10.3390/foods13243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- Department of Animal Production and Food, State University of Santa Catarina, Lages 88040-900, Brazil;
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (A.C.M.d.S.P.); (M.G.P.)
| | | | | |
Collapse
|
12
|
He F, Liu X, Yang S, Tan H, Yang LP, Wang LL. Guanidinium-Functionalized Carbon Dots: An Efficient Antibacterial Agent against Multidrug-Resistant ESKAPE Pathogens. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561278 DOI: 10.1021/acsami.4c16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The rise of multidrug-resistant (MDR) bacteria poses a substantial challenge in clinical settings, particularly with the increasing prevalence of ESKAPE pathogens (E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and E. coli) as critical MDR bacteria. These ESKAPE pathogens have the capability to undermine antibiotic treatments, leading to a high incidence of drug resistance. However, the development of efficient antibacterial agents against ESKAPE pathogens is still in the bottleneck. Herein, the first example of antibacterial carbon dots against ESKAPE pathogens was reported. Onion powder-based carbon dots were melted with poly(hexamethylene biguanide) hydrochloride (PHMB) to obtain guanidinium-functionalized carbon dots (GCDs), which exhibited satisfactory antibacterial activity against all the tested bacteria, including both Gram-positive and Gram-negative bacteria, and even ESKAPE pathogens. The efficient antibacterial ability of GCDs derives from the rupture of the bacterial cell membrane and elevated ROS levels. Safety assessments revealed that GCDs neither trigger detectable drug resistance nor exhibit any cytotoxic effects. Furthermore, GCDs effectively promoted wound healing without observable adverse reactions of mixed MDR bacteria-infected wounds in rats. The GCDs also showed excellent long-term stability. These findings indicate that GCDs hold promise as an efficient antibacterial agent for the treatment of MDR strain-caused clinical infected-wound healing.
Collapse
Affiliation(s)
- Fangli He
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xi Liu
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Sihui Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Huaxin Tan
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Liu-Pan Yang
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li-Li Wang
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
13
|
Li S, Pan Y, Li M, Li SH, Zhao S, Ye F. Rational design of cuprofullerene bipyridine nanozyme with high peroxidase-like activity for colorimetric sensing of bleomycin. Anal Bioanal Chem 2024; 416:6021-6031. [PMID: 38459966 DOI: 10.1007/s00216-024-05234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
The high catalytic activity of Cu-based nanozymes mainly depends on the efficient Fenton-like reaction of Cu+/ H2O2, but Cu+ cannot exist stably. Trying to find a material that can stably support Cu+ while promoting the electron cycle of Cu2+/Cu+ still faces serious challenges. C60 is expected to be an ideal candidate to solve this problem due to its unique structure and rich physicochemical properties. Here, we designed and synthesized a C60-doped Cu+-based nanozyme (termed as C60-Cu-Bpy) by loading high catalytic active site Cu+ onto C60 and coordinating with 2,2'-bipyridine (Bpy). The single crystal diffraction analysis and a series of auxiliary characterization technologies were used to demonstrate the successful preparation of C60-Cu-Bpy. Significantly, the C60-Cu-Bpy exhibited superior peroxidase-like activity during the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Then, the catalytic mechanism of C60-Cu-Bpy as peroxidase was elucidated in detail, mainly benefiting from the dual function of C60. On the one hand, C60 acted as a carrier to directly support Cu+, which has the ability to efficiently decompose H2O2 to produce reactive oxygen species. The other was that C60 acted as an electron buffer, contributing to promoting the Cu2+/Cu+ cycle to facilitate the reaction. Furthermore, a colorimetric sensor for the quantitative analysis of bleomycin was established based on the principle of bleomycin specific inhibition of C60-Cu-Bpy peroxidase-like activity, with satisfactory results in practical samples. This study provides a new strategy for the direct synthesis of Cu+-based nanozymes with high catalytic performance.
Collapse
Affiliation(s)
- Shuishi Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Yanbiao Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Manjing Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Shu-Hui Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
14
|
Ye J, Fan M, Zhan J, Zhang X, Lu S, Chai M, Zhang Y, Zhao X, Li S, Zhang D. In silico bioactivity prediction of proteins interacting with graphene-based nanomaterials guides rational design of biosensor. Talanta 2024; 277:126397. [PMID: 38865956 DOI: 10.1016/j.talanta.2024.126397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Graphene-based nanomaterials have attracted significant attention for their potentials in biomedical and biotechnology applications in recent years, owing to the outstanding physical and chemical properties. However, the interaction mechanism and impact on biological activity of macro/micro biomolecules still require more concerns and further research in order to enhance their applicability in biosensors, etc. Herein, an integrated method has been developed to predict the protein bioactivity performance when interacting with nanomaterials for protein-based biosensor. Molecular dynamics simulation and molecular docking technique were consolidated to investigate several nanomaterials: C60 fullerene, single-walled carbon nanotube, pristine graphene and graphene oxide, and their effect when interacting with protein. The adsorption behavior, secondary structure changes and protein bioactivity changes were simulated, and the results of protein activity simulation were verified in combination with atomic force spectrum, circular dichroism spectrum fluorescence and electrochemical experiments. The best quantification alignment between bioactivity obtained by simulation and experiment measurements was further explored. The two proteins, RNase A and Exonuclease III, were regarded as analysis model for the proof of concept, and the prediction accuracy of protein bioactivity could reach up to 0.98. The study shows an easy-to-operate and systematic approach to predict the effects of graphene-based nanomaterials on protein bioactivity, which holds guiding significance for the design of protein-related biosensors. In addition, the proposed prediction model is not limited to carbon-based nanomaterials and can be extended to other types of nanomaterials. This facilitates the rapid, simple, and low-cost selection of efficient and biosafe nanomaterials candidates for protein-related applications in biosensing and biomedical systems.
