1
|
Yang W, Yang J, Liu E, Xing N, Wang D, Yang H, Li Y, Zhang P, Dou J. MnO/MnS nanoparticles encapsulated in Lycopodium spores derived nitrogen-doped porous carbon as a cost-effective peroxymonosulfate activator for pollutant decontamination: Insight into the mechanism of electron transfer-dominated non-radical pathway. J Colloid Interface Sci 2025; 691:137428. [PMID: 40147365 DOI: 10.1016/j.jcis.2025.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The rational design and exploitation of cost-effective and robust catalysts for peroxymonosulfate (PMS) activation is of great significance. Herein, MnO/MnS nanoparticles encapsulated in Nitrogen-doped porous carbon skeleton (abbreviated as MnO/MnS@NPC) were first constructed through an easy two-step of impregnation along with subsequent pyrolysis technique and utilized to activate PMS for the elimination and mineralization of tetracycline (TC). Benefiting from the strong coupling of transition metal Mn with carbon-based material, the co-doping of heteroatom N and S, the enhanced electrical conductivity, and the hierarchical porous microarchitecture, the obtained MnO/MnS@NPC composite has been expected to present superior PMS activation capacity and pollutant elimination efficiency to its benchmark NPC and MnO@NPC, with 92.5 % degradation rate of TC within 60 min. Comprehensive investigations, involving quenching experiments, electron paramagnetic resonance (EPR) studies, in situ Raman identification, and electrochemical tests, jointly indicated that the non-radical pathways including electron-transfer, single oxygen (1O2) and the high-valent Mn-oxo species, especially the electron transfer process (ETP) from TC molecule to the metastable MnO/MnS@NPC-PMS* complex were dominantly responsible for PMS activation and further decomposition of TC, which greatly enhanced the selective removal of TC and the anti-interference capacity of the PMS system. Furthermore, the possible TC degradation routes were predicted by Density Functional Theory (DFT) calculation and the toxicity of degradation intermediates were also analyzed by toxicity assessment software. In addition, the heterogeneous catalyst displayed outstanding stability and reusability owing to the shield effect of NPC framework to MnO/MnS nanoparticles. Overall, this work proposed a prospective strategy for rationally designing and exploring heterogeneous PMS activator towards wastewater purification.
Collapse
Affiliation(s)
- Wenning Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Jie Yang
- Department of Pharmaceutical and Bioengineering, ZiBo Vocational Institute, ZiBo 255000, China
| | - Erkang Liu
- Hebei Short Process Steelmaking Technology Innovation Center, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ningning Xing
- School of Sport Communication and Information Technology, Shandong Sport University, Jinan 250100, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yongfei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Wu Y, Wu J, Lin M, Chen Z. Self-Fenton Cu-Mn catalysts for efficient ciprofloxacin removal: in-situ H 2O 2 generation and activation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125569. [PMID: 40300550 DOI: 10.1016/j.jenvman.2025.125569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
The Fenton oxidation system is a widely employed advanced oxidation processes (AOPs) in wastewater treatment. However, the traditional Fenton oxidation system suffers from low oxidant utilization efficiency, leading to significant resource wastage. This study presents a novel self-Fenton Cu-Mn bimetallic catalyst (with a Cu:Mn ratio of 10:1), which is capable of simultaneously activating O2 to generate H2O2 in situ and further catalyzing the decomposition of H2O2 to produce reactive oxygen species (ROS). Notably, this self-Fenton system demonstrate high removal efficiency for ciprofloxacin (CIP) across a broad pH range (2-9), achieving up to 92.55 % removal in water. Quenching experiments, electron paramagnetic resonance (EPR) analysis, steady-state concentration measurements, and Galvanic oxidation reactor (GOR) experiments collectively confirmed the generation of multiple ROS species (·OH, ·O2-, and 1O2) and indicated that electron transfer plays a significant role in pollutant degradation. X-ray photoelectron spectroscopy (XPS) analysis revealed that Cu0 exhibited high catalytic activity, enabling simultaneous generation and activation of H2O2. Liquid chromatography-mass spectrometry (LC-MS) and toxicity assessments demonstrated a significant reduction in the toxicity of CIP degradation products. This work elucidates a novel Cu-Mn synergistic mechanism wherein Mn facilitates the generation of H2O2, while Cu effectively activates it into ROS. This synergism effect enables the removal of pollutants through both radical and non-radical pathways, thereby offering an innovative strategy for environmental remediation and AOPs.
