1
|
Gao Y, Yang C, Feng G, Zhang BX, Xu ZY, Wang Y, Tleubergenova A, Zhang Y, Meng XZ. Downward migration of per- and polyfluoroalkyl substances (PFAS) in lake sediments: Reconsideration of temporal trend analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138290. [PMID: 40252315 DOI: 10.1016/j.jhazmat.2025.138290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Using sediment cores to reconstruct the contamination history of per- and polyfluoroalkyl substances (PFAS) is essential for chemical management but poses challenge. Herein, sediment cores, as well as surface water and sediments were taken from two Chinese lakes to investigate the vertical distribution and migration of PFAS. Wind wave, properties of sediment and water, and chemical characters of PFAS were examined to clarify the main factors influencing PFAS migration. Total PFAS concentrations in sediment cores ranged from 0.12 to 5.28 ng g-1 dry weight (dw) in Dianchi Lake and from 0.19 to 2.51 ng g-1 dw in Taihu Lake, respectively. Strong hydrodynamic disturbance (wind-wave erosion depth up to 30 cm) in Taihu Lake resulted in consistent PFAS levels and profiles throughout the sediment core, limiting its use for retrospective analysis. In Dianchi Lake, an increasing trend of total organic carbon-normalized PFAS indicated their persistent emission in China over the past decades. Perfluorooctane sulfonic acid increased markedly from early 2000s; temporal trend in composition for perfluorocarboxylates coincided with the global production transition. Finally, we proposed a three-step conceptual framework, including lake selection, key time point assessment, and contamination history reconstruction, to further improve the reliability of PFAS retrospective analysis in lake.
Collapse
Affiliation(s)
- Yunze Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Chao Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ganyu Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zi-Yao Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Akmaral Tleubergenova
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing, Zhejiang 314051, China.
| |
Collapse
|
2
|
Carter LJ, Adams B, Berman T, Cohen N, Cytryn E, Elder FCT, Garduño-Jiménez AL, Greenwald D, Kasprzyk-Hordern B, Korach-Rechtman H, Lahive E, Martin I, Ben Mordechay E, Murray AK, Murray LM, Nightingale J, Radian A, Rubin AE, Sallach B, Sela-Donenfeld D, Skilbeck O, Sleight H, Stanton T, Zucker I, Chefetz B. Co-contaminant risks in water reuse and biosolids application for agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126219. [PMID: 40210163 DOI: 10.1016/j.envpol.2025.126219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Agriculture made the shift toward resource reuse years ago, incorporating materials such as treated wastewater and biosolids. Since then, research has documented the widespread presence of contaminants of emerging concern in agricultural systems. Chemicals such as pesticides, pharmaceuticals and poly- and -perfluoroalkyl substances (PFASs); particulate matter such as nanomaterials and microplastics; and biological agents such as antibiotic resistance genes (ARGs) and bacteria (ARB) are inadvertently introduced into arable soils where they can be taken up by crops and introduced to the food-web. Thus, concern about the presence of contaminants in agricultural environments has grown in recent years with evidence emerging linking agricultural exposure and accumulation in crops to ecosystem and human health effects. Our current assessment of risk is siloed by working within disciplines (i.e., chemistry and microbiology) and mostly focused on individual chemical classes. By not acknowledging the fact that contaminants are mostly introduced as a mixture, with the potential for interactions, with each other and with environmental factors, we are limiting our current approach to evaluate the real potential for ecosystem and human health effects. By uniting expertise across disciplines to integrate recent understanding regarding the risks posed by a range of chemically diverse contaminants in resources destined for reuse, this review provides a holistic perspective on the current regulatory challenges to ensure safe and sustainable reuse of wastewater and biosolids to support a sanitation-agriculture circular economy.
Collapse
Affiliation(s)
- Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK.
| | - Beth Adams
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK; Fera Science Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Israel
| | - Nririt Cohen
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Eddie Cytryn
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel
| | - F C T Elder
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | | | - Danny Greenwald
- The Israeli Water and Sewerage Authority, Jerusalem, 9195021, Israel
| | | | | | - Elma Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, OX10 8BB, UK
| | - Ian Martin
- Environment Agency, Aqua House, 20 Lionel Street, Birmingham, B3 1AQ, UK
| | - Evyatar Ben Mordechay
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - Laura M Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - John Nightingale
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Brett Sallach
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Dalit Sela-Donenfeld
- Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Olivia Skilbeck
- School of Design, Faculty of Arts, Humanities and Cultures, University of Leeds, LS2 9JT, UK
| | - Harriet Sleight
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Thomas Stanton
- Department of Geography and Environment, Loughborough University, LE11 3TU, UK
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Benny Chefetz
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
3
|
Junker AL, Juve JMA, Bai L, Qvist Christensen CS, Ahrens L, Cousins IT, Ateia M, Wei Z. Best Practices for Experimental Design, Testing, and Reporting of Aqueous PFAS-Degrading Technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8939-8950. [PMID: 40312980 DOI: 10.1021/acs.est.4c08571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Increased awareness of pervasive per- and polyfluoroalkyl substances (PFAS) contamination and the need for zero-pollution treatment solutions necessitate the scientific and engineering community to respond urgently and systematically. Existing approaches lack reproducible and standardized methods to report the technological treatment capabilities. Consequently, it is difficult to compare innovations and accurately assess their potential. In this Perspective, we shed light on hurdles encountered in the lab-scale research and development of aqueous PFAS destruction technologies with a focus on chemical methods and offer recommendations for overcoming them. Best practices are provided for developing robust PFAS laboratory protocols covering crucial aspects such as experimental planning, sample storage and analysis, and waste management. Further, we present five criteria to standardize reporting on performance and advances in PFAS degrading technologies: 1) scope, 2) defluorination efficiency, 3) relative energy consumption, 4) material stability, and 5) unit process considerations. Through the dissemination of these insights, we aim to foster progress in the development of highly effective treatment solutions.
Collapse
Affiliation(s)
- Allyson Leigh Junker
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Jan-Max Arana Juve
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Lu Bai
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Charlotte Skjold Qvist Christensen
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Ian T Cousins
- Department for Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1827, United States
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, DK-8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Yun X, Hillis M, Alston E, Sales CM, Spooner DE, Kurz MJ, Suri R, McKenzie ER. Effects of dissolved cations, dissolved organic carbon, and exposure concentrations on per- and polyfluoroalkyl substances bioaccumulation in freshwater algae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126388. [PMID: 40348273 DOI: 10.1016/j.envpol.2025.126388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have attracted global attention because of their persistence, toxicity, bioaccumulation potential, and associated adverse effects. As important primary producers, freshwater algae constitute the base of the food web in freshwater aquatic ecosystems. However, the effects of key environmental factors on PFAS uptake and bioaccumulation in freshwater algae have not been thoroughly studied. In this study, three bioaccumulation experiments were conducted to evaluate the influence of dissolved cations, dissolved organic carbon, and exposure concentrations on PFAS bioaccumulation in algae. Among the 14 studied PFAS, seven long-chain PFAS tended to bioaccumulate in algae. Elevated divalent cations (Ca2+ and Mg2+) and dissolved organic carbon did not significantly change the algal bioconcentration factors (BCFs) of PFAS, suggesting complexity of the interactions among PFAS, environmental factors, and biotic activities. Additionally, increasing exposure concentrations (0.5, 1, 5, and 10 μg/L of each PFAS) increased PFAS concentrations in algae but decreased the BCF values. This indicated that attention should be paid to the application of BCFs in future studies, including ecological risk assessment. Moreover, fluorotelomer sulfonic acids (FTSs) were incompletely recovered, suggesting that biotransformation occurred. Further studies should be conducted to evaluate whether algae play a role in FTSs biotransformation and to determine the mechanisms. Studying the impacts of key environmental factors on PFAS bioaccumulation in algae is crucial for understanding the bioaccumulation processes that occur at the lowest trophic level and that eventually affect the dynamics of entire aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaoyan Yun
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, 19122, USA
| | - Maya Hillis
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Erica Alston
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher M Sales
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Daniel E Spooner
- Department of Biology, Lock Haven University, Commonwealth University of Pennsylvania, Lock Haven, PA, 17745, USA
| | - Marie J Kurz
- Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Rominder Suri
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, 19122, USA
| | - Erica R McKenzie
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
5
|
Chen Y, Cao D, Li X, Jia X, Shi Y, Cai Y. Interactive effects of soil dissolved organic matter (DOM) and Per- and polyfluoroalkyl substances on contaminated soil site: DOM molecular-level perspective. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137372. [PMID: 39874753 DOI: 10.1016/j.jhazmat.2025.137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Dissolved organic matter (DOM), as the most active soil component, plays a crucial role in regulating the transport of contaminants. Per- and polyfluoroalkyl substances (PFAS) have been found to be widespread contaminants in the soil environment, and their migration would be also affected by DOM. Herein, the surface and subsurface soil samples collected from two PFAS manufacturing factories were studied for the variation characteristics of DOM under PFAS contamination, and the interaction between DOM and PFAS in soil was further explored. The results showed that PFAS contamination significantly reduced the richness of surface soil DOM. For the specific DOM components, the potential transformation of DOM in subsurface soil indicates that the presence of PFAS promotes the transformation of other DOM components to PA compounds. Moreover, a strong positive relationship was observed between the concentration of most perfluoroalkyl sulfonic acids (PFSAs) and the average unsaturation (DBE) and aromaticity index (AImod) of DOM, while no such relationship for perfluoroalkyl carboxylic acids (PFCAs), suggesting DBE and AImod may be a potential contributor influencing the distribution and transport of PFSAs. These findings highlight the interaction between DOM and the PFAS in the soil environment, which may enhance our understanding of the release and fate of PFAS in the soil environment.
Collapse
Affiliation(s)
- Yuhang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaotong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Gunarathne V, Melo TM, Schauerte M, Groth F, Slaný M, Rinklebe J. Immobilization of per- and polyfluorinated alkyl substances (PFAS) from field contaminated groundwater by a novel organo-clay vs. colloidal activated carbon under flow conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137273. [PMID: 39864198 DOI: 10.1016/j.jhazmat.2025.137273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Two novel and unique adsorptive materials, one (Fluorolock®) from clay mineral sepiolite coated with the cationic polymer polydiallyldimethylammionium chloride (pDADMAC) and the other (Intraplex®) from colloidal activated carbon were specially developed for the in situ remediation of per- and polyfluoroalkyl substances (PFAS) in the saturated zone. We evaluated the potential of both materials to immobilize PFAS in soils under flow conditions via soil column experiments using groundwater, which was contaminated with PFAS in the field. Furthermore, the potential ecotoxicological effects of both materials on aquatic organisms were assessed by exposing the soil column effluent to Daphnia magna. Soils amended with Fluorolock® and Intraplex® led to a significant reduced leaching of PFAS. Intraplex® had higher PFAS immobilization efficiency than Fluorolock® likely due to its higher carbon content (84 % higher than Fluorolock®) and larger specific surface area (93 % higher than Fluorolock®). Fluorolock® and Intraplex® resulted in changes in water parameters, however, the effluent from soil amended with Fluorolock® exhibited mild toxicity, whereas the amended with Intraplex® was not toxic to D. magna. The distinct PFAS immobilization and the respective toxicity outcomes, with Fluorolock® showing mild toxicity and Intraplex® exhibiting no toxicity to D. magna, indicate that Fluorolock® and Intraplex® could be suitable for the remediation of groundwater contaminated with PFAS.