Collapse
Affiliation(s)
- Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Jie Zhan
- Research Center for New Materials Computation, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Shasha Lu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mengyao Chai
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
15
|
Qu Z, Luo J, Li Z, Yang R, Zhao J, Chen X, Yu S, Shu H. Advancements in strategies for overcoming the blood-brain barrier to deliver brain-targeted drugs. Front Aging Neurosci 2024; 16:1353003. [PMID: 39253614 PMCID: PMC11381257 DOI: 10.3389/fnagi.2024.1353003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier is known to consist of a variety of cells and complex inter-cellular junctions that protect the vulnerable brain from neurotoxic compounds; however, it also complicates the pharmacological treatment of central nervous system disorders as most drugs are unable to penetrate the blood-brain barrier on the basis of their own structural properties. This dramatically diminished the therapeutic effect of the drug and compromised its biosafety. In response, a number of drugs are often delivered to brain lesions in invasive ways that bypass the obstruction of the blood-brain barrier, such as subdural administration, intrathecal administration, and convection-enhanced delivery. Nevertheless, these intrusive strategies introduce the risk of brain injury, limiting their clinical application. In recent years, the intensive development of nanomaterials science and the interdisciplinary convergence of medical engineering have brought light to the penetration of the blood-brain barrier for brain-targeted drugs. In this paper, we extensively discuss the limitations of the blood-brain barrier on drug delivery and non-invasive brain-targeted strategies such as nanomedicine and blood-brain barrier disruption. In the meantime, we analyze their strengths and limitations and provide outlooks on the further development of brain-targeted drug delivery systems.
Collapse
Affiliation(s)
- Zhichuang Qu
- Department of Neurosurgery, Meishan City People's Hospital, Meishan, China
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Juan Luo
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Li
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Yang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaxi Zhao
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Sixun Yu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| | - Haifeng Shu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
16
|
Ding Y, Wen G, Wei X, Zhou H, Li C, Luo Z, Ou D, Yang J, Song X. Antibacterial activity and mechanism of luteolin isolated from Lophatherum gracile Brongn. against multidrug-resistant Escherichia coli. Front Pharmacol 2024; 15:1430564. [PMID: 38983919 PMCID: PMC11232434 DOI: 10.3389/fphar.2024.1430564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Infections caused by multidrug-resistant (MDR) bacteria have become a major challenge for global healthcare systems. The search for antibacterial compounds from plants has received increasing attention in the fight against MDR bacteria. As a medicinal and edible plant, Lophatherum gracile Brongn. (L. gracile) has favorable antibacterial effect. However, the main antibacterial active compound and its antimicrobial mechanism are not clear. Here, our study first identified the key active compound from L. gracile as luteolin. Meanwhile, the antibacterial effect of luteolin was detected by using the broth microdilution method and time-kill curve analysis. Luteolin can also cause morphological structure degeneration and content leakage, cell wall/membrane damage, ATP synthesis reduction, and downregulation of mRNA expression levels of sulfonamide and quinolones resistance genes in multidrug-resistant Escherichia coli (MDR E. coli). Furthermore, untargeted UPLC/Q-TOF-MS-based metabolomics analysis of the bacterial metabolites revealed that luteolin significantly changed riboflavin energy metabolism, bacterial chemotaxis cell process and glycerophospholipid metabolism of MDR E. coli. This study suggests that luteolin could be a potential new food additive or preservative for controlling MDR E. coli infection and spread.
Collapse
Affiliation(s)
- Yahao Ding
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Guilan Wen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xingke Wei
- College of Animal Science, Guizhou University, Guiyang, China
| | - Hao Zhou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chunjie Li
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Zhengqin Luo
- College of Animal Science, Guizhou University, Guiyang, China
| | - Deyuan Ou
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xuqin Song
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
18
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Petukhov DI, Johnson DJ. Membrane modification with carbon nanomaterials for fouling mitigation: A review. Adv Colloid Interface Sci 2024; 327:103140. [PMID: 38579462 DOI: 10.1016/j.cis.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
This paper provides a comprehensive overview of recent advancements in membrane modification for fouling mitigation in various water treatment processes, employing carbon nanomaterials such as fullerenes, nanodiamonds, carbon quantum dots, carbon nanotubes, and graphene oxide. Currently, using different carbon nanomaterials for polymeric membrane fouling mitigation is at various stages: CNT-modified membranes have been studied for more than ten years and have already been tested in pilot-scale setups; tremendous attention has been paid to utilizing graphene oxide as a modifying agent, while the research on carbon quantum dots' influence on the membrane antifouling properties is in the early stages. Given the intricate nature of fouling as a colloidal phenomenon, the review initially delves into the factors influencing the fouling process and explores strategies to address it. The diverse chemistry and antibacterial properties of carbon nanomaterials make them valuable for mitigating scaling, colloidal, and biofouling. This review covers surface modification of existing membranes using different carbon materials, which can be implemented as a post-treatment procedure during membrane fabrication. Creating mixed-matrix membranes by incorporating carbon nanomaterials into the polymer matrix requires the development of new synthetic procedures. Additionally, it discusses promising strategies to actively suppress fouling through external influences on modified membranes. In the concluding section, the review compares the effectiveness of carbon materials of varying dimensions and identifies key characteristics influencing the antifouling properties of membranes modified with carbon nanomaterials.
Collapse
Affiliation(s)
- Dmitrii I Petukhov
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Daniel J Johnson
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
20
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
21
|
Park SW, Im SH, Hong WT, Yang HK, Jung YK. Lignin-derived carbon quantum dot/PVA films for totally blocking UV and high-energy blue light. Int J Biol Macromol 2024; 268:131919. [PMID: 38679248 DOI: 10.1016/j.ijbiomac.2024.131919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Excessive exposure to UV and high-energy blue light (HEBL) can cause fatal eye and skin injuries. As a result, it is crucial to protect our bodies from UV and HEBL radiation. To achieve complete blocking of UV and HEBL, we developed a lignin-derived carbon quantum dot (L-CQD)/polyvinyl alcohol (PVA) film. L-CQD was synthesized from lignin, a waste woody biomass, and then blended with a PVA matrix to create a flexible L-CQD/PVA film. Thanks to simultaneous UV and HEBL absorption characteristics and bright color of L-CQD, the PVA film with 0.375 wt% L-CQD demonstrated outstanding blocking efficiency: 100 % in UV-C, UV-B, and UV-A, and at least 99.9 % in HEBL. It also exhibited a 44 % increase in lightness and a 12 % enhancement in transparency compared to lignin/PVA film. The film's ability to block UV and HEBL was further demonstrated by reducing >40 % UV-induced ROS formation in both cancerous and normal cell lines (Hs 294T, HeLa, CCD-986sk, and L929), as well as by blocking blue laser diode (LD) and LED. Since the L-CQD/PVA film is simple to produce, environmentally friendly, flexible, and thermally stable, it is suitable for use as a protective coating against sunlight and harmful emissions from IT devices.