Collapse
Affiliation(s)
- Yifang Wu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Jianwang Wu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Mei Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
3
|
Yu W, Xu Y. Advancements on Single-Atom Catalysts-Mediated Persulfate Activation: Generating Reactive Species for Contaminants Elimination in Water. Molecules 2024; 29:5696. [PMID: 39683855 DOI: 10.3390/molecules29235696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The single-atom catalyst (SAC) activated persulfate process has emerged as a highly efficient technology for eliminating refractory organic compounds in aqueous environments. This review delves into the intricacies of utilizing SACs for the effective removal of various contaminants in water. The common supports and the preparation procedures of SACs are summarized at first. The synthesis methods of SACs (i.e., wet chemical method, one-pot hydrothermal method, and high-temperature pyrolysis method) are also described. Then, a comprehensive overview of the diverse reaction mechanisms in SAC-activated persulfate systems is presented, including a radical oxidation process via sulfate or hydroxyl radicals and superoxide radicals, or a nonradical process via single oxygen, surface active complex, and high-valent metal-oxo species oxidation. The impact of key factors such as peroxides concentration, SAC dosage, reaction pH, inorganic anions, organic matter, operando stability, and real water is also delved. The removal of various pollutants (i.e., azo dyes, phenolic compounds, pharmaceuticals, and bacteria) by this process is further summarized. Finally, the challenges and perspectives in the field of water treatment utilizing SACs are discussed.
Collapse
Affiliation(s)
- Wan Yu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Yin Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Zhou T, Deng J, Zeng Y, Liu X, Song B, Ye S, Li M, Yang Y, Wang Z, Zhou C. Biochar Meets Single-Atom: A Catalyst for Efficient Utilization in Environmental Protection Applications and Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404254. [PMID: 38984755 DOI: 10.1002/smll.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Single-atom catalysts (SACs), combining the advantages of multiphase and homogeneous catalysis, have been increasingly investigated in various catalytic applications. Carbon-based SACs have attracted much attention due to their large specific surface area, high porosity, particular electronic structure, and excellent stability. As a cheap and readily available carbon material, biochar has begun to be used as an alternative to carbon nanotubes, graphene, and other such expensive carbon matrices to prepare SACs. However, a review of biochar-based SACs for environmental pollutant removal and energy conversion and storage is lacking. This review focuses on strategies for synthesizing biochar-based SACs, such as pre-treatment of organisms with metal salts, insertion of metal elements into biochar, or pyrolysis of metal-rich biomass, which are more simplistic ways of synthesizing SACs. Meanwhile, this paper attempts to 1) demonstrate their applications in environmental remediation based on advanced oxidation technology and energy conversion and storage based on electrocatalysis; 2) reveal the catalytic oxidation mechanism in different catalytic systems; 3) discuss the stability of biochar-based SACs; and 4) present the future developments and challenges regarding biochar-based SACs.
Collapse
Affiliation(s)
- Ting Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Xiaoqian Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Shujing Ye
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Meifang Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha, 410004, P. R China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, P. R China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
5
|
Yin S, Guan Z, Zhu Y, Guo D, Chen X, Wang S. Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia: Group VIII-Based Catalysts. ACS NANO 2024; 18:27833-27852. [PMID: 39365283 DOI: 10.1021/acsnano.4c09247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The accumulation of nitrates in the environment causes serious health and environmental problems. The electrochemical nitrate reduction reaction (e-NO3RR) has received attention for its ability to convert nitrate to value-added ammonia with renewable energy. The key to effective catalytic efficiency is the choice of materials. Group VIII-based catalysts demonstrate great potential for application in e-NO3RR because of their high activity, low cost, and good electron transfer capability. This review summarizes the Group VIII catalysts, including monatomic, bimetallic, oxides, phosphides, and other composites. On this basis, strategies to enhance the intrinsic activity of the catalysts through coordination environment modulation, synergistic effects, defect engineering and hybridization are discussed. Meanwhile, the ammonia recovery process is summarized. Finally, the current research status in this field is prospected and summarized. This review aims to realize the large-scale application of nitrate electrocatalytic reduction in industrial wastewater.