Collapse
Affiliation(s)
- Viraj Gunarathne
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany.
| | - Tatiane Medeiros Melo
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany.
| | - Marina Schauerte
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany.
| | - Felix Groth
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany.
| | - Michal Slaný
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 36, Slovakia; Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, Prague 166 29, Czech Republic.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany.
| |
Collapse
|
7
|
Xu X, Chen H, Liao S, Li Y, Sun Y, Zou G. Understanding the response mechanisms of C4 and C3 crops to PFHxA exposure from the perspective of plant water physiology and self-detoxification. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138287. [PMID: 40262315 DOI: 10.1016/j.jhazmat.2025.138287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/13/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Normally C4 crops have better abiotic stress resistance than C3 crops, so they might possess different tolerance to per- and polyfluoroalkyl substances (PFASs). Here we reported a hydroponic study on the factors affecting plant accumulation and tolerance to PFHxA in terms of plant water physiology and self-detoxification mechanisms. Two C3 crops and two C4 crops were subjected to PFHxA exposure (0.2 mg per growing system), and PFHxA induced the decline of transpiration, stomata aperture and size, root surface area and root volume of all the experimented plants, along with an imbalance of ammonium metabolism. Compared with C4 crops, C3 crops had higher PFHxA accumulation per system, higher PFHxA absorption per volume of water consumption and stronger PFHxA tolerance than C4 crops as shown by the lighter biomass loss, better root cell wall integrity and stimulated protein accumulation. The increase of water use efficiency promoted plant PFHxA uptake and ameliorated biomass loss of C3 crops, whilst the root-exudated amino acids protected the root cell wall structure. Both shoot performance and root exudation results showed that ammonium and amino acid metabolism had a vital role in plant detoxification under PFHxA exposure, which merited further study.
Collapse
Affiliation(s)
- Xiangnan Xu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguanghuayuan, Haidian District,, Beiing 100097, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shangqiang Liao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguanghuayuan, Haidian District,, Beiing 100097, China
| | - Yanmei Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguanghuayuan, Haidian District,, Beiing 100097, China
| | - Yanxin Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguanghuayuan, Haidian District,, Beiing 100097, China.
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguanghuayuan, Haidian District,, Beiing 100097, China.
| |
Collapse
|
8
|
Li S, Liu J, An X, Tang C, Tang C, Zhang B, Chen C, Lin T, Jones KC, Zhao Z. Molecular characteristics of emerging perfluoroalkyl and polyfluoroalkyl substances (PFAS) and dissolved organic matter (DOM) in surface waters around fluorine-related industries in a Chinese Megacity. ENVIRONMENT INTERNATIONAL 2025; 198:109444. [PMID: 40220693 DOI: 10.1016/j.envint.2025.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/19/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Fluorine-related industrial discharges are the main source of per- and polyfluoroalkyl substances (PFAS) contamination in surrounding surface waters, but the long-term environmental impacts of their residual PFAS and the interactions between PFAS and dissolved organic matter (DOM) in field waters have rarely been discussed. In this study, the concentrations of 32 target PFAS were quantified, 50 PFAS were identified and semi-quantified by suspect and nontarget screening, and the molecular characteristics of DOM were analyzed in the surface water of Shanghai. Concentrations of ∑PFAS were 284 ∼ 3018 ng/L. Perfluorobutane sulfonate acid (PFBS) and perfluorooctanoic acid (PFOA) remained the predominant compounds at most sampling sites, but hexafluoropropylene oxide trimer acid (HFPO-TA) exhibited extremely high values at a few specific sites. Near a historical fluorotelomer manufacturer which was closed in 2017, ∑PFAS concentration was still at a high-level of 1800 ng/L. Thirteen nontarget and suspect PFAS including 7 iodinated perfluoroalkyl acids (IPFAAs) were identified in 100 % samples. A total of 8134 DOM molecular formulas were identified. For elemental composition, CHOS (24 %) has the highest percentage, while for molecular species, lignin (36 %) has the highest proportion of molecules. When the assignment of fluorine was included in the elemental analysis, the percentage of fluorine-containing substances reached to 55 %, suggesting the anthropogenic influences. Emerging PFAS, i.e., perfluoropentanoic acid (PFPeA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were negatively related to DOM concentration (p < 0.05) due to microorganism activities. This study revealed the persistent impact of fluorine-related industries and the environmental behavior of PFAS and DOM in aquatic environments, providing support for the systematic and comprehensive evaluation of surface water health.
Collapse
Affiliation(s)
- Shiyue Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; ANPEL-TRACE Standard Technical Services (Shanghai) CO., LTD., Yehe Road 59, Shanghai, 201609, China
| | - Xinyi An
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Caiming Tang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Caijun Tang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chongtai Chen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Zhen Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| |
Collapse
|
9
|
Biswas B, Joseph A, Parveen N, Ranjan VP, Goel S, Mandal J, Srivastava P. Contamination of per- and poly-fluoroalkyl substances in agricultural soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124993. [PMID: 40120441 DOI: 10.1016/j.jenvman.2025.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Numerous reviews have focused on the chemistry, fate and transport, and remediation of per- and poly-fluoroalkyl substances (PFAS) across various environmental media. However, there remains a significant gap in the literature regarding a comprehensive review specifically addressing PFAS contamination within agricultural soils. Recognizing the threat PFAS pose to ecosystems and human health, this review critically examines the sources of PFAS in agricultural environments, their uptake and translocation within plant systems, and recent advancements in soil remediation techniques. PFAS ingress into agricultural soils primarily occurs through the application of biowastes, wastewater, and pesticides, necessitating a thorough examination of their pathways and impacts. Factors such as carbon chain length, salinity, temperature, and pH levels affect PFAS uptake and distribution within plants, ultimately influencing their transfer through the food web. Moreover, this review explores a range of physical, chemical, and biological strategies currently employed for the remediation of PFAS-contaminated agricultural soils.
Collapse
Affiliation(s)
- Bishwatma Biswas
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India; Civil Engineering Department, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Ved Prakash Ranjan
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Sudha Goel
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Jajati Mandal
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom; Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Industry Environments Program, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Prashant Srivastava
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Industry Environments Program, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
10
|
Zhang Z, Joudiazar S, Satpathy A, Fernando E, Rahmati R, Kim J, de Falco G, Datta R, Sarkar D. Removal of Per- and Polyfluoroalkyl Substances Using Commercially Available Sorbents. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1299. [PMID: 40141583 PMCID: PMC11943809 DOI: 10.3390/ma18061299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of growing environmental and human health concern, widely detected across various environmental compartments. Effective remediation strategies are essential to mitigate their widespread impacts. This study compared the performance of two types of commercially available sorbent materials, granular activated carbon (GAC, Filtrasorb-400) and organoclays (OC-200, and modified organoclays Fluoro-sorb-100 and Fluoro-sorb-200) for the removal of three representative PFAS compounds: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS) from water. Both organoclays and modified organoclays outperformed GAC, likely due to electrostatic interactions between the anionic PFAS compounds and the cationic functional groups of the modified organoclays. A pseudo-second-order kinetic model best described the rapid sorption kinetics of PFOA, PFNA, and PFOS. For PFOA, OC-200 demonstrated the highest adsorption capacities (qmax = 47.17 µg/g). For PFNA and PFOS, Fluoro-sorb-100 was the most effective sorbent, with qmax values at 99.01 µg/g and 65.79 µg/g, respectively. Desorption studies indicated that the sorption of the three PFAS compounds on these commercially available sorbents was largely irreversible. This study highlights the effectiveness and sorption capacities of different types of commercial sorbents for PFAS removal and offers valuable insights into the selection of reactive media for PFAS removal from water under environmentally relevant conditions.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil and Environmental Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Sevda Joudiazar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Anshuman Satpathy
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Eustace Fernando
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Roxana Rahmati
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| | - Junchul Kim
- Tetra Tech, Inc., King of Prussia, PA 19406, USA;
| | - Giacomo de Falco
- New York City Department of Environmental Protection, New York City, NY 11368, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA;
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (S.J.); (A.S.); (E.F.); (R.R.)
| |
Collapse
|
11
|
Wu J, Li L, Chen M, Liu M, Zeng M, Tu W. Metabolomic interpretation of bacterial and fungal contribution to per- and polyfluoroalkyl substances interface migration in waterlogged paddy fields. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125580. [PMID: 39730035 DOI: 10.1016/j.envpol.2024.125580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely distributed in paddy soils, and their multi-phase partitioning in soil fractions was proved to be strongly interact with soil microbial community composition and functions. Despite this, soil bacterial and fungal metabolic molecular effects on PFAS water-soil interface migration in waterlogged paddy fields still remain unclear. This study integrated soil untargeted metabolomics with microbial amplicon sequencing to elucidate soil metabolic modulations of 15 PFAS interface release. Inhibition of bacterial and fungal metabolic activity both significantly altered PFAS cross-media translocation (p < 0.05). Gemmatimonadota, Desulfobacterota, Acidobacteriota, Actinobacteriota, and Bacteroidota were vital bacterial taxa affecting PFAS transport, while Basidiobolomycota and Chytridiomycota were vital fungal taxa. Fungi regulated PFAS migration more (R2 = 0.379-0.526) than bacteria (R2 = 0.021-0.030) due to the higher metabolic stability of stochastic-dominated fungi than deterministic-dominated bacteria. At the water-soil interface, the amino acid-like dissolved organic matter (Tyrosine and Tryptophan) contributed most (48.5-58.6 %) to the PFAS multiphase distribution. Untargeted metabolomics further clarified that fungal amino acid-like metabolites, including Phosphoenolpyruvate and Methionine, were key triggers stimulating Tyrosine and Tryptophan biosynthesis (p < 0.001), which were vital in modulating PFAS interface translocation (p < 0.001). These results provide novel insights into soil microbial metabolites' participation in PFAS water-soil interface migration, benefiting PFAS pollution control and agricultural security risk assessment in waterlogged paddy ecosystems.
Collapse
Affiliation(s)
- Jianyi Wu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingxuan Li
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meiyu Liu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meijuan Zeng
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenqing Tu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
12
|
Liao J, Lu Y, Liu Y, Sun B, Zhang K, Wang C, Lei H, Cao Z. How heatwaves impact microalgae in the presence of environmentally relevant PFAS concentration: Metabolic shifts and challenges posed. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136640. [PMID: 39637790 DOI: 10.1016/j.jhazmat.2024.136640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely distributed in the aquatic environment. While increasing studies have investigated the effects of specific PFAS exposure on microalgae, the impact of environmentally relevant PFAS concentrations, particularly during extreme weather events like heatwaves, remains unclear. For Microcystis aeruginosa, a cyanobacteria causing harmful algal blooms, PFAS exposure promoted growth and photosynthesis by accelerating the TCA cycle, intensifying carbon/nitrogen and nucleotide metabolism, and enhancing antioxidant expression. Moreover, although heatwave exposure alone adversely affected algal growth, co-exposure to PFAS and heatwaves paradoxically enhanced algal growth. This co-exposure also enhanced the expression of photosynthetic pigments and metabolites involved in alanine, aspartate and glutamate metabolism, as well as arginine and proline metabolism (compared to PFAS exposure alone). Nevertheless, co-exposure intensified oxidative stress, leading to differential expression of antioxidants, which may consequently affect the synthesis of membrane lipids. In addition, PFAS adsorption and uptake are primarily influenced by the varying strengths of PFAS molecules in binding with proteins and notably boosted by heatwaves. This study highlights the role of diverse PFAS in microalgae blooms and the influence of heatwave events on pollutant responses, providing scientific foundations for aquatic ecosystem protection against climate and pollution challenges.