Collapse
Affiliation(s)
- Seok Won Park
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - So Hui Im
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - Woo Tae Hong
- Marine-Bionics convergence technology center, Pukyoung National University, Busan 48513, Republic of Korea; Department of Electrical, Electronics and Software Engineering, Pukyoung National University, Busan 48513, Republic of Korea
| | - Hyun Kyoung Yang
- Marine-Bionics convergence technology center, Pukyoung National University, Busan 48513, Republic of Korea; Department of Electrical, Electronics and Software Engineering, Pukyoung National University, Busan 48513, Republic of Korea
| | - Yun Kyung Jung
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea; School of Biomedical Engineering, Inje University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
22
|
Shenoy V, Gunda R, Noble C, Haraguchi A, Stevenson S, Daniel J. Fullertubes inhibit mycobacterial viability and prevent biofilm formation by disrupting the cell wall. Cell Biochem Funct 2024; 42:e3963. [PMID: 38424684 DOI: 10.1002/cbf.3963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Mycobacterium tuberculosis and nontuberculous mycobacteria such as Mycobacterium abscessus cause diseases that are becoming increasingly difficult to treat due to emerging antibiotic resistance. The development of new antimicrobial molecules is vital for combating these pathogens. Carbon nanomaterials (CNMs) are a class of carbon-containing nanoparticles with promising antimicrobial effects. Fullertubes (C90 ) are novel carbon allotropes with a structure unique among CNMs. The effects of fullertubes on any living cell have not been studied. In this study, we demonstrate that pristine fullertube dispersions show antimicrobial effects on Mycobacterium smegmatis and M. abscessus. Using scanning electron microscopy, light microscopy, and molecular probes, we investigated the effects of these CNMs on mycobacterial cell viability, cellular integrity, and biofilm formation. C90 fullertubes at 1 µM inhibited mycobacterial viability by 97%. Scanning electron microscopy revealed that the cell wall structure of M. smegmatis and M. abscessus was severely damaged within 24 h of exposure to fullertubes. Additionally, exposure to fullertubes nearly abrogated the acid-fast staining property of M. smegmatis. Using SYTO-9 and propidium iodide, we show that exposure to the novel fullertubes compromises the integrity of the mycobacterial cell. We also show that the permeability of the mycobacterial cell wall was increased after exposure to fullertubes from our assays utilizing the molecular probe dichlorofluorescein and ethidium bromide transport. C90 fullertubes at 0.37 µM and C60 fullerenes at 0.56 µM inhibited pellicle biofilm formation by 70% and 90%, respectively. This is the first report on the antimycobacterial activities of fullertubes and fullerenes.
Collapse
Affiliation(s)
- Varun Shenoy
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Rashmika Gunda
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Cora Noble
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Annalisa Haraguchi
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Steven Stevenson
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Jaiyanth Daniel
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| |
Collapse
|
23
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
24
|
Li B, Mao J, Wu J, Mao K, Jia Y, Chen F, Liu J. Nano-Bio Interactions: Biofilm-Targeted Antibacterial Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306135. [PMID: 37803439 DOI: 10.1002/smll.202306135] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Biofilm is a spatially organized community formed by the accumulation of both microorganisms and their secretions, leading to persistent and chronic infections because of high resistance toward conventional antibiotics. In view of the tunable physicochemical properties and the related unique biological behavior (e.g., size-, shape-, and surface charge-dependent penetration, protein corona endowed targeting, catalytic- and electronic-related oxidative stress, optical- and magnetic-associated hyperthermia, etc.), nanomaterials-based therapeutics are widely used for the treatment of biofilm-associated infections. In this review, the biological characteristics of biofilm are introduced. And the nanomaterials-based antibacterial strategies are further discussed via biofilm targeting, including preventing biofilm formation, enhancing biofilm penetration, disrupting the mature biofilm, and acting as drug delivery systems. In which, the interactions between biofilm and nanomaterials include mechanical disruption, electron transfer, enzymatic degradation, oxidative stress, and hyperthermia. Additionally, the current advances of nanomaterials for antibacterial nanomaterials by biofilm targeting are summarized. This review aims to present a complete vision of antibacterial nanomaterials-biofilm (nano-bio) interactions, paving the way for the future development and clinical translation of effective antibacterial nanomedicines.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiahui Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Kerou Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Yangrui Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
25
|
Agarwalla A, Ahmed W, Al-Marzouqi AH, Rizvi TA, Khan M, Zaneldin E. Characteristics and Key Features of Antimicrobial Materials and Associated Mechanisms for Diverse Applications. Molecules 2023; 28:8041. [PMID: 38138531 PMCID: PMC10745420 DOI: 10.3390/molecules28248041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since the Fourth Industrial Revolution, three-dimensional (3D) printing has become a game changer in manufacturing, particularly in bioengineering, integrating complex medical devices and tools with high precision, short operation times, and low cost. Antimicrobial materials are a promising alternative for combating the emergence of unforeseen illnesses and device-related infections. Natural antimicrobial materials, surface-treated biomaterials, and biomaterials incorporated with antimicrobial materials are extensively used to develop 3D-printed products. This review discusses the antimicrobial mechanisms of different materials by providing examples of the most commonly used antimicrobial materials in bioengineering and brief descriptions of their properties and biomedical applications. This review will help researchers to choose suitable antimicrobial agents for developing high-efficiency biomaterials for potential applications in medical devices, packaging materials, biomedical applications, and many more.
Collapse
Affiliation(s)
- Aaruci Agarwalla
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H. Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.)