Collapse
Affiliation(s)
- Shiyue Yin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhixi Guan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuchuan Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
6
|
Galloni MG, Nikonova V, Cerrato G, Giordana A, Pleva P, Humpolicek P, Falletta E, Bianchi CL. Novel eco-friendly and easily recoverable bismuth-based materials for capturing and removing polyphenols from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122365. [PMID: 39232329 DOI: 10.1016/j.jenvman.2024.122365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Olive oil production is one of the most developed Europe's sectors, producing olive oil and undesirable by-products, such as olive mill wastewater (OMWW) and organic waste. OMWW, containing large amounts of compounds (mainly polyphenols, phenols, and tannins), represents a problem. In fact, polyphenols have dual nature: i) antioxidant beneficial properties, useful in many industrial fields, ii) biorefractory character making them harmful in high concentrations. If not properly treated, polyphenols can harm biodiversity, disrupt ecological balance, and degrade water quality, posing risks to both environment and human health. From a circular economy viewpoint, capturing large quantities of polyphenols to reuse and removing their residuals from water is an open challenge. This study proposes, for the first time, a new path beyond the state-of-the-art, combining adsorption and degradation technologies by novel, eco-friendly and easily recoverable bismuth-based materials to capture large amounts of two model polyphenols (gallic acid and 3,4,5-trimethoxybenzoic acid), which are difficult to remove by traditional processes, and photodegrade them under solar light. The coupled process gave rise to collect 98% polyphenols, and to rapidly and effectively photodegrade the remaining portion from water.
Collapse
Affiliation(s)
- Melissa G Galloni
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali INSTM, Via Giusti 9, 50121, Firenze, Italy
| | - Vasilissa Nikonova
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy; Dipartimento di Architettura e Disegno Industriale, Università Degli Studi Della Campania Luigi Vanvitelli, Via S. Lorenzo 31, 81031, Aversa, CE, Italy
| | - Giuseppina Cerrato
- Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali INSTM, Via Giusti 9, 50121, Firenze, Italy; Dipartimento di Chimica, Università Degli Studi di Torino, Via Giuria 7, 10125, Torino, Italy
| | - Alessia Giordana
- Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali INSTM, Via Giusti 9, 50121, Firenze, Italy; Dipartimento di Chimica, Università Degli Studi di Torino, Via Giuria 7, 10125, Torino, Italy
| | - Pavel Pleva
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin 275, 76001, Vavreckova, Zlin, Czech Republic
| | - Petr Humpolicek
- Centre of Polymer Systems, Tomas Bata University in Zlín, Tř. Tomáše Bati 5678, 760 01, Zlín, Czech Republic; Department of Lipids, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - Ermelinda Falletta
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali INSTM, Via Giusti 9, 50121, Firenze, Italy.
| | - Claudia L Bianchi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy; Consorzio Interuniversitario Nazionale per La Scienza e Tecnologia Dei Materiali INSTM, Via Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
7
|
Zhang M, Wu J, Tang W, Mei J, Zhang Q, Wu J, Xu D, Liu Z, Hao F, Sheng L, Xu H. Inverted loading strategy regulates the Mn-O V-Ce sites for efficient fenton-like catalysis. J Colloid Interface Sci 2024; 668:303-318. [PMID: 38678886 DOI: 10.1016/j.jcis.2024.04.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Regulating interfacial active sites to improve peroxymonosulfate (PMS) activation efficiency is a hot topic in the heterogeneous catalysis field. In this study, we develop an inverted loading strategy to engineer asymmetric Mn-OV-Ce sites for PMS activation. Mn3O4@CeO2 prepared by loading CeO2 nanoparticles onto Mn3O4 nanorods exhibits the highest catalytic activity and stability, which is due to the formation of more oxygen vacancies (OV) at the Mn-OV-Ce sites, and the surface CeO2 layer effectively inhibits corrosion by preventing the loss of manganese ion active species into the solution. In situ characterizations and density functional theory (DFT) studies have revealed effective bimetallic redox cycles at asymmetric Mn-OV-Ce active sites, which promote surface charge transfer, enhance the adsorption reaction activity of active species toward pollutants, and favor PMS activation to generate (•OH, SO4•-, O2•- and 1O2) active species. This study provides a brand-new perspective for engineering the interfacial behavior of PMS activation.
Collapse
Affiliation(s)
- Mengyu Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Jing Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Wen Tang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Jinfei Mei
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Qian Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Junrong Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Deyun Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Zhaodi Liu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China.
| | - Fuying Hao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Liangquan Sheng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China.