Collapse
Affiliation(s)
- Jieming Liao
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yinyue Liu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Bin Sun
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Kunyu Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Haojie Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Zhiwei Cao
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| |
Collapse
|
13
|
Qi Y, Yang Y, Yu X, Wu S, Wang W, Yu Q, Wang C, Liang Y, Sun H. Unveiling the Contribution of Hydrogen Radicals to Per- and Polyfluoroalkyl Substances (PFASs) Defluorination: Applicability and Degradation Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1875-1886. [PMID: 39800992 DOI: 10.1021/acs.est.4c10411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
At present, the defluorination of per- and polyfluoroalkyl substances (PFASs), including perfluoroether compounds as substitutes of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate, is limited by the effective active species produced during the oxidation-reduction process. The contribution of the hydrogen radical (•H) as a companion active substance in the photoreduction and electrocatalytic degradation of PFASs has been neglected. Herein, we demonstrate that perfluorocarboxylic acids and perfluoroether compounds such as PFOA and hexafluoropropylene oxide dimer acid (GenX) underwent near-complete photodegradation and effective defluorination by continuously generating •H through perfluoroalkyl radical activation of water under UV irradiation without any reagents and catalysts. Importantly, the initial dissolved oxygen, H+, and impurities in surface water scarcely inhibited the defluorination of the PFASs. The difference in the defluorination mechanism between PFOA and GenX under the action of •H was elucidated by combining theoretical calculations with targeted and nontargeted analysis methods. The investigation of the photodegradation of different PFASs indicates that perfluoroether compounds were not easily photodegraded via reduction of •H compared with other compounds, whereas polyfluorinated compounds in which some F atoms were replaced with Cl were more prone to elimination. However, the UV/•H system was ineffective against perfluorosulfonic acids. This study provides an unprecedented perspective for further development of the removal technology of PFASs and the design of alternative PFASs that are easy to eliminate.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yinbo Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xue Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Sai Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Weicheng Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qin Yu
- Liaoning Jinhua Xinda Ecological Environment Technology Co., Ltd., Panjin 124000, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, New York 12222, United States
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
14
|
Zheng Y, Carter E, Zou S, Williams CF, Chow AT, Chen H. Using syringe filtration after lab-scale adsorption processes potentially overestimates PFAS adsorption removal efficiency from non-conventional irrigation water. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:20-30. [PMID: 39414564 PMCID: PMC11718135 DOI: 10.1002/jeq2.20640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
The adsorption process, known for its cost-effectiveness and high efficiency, has been extensively investigated at the laboratory scale for removing per- and polyfluoroalkyl substances (PFAS) from non-conventional irrigation water. However, a syringe filtration step is commonly used when quantifying PFAS removal during this adsorption process, potentially leading to PFAS retention onto the filters and an overestimate of adsorption removal efficiency. Here, we assessed the retention of three prevalent PFAS (i.e., perfluorooctanoic acid [PFOA], perfluorooctane sulfonic acid [PFOS], and perfluorobutanoic acid [PFBA]) on six syringe filters. When filtering distilled deionized water spiked with 1 µg/L and 100 µg/L of each PFAS, we observed the highest and lowest PFAS recovery percentages by mixed cellulose ester (MCE) (0.20 µm, 25 mm; 97 ± 11%, 101 ± 4.8%) and polytetrafluoroethylene (0.45 µm, 13 mm; 61 ± 37%, 80 ± 28%), respectively. Under the initial concentration of 1 µg/L and 100 µg/L, PFOS had recovery percentages of 55 ± 25% and 68 ± 24%, significantly lower than 96 ± 12% and 99 ± 5% for PFOA and 95 ± 8% and 97 ± 4% for PFBA, highlighting the importance of PFAS functional groups. PFAS recovery percentage increased with filtration volume in the order of 80 ± 28% (1 mL) < 85 ± 21% (5 mL) < 90 ± 18% (10 mL). Using MCE to filter treated municipal wastewater spiked with 1 µg/L and 100 µg/L of each PFAS, we found recovery percentages >90% for all three PFAS. Our study underscores the significance of syringe filter selection and potential overestimate of PFAS removal efficacy by the lab-scale adsorption processes.
Collapse
Affiliation(s)
- Yu‐Hua Zheng
- Department of Forestry and Environmental ConservationClemson UniversitySouth CarolinaUSA
| | - Erika Carter
- Department of Environmental Engineering and Earth SciencesClemson UniversitySouth CarolinaUSA
| | - Shiqiang Zou
- Department of Civil and Environmental EngineeringAuburn UniversityAlabamaUSA
| | | | - Alex T. Chow
- Department of Earth and Environmental SciencesThe Chinese University of Hong KongHong KongP. R. China
| | - Huan Chen
- Department of Environmental Engineering and Earth SciencesClemson UniversitySouth CarolinaUSA
| |
Collapse
|
15
|
Lu Y, Pang X, Gao C, Liu Y, Chu K, Zhai J. Tissue distribution, biomagnification, human health risk, and risk mitigation of perfluoroalkyl acids (PFAAs) in the aquatic food web of an urban fringe lake: Insights from urban-rural and seasonal scales. ENVIRONMENTAL RESEARCH 2024; 263:120146. [PMID: 39419257 DOI: 10.1016/j.envres.2024.120146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Perfluoroalkyl acids (PFAAs), renowned for their exceptional physical and chemical properties, are ubiquitous in urban and rural environments. Despite their widespread usage, more knowledge is needed concerning their accumulation and transfer mechanisms within the aquatic food webs of urban fringe lakes, especially across rural-urban and seasonal scales. This study investigated the tissue distribution, bioaccumulation, biomagnification, associated human health risks, and potential risk mitigation strategies of 15 PFAAs within the food web of Luoma Lake, a prototypical urban fringe lake. All targeted PFAAs were detected in samples, with ∑PFAA concentrations ranging from 116.97 to 564.26 ng/g dw in muscles and 26.96-1850.95 ng/g dw in viscera. Spatial variations revealed significantly higher ∑PFAA concentrations in the muscles from the urban subregion (∑PFAA: 359.66 ± 76.48 ng/g dw) compared to the rural subregion (∑PFAA: 328.86 ± 87.51 ng/g dw). Seasonal fluctuations impacted PFAA concentrations in fish and crustacean muscles but exhibited negligible effects on bivalve muscles. Spatial variations only influenced PFAA concentrations in specific viscera (gill, liver, kidney), while seasonal changes had minimal effects on viscera. The organisms demonstrated varying bioaccumulation capacities, with crustaceans displaying the highest bioaccumulation potential, followed by crustaceans and fish. Both spatial and seasonal variations modulated the bioaccumulation patterns of PFAA in muscles, whereas bioaccumulation in viscera was only influenced by seasonal factors. Notably, PFAA biomagnification along the food web was exclusively governed by spatial distribution, remaining unaffected by seasonal changes. The human health risk assessment underscored the potential adverse health impacts of PFOS and PFOA, particularly on young children (aged 2 to <6 years). This study further proposed comprehensive recommendations for mitigating PFAA-induced health risks, encompassing source control, selective consumption, pre-cooking treatments, and strategic cooking method selection. This research provides crucial insights into the ecological behaviors and health implications of PFAA in urban fringe lakes.
Collapse
Affiliation(s)
- Ying Lu
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu, 213300, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Xinyuan Pang
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu, 213300, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Chang Gao
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuanyuan Liu
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Kejian Chu
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu, 213300, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
16
|
Teng B, Zhao Z, Xia L, Wu J, Wang H. Progress on the removal of PFAS contamination in water by different forms of iron-modified biochar. CHEMOSPHERE 2024; 369:143844. [PMID: 39612997 DOI: 10.1016/j.chemosphere.2024.143844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) contamination poses a significant threat to human health. Iron-modified biochar is an eco-friendly, cost-effective, and efficient adsorption material. There is a beneficial interaction between iron groups and biochar to remove PFAS from water through adsorption and degradation. The removal mechanism of the iron-modified biochar mainly includes advanced oxidation, iron group reduction, and adsorption. The adsorption mechanism shifted from being dominated by hydrophobic interactions to electrostatic interactions and ion exchange. Different forms of iron-modified biochar showed excellent removal of short-chain PFAS, which is not found in other modified biochar. Few existing studies have systematically investigated the role of various forms of iron-modified biochar in PFAS removal. Accordingly, this review explores the following areas, the synthesis methods of different forms of iron-modified biochar, the removal effect on long and short-chain PFAS, the key factors affecting removal capacity and the mechanisms of their interaction, the mechanism of PFAS removal, and the regeneration capacity of the composites. In this study, the potential of different forms of iron-modified biochar for PFAS remediation was explored in depth. To provide new ideas for subsequent studies of PFAS removal using iron-modified biochar.
Collapse
Affiliation(s)
- Binglu Teng
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liling Xia
- Nanjing Vocat Univ Ind Technol, Nanjing, 400054, China
| | - Jiangxuan Wu
- Business School, Institute of Planning and Decision Making, Hohai University, Nanjing, 211100, China
| | - Hailong Wang
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
17
|
Menezes O, Srivastava K, Ferreira B, Field JA, Root RA, Chorover J, Abrell L, Sierra-Alvarez R. Assessing strategies to measure hidden per- and polyfluoroalkyl substances (PFAS) in groundwater and to evaluate adsorption remediation efficiencies. CHEMOSPHERE 2024; 369:143887. [PMID: 39638129 DOI: 10.1016/j.chemosphere.2024.143887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The widespread presence of per- and polyfluoroalkyl substances (PFAS) in the environment, driven by extensive industrial use, has raised global concerns due to their persistence and adverse health effects. Despite the increased regulatory focus on a sub-set of well-known PFAS, over 12,000 compounds exist, many poorly characterized. Our study assessed hidden PFAS concentrations, undetectable by standard LC-MS/MS analysis, in contaminated groundwater. We analyzed total oxidizable precursors (TOP) via TOP assay followed by LC-MS/MS, and total organic fluorine (TOF) via combustion ion chromatography (CIC). Results were compared with those from LC-MS/MS analysis of 25 individual PFAS (∑PFAS25), representing the non-hidden PFAS fraction. We also evaluated the removal of hidden PFAS employing conventional and novel adsorbents. Groundwater samples from drinking water sources and contaminated military sites in the USA showed varying PFAS contamination levels as indicated by TOF values ranging from non-detect (<0.7 μg L-1) to 40.2 μg L-1. ∑PFAS25 was a major fraction of the TOF (41.7 - 92.8%) in some samples, whereas in others it only accounted for 5.1 - 20.4% of the TOF. The remaining percentages consisted of hidden PFAS not detected by conventional LC-MS/MS, but detectable as TOF by CIC. Organic fluorine content of oxidizable precursors accounted for 0.0-39.0% of TOF content, depending on the sample. Selected samples underwent adsorption with activated carbon (AC), anion exchange resin (IX), polyaniline (PANI), and poly-o-toluidine (POT). All adsorbents removed the hidden PFAS less effectively than the PFAS quantified by direct LC-MS/MS techniques. This is likely because PFAS adsorbents investigated to date primarily target anionic per- and polyfluoroalkyl acids, not effectively removing cationic, neutral, or zwitterionic hidden PFAS. AC exhibited the best overall performance among the investigated adsorbents. The results demonstrate that measuring TOP and TOF concentrations is effective for evaluating the removal of hidden PFAS in groundwater remediation.
Collapse
Affiliation(s)
- Osmar Menezes
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA; Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-600, Brazil
| | - Kartika Srivastava
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Bianca Ferreira
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Robert A Root
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jon Chorover
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Leif Abrell
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
18
|
Xie J, Liu S, Su L, Zhao X, Wang Y, Tan F. Elucidating per- and polyfluoroalkyl substances (PFASs) soil-water partitioning behavior through explainable machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176575. [PMID: 39343411 DOI: 10.1016/j.scitotenv.2024.176575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
In this study, an optimized random forest (RF) model was employed to better understand the soil-water partitioning behavior of per- and polyfluoroalkyl substances (PFASs). The model demonstrated strong predictive performance, achieving an R2 of 0.93 and an RMSE of 0.86. Moreover, it required only 11 easily obtainable features, with molecular weight and soil pH being the predominant factors. Using three-dimensional interaction analyses identified specific conditions associated with varying soil-water partitioning coefficients (Kd). Results showed that soils with high organic carbon (OC) content, cation exchange capacity (CEC), and lower soil pH, especially when combined with PFASs of higher molecular weight, were linked to higher Kd values, indicating stronger adsorption. Conversely, low Kd values (< 2.8 L/kg) typically observed in soils with higher pH (8.0), but lower CEC (8 cmol+/kg), lesser OC content (1 %), and lighter molecular weight (380 g/mol), suggested weaker adsorption capacities and a heightened potential for environmental migration. Furthermore, the model was used to predict Kd values for 142 novel PFASs in diverse soil conditions. Our research provides essential insights into the factors governing PFASs partitioning in soil and highlights the significant role of machine learning models in enhancing the understanding of environmental distribution and migration of PFASs.