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
26
|
Yan D, Huang Y, Zhang J, Wu Q, Song G, Ji J, Jin Q, Wang D, Tang BZ. Adding Flying Wings: Butterfly-Shaped NIR-II AIEgens with Multiple Molecular Rotors for Photothermal Combating of Bacterial Biofilms. J Am Chem Soc 2023; 145:25705-25715. [PMID: 37972317 DOI: 10.1021/jacs.3c09058] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The ever-increasing threats of multidrug-resistant bacteria and their biofilm-associated infections have bred a desperate demand for alternative remedies to combat them. Near-infrared (NIR)-absorbing photothermal agent (PTAs)-mediated photothermal therapy (PTT) is particularly attractive for biofilm ablation thanks to its superiorities of noninvasive intervention, satisfactory antibacterial efficiency, and less likelihood to develop resistance. Herein, three butterfly-shaped aggregation-induced emission luminogens (AIEgens) with balanced nonradiative decay (for conducting PTT) and radiative decay (for supplying fluorescence in the NIR-II optical window) are rationally designed for imaging-assisted photothermal obliteration of bacterial biofilms. After being encapsulated into cationic liposomes, AIEgens-fabricated nanoparticles can eradicate a wide spectrum of biofilms formed by Gram-positive bacteria (methicillin-resistant Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) upon an 808 nm laser irradiation. In vivo experiments firmly demonstrate that the NIR-II AIE liposomes with excellent biocompatibility perform well in both the P. aeruginosa biofilm-induced keratitis mouse model and the MSRA biofilm-induced skin infection mouse model.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianyu Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Qian Wu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Guangjie Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, State Key Laboratory of Neuroscience, Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
27
|
Xu PY, Kumar Kankala R, Wang SB, Chen AZ. Sonodynamic therapy-based nanoplatforms for combating bacterial infections. ULTRASONICS SONOCHEMISTRY 2023; 100:106617. [PMID: 37769588 PMCID: PMC10542942 DOI: 10.1016/j.ultsonch.2023.106617] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
The rapid spread and uncontrollable evolution of antibiotic-resistant bacteria have already become urgent global to treat bacterial infections. Sonodynamic therapy (SDT), a noninvasive and effective therapeutic strategy, has broadened the way toward dealing with antibiotic-resistant bacteria and biofilms, which base on ultrasound (US) with sonosensitizer. Sonosensitizer, based on small organic molecules or inorganic nanoparticles, is essential to the SDT process. Thus, it is meaningful to design a sonosensitizer-loaded nanoplatform and synthesize the nanoplatform with an efficient SDT effect. In this review, we initially summarize the probable SDT-based antibacterial mechanisms and systematically discuss the current advancement in different SDT-based nanoplatform (including nanoplatform for organic small-molecule sonosensitizer delivery and nanoplatform as sonosensitizer) for bacterial infection therapy. In addition, the biomedical applications of SDT-involved multifunctional nanoplatforms are also discussed. We believe the innovative SDT-based nanoplatforms would become a highly efficient next-generation noninvasive therapeutic tool for combating bacterial infection.
Collapse
Affiliation(s)
- Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
28
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
29
|
Wu Z, Nie R, Wang Y, Wang Q, Li X, Liu Y. Precise antibacterial therapeutics based on stimuli-responsive nanomaterials. Front Bioeng Biotechnol 2023; 11:1289323. [PMID: 37920242 PMCID: PMC10619694 DOI: 10.3389/fbioe.2023.1289323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Bacterial infection refers to the process in which bacteria invade, grow, reproduce, and interact with the body, ultimately causing a series of pathological changes. Nowadays, bacterial infection remains a significant public health issue, posing a huge threat to human health and a serious financial burden. In the post-antibiotic era, traditional antibiotics are prone to inducing bacterial resistance and difficulty in removing bacterial biofilm. In recent years, antibacterial therapy based on nanomaterials has developed rapidly. Compared with traditional antibiotics, nanomaterials effectively remove bacterial biofilms and rarely result in bacterial resistance. However, due to nanomaterials' strong permeability and effectiveness, they will easily cause cytotoxicity when they are not controlled. In addition, the antibacterial effect of non-responsive nanomaterials cannot be perfectly exerted since the drug release property or other antibacterial effects of these nano-materials are not be positively correlated with the intensity of bacterial infection. Stimuli-responsive antibacterial nanomaterials are a more advanced and intelligent class of nano drugs, which are controlled by exogenous stimuli and microenvironmental stimuli to change the dosage and intensity of treatment. The excellent spatiotemporal controllability enables stimuli-responsive nanomaterials to treat bacterial infections precisely. In this review, we first elaborate on the design principles of various stimuli-responsive antibacterial nanomaterials. Then, we analyze and summarizes the antibacterial properties, advantages and shortcomings of different applied anti-bacterial strategies based on stimuli-responsive nanomaterials. Finally, we propose the challenges of employing stimuli-responsive nanomaterials and corresponding potential solutions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuguang Liu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Hua J, Hua P, Qin K. Highly fluorescent N, F co-doped carbon dots with tunable light emission for multicolor bio-labeling and antibacterial applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132331. [PMID: 37604034 DOI: 10.1016/j.jhazmat.2023.132331] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Carbon dots (CDs) have emerged as potential biomaterials for bioimaging and antimicrobial applications. However, the lack of tunable long-wavelength emission performance and imprecise antibacterial mechanism limit their practical application. Thus, developing versatile CDs that combine outstanding optical performance and excellent antibacterial activity is of great practical significance. Herein, we prepared a novel nitrogen and fluorine co-doped CDs (N, F-CDs) from o-phenylenediamine and 2,3,5,6-tetrafluoroterephthalic acid, which exhibit high fluorescence quantum yield of 52.2%, large Stokes shift of 112 nm, as well tunable multicolor emission light from blue to red region. Thanks to the high biocompatibility and excellent photostability, the N, F-CDs were successfully implemented to multicolor biolabeling of mammalian cells, protozoan cells and plant cells. Moreover, the negatively charged N, F-CDs hold inherent efficient antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). By thoroughly studying the underlying antibacterial mechanisms at the molecular level through real-time quantitative PCR assay, we found the expression of related genes was notably down-regulated, further demonstrated that N, F-CDs against two bacterial strains had distinct target pathways. Our work provides a new reference for developing highly fluorescent multicolor CDs, and may facilitate the design and application of CDs-based nanomaterials in biological environment.