Collapse
Affiliation(s)
- Jiaxing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinting Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
19
|
Zheng J, Liu S, Yang J, Zheng S, Sun B. Per- and polyfluoroalkyl substances (PFAS) and cancer: Detection methodologies, epidemiological insights, potential carcinogenic mechanisms, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176158. [PMID: 39255941 DOI: 10.1016/j.scitotenv.2024.176158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/01/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known as "forever chemicals," are synthetic chemicals which have been used since the 1940s. Given their remarkable thermostability and chemical stability, PFAS have been widely utilized in commercial products, including textiles, surfactants, food packages, nonstick coatings, and fire-fighting foams. Thus, PFAS are widely distributed worldwide and have been detected in human urine, blood, breast milk, tissues and other substances. Growing concerns over the risks of PFAS, including their toxicity and carcinogenicity, have attracted people's attention. Recent reviews have predominantly emphasized advancements in the detection, adsorption, and degradation of PFAS through their chemical structures and toxic properties; however, further examination of the literature is needed to determine the link between PFAS exposure and cancer risk. Here, we introduced different PFAS detection methods based on sensors and liquid chromatography-mass spectrometry (LC-MS). Then, we discussed epidemiological investigations on PFAS levels and cancer risks in recent years, as well as the mechanisms underlying the carcinogenesis. Finally, we proposed the "4C principles" for ongoing exploration and refinement in this field. This review highlights PFAS-cancer associations to fill knowledge gaps and provide evidence-based strategies for future research.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sheng Liu
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Junjie Yang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Shujian Zheng
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
20
|
Bayode AA, Emmanuel SS, Akinyemi AO, Ore OT, Akpotu SO, Koko DT, Momodu DE, López-Maldonado EA. Innovative techniques for combating a common enemy forever chemicals: A comprehensive approach to mitigating per- and polyfluoroalkyl substances (PFAS) contamination. ENVIRONMENTAL RESEARCH 2024; 261:119719. [PMID: 39098711 DOI: 10.1016/j.envres.2024.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The pervasive presence of per and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals," in water systems poses a significant threat to both the environment and public health. PFAS are persistent organic pollutants that are incredibly resistant to degradation and have a tendency to accumulate in the environment, resulting in long-term contamination issues. This comprehensive review delves into the primary impacts of PFAS on both the environment and human health while also delving into advanced techniques aimed at addressing these concerns. The focus is on exploring the efficacy, practicality, and sustainability of these methods. The review outlines several key methods, such as advanced oxidation processes, novel materials adsorption, bioremediation, membrane filtration, and in-situ chemical oxidation, and evaluates their effectiveness in addressing PFAS contamination. By conducting a comparative analysis of these techniques, the study aims to provide a thorough understanding of current PFAS remediation technologies, as well as offer insights into integrated approaches for managing these persistent pollutants effectively. While acknowledging the high efficiency of adsorption and membrane filtration in reducing persistent organic pollutants due to their relatively low cost, versatility, and wide applicability, the review suggests that the integration of these methods could result in an overall enhancement of removal performance. Additionally, the study emphasizes the need for researcher attention in key areas and underscores the necessity of collaboration between researchers, industry, and regulatory authorities to address this complex challenge.
Collapse
Affiliation(s)
- Ajibola A Bayode
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria.
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
| | - Amos O Akinyemi
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Odunayo T Ore
- Department of Chemical Sciences, Achievers University, P.M.B. 1030, Owo, Nigeria
| | - Samson O Akpotu
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa
| | - Daniel T Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | - David E Momodu
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | | |
Collapse
|
21
|
Liang D, Li C, Chen H, Sørmo E, Cornelissen G, Gao Y, Reguyal F, Sarmah A, Ippolito J, Kammann C, Li F, Sailaukhanuly Y, Cai H, Hu Y, Wang M, Li X, Cui X, Robinson B, Khan E, Rinklebe J, Ye T, Wu F, Zhang X, Wang H. A critical review of biochar for the remediation of PFAS-contaminated soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174962. [PMID: 39059650 DOI: 10.1016/j.scitotenv.2024.174962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) present significant environmental and health hazards due to their inherent persistence, ubiquitous presence in the environment, and propensity for bioaccumulation. Consequently, the development of efficacious remediation strategies for soil and water contaminated with PFAS is imperative. Biochar, with its unique properties, has emerged as a cost-effective adsorbent for PFAS. Despite this, a comprehensive review of the factors influencing PFAS adsorption and immobilization by biochar is lacking. This narrative review examines recent findings indicating that the application of biochar can effectively immobilize PFAS, thereby mitigating their environmental transport and subsequent ecological impact. In addition, this paper reviewed the sorption mechanisms of biochar and the factors affecting its sorption efficiency. The high effectiveness of biochars in PFAS remediation has been attributed to their high porosity in the right pore size range (>1.5 nm) that can accommodate the relatively large PFAS molecules (>1.02-2.20 nm), leading to physical entrapment. Effective sorption requires attraction or bonding to the biochar framework. Binding is stronger for long-chain PFAS than for short-chain PFAS, as attractive forces between long hydrophobic CF2-tails more easily overcome the repulsion of the often-anionic head groups by net negatively charged biochars. This review summarizes case studies and field applications highlighting the effectiveness of biochar across various matrices, showcasing its strong binding with PFAS. We suggest that research should focus on improving the adsorption performance of biochar for short-chain PFAS compounds. Establishing the significance of biochar surface electrical charge in the adsorption process of PFAS is necessary, as well as quantifying the respective contributions of electrostatic forces and hydrophobic van der Waals forces to the adsorption of both short- and long-chain PFAS. There is an urgent need for validation of the effectiveness of the biochar effect in actual environmental conditions through prolonged outdoor testing.
Collapse
Affiliation(s)
- Dezhan Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Caibin Li
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jim Ippolito
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Kammann
- Department of Applied Ecology, Geisenheim University, 65366 Geisenheim, Germany
| | - Fangbai Li
- Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yerbolat Sailaukhanuly
- Laboratory of Engineering Profile, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Heqing Cai
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Yan Hu
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Maoxian Wang
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xinglan Cui
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Resources and Environmental Technology Corporation Limited, Beijing 101407, China
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Tingjin Ye
- IronMan Environmental Technology Co., Ltd., Foshan 528041, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
22
|
Chaudhary A, Usman M, Cheng W, Haderlein S, Boily JF, Hanna K. Heavy-Metal Ions Control on PFAS Adsorption on Goethite in Aquatic Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20235-20244. [PMID: 39480132 DOI: 10.1021/acs.est.4c10068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants that often co-occur with heavy metals. Despite their prevalence, the mobility of PFAS in complex, multicomponent systems, particularly at the molecular scale, remains poorly understood. The vast diversity of PFAS and their low concentrations alongside anthropogenic and natural substances underscore the need for integrating mechanistic insights into the sorption models. This study explores the influence of metal cations (Cu(II), Cd(II), and Fe(II)) on the adsorption of four common PFAS (PFOA, PFOS, PFDA, and GenX) onto goethite (α-FeOOH), a common iron (oxyhydr)oxide in both aquatic and terrestrial environments. PFAS adsorption was highly dependent on the PFAS type, pH, and metal ion concentration, with a surface complexation model effectively predicting these interactions. Cu(II) and Cd(II) enhanced PFOS and PFDA adsorption via ternary complexation while slightly reducing PFOA and GenX adsorption. Under anoxic conditions, Fe(II) significantly increased the adsorption of all PFAS, showing reactivity greater than those of Cu(II) and Cd(II). Additionally, natural organic matter increased PFAS mobility, although metal cations in groundwater may counteract this by enhancing PFAS retention. These findings highlight the key role of metal cations in PFAS transport and offer critical insights for predicting PFAS behavior at oxic-anoxic environmental interfaces.
Collapse
Affiliation(s)
- Aaifa Chaudhary
- Ecole Nationale Supérieure de Chimie de Rennes, ISCR-UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
- Environmental Mineralogy & Chemistry, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Ecole Nationale Supérieure de Chimie de Rennes, ISCR-UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Wei Cheng
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Stefan Haderlein
- Environmental Mineralogy & Chemistry, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | | | - Khalil Hanna
- Ecole Nationale Supérieure de Chimie de Rennes, ISCR-UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
23
|
Shi YB, Hua ZL, Li XQ, Zhang SH, Liu JL. Submerge-emerge alternation promotes sediment per- and polyfluoroalkyl substance (PFAS) release and bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177413. [PMID: 39510285 DOI: 10.1016/j.scitotenv.2024.177413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Understanding the sediment release and plant bioaccumulation of per- and polyfluoroalkyl substances (PFASs) under submerge-emerge alternation (SE) is crucial to predicting their transport and fate in the riparian zones. In the present study, a simulational device was firstly constructed to explore the effects of SE on the transport of PFASs in riparian sediment-plant systems and the underlying mechanisms. The submerge (CS) and emerge (CE) situations were compared. The results showed that SE significantly enhanced the transport and bioaccumulation of PFASs in sediments. Compared with the initial concentration, PFASs in sediments decreased by 81.84 %, 50.48 %, and 21.68 % in the SE, CS, and CE groups, respectively. The bioaccumulation of PFASs in plant roots in the SE group was 1.26 and 4.16 times higher than that in the CS and CE groups, respectively, and the bioaccumulation of PFASs in leaves in the SE group was 2.05 and 1.71 times higher than that in the other two groups. Dissolved organic matter (DOM) composition and molecular properties under SE were recognized as the dominant factors regulating the release of PFASs from sediments. Root morphology and low-molecular-weight organic acids (LMWOAs) in root exudates were closely associated with the bioaccumulation of PFASs in plants. Among the substitutes, hexafluoropropylene oxide trimer acid (HFPO-TA) demonstrated greater hydrophobicity, hexafluoropropylene oxide dimer acid (Gen-X) had greater mobility, and 6:2 fluorotelomer sulfonate (6:2 FTS) accumulated more in plants. This study has expanded the understanding of the geochemical cycling of PFASs in riparian sediment-plant systems under submerge-emerge alternation.
Collapse
Affiliation(s)
- Ye-Bing Shi
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Song-He Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jian-Long Liu
- Management Division of Qinhuai River Hydraulic Engineering of Jiangsu Province, Nanjing 210022, PR China
| |
Collapse
|
24
|
Wang X, Huang X, Zhi Y, Liu X, Wang Q, Yue D, Wang X. Leaching of per- and polyfluoroalkyl substances (PFAS) from food contact materials with implications for waste disposal. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135658. [PMID: 39226686 DOI: 10.1016/j.jhazmat.2024.135658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Leaching of per- and polyfluoroalkyl substances (PFAS) during the post-consumer disposal of food contact materials (FCMs) poses a potential environmental threat but has seldom been evaluated. This study characterized the leaching behavior of PFAS and unidentified precursors from six common FCMs and assessed the impact of environmental conditions on PFAS release during disposal. The total concentration of 21 PFAS ranged from 3.2 to 377 ng/g in FCMs, with PFAS leachability into water varying between 1.1-42.8 %. Increasing temperature promoted PFAS leaching, with leached nine primary PFAS (∑9PFAS) reaching 46.3, 70.4, and 102 ng/L at 35, 45, and 55 ℃, respectively. Thermodynamic analysis (∆G>0, ∆H>0, and ∆S<0) indicated hydrophobic interactions control PFAS leaching. The presence of dissolved organic matter in synthetic leachate increased the leached ∑9PFAS from 47.1 to 103 ng/L but decreased PFBS, PFOS, and 6:2 FTS leaching. The total release of seven perfluorocarboxylic acids (∑7PFCAs) from takeaway food packaging waste was estimated to be 0.3-8.2 kg/y to landfill leachate and 0.6-15.4 kg/y to incineration plant leachate, contributing 0.2-4.8 % and 0.1-3.2 % of total ∑7PFCAs in each leachate type. While the study presents a refined methodology for estimating PFAS release during disposal, future research is needed on the indirect contribution from precursors.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xingyao Huang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qian Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
25
|
Zheng J, Chen C, Huang Y, Fang S, Guo P, Liu S, Ouyang G. A fast solid-phase microextraction scheme for in vivo monitoring of bio-accumulation and bio-transformation of arbidol in living plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177175. [PMID: 39461518 DOI: 10.1016/j.scitotenv.2024.177175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Large quantity of the antiviral drug arbidol is used for resisting virus infection like the Corona Virus Disease 2019 and influenza, resulting in unanticipated environmental pollution. Herein, to investigate the environmental risks of the unanticipated arbidol contamination, a novel in vivo sampling probe was developed based on a bromo-substituted porous organic polymer (Br-POP) and then adopted for tracking the bio-accumulation and bio-transformation of arbidol in living plants by coupling with a nano-electrospray ionization fourier-transform ion cyclotron resonance mass spectrometry (Nano-ESI-FT-ICR-MS) method. The established method showed good extraction performance towards arbidol with limit of detection (LOD) of 0.48 ng g-1, and relative standard deviation (RSD) of single-and multiple- probe of 2.2 and 14 %. Owing to the interactions between the Br-POP and the target analytes, as well as the fast analysis process of Nano-ESI-FT-ICR-MS, <6 min was cost for total sampling and analysis duration, achieving hourly tracking of arbidol and its metabolites in this work. During 21-d in vivo tracking, the concentration of arbidol in living plant stems increased rapidly within 6 h and peaked at 413.93 ± 47.09 ng g-1. Meanwhile, it was found that dissolved organic matters (DOM) had significant effect on arbidol behaviors in living plants, resulting in a decrease of the maximum concentration of arbidol in plant stems (152.70 ± 42.44 ng g-1) and the change of dominant metabolite of arbidol that the S-oxidation rather than N-demethylation product of arbidol was dominant with DOM participation. Additionally, the plant root secretion was found to be significantly altered by arbidol exposure. To summarized, the combination of in vivo SPME and the FT-ICR-MS analysis provide new and important information regarding arbidol contamination and related alternation of plant root metabolism.
Collapse
Affiliation(s)
- Jiating Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Yiquan Huang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuting Fang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuqin Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| |
Collapse
|
26
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
27
|
Xu J, Cui Q, Ren H, Liu S, Liu Z, Sun X, Sun H, Shang J, Tan W. Differential uptake and translocation of perfluoroalkyl substances by vegetable roots and leaves: Insight into critical influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175205. [PMID: 39097023 DOI: 10.1016/j.scitotenv.2024.175205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Crop contamination of perfluoroalkyl substances (PFASs) may threaten human health, with root and leaves representing the primary uptake pathways of PFASs in crops. Therefore, it is imperative to elucidate the uptake characteristics of PFASs by crop roots and leaves as well as the critical influencing factors. In this study, the uptake and translocation of PFASs by roots and leaves of pak choi and radish were systematically explored based on perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS). Additionally, the roles of root Casparian strips, leaf stomata, and PFAS structures in the aforementioned processes were elucidated. Compared with pak choi, PFASs are more easily transferred to leaves after root uptake in radish, resulting from the lack of root Casparian strips. In pak choi root, the bioaccumulation of C4-C8 perfluoroalkyl carboxylic acids (PFCAs) showed a U-shaped trend with the increase of their carbon chain lengths, and the translocation potentials of individual PFASs from root to leaves negatively correlated with their chain lengths. The leaf uptake of PFOA in pak choi and radish mainly depended on cuticle sorption, with the evidence of a slight decrease in the concentrations of PFOA in exposed leaves after stomatal closure induced by abscisic acid. The leaf bioaccumulation of C4-C8 PFCAs in pak choi exhibited an inverted U-shaped trend as their carbon chain lengths increased. PFASs in exposed leaves can be translocated to the root and then re-transferred to unexposed leaves in vegetables. The longer-chain PFASs showed higher translocation potentials from exposed leaves to root. PFOS demonstrated a higher bioaccumulation than PFOA in crop roots and leaves, mainly due to the greater hydrophobicity of PFOS. Planting root vegetables lacking Casparian strips is inadvisable in PFAS-contaminated environments, in view of their higher PFAS bioaccumulation and considerable human intake.
Collapse
Affiliation(s)
- Jiayi Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Hailong Ren
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyan Sun
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Heyang Sun
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Shang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Cheng M, Shi C, Zhao BH, Wang TY, Nan-Zhang, Liu RB, Cao DQ, Hao XD. Distribution characteristics of sulfonamide antibiotics between water and extracellular polymeric substances in municipal sludge. ENVIRONMENTAL RESEARCH 2024; 259:119576. [PMID: 38996958 DOI: 10.1016/j.envres.2024.119576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
The interaction between extracellular polymeric substances (EPS) in municipal sludge and antibiotics in wastewater is critical in wastewater treatment, resource recovery, and sludge management. Therefore, it is increasingly urgent to investigate the distribution coefficient (Log K) of sulfonamide antibiotics (SAs) in EPS, particularly in sludge-derived dissolved organic carbon (DOC) and aqueous phase systems. Herein, through balance experiments, the concentrations of SAs were determined using alkaline extraction EPS (AEPS) and alginate-like extracellular polymer (ALE) systems, and the Log KDOC values were determined. The results showed that the Log KDOC of AEPS was higher than that of ALE, which exhibited a negative KDOC value, indicating an inhibitory effect on dissolution. For the three SAs studied, the Log KDOC values were in the following order: sulfamethoxazole > sulfapyridine > sulfadiazine. This order can be attributed to the differing physicochemical properties, such as polarity, of the SAs. Three-dimensional excitation-emission matrix fluorescence spectra and fitting results indicated a lack of aromatic proteins dominated by tryptophan and humus-like substances in ALE. Meanwhile, the hydrophobic interaction of aromatic proteins dominated by tryptophan was the main driving force in the binding process between AEPS and SAs.
Collapse
Affiliation(s)
- Ming Cheng
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Chen Shi
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.
| | - Bo-Han Zhao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Tai-Yue Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Nan-Zhang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, PR China
| | - Ran-Bin Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.
| |
Collapse
|
29
|
Liu N, Li Y, Zhang M, Che N, Song X, Liu Y, Li C. Efficient adsorption of short-chain perfluoroalkyl substances by pristine and Fe/Cu-loaded reed straw biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174223. [PMID: 38917893 DOI: 10.1016/j.scitotenv.2024.174223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
As the substitutes of legacy long-chain per-/polyfluoroalkyl substances (PFASs), short-chain PFASs have been widely detected in the environment. Compared to long-chain PFASs, short-chain PFASs have smaller molecules and are more hydrophilic. Therefore, they are more likely to experience long-distance transport and pose lasting environmental impacts. In this study, Fe-doped (R-Fe) and Cu-doped biochars (R-Cu) were prepared using reed straw biochar (R). The results showed that the PFBA and PFPeA sorption capacities of R-Fe were 25.81 and 43.59 mg g-1, 1.65 and 1.55 times higher than those of R, respectively. The PFBA and PFPeA sorption capacities of R-Cu were 19.34 and 33.69 mg g-1, 1.24 and 1.20 times higher than those of R, respectively. In addition, R, R-Fe, and R-Cu exhibited higher PFBA and PFPeA sorption capacities than the biochars previously reported. The excellent PFAS sorption performances of the biochars were attributed to the highly porous structure of R, which provided rich adsorption sites. Ion-pair sorption, pore filling, electrostatic interaction between the Fe/Cu and cationic groups on biochar and the anionic groups of PFASs, and hydrophobic interaction between the hydrophobic surface of biochar and the fluorinated tails of PFASs were the underlying sorption mechanisms. The biochars presented high removal rates (>86 %) of multiple PFASs (∑PFAS: 350 μg L-1) from synthetic wastewaters, including legacy and emerging PFASs of different chain lengths and with different functional groups. The biochars reported in this study are promising candidate adsorbents for treating waters contaminated with short-chain PFASs.
Collapse
Affiliation(s)
- Na Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An 271018, PR China
| | - Yinhui Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An 271018, PR China
| | - Minggu Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An 271018, PR China
| | - Naiju Che
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An 271018, PR China
| | - Xianliang Song
- College of Agronomy, Shandong Agricultural University, Tai'An 271018, PR China
| | - Yanli Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An 271018, PR China
| | - Chengliang Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An 271018, PR China.
| |
Collapse
|
30
|
Li S, Zhao Z, Liu J, Zhang B, Han B, Ma Y, Jin L, Zhu N, Gao G, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and nutrients from two constructed wetlands in a city of southeastern China. Heliyon 2024; 10:e37551. [PMID: 39309800 PMCID: PMC11415654 DOI: 10.1016/j.heliyon.2024.e37551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large class of toxic contaminants. Nutrients are closely related to the ecological health of aquatic systems. Both have received widespread global attention. This study investigated the concentrations, compositions, and spatial distributions of PFAS and nutrients in surface water from two constructed wetlands and the nearby drinking water treatment plants (DWTPs). We explored the natural environmental factors and human activities that affect the composition and distribution of pollutants in wetlands and assessed the ability of the DWTPs to remove contaminants. Concentrations of ∑32PFAS varied from 153 to 405 ng/L. Hexafluoropropylene oxide trimer acid (HFPO-TA) was the predominant substance accounting for 45 % of ∑32PFAS concentrations. It might originate from the emissions of indirect sources of PFAS related manufacturers. The detection rate of 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was 100 % with concentrations ranging from 0.915 to 19.7 ng/L 6:2 FTCA might come from the biotransformation of indirect sources in the air. Concentrations of total nitrogen (TN) and total phosphorus (TP) were from 1.47 to 3.54 mg/L, and non-detect (ND) to 0.323 mg/L, respectively. Constructed wetlands could effectively remove PFAS under nutrient stress, however, the removal of PFAS depends on the characteristics of specific compounds and their sources. The removal rates for PFAS and nutrients could be promoted through artificial dredging. But wetland bioremediation could have two opposing effects. On the one hand, plants can take up pollutants from water via roots, leading to pollutant removal and purification. On the other hand, plants may also absorb precursor intermediates from the air through leaves and release them into the water, leading to increased pollutant concentrations. Thirty-two emerging PFAS were identified by high resolution mass spectrum. The drinking water treatment process removed PFAS and nutrients below the drinking water quality standards of China, however, 9 non-target PFAS compounds were still found in tap water. These results provide case support and a theoretical basis for the pollution control and sustainable development of typical ecological wetlands used as drinking water sources.
Collapse
Affiliation(s)
- Shiyue Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Baocang Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuntao Ma
- Jiaxing Jiayuan Testing Technology Service Co., Ltd, Jiaxing, 314000, China
| | - Limin Jin
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Ningzheng Zhu
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Guoping Gao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
31
|
Zhang C, Pan R, Wang H, Liu Y, Bai R, Zhang H, Zhang Y, Hu G, Zhou Y, Zhao X. Pomelo peel biomass derived highly active advanced-oxidation-process catalyst: Complete elimination of organic pollutants. J Colloid Interface Sci 2024; 670:50-60. [PMID: 38754331 DOI: 10.1016/j.jcis.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The advanced oxidation process (AOPs) is playing an important role in the elimination of hazardous organic pollutants, but the development of inexpensive and highly active advanced catalysts is facing challenges. In this study, a low-cost and readily available agricultural waste resource pomelo peel-flesh (PPF) biomass was used as the basic raw material, and the uniformly dispersed small cobalt nanoparticles were effectively anchored in the biochar derived from pomelo peel-flesh (BDPPF) by impregnation adsorption/complexation combined with heat treatment. Co/BDPPF (BDPPF embedded with Co) can effectively activate peroxymonosulfate (PMS) to SO4·-, ·OH and 1O2 reactive oxygen species, and achieve nearly 100% degradation of tetracycline persistent organic pollutant. Co/BDPPF can not only degrade tetracycline efficiently in complex water environment, but also degrade most organic pollutants universally, and has long-term stability, which solves the problem of poor universality and stability of heterogeneous catalysts to a certain extent. Importantly, Co/BDPPF derived from waste biomass was also innovatively designed as the core of an integrated continuous purification device to achieve continuous purification of organic wastewater. In this study, agricultural waste resources were selected as biomass raw materials to achieve efficient capture of Co2+, and finally developed advanced AOPs catalyst with excellent performance to achieve the purification of organic wastewater. It also provides a promising solution for the preparation of simple, low-cost, large-scale production of AOPs catalysts that can be put into actual production.