Collapse
Affiliation(s)
- Jianhao Hua
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Peng Hua
- Third People's Hospital of Yunnan Province, Kunming, Yunnan Province, 650011, China
| | - Kunhao Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
31
|
Hua Z, Tang L, Li L, Wu M, Fu J. Environmental biotechnology and the involving biological process using graphene-based biocompatible material. CHEMOSPHERE 2023; 339:139771. [PMID: 37567262 DOI: 10.1016/j.chemosphere.2023.139771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Biotechnology is a promising approach to environmental remediation but requires improvement in efficiency and convenience. The improvement of biotechnology has been illustrated with the help of biocompatible materials as biocarrier for environmental remediations. Recently, graphene-based materials (GBMs) have become promising materials in environmental biotechnology. To better illustrate the principle and mechanisms of GBM application in biotechnology, the comprehension of the biological response of microorganisms and enzymes when facing the GBMs is needed. The review illustrated distinct GBM-microbe/enzyme composites by providing the GBM-microbe/enzyme interaction and the determining factors. There are diverse GBM modifications for distinct biotechnology applications. Each of these methods and applications depends on the physicochemical properties of GBMs. The applications of these composites were mainly categorized as pollutant adsorption, anaerobic digestion, microbial fuel cells, and organics degradation. Where information was available, the strategies and mechanisms of GBMs in improving application efficacies were also demonstrated. In addition, the biological response, from microbial community changes, extracellular polymeric substances changes to biological pathway alteration, may become important in the application of these composites. Furthermore, we also discuss challenges facing the environmental application of GBMs, considering their fate and toxicity in the ecosystem, and offer potential solutions. This research significantly enhances our comprehension of the fundamental principles, underlying mechanisms, and biological pathways for the in-situ utilization of GBMs.
Collapse
Affiliation(s)
- Zilong Hua
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
32
|
Ortega-Nieto C, Losada-Garcia N, Prodan D, Furtos G, Palomo JM. Recent Advances on the Design and Applications of Antimicrobial Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2406. [PMID: 37686914 PMCID: PMC10490178 DOI: 10.3390/nano13172406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Present worldwide difficulties in healthcare and the environment have motivated the investigation and research of novel materials in an effort to find novel techniques to address the current challenges and requirements. In particular, the use of nanomaterials has demonstrated a significant promise in the fight against bacterial infections and the problem of antibiotic resistance. Metal nanoparticles and carbon-based nanomaterials in particular have been highlighted for their exceptional abilities to inhibit many types of bacteria and pathogens. In order for these materials to be as effective as possible, synthetic techniques are crucial. Therefore, in this review article, we highlight some recent developments in the design and synthesis of various nanomaterials, including metal nanoparticles (e.g., Ag, Zn, or Cu), metal hybrid nanomaterials, and the synthesis of multi-metallic hybrid nanostructured materials. Following that, examples of these materials' applications in antimicrobial performance targeted at eradicating multi-drug resistant bacteria, material protection such as microbiologically influenced corrosion (MIC), or additives in construction materials have been described.
Collapse
Affiliation(s)
- Clara Ortega-Nieto
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| | - Noelia Losada-Garcia
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| | - Doina Prodan
- Department of Dental Composite Materials, Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele St., 400294 Cluj-Napoca, Romania;
| | - Gabriel Furtos
- Department of Dental Composite Materials, Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele St., 400294 Cluj-Napoca, Romania;
| | - Jose M. Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, 28049 Madrid, Spain; (C.O.-N.); (N.L.-G.)
| |
Collapse
|
33
|
Yao J, Zou P, Cui Y, Quan L, Gao C, Li Z, Gong W, Yang M. Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041188. [PMID: 37111673 PMCID: PMC10141387 DOI: 10.3390/pharmaceutics15041188] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial infection is a common clinical disease. Antibiotics have saved countless lives since their discovery and are a powerful weapon in the fight against bacteria. However, with the widespread use of antibiotics, the problem of drug resistance now poses a great threat to human health. In recent years, studies have investigated approaches to combat bacterial resistance. Several antimicrobial materials and drug delivery systems have emerged as promising strategies. Nano-drug delivery systems for antibiotics can reduce the resistance to antibiotics and extend the lifespan of novel antibiotics, and they allow targeting drug delivery compared to conventional antibiotics. This review highlights the mechanistic insights of using different strategies to combat drug-resistant bacteria and summarizes the recent advancements in antimicrobial materials and drug delivery systems for different carriers. Furthermore, the fundamental properties of combating antimicrobial resistance are discussed, and the current challenges and future perspectives in this field are proposed.
Collapse
Affiliation(s)
- Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
34
|
Li F, Huang K, Wang J, Yuan K, Yang Y, Liu Y, Zhou X, Kong K, Yang T, He J, Liu C, Ao H, Liu F, Liu Q, Tang T, Yang S. A dual functional Ti-Ga alloy: inhibiting biofilm formation and osteoclastogenesis differentiation via disturbing iron metabolism. Biomater Res 2023; 27:24. [PMID: 36978196 PMCID: PMC10053110 DOI: 10.1186/s40824-023-00362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Although biomedical implants have been widely used in orthopedic treatments, two major clinical challenges remain to be solved, one is the bacterial infection resulting in biofilm formation, and the other is aseptic loosening during implantation due to over-activated osteoclastogenesis. These factors can cause many clinical issues and even lead to implant failure. Thus, it is necessary to endow implants with antibiofilm and aseptic loosening-prevention properties, to facilitate the integration between implants and bone tissues for successful implantation. To achieve this goal, this study aimed to develop a biocompatible titanium alloy with antibiofilm and anti-aseptic loosening dual function by utilizing gallium (Ga) as a component. METHODS A series of Ti-Ga alloys were prepared. We examined the Ga content, Ga distribution, hardness, tensile strength, biocompatibility, and anti-biofilm performance in vitro and in vivo. We also explored how Ga3+ ions inhibited the biofilm formation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and osteoclast differentiation. RESULTS The alloy exhibited outstanding antibiofilm properties against both S. aureus and E. coli in vitro and decent antibiofilm performance against S. aureus in vivo. The proteomics results demonstrated that Ga3+ ions could disturb the bacterial Fe metabolism of both S. aureus and E. coli, inhibiting bacterial biofilm formation. In addition, Ti-Ga alloys could inhibit receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation and function by targeting iron metabolism, then suppressing the activation of the NF-κB signaling pathway, thus, showing their potential to prevent aseptic loosening. CONCLUSION This study provides an advanced Ti-Ga alloy that can be used as a promising orthopedic implant raw material for various clinical scenarios. This work also revealed that iron metabolism is the common target of Ga3+ ions to inhibit biofilm formation and osteoclast differentiation.