Collapse
Affiliation(s)
- Canyu Zhang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Rongjie Pan
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Haijian Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Rui Bai
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Haorang Zhang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Yicheng Zhang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China.
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| |
Collapse
|
32
|
Liu L, Liu C, Fu R, Nie F, Zuo W, Tian Y, Zhang J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. CHEMOSPHERE 2024; 363:142854. [PMID: 39019170 DOI: 10.1016/j.chemosphere.2024.142854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Emerging contaminants (ECs) are gaining attention due to their prevalence and potential negative impacts on the environment and human health. This paper provides a comprehensive review of the status and trends of soil pollution caused by ECs, focusing on their sources, migration pathways, and environmental implications. Significant ECs, including plastics, synthetic polymers, pharmaceuticals, personal care products, plasticizers, and flame retardants, are identified due to their widespread use and toxicity. Their presence in soil is attributed to agricultural activities, urban waste, and wastewater irrigation. The review explores both horizontal and vertical migration pathways, with factors such as soil type, organic matter content, and moisture levels influencing their distribution. Understanding the behavior of ECs in soil is critical to mitigating their long-term risks and developing effective soil remediation strategies. The paper also examines the advantages and disadvantages of in situ and ex situ treatment approaches for ECs, highlighting optimal physical, chemical, and biological treatment conditions. These findings provide a fundamental basis for addressing the challenges and governance of soil pollution induced by ECs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - RunZe Fu
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Lingshui Le'an International Education Innovation Pilot Zone, Hainan Province, 016000, China
| | - Fandi Nie
- Liaozhong District No. 1 Senior High School, No.139, Zhengfu Road, Liaozhong District, Shenyang, 110000, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
33
|
Lasters R, Groffen T, Eens M, Bervoets L. Per- and polyfluoroalkyl substances (PFAS) in homegrown crops: Accumulation and human risk assessment. CHEMOSPHERE 2024; 364:143208. [PMID: 39214403 DOI: 10.1016/j.chemosphere.2024.143208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Homegrown crops can present a significant exposure source of per- and polyfluoroalkyl substances (PFAS) to humans. Field studies studying PFAS accumulation in multiple vegetable food categories and examining the potential influence of soil characteristics on vegetable bioavailability under realistic exposure conditions are very scarce. Crop PFAS accumulation depends on a complex combination of factors. The physicochemical differences among the numerous PFAS makes risk assessment very challenging. Thus, simplification of this complexity into key factors that govern crop PFAS accumulation is critical. This study analyzed 29 targeted legacy, precursor and emerging PFAS in the vertical soil profile (0-45 cm depth), rainwater and edible crop parts of 88 private gardens, at different distances from a major fluorochemical plant. Gardens closer to the plant site showed higher soil concentrations which could be linked with historical and recent industrial emissions. Most compounds showed little variation along the soil depth profile, regardless of the distance from the plant site, which could be due to gardening practices. Annual crops consistently accumulated higher sum PFAS concentrations than perennials. Highest concentrations were observed in vegetables, followed by fruits and walnuts. Single soil-crop relationships were weak, which indicated that other factors (e.g., porewater) may be better measures of bioavailability in homegrown crop accumulation. Regression models, which additionally considered soil characteristics showed limited predictive power (all R2 ≤ 35%), possibly due to low variability in crop concentrations. Human intake estimations revealed that the PFAS exposure risk via crop consumption was similar nearby and remotely from the plant site, although the contribution to the overall dietary exposure can be relatively large. The tolerable weekly intake was frequently exceeded with respect to fruit and vegetable consumption, thus potential health risks cannot be ruled out.
Collapse
Affiliation(s)
- Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
34
|
Chen ZW, Hua ZL, Guo P. The bioaccumulation and ecotoxicity of co-exposure of per(poly)fluoroalkyl substances and polystyrene microplastics to Eichhornia crassipes. WATER RESEARCH 2024; 260:121878. [PMID: 38870860 DOI: 10.1016/j.watres.2024.121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Gen X and F-53B have been popularized as alternatives to PFOA and PFOS, respectively. These per(poly)fluoroalkyl substances pervasively coexist with microplastics (MPs) in aquatic environments. However, there are knowledge gaps regarding their potential eco-environmental risks. In this study, a typical free-floating macrophyte, Eichhornia crassipes (E. crassipes), was selected for hydroponic simulation of a single exposure to PFOA, PFOS, Gen X, and F-53B, and co-exposure with polystyrene (PS) microspheres. F-53B exhibited the highest bioaccumulation followed by Gen X, PFOA, and PFOS. In the presence of PS MPs, the bioavailabilities of the four PFASs shifted and the whole plant bioconcentration factors improved. All four PFASs induced severe lipid peroxidation, which was exacerbated by PS MPs. The highest integrated biomarker response (IBR) was observed for E. crassipes (IBR of shoot: 30.01, IBR of root: 22.79, and IBR of whole plant: 34.96) co-exposed to PS MPs and F-53B. The effect addition index (EAI) model revealed that PS MPs showed antagonistic toxicity with PFOA and PFOS (EAI < 0) and synergistic toxicity with Gen X and F-53B (EAI > 0). These results are helpful to compare the eco-environmental impacts of legacy and alternative PFASs for renewal process of PFAS consumption and provide toxicological, botanical, and ecoengineering insights under co-contamination with MPs.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Nanjing 210098, China.
| | - Peng Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
35
|
Huang X, Huang J, Wang K, Hao M, Geng M, Shi B, Hu C. Comparison of perfluoroalkyl substance adsorption performance by inorganic and organic silicon modified activated carbon. WATER RESEARCH 2024; 260:121919. [PMID: 38901313 DOI: 10.1016/j.watres.2024.121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Owing to the persistence and increasingly stringent regulations of perfluoroalkyl substances (PFAS), it is necessary to improve their adsorption capacities using activated carbon (AC). However, their adsorption capacities are suppressed by dissolved organic matter (DOM). In this study, two ACs modified with organic silicon (C-OS) and inorganic silicon (C-IS) were synthesized and used for the adsorption of PFAS in raw water (RW). The results showed that the PFAS adsorption capacity of C-IS was much less influenced by DOM than that of the original AC (C-virgin). In RW, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) adsorption capacities on C-IS were 15.08 and 3.65 times higher than those on C-virgin, respectively. DOM had less influence on the PFOA and PFOS adsorption kinetics of C-IS than C-OS and C-virgin. Under multi-PFAS condition, C-IS also exhibited slower desorption of short-chain PFAS and breakthrough in batch and column tests, respectively. Characterization of the ACs before and after adsorption and independent gradient modelling indicated that hydrogen bond interactions between the O-Si of C-IS and the -COOH or -CSO3H groups of PFAS contributed to PFAS adsorption. Density functional theory calculations demonstrated that the adsorption energy of C-IS was much lower than that of C-OS and C-virgin. The arrangement of PFAS molecules on C-OS was chaotic owing to the hydrophobic siloxane chain, whereas the arrangement of PFAS on C-IS was orderly in multi-layer or semi-micelle status and more favorable to PFAS adsorption. This study provides a new strategy for avoiding adverse effects of DOM on PFAS adsorption.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kaiyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mingming Hao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengze Geng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Chen S, Li B, Zhao R, Zhang B, Zhang Y, Chen J, Sun J, Ma X. Natural mineral and industrial solid waste-based adsorbent for perfluorooctanoic acid and perfluorooctane sulfonate removal from surface water: Advances and prospects. CHEMOSPHERE 2024; 362:142662. [PMID: 38936483 DOI: 10.1016/j.chemosphere.2024.142662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
PER: and polyfluorinated alkyl substances, especially perfluorooctanoic acid and perfluorooctane sulfonic acid (PFOX), have attracted considerable attention lately because of their widespread occurrence in aquatic environment and potential biological toxicity to animals and human beings. The development of economical, efficient, and engineerable adsorbents for removing PFOX in water has become one of the research focuses. This review summarized the recent progress on natural mineral and industrial solid based adsorbent (NM&ISW-A) and removal mechanisms concerning PFOX onto NM&ISW-A, as well as proposed the current challenges and future perspectives of using NM&ISW-A for PFOX removal in water. Kaolinite and montmorillonite are usually used as model clay minerals for PFOX removal, and have been proved to adsorb PFOX by ligand exchange and electrostatic attraction. Fe-based minerals, such as goethite, magnetite, and hematite, have better PFOX adsorption capacity than clay minerals. The adsorbent prepared from industrial solid waste by high temperature roasting has great potential application prospects. Fabricating nanomaterials, amination modification, surfactant modification, fluorination modification, developing versatile composites, and designing special porous structure are beneficial to improve the adsorption performance of PFOX onto NM&ISW-A by enhancing the specific surface area, positive charge, and hydrophobicity. Electrostatic interaction, hydrophobic interaction, hydrogen bond, ligand and ion exchange, and self-aggregation (formation of micelle or hemimicelle) are the main adsorption mechanisms of PFOX by NM&ISW-A. Among them, electrostatic and hydrophobic interactions play a considerable role in the removal of PFOX by NM&ISW-A. Therefore, NM&ISW-A with electrostatic functionalities and considerable hydrophobic segments enables rapid, efficient, and high-capacity removal of PFOX. The future directions of NM&ISW-A for PFOX removal include the preparation and regeneration of engineerable NM&ISW-A, the development of coupling technology for PFOX removal based on NM&ISW-A, the in-depth research on adsorption mechanism of PFOX by NM&ISW-A, as well as the development of NM&ISW-A for PFOX alternatives removal. This review paper would be helpful the comprehensive understanding of NM&ISW-A potential for PFOX removal and the PFOX removal mechanisms, and identifies the gaps for future research and development.
Collapse
Affiliation(s)
- Siyuan Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Benhang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Ruining Zhao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Boxuan Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yuqing Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiale Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiahe Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
37
|
Dhulia A, Abou-Khalil C, Kewalramani J, Sarkar D, Boufadel MC. Mobilization of per- and poly-fluoroalkyl substances (PFAS) in soils with different organic matter contents. CHEMOSPHERE 2024; 361:142503. [PMID: 38825242 DOI: 10.1016/j.chemosphere.2024.142503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
There is considerable interest in addressing soils contaminated with per- and polyfluoroalkyl substances (PFAS) because of the PFAS in the environment and associated health risks. The neutralization of PFAS in situ is challenging. Consequently, mobilizing the PFAS from the contaminated soils into an aqueous solution for subsequent handling has been pursued. Nonetheless, the efficiency of mobilization methods for removing PFAS can vary depending on site-specific factors, including the types and concentrations of PFAS compounds, soil characteristics. In the present study, the removal of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) from artificially contaminated soils was investigated in a 2D laboratory setup using electrokinetic (EK) remediation and hydraulic flushing by applying a hydraulic gradient (HG) for a duration of 15 days. The percent removal of PFOA by EK was consistent (∼80%) after a 15-day treatment for all soils. The removal efficiency of PFOS by EK significantly varied with the OM content, where the PFOS removal increased from 14% at 5% OM to 60% at 50% OM. With HG, the percent removal increased for both PFOA and PFOS from about 20% at 5% OM up to 80% at 75% OM. Based on the results, the mobilization of PFAS from organic soil would be appropriate using both hydraulic flushing and EK considering their applicability and advantages over each other for site-specific factors and requirements.
Collapse
Affiliation(s)
- Anirban Dhulia
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Charbel Abou-Khalil
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| | | | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
38
|
Cai S, Zhang X, Chen S, Peng S, Sun T, Zhang Y, Yang P, Chai H, Wang D, Zhang W. Solid-liquid redistribution and degradation of antibiotics during hydrothermal treatment of sewage sludge: Interaction between biopolymers and antibiotics. WATER RESEARCH 2024; 258:121759. [PMID: 38754299 DOI: 10.1016/j.watres.2024.121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Waste activated sludge serves an important reservoir for antibiotics within wastewater treatment plants, and understanding the occurrence and evolution of antibiotics during sludge treatment is crucial to mitigate the potential risks of subsequent resource utilization of sludge. This study explores the degradation and transformation mechanisms of three typical antibiotics, oxytetracycline (OTC), ofloxacin (OFL), and azithromycin (AZI) during sludge hydrothermal treatment (HT), and investigates the influence of biopolymers transformation on the fate of these antibiotics. The findings indicate that HT induces a shift of antibiotics from solid-phase adsorption to liquid-phase dissolution in the initial temperature range of 25-90 °C, underscoring this phase's critical role in preparing antibiotics for subsequent degradation phases. Proteins (PN) and humic acids emerge as crucial for antibiotic binding, facilitating their redistribution within sludge. Specifically, the binding capacity sequence of biopolymers to antibiotics is as follows: OFL>OTC>AZI, highlighting that OFL-biopolymers display stronger electrostatic attraction, more available adsorption sites, and more stable binding strength. Furthermore, antibiotic degradation mainly occurs above 90 °C, with AZI being the most temperature-sensitive, degrading 92.97% at 180 °C, followed by OTC (91.26%) and OFL (52.51%). Concurrently, the degradation products of biopolymers compete for active sites to form novel amino acid-antibiotic conjugates, which inhibits the further degradation of antibiotics. These findings illuminate the effects of biopolymers evolution on intricate dynamics of antibiotics fate in sludge HT and are helpful to optimize the sludge HT process for effective antibiotics abatement.
Collapse
Affiliation(s)
- Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xinyu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shuaiyu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Sainan Peng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
39
|
Guo H, Hu T, Yang X, Liu Z, Cui Q, Qu C, Guo F, Liu S, Sweetman AJ, Hou J, Tan W. Roles of varying carbon chains and functional groups of legacy and emerging per-/polyfluoroalkyl substances in adsorption on metal-organic framework: Insights into mechanism and adsorption prediction. ENVIRONMENTAL RESEARCH 2024; 251:118679. [PMID: 38518904 DOI: 10.1016/j.envres.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (μmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Collapse
Affiliation(s)
- Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongyu Hu
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100101, China
| | - Xiaoman Yang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | - Chenchen Qu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fayang Guo
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
40
|
Yang H, Zhao Y, Chai L, Ma F, Yu J, Xiao KQ, Gu Q. Bio-accumulation and health risk assessments of per- and polyfluoroalkyl substances in wheat grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124351. [PMID: 38878812 DOI: 10.1016/j.envpol.2024.124351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely detected in various food, which has attracted worldwide concern. However, the factors influencing the transfer and bio-accumulation of PFASs from soils to wheat in normal farmland, is still ambiguous. We investigated the PFASs accumulation in agricultural soils and grains from 10 cites, China, and evaluated the health risks of PFASs via wheat consumption. Our results show that ∑PFASs in soils range from 0.34 μg/kg to 1.59 μg/kg with PFOA and PFOS dominating, whilst ∑PFASs in wheats range from 2.74 to 6.01 μg/kg with PFOA, PFBA and PFHxS dominating. The lower pH conditions and high total organic carbon (TOC) could result in the higher accumulation of PFASs in soils and subsequently in wheat grains, whilst the bioaccumulation factors of PFASs increase with increasing pH conditions but not with TOC. The estimated daily intake (EDI) values of PFBA, PFOA, and PFHxS are relatively high, but data supports that ingesting wheat grains does not result in any potential risk to the human beings. Our studies provided more information about PFASs accumulation in wheat grains, and help us understand the current potential risks of PFASs in food.
Collapse
Affiliation(s)
- Huan Yang
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China; Liaoning Technical University, Fuxin, 123100, Liaoning, China
| | - Yao Zhao
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China.
| | - LiNa Chai
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China
| | - FuJun Ma
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China
| | - JianLong Yu
- Waters Technologies (Beijing), Beijing, China
| | - Ke-Qing Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - QingBao Gu
- Chinese Research Academy of Environmental Sciences, Beijing, 100020, China.
| |
Collapse
|
41
|
de Souza BB, Meegoda J. Insights into PFAS environmental fate through computational chemistry: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171738. [PMID: 38494023 DOI: 10.1016/j.scitotenv.2024.171738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals that exhibit exceptional chemical and thermal stability. However, their resistance to degradation has led to their widespread environmental contamination. PFAS also negatively affect the environment and other organisms, highlighting the need for effective remediation methods to mitigate their presence and prevent further contamination. Computational chemistry methods, such as Density Functional Theory (DFT) and Molecular Dynamics (MD) offer valuable tools for studying PFAS and simulating their interactions with other molecules. This review explores how computational chemistry methods contribute to understanding and tackling PFAS in the environment. PFAS have been extensively studied using DFT and MD, each method offering unique advantages and computational limitations. MD simulates large macromolecules systems however it lacks the ability model chemical reactions, while DFT provides molecular insights however at a high computational cost. The integration of DFT with MD shows promise in predicting PFAS behavior in different environments. This work summarizes reported studies on PFAS compounds, focusing on adsorption, destruction, and bioaccumulation, highlighting contributions of computational methods while discussing the need for continued research. The findings emphasize the importance of computational chemistry in addressing PFAS contamination, guiding risk assessments, and informing future research and innovations in this field.
Collapse
Affiliation(s)
- Bruno Bezerra de Souza
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Jay Meegoda
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
42
|
Behnami A, Zoroufchi Benis K, Pourakbar M, Yeganeh M, Esrafili A, Gholami M. Biosolids, an important route for transporting poly- and perfluoroalkyl substances from wastewater treatment plants into the environment: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171559. [PMID: 38458438 DOI: 10.1016/j.scitotenv.2024.171559] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The pervasive presence of poly- and perfluoroalkyl substances (PFAS) in diverse products has led to their introduction into wastewater systems, making wastewater treatment plants (WWTPs) significant PFAS contributors to the environment. Despite WWTPs' efforts to mitigate PFAS impact through physicochemical and biological means, concerns persist regarding PFAS retention in generated biosolids. While numerous review studies have explored the fate of these compounds within WWTPs, no study has critically reviewed their presence, transformation mechanisms, and partitioning within the sludge. Therefore, the current study has been specifically designed to investigate these aspects. Studies show variations in PFAS concentrations across WWTPs, highlighting the importance of aqueous-to-solid partitioning, with sludge from PFOS and PFOA-rich wastewater showing higher concentrations. Research suggests biological mechanisms such as cytochrome P450 monooxygenase, transamine metabolism, and beta-oxidation are involved in PFAS biotransformation, though the effects of precursor changes require further study. Carbon chain length significantly affects PFAS partitioning, with longer chains leading to greater adsorption in sludge. The wastewater's organic and inorganic content is crucial for PFAS adsorption; for instance, higher sludge protein content and divalent cations like calcium and magnesium promote adsorption, while monovalent cations like sodium impede it. In conclusion, these discoveries shed light on the complex interactions among factors affecting PFAS behavior in biosolids. They underscore the necessity for thorough considerations in managing PFAS presence and its impact on environmental systems.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Yeganeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Li J, Sha H, Liu W, Yuan Y, Zhu G, Meng F, Xi B, Tan W. Transport of per-/polyfluoroalkyl substances from leachate to groundwater as affected by dissolved organic matter in landfills. ENVIRONMENTAL RESEARCH 2024; 247:118230. [PMID: 38237756 DOI: 10.1016/j.envres.2024.118230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The transport of per- and polyfluoroalkyl substances (PFAS) from landfill leachate to surrounding soil and groundwater poses a threat to human health via the food chain or drinking water. Studies have shown that the transport process of PFAS from the solid to liquid phase in the environment is significantly affected by dissolved organic matter (DOM) adsorption. However, the mechanism of PFAS release from landfill solids into leachate and its transport to the surrounding groundwater remains unclear. In this study, we identified the composition of PFAS and DOM components and analyzed the association between DOM components, physicochemical factors, and PFAS concentrations in landfill leachate and groundwater. This study demonstrated that the frequency of PFAS detection in the samples was 100%, and the PFAS concentrations in leachate were greater than in the groundwater samples. Physicochemical factors, such as ammonium-nitrogen (NH4+-N), sodium (Na), calcium (Ca), DOM components C4 (macromolecular humic acid), SUVA254 (aromatic component content), and A240-400 (humification degree and molecular weight), were strongly correlated with PFAS concentrations. In conclusion, PFAS environmental risk management should be enhanced in landfills, especially in closed landfills, or landfills that are scheduled to close in the near future.
Collapse
Affiliation(s)
- Jia Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haoqun Sha
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Weijiang Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Fanhua Meng
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
44
|
Zhang S, Sun Z, Yao Y, Wang X, Tian S. Spectral characterization of the impact of modifiers and different prepare temperatures on snow lotus medicinal residue-biochar and dissolved organic matter. Sci Rep 2024; 14:8493. [PMID: 38605135 PMCID: PMC11009357 DOI: 10.1038/s41598-024-57553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
This study involved the production of 20 biochar samples derived from secondary medicinal residues of Snow Lotus Oral Liquid, processed within the temperature range of 200-600 °C. Additionally, four medicinal residues, including dissolved organic matter (DOM), from 24 samples obtained using the shaking method, served as the primary source material. The investigation focused on two key factors: the modifier and preparation temperature. These factors were examined to elucidate the spectral characteristics and chemical properties of the pharmaceutical residues, biochar, and DOM. To analyze the alterations in the spectral attributes of biochar and medicinal residues, we employed near-infrared spectroscopy (NIR) in conjunction with Fourier-infrared one-dimensional and two-dimensional correlation spectroscopy. These findings revealed that modifiers enhanced the aromaticity of biochar, and the influence of preparation temperature on biochar was diminished. This observation indicates the stability of the aromatic functional group structure. Comparative analysis indicated that Na2CO3 had a more pronounced structural effect on biochar, which is consistent with its adsorption properties. Furthermore, we utilized the fluorescence indices from UV-visible spectroscopy and excitation-emission-matrix spectra with the PARAFAC model to elucidate the characteristics of the fluorescence components in the DOM released from the samples. The results demonstrated that the DOM released from biochar primarily originated externally. Aromaticity reduction and increased decay will enhance the ability of the biochar to bind pollutants. Those results confirmed the link between the substantial increase in the adsorption performance of the high-temperature modified charcoal in the previous study and the structural changes in the biochar. We investigated the structural changes of biochar and derivative DOM in the presence of two perturbing factors, modifier and preparation temperature. Suitable modifiers were selected. Preparation for the study of adsorption properties of snow lotus medicinal residues.