Collapse
Affiliation(s)
- Fupeng Li
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Kai Huang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinbing Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Kai Yuan
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yiqi Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xianhao Zhou
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Keyu Kong
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tao Yang
- Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jian He
- M-Duke Medical Technology (Shanghai) Co., Ltd, Shanghai, Shanghai, China
| | - Chunjie Liu
- M-Duke Medical Technology (Shanghai) Co., Ltd, Shanghai, Shanghai, China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330000, China
| | - Fengxiang Liu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Qian Liu
- Department of laboratory medicine, Ren Ji Hospital, Shanghai Jiao tong university school of medicine, Shanghai, 200127, China.
| | - Tingting Tang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Shengbing Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
35
|
Huang D, Wang Y, Xiao J, Wang Y, Zhu X, Xu B, Wang M. Scavenging of reactive oxygen species effectively reduces Pseudomonas aeruginosa biofilms through disrupting policing. ENVIRONMENTAL RESEARCH 2023; 220:115182. [PMID: 36586713 DOI: 10.1016/j.envres.2022.115182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Biofilm formation is likely to contribute greatly to antibiotic resistance in bacteria and therefore the efficient removal of bacterial biofilms needs addressing urgently. Here, we reported that the supplement of non-inhibitory concentration of N-acetyl-L-cysteine (NAC), a common reactive oxygen species (ROS) scavenger, can significantly reduce the biomass of mature Pseudomonas aeruginosa biofilms (corroborated by crystal violet assay and laser scanning confocal microscopy). 1 mM NAC increased the cheater (ΔlasR mutant) frequency to 89.4 ± 1.5% in the evolved PAO1 after the 15-day treatment. Scavenging of ROS by NAC induced the collapse of P. aeruginosa biofilms, but it did not alter quorum sensing-regulated genes expression (e.g., hcnC and cioAB) and hydrogen cyanide production. The replenishment of public good protease contributed to the recovery of biofilm biomass, indicating the role of disrupting policing in biofilm inhibition. Furthermore, 7 typical ROS scavengers (e.g., superoxide dismutase, catalase and peroxidase, etc.) also effectively inhibited mature P. aeruginosa biofilms. This study demonstrates that scavenging of ROS can promote the selective control of P. aeruginosa biofilms through policing disruption as a targeted biofilm control strategy in complex water environments.
Collapse
Affiliation(s)
- Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Junwei Xiao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yufan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xinyu Zhu
- Eco-Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Baile Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China.
| |
Collapse
|
36
|
Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Tan Y, Ma Y, Zhao C, Huang Z, Zhang A. Hybrid Nanoparticles of Tetraamino Fullerene and Benzothiadiazole fluorophore as Efficient Photosensitizers against Multidrug-Resistant Bacteria. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Jiang Y, Xu X, Lu J, Yin C, Li G, Bai L, Zhang T, Mo J, Wang X, Shi Q, Wang T, Zhou Q. Development of ε-poly(L-lysine) carbon dots-modified magnetic nanoparticles and their applications as novel antibacterial agents. Front Chem 2023; 11:1184592. [PMID: 37090244 PMCID: PMC10119404 DOI: 10.3389/fchem.2023.1184592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Magnetic nanoparticles (MNPs) are widely applied in antibacterial therapy owing to their distinct nanoscale structure, intrinsic peroxidase-like activities, and magnetic behavior. However, some deficiencies, such as the tendency to aggregate in water, unsatisfactory biocompatibility, and limited antibacterial effect, hindered their further clinical applications. Surface modification of MNPs is one of the main strategies to improve their (bio)physicochemical properties and enhance biological functions. Herein, antibacterial ε-poly (L-lysine) carbon dots (PL-CDs) modified MNPs (CMNPs) were synthesized to investigate their performance in eliminating pathogenic bacteria. It was found that the PL-CDs were successfully loaded on the surface of MNPs by detecting their morphology, surface charges, functional groups, and other physicochemical properties. The positively charged CMNPs show superparamagnetic properties and are well dispersed in water. Furthermore, bacterial experiments indicate that the CMNPs exhibited highly effective antimicrobial properties against Staphylococcus aureus. Notably, the in vitro cellular assays show that CMNPs have favorable cytocompatibility. Thus, CMNPs acting as novel smart nanomaterials could offer great potential for the clinical treatment of bacterial infections.
Collapse
Affiliation(s)
- Yuying Jiang
- The Affliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xinkai Xu
- The Affliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jinglin Lu
- The Affliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Chuqiang Yin
- The Affliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guotai Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Longjian Bai
- The Affliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Tiantian Zhang
- The Affliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jianning Mo
- The Affliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- The Affliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Qiang Shi
- Moji-Nano Technology Co. Ltd, Yantai, China
| | - Ting Wang
- The Affliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Ting Wang, ; Qihui Zhou,
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Moji-Nano Technology Co. Ltd, Yantai, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Ting Wang, ; Qihui Zhou,
| |
Collapse
|
39
|
Dong J, Wang W, Zhou W, Zhang S, Li M, Li N, Pan G, Zhang X, Bai J, Zhu C. Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies. Biomater Res 2022; 26:72. [PMID: 36471454 PMCID: PMC9721013 DOI: 10.1186/s40824-022-00326-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/19/2022] [Indexed: 12/11/2022] Open
Abstract
Implant-associated infection (IAI) is increasingly emerging as a serious threat with the massive application of biomaterials. Bacteria attached to the surface of implants are often difficult to remove and exhibit high resistance to bactericides. In the quest for novel antimicrobial strategies, conventional antimicrobial materials often fail to exert their function because they tend to focus on direct bactericidal activity while neglecting the modulation of immune systems. The inflammatory response induced by host immune cells was thought to be a detrimental force impeding wound healing. However, the immune system has recently received increasing attention as a vital player in the host's defense against infection. Anti-infective strategies based on the modulation of host immune defenses are emerging as a field of interest. This review explains the importance of the immune system in combating infections and describes current advanced immune-enhanced anti-infection strategies. First, the characteristics of traditional/conventional implant biomaterials and the reasons for the difficulty of bacterial clearance in IAI were reviewed. Second, the importance of immune cells in the battle against bacteria is elucidated. Then, we discuss how to design biomaterials that activate the defense function of immune cells to enhance the antimicrobial potential. Based on the key premise of restoring proper host-protective immunity, varying advanced immune-enhanced antimicrobial strategies were discussed. Finally, current issues and perspectives in this field were offered. This review will provide scientific guidance to enhance the development of advanced anti-infective biomaterials.
Collapse
Affiliation(s)
- Jiale Dong
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wenzhi Wang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wei Zhou
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Siming Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Meng Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China ,grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Ning Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Guoqing Pan
- grid.440785.a0000 0001 0743 511XInstitute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xianzuo Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Jiaxiang Bai
- grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Chen Zhu
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| |
Collapse
|
40
|
Ahmad V, Ansari MO. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224002. [PMID: 36432288 PMCID: PMC9694244 DOI: 10.3390/nano12224002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
Graphene (GN)-related nanomaterials such as graphene oxide, reduced graphene oxide, quantum dots, etc., and their composites have attracted significant interest owing to their efficient antimicrobial properties and thus newer GN-based composites are being readily developed, characterized, and explored for clinical applications by scientists worldwide. The GN offers excellent surface properties, i.e., a large surface area, pH sensitivity, and significant biocompatibility with the biological system. In recent years, GN has found applications in tissue engineering owing to its impressive stiffness, mechanical strength, electrical conductivity, and the ability to innovate in two-dimensional (2D) and three-dimensional (3D) design. It also offers a photothermic effect that potentiates the targeted killing of cells via physicochemical interactions. It is generally synthesized by physical and chemical methods and is characterized by modern and sophisticated analytical techniques such as NMR, Raman spectroscopy, electron microscopy, etc. A lot of reports show the successful conjugation of GN with existing repurposed drugs, which improves their therapeutic efficacy against many microbial infections and also its potential application in drug delivery. Thus, in this review, the antimicrobial potentialities of GN-based nanomaterials, their synthesis, and their toxicities in biological systems are discussed.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | | |
Collapse
|
41
|
Ren R, Lim C, Li S, Wang Y, Song J, Lin TW, Muir BW, Hsu HY, Shen HH. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3855. [PMID: 36364631 PMCID: PMC9658259 DOI: 10.3390/nano12213855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.
Collapse
Affiliation(s)
- Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Chiaxin Lim
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 518057, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
42
|
Wang B, Xu Y, Shao D, Li L, Ma Y, Li Y, Zhu J, Shi X, Li W. Inorganic nanomaterials for intelligent photothermal antibacterial applications. Front Bioeng Biotechnol 2022; 10:1047598. [PMID: 36338117 PMCID: PMC9633683 DOI: 10.3389/fbioe.2022.1047598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Antibiotics are currently the main therapeutic agent for bacterial infections, but they have led to bacterial resistance, which has become a worldwide problem that needs to be addressed. The emergence of inorganic nanomaterials provides a new opportunity for the prevention and treatment of bacterial infection. With the continuous development of nanoscience, more and more inorganic nanomaterials have been used to treat bacterial infections. However, single inorganic nanoparticles (NPs) are often faced with problems such as large dosage, strong toxic and side effects, poor therapeutic effect and so on, so the combination of inorganic nano-materials and photothermal therapy (PTT) has become a promising treatment. PTT effectively avoids the problem of bacterial drug resistance, and can also reduce the dosage of inorganic nanomaterials to a certain extent, greatly improving the antibacterial effect. In this paper, we summarize several common synthesis methods of inorganic nanomaterials, and discuss the advantages and disadvantages of several typical inorganic nanomaterials which can be used in photothermal treatment of bacterial infection, such as precious metal-based nanomaterials, metal-based nanomaterials and carbon-based nanomaterials. In addition, we also analyze the future development trend of the remaining problems. We hope that these discussions will be helpful to the future research of near-infrared (NIR) photothermal conversion inorganic nanomaterials.
Collapse
Affiliation(s)
- Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Yan Xu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Donghan Shao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Jianwei Zhu
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Xincui Shi
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
| | - Wenliang Li
- Engineering Research Center of Antibody, Jilin Medical University, Jilin, China
| |
Collapse
|
43
|
Ding M, Zhao W, Zhang X, Song L, Luan S. Charge-switchable MOF nanocomplex for enhanced biofilm penetration and eradication. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129594. [PMID: 35850068 DOI: 10.1016/j.jhazmat.2022.129594] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacterial biofilm is notorious for causing chronic infections, whose antibiotic treatment is bringing about severe multidrug resistance and environmental contamination. Stimuli-responsive nanocarriers have become encouraging materials to combat biofilm infections with high efficiency and low side effect. Herein, a charge-switchable and pH-responsive nanocomplex is fabricated via a facile aqueous one-pot zeolitic imidazolate framework-8 (ZIF-8) encapsulation of proteinase K (PK) and photosensitizer Rose Bengal (RB), for enzymatic and photodynamic therapies (PDT) against biofilm infections. Once encountering in acidic microenvironment, the surface charge of nanocomplex can switch self-adaptively from negative to positive, hence remarkably facilitating the biofilm penetration of nanocomplex. After acid-induced decomposition of nanocomplex, the released PK degrades biofilm matrix and loosens its structure, promoting diffusion of RB inside the biofilm. Afterwards, upon visible light illumination, the RB generates highly reactive oxygen species (ROS), which can readily and efficiently kill the remained bacteria even in the biofilm core. The charge-assisted penetration makes PK and RB fully functional, resulting in a cooperative effect concerning high biofilm eradication capacity, as testified by biofilm models both in vitro and in vivo. The green synthesis and good therapeutic performance of the nanocomplex manifests its considerable potential as a nontoxic and effective platform for biofilm treatment.