Collapse
Affiliation(s)
- Sha Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, 830017, Xinjiang, China
| | - Zenghong Sun
- College of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, 830017, Xinjiang, China
| | - Yanna Yao
- Xinjiang Tianshan Lotus Medicine (Co., Ltd.), Changji, 831500, Xinjiang, China
| | - Xinyu Wang
- Xinjiang Tianshan Lotus Medicine (Co., Ltd.), Changji, 831500, Xinjiang, China
| | - Shuge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, 830017, Xinjiang, China.
| |
Collapse
|
45
|
Wang M, Rivenbark KJ, Nikkhah H, Beykal B, Phillips TD. In vitro and in vivo remediation of per- and polyfluoroalkyl substances by processed and amended clays and activated carbon in soil. APPLIED SOIL ECOLOGY : A SECTION OF AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 2024; 196:105285. [PMID: 38463139 PMCID: PMC10919550 DOI: 10.1016/j.apsoil.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Remediation methods for soil contaminated with poly- and perfluoroalkyl substances (PFAS) are needed to prevent their leaching into drinking water sources and to protect living organisms in the surrounding environment. In this study, the efficacy of processed and amended clays and carbons as soil amendments to sequester PFAS and prevent leaching was assessed using PFAS-contaminated soil and validated using sensitive ecotoxicological bioassays. Four different soil matrices including quartz sand, clay loam soil, garden soil, and compost were spiked with 4 PFAS congeners (PFOA, PFOS, GenX, and PFBS) at 0.01-0.2 μg/mL and subjected to a 3-step extraction method to quantify the leachability of PFAS from each matrix. The multistep extraction method showed that PFAS leaching from soil was aligned with the total carbon content in soil, and the recovery was dependent on concentration of the PFAS. To prevent the leaching of PFAS, several sorbents including activated carbon (AC), calcium montmorillonite (CM), acid processed montmorillonite (APM), and organoclays modified with carnitine, choline, and chlorophyll were added to the four soil matrices at 0.5-4 % w/w, and PFAS was extracted using the LEAF method. Total PFAS bioavailability was reduced by 58-97 % by all sorbents in a dose-dependent manner, with AC being the most efficient sorbent with a reduction of 73-97 %. The water leachates and soil were tested for toxicity using an aquatic plant (Lemna minor) and a soil nematode (Caenorhabditis elegans), respectively, to validate the reduction in PFAS bioavailability. Growth parameters in both ecotoxicological models showed a dose-dependent reduction in toxicity with value-added growth promotion from the organoclays due to added nutrients. The kinetic studies at varying time intervals and varying pHs simulating acidic rain, fresh water, and brackish water suggested a stable sorption of PFAS on all sorbents that fit the pseudo-second-order for up to 21 days. Contaminated soil with higher than 0.1 μg/mL PFAS may require reapplication of soil amendments every 21 days. Overall, AC showed the highest sorption percentage of total PFAS from in vitro studies, while organoclays delivered higher protection in ecotoxicological models (in vivo). This study suggests that in situ immobilization with soil amendments can reduce PFAS leachates and their bioavailability to surrounding organisms. A combination of sorbents may facilitate the most effective remediation of complex soil matrices containing mixtures of PFAS and prevent leaching and uptake into plants.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kelly J Rivenbark
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hasan Nikkhah
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Timothy D Phillips
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
46
|
Zhu H, Xia Y, Zhang Y, Kang Y, Ding Y, Chen R, Feng H. Distribution characteristics and transformation mechanism of per- and polyfluoroalkyl substances in drinking water sources: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169566. [PMID: 38160823 DOI: 10.1016/j.scitotenv.2023.169566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have raised significant concerns within the realm of drinking water due to their widespread presence in various water sources. This prevalence poses potential risks to human health, ecosystems, and the safety of drinking water. However, there is currently a lack of comprehensive reviews that systematically categorize the distribution characteristics and transformation mechanisms of PFASs in drinking water sources. This review aims to address this gap by concentrating on the specific sources of PFASs contamination in Chinese drinking water supplies. It seeks to elucidate the migration and transformation processes of PFASs within each source, summarize the distribution patterns of PFASs in surface and subsurface drinking water sources, and analyze how PFASs molecular structure, solubility, and sediment physicochemical parameters influence their presence in both the water phase and sediment. Furthermore, this review assesses two natural pathways for PFASs degradation, namely photolysis and biodegradation. It places particular emphasis on understanding the degradation mechanisms and the factors that affect the breakdown of PFASs by microorganisms. The ultimate goal is to provide valuable insights for the prevention and control of PFAS contamination and the assurance of drinking water quality.
Collapse
Affiliation(s)
- Heying Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| | - Huajun Feng
- Ecological-Environment & Health College (EEHC), Zhejiang A & F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
47
|
Liu Z, Liu S, Xiao F, Sweetman AJ, Cui Q, Guo H, Xu J, Luo Z, Wang M, Zhong L, Gan J, Tan W. Tissue-specific distribution and bioaccumulation of perfluoroalkyl acids, isomers, alternatives, and precursors in citrus trees of contaminated fields: Implication for risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133184. [PMID: 38064944 DOI: 10.1016/j.jhazmat.2023.133184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024]
Abstract
The ingestion of fruits containing perfluoroalkyl acids (PFAAs) presents potential hazards to human health. This study aimed to fill knowledge gaps concerning the tissue-specific distribution patterns and bioaccumulation behavior of PFAAs and their isomers, alternatives, and precursors (collectively as per-/polyfluoroalkyl substances, PFASs) within citrus trees growing in contaminated fields. It also assessed the potential contribution of precursor degradation to human exposure risk of PFASs. High concentrations of total target PFASs (∑PFASstarget, 92.45-7496.16 ng/g dw) and precursors measured through the total oxidizable precursor (TOP) assay (130.80-13979.21 ng/g dw) were found in citrus tree tissues, and short-chain PFASs constituted the primary components. The total PFASs concentrations followed the order of leaves > fruits > branches, bark > wood, and peel > pulp > seeds. The average contamination burden of peel (∑PFASstarget: 57.75%; precursors: 71.15%) was highest among fruit tissues. Bioaccumulation factors (BAFs) and translocation potentials of short-chain, branched, or carboxylate-based PFASs exceeded those of their relatively hydrophobic counterparts, while ether-based PFASs showed lower BAFs than similar PFAAs in above-ground tissues of citrus trees. In the risk assessment of residents consuming contaminated citruses, precursor degradation contributed approximately 36.07% to total PFASs exposure, and therefore should not be ignored.
Collapse
Affiliation(s)
- Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiayi Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyao Luo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
48
|
Cheng H, Zhou Y, Beiyuan J, Li X, Min J, Su L, Zhang L, Ji R, Xue J. Insights into the effect of hydrochar-derived dissolved organic matter on the sorption of diethyl phthalate onto soil: A pilot mechanism study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169101. [PMID: 38072267 DOI: 10.1016/j.scitotenv.2023.169101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Biowaste-derived hydrochar is an emerging close-to-natural product and has shown promise for soil improvement and remediation, but the environmental behavior of the dissolved organic matter released from hydrochar (HDOM) is poorly understood. Focusing on the typical mulch film plasticizer diethyl phthalate (DEP), we investigated the effect of HDOM on the sorption behavior of DEP on soil. The relatively low concentration of HDOM (10 mg L-1, 25 mg L-1) decreases the sorption quantity of DEP on soil, while it increases by a relatively high concentration, 50 mg L-1. The transformation from multilayer to monolayer sorption of DEP on soil occurs as the concentration of HDOM increases. The tryptophan-like substance is the main component of HDOM sorbed to soil, reaching 49.82 %, and results in competition sorption with DEP. The soil pores are blocked by HDOM, which limits the pore filling and mass transfer of DEP, but partitioning is significantly enhanced. The surface functional groups in HDOM are similar to those in soil, and chemical sorption, mainly composed of hydrogen bonding, exists but is not significantly strengthened. We identified the specific impact of HDOM on the sorption of organic pollutants on soil and provide new insights into the understanding of the environmental behavior of hydrochar.
Collapse
Affiliation(s)
- Hu Cheng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yue Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xiaona Li
- Research Center of Low-carbon Technology and Sustainable Development, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ju Min
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lianghu Su
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China.
| | - Jianming Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| |
Collapse
|
49
|
Sadia M, Beut LB, Pranić M, Wezel AP, Laak TL. Sorption of per- and poly-fluoroalkyl substances and their precursors on activated carbon under realistic drinking water conditions: Insights into sorbent variability and PFAS structural effects. Heliyon 2024; 10:e25130. [PMID: 38317999 PMCID: PMC10839585 DOI: 10.1016/j.heliyon.2024.e25130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/17/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Recent stringent drinking water quality standards create challenges for water utilities to meet these standards. Advanced treatment techniques will have to be applied on many drinking water production locations to meet these quality standards. This study investigated the sorption of per- and polyfluorinated-alkyl substances (PFAS) onto granular activated carbon (GAC). The study was performed at environmentally relevant PFAS concentrations and a realistic water-to-GAC ratio, providing a realism often overlooked in existing studies. Three different forms of GAC were evaluated, differing in micropore and mesopore structures. Tap water spiked with 5 ng/L of each of 31 PFAS was used in the sorption experiments, i.e. perfluorocarboxylic acids (C4-C12), perfluorosulfonic acids (PFSA, C5-C10) including linear and branched isomers, and three groups of PFAS precursors (per-/polyfluoroalkyl ether acids, sulfonamides, and sulfonamide acetic acids). The three studied GAC did not exhibit distinct differences in PFAS sorption. The removal of PFAS was below 50 % for most studied PFAS, except for the short-chain PFAS precursors. Sorption was affected by both the carbon chain length and functional groups for PFAS, while this was not observed for PFAS precursors. The presence of ether linkages and sulfonamide groups notably enhanced sorption. Linear and branched PFSA demonstrated similar sorption behavior, whereas branched isomers of the sulfonamide acetic acid precursors exhibited significantly higher sorption. This indicates that sorption was determined by both hydrophobic and electrostatic interactions. Given the relatively low PFAS removal by GAC under environmentally relevant test conditions, further improvements in sorbents are required to ensure that PFAS concentrations in produced drinking water comply with drinking water standards.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Lola Beltrán Beut
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Marko Pranić
- Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, the Netherlands
| | - Annemarie P.van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Thomas L.ter Laak
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
- KWR Water Research Institute, Groningenhaven 7, 3430BB Nieuwegein, the Netherlands
| |
Collapse
|
50
|
Hubert M, Meyn T, Hansen MC, Hale SE, Arp HPH. Per- and polyfluoroalkyl substance (PFAS) removal from soil washing water by coagulation and flocculation. WATER RESEARCH 2024; 249:120888. [PMID: 38039821 DOI: 10.1016/j.watres.2023.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Soil washing is currently attracting attention as a promising remediation strategy for land contaminated with per- and polyfluoroalkyl substances (PFAS). In the soil washing process, the contaminant is transferred from the soil into the liquid phase, producing a PFAS contaminated process water. One way to treat such process water is to use coagulation and flocculation; however, few studies are available on the performance of coagulation and flocculation for removing PFAS from such process water. This study evaluated 6 coagulants and flocculants (polyaluminium chloride (PACl), zirconium oxychloride octahydrate, cationic and anionic polyacrylamide, Polyclay 685 and Perfluor Ad®), for the treatment of a proxy PFAS contaminated washing water, spiked with PFAS concentrations found at typical Aqueous Film Forming Foam (AFFF) contaminated sites. PFAS removal efficiencies (at constant pH) varied greatly depending on the coagulants and flocculants, as well as the dosage used and the targeted PFAS. All tested coagulants and flocculants reduced the turbidity by >95%, depending on the dosage. Perfluor Ad®, a specially designed coagulant, showed the highest removal efficiency for all longer chain (>99%) and shorter chain PFAS (>68%). The cationic polyacrylamide polymer removed longer chain PFAS up to an average of 80%, whereas average shorter chain PFAS removal was lower (<30%). The two metal-based coagulants tested, PACl and zirconium, removed longer chain PFAS by up to an average of 61% and shorter chain PFAS up to 48%. Polyclay 685, a mixture of powdered activated carbon (PAC) and aluminium sulphate, removed longer chain PFAS by 90% and shorter chain PFAS on average by 76%, when very high dosages of the coagulant were used (2,000 mg/L). PFAS removal efficiencies correlated with chain length and headgroup. Shorter chain PFAS removal was dependent on electrostatic interaction with the precipitating flocs, whereas for longer chain PFAS, hydrophobic interactions between apolar functional groups and flocs created by the coagulant/flocculant, dissolved organic matter and suspended solids played a major role. The results of this study showed that by selecting the most efficient coagulant and aqueous conditions, a greater amount of PFAS can be removed from process waters in soil washing facilities, and thus included as part of various treatment trains.
Collapse
Affiliation(s)
- Michel Hubert
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Thomas Meyn
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; DVGW-Technologiezentrum Wasser, 76139 Karsruhe, Germany
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|