Collapse
Affiliation(s)
- Meng Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
44
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
45
|
Biswas A, Bhalani DV, Bhojani G, Joshi US, Nagar V, Mamtani V, Kar S, Jewrajka SK. Poly(vinylidene fluoride)/partially alkylated poly(vinyl imidazole) interpolymer ultrafiltration membranes with intrinsic anti-biofouling and antifouling property for the removal of bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129538. [PMID: 35999742 DOI: 10.1016/j.jhazmat.2022.129538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bacterial contaminated water causes potential health issues. Conventional chlorine treatment has shortcomings of environmental hazards and chlorine adoptability by the bacterial cells. Ultrafiltration membrane can intercept bacterial species from feed water. Membrane having anti-biofouling/antifouling properties is needed for the removal of bacteria from feed water. Herein, interpolymer membranes with inherent antimicrobial activity and fouling release property have been prepared by the blend of poly(vinylidene fluoride) (PVDF), poly(vinyl pyrrolidone) and partially long chain alkylated (C12 chain) poly(vinyl imidazole) copolymer (PVIm-co-PVIm-C12) followed by cross-linking of the remaining VIm groups with an activated di-halide compound. The membranes obtain with copolymers of degree of alkyl substitution (DSC12) in the range of 0.75-0.85 and amount in the range of 0.9-3.5% w/w in the casting solutions exhibit good antimicrobial activity (>99 % of inhibition) and dynamic anti-biofouling property. The membrane prepared with 0.9% w/w of the copolymer (DSC12=0.85) shows higher flux recovery ratio (91 % for bacterial filtration and 88 % for protein filtration) compare to a pristine membrane (57 % for bacterial filtration and 58 % for protein filtration). The membrane is able to reject the bacteria completely. Use of small amount of copolymer and facile fabrication of stable anti-biofouling/antifouling membranes show potential for the purification of bacterial contaminated water.
Collapse
Affiliation(s)
- Arka Biswas
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dixit V Bhalani
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gopal Bhojani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Biotechnology and Phycology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Urvashi S Joshi
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vandan Nagar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Vijay Mamtani
- Desalination & Membrane Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Soumitra Kar
- Desalination & Membrane Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
46
|
Cui F, Ning Y, Wang D, Li J, Li X, Li T. Carbon dot-based therapeutics for combating drug-resistant bacteria and biofilm infections in food preservation. Crit Rev Food Sci Nutr 2022; 64:203-219. [PMID: 35912471 DOI: 10.1080/10408398.2022.2105801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drug-resistant bacteria are caused by antibiotic abuse and/or biofilm formation and have become a threat to the food industry. Carbon dot (CD)-based nanomaterials are a very promising tools for combating pathogenic and spoilage bacteria, and they possess exceptional and adjustable photoelectric and chemical properties. In view of the rapid development of CD-based nanomaterials and their increasing popularity in the food industry, a comprehensive and updated review is needed to summarize their antimicrobial mechanisms and applications in foods. This review discusses the synthesis of CDs, antimicrobial mechanisms, and their applications for extending the shelf life of food. It includes the synthesis of CDs using small molecules, polymers, and biomass. It also discusses the different antimicrobial mechanisms of CDs and their use as antibacterial agents and carriers/ligands. CD-based materials have proven effective against pathogenic and spoilage bacteria in food by inhibiting planktonic bacteria and biofilms. Optimization of the production parameters of CDs can help them achieve a full-spectral response, but degradability still requires further research.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Yuanyuan Ning
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
- College of Food Science and Technology, Jiangnan University, Wuxi Jiangsu, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou Liaoning, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian Liaoning, China
| |
Collapse
|
47
|
Mohanta YK, Chakrabartty I, Mishra AK, Chopra H, Mahanta S, Avula SK, Patowary K, Ahmed R, Mishra B, Mohanta TK, Saravanan M, Sharma N. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol 2022; 13:1028086. [PMID: 36938129 PMCID: PMC10020670 DOI: 10.3389/fmicb.2022.1028086] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Since the birth of civilization, people have recognized that infectious microbes cause serious and often fatal diseases in humans. One of the most dangerous characteristics of microorganisms is their propensity to form biofilms. It is linked to the development of long-lasting infections and more severe illness. An obstacle to eliminating such intricate structures is their resistance to the drugs now utilized in clinical practice (biofilms). Finding new compounds with anti-biofilm effect is, thus, essential. Infections caused by bacterial biofilms are something that nanotechnology has lately shown promise in treating. More and more studies are being conducted to determine whether nanoparticles (NPs) are useful in the fight against bacterial infections. While there have been a small number of clinical trials, there have been several in vitro outcomes examining the effects of antimicrobial NPs. Nanotechnology provides secure delivery platforms for targeted treatments to combat the wide range of microbial infections caused by biofilms. The increase in pharmaceuticals' bioactive potential is one of the many ways in which nanotechnology has been applied to drug delivery. The current research details the utilization of several nanoparticles in the targeted medication delivery strategy for managing microbial biofilms, including metal and metal oxide nanoparticles, liposomes, micro-, and nanoemulsions, solid lipid nanoparticles, and polymeric nanoparticles. Our understanding of how these nanosystems aid in the fight against biofilms has been expanded through their use.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- *Correspondence: Yugal Kishore Mohanta,
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati, Assam, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Bibhudutta Mishra
- Department of Gastroenterology and HNU, All India Institute of Medical Sciences, New Delhi, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Tapan Kumar Mohanta,
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
- Nanaocha Sharma,
| |
Collapse
|