| |
Collapse
|
8
|
Zeng Y, Deng J, Zhou N, Xia W, Wang Z, Song B, Wang Z, Yang Y, Xu X, Zeng G, Zhou C. Mediated Peroxymonosulfate Activation at the Single Atom Fe-N 3O 1 Sites: Synergistic Degradation of Antibiotics by Two Non-Radical Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311552. [PMID: 38501866 DOI: 10.1002/smll.202311552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Indexed: 03/20/2024]
Abstract
The activation of persulfates to degrade refractory organic pollutants is a hot issue in advanced oxidation right now. Here, it is reported that single-atom Fe-incorporated carbon nitride (Fe-CN-650) can effectively activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. Through some characterization techniques and DFT calculation, it is proved that Fe single atoms in Fe-CN-650 exist mainly in the form of Fe-N3O1 coordination, and Fe-N3O1 exhibited better affinity for PMS than the traditional Fe-N4 structure. The degradation rate constant of SMX in the Fe-CN-650/PMS system reached 0.472 min-1, and 90.80% of SMX can still be effectively degraded within 10 min after five consecutive recovery cycles. The radical quenching experiment and electrochemical analysis confirm that the pollutants are mainly degraded by two non-radical pathways through 1O2 and Fe(IV)═O induced at the Fe-N3O1 sites. In addition, the intermediate products of SMX degradation in the Fe-CN-650/PMS system show toxicity attenuation or non-toxicity. This study offers valuable insights into the design of carbon-based single-atom catalysts and provides a potential remediation technology for the optimum activation of PMS to disintegrate organic pollutants.
Collapse
Affiliation(s)
- Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Nan Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Wu Xia
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Zihao Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
9
|
Miao J, Jiang Y, Wang X, Li X, Zhu Y, Shao Z, Long M. Correlating active sites and oxidative species in single-atom catalyzed Fenton-like reactions. Chem Sci 2024; 15:11699-11718. [PMID: 39092108 PMCID: PMC11290428 DOI: 10.1039/d4sc02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yunyao Jiang
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT7 1NN UK
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- Department of Chemical Engineering, Curtin University Perth 6845 Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
10
|
Wang Y, Jiao H, Liu Z, Yang S, Chen R, Liu C, Dai J, Ding D. Biochar alters the selectivity of MnFe 2O 4-activated periodate process through serving as the electron-transfer mediator. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134530. [PMID: 38718514 DOI: 10.1016/j.jhazmat.2024.134530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Constructing green and sustainable advanced oxidation processes (AOPs) for the degradation of organic contaminants is of great importance but still remains big challenge. In this work, an effective AOP (MnFe2O4-activated periodate, MnFe2O4/PI) was established and investigated for the oxidation of organic contaminants. To avoid the severe aggregation of MnFe2O4 nanoparticles, a hybrid MnFe2O4-biochar catalyst (MnFe2O4-BC) was further synthesized by anchoring MnFe2O4 nanoparticles on chemically inert biochar substrate. Intriguingly, MnFe2O4-BC/PI exhibited different selectivity towards organic contaminants compared with MnFe2O4/PI, revealing that biochar not only served as the substrate, but also directly participated into the oxidation process. Electron-transfer mechanism was comprehensively elucidated to be responsible for the abatement of pollutants in both MnFe2O4/PI and MnFe2O4-BC/PI. The surface oxygen vacancies (OVs) of MnFe2O4 were identified as the active sites for the formation of high potential complexes MnFe2O4-PI*, which could directly and indirectly degrade the organic pollutants. For the hybrid MnFe2O4-BC catalyst, biochar played multiple roles: (i) substrate, (ii) provided massive adsorption sites, (iii) electron-transfer mediator. The differences in selectivity of MnFe2O4/PI and MnFe2O4-BC/PI were determined by the adsorption affinity between biochar substrate and organics. Overall, the findings of this study expand the knowledge on the selectivity of PI-triggered AOPs.
Collapse
Affiliation(s)
- Yongshuo Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Jiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengjiao Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China; Rizhao Huaye Glass Co., Ltd., No.1 of Shanhai 3rd Road, Donggang District, Rizhao, Shandong 276800, China
| | - Jing Dai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Liu Y, Wang R, Liu S, Xu Y, Zhang Z, Song Y, Yao Z. Nitrogen-doped carbon-coated Cu 0 activates molecular oxygen for norfloxacin degradation over a wide pH range. J Colloid Interface Sci 2024; 665:945-957. [PMID: 38569311 DOI: 10.1016/j.jcis.2024.03.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The Fenton-like activated molecular oxygen technology demonstrates significant potential in the treatment of refractory organic pollutants in wastewater, offering promising development prospects. We prepared a N-doped C-coated copper-based catalyst Cu0/NC3-600 through the pyrolysis of Mel-modified Cu-based metal-organic framework (MOF). The results indicate that the degradation of 20 mg/L norfloxacin (NOR) was achieved using 1.0 g/L Cu0/NC3-600 across a wide pH range, with a removal rate exceeding 95 % and total organic carbon (TOC) removals approaching 70 % after 60 min at pH 5-11. The nitrogen doping enhances the electronic structure of the carbon material, facilitating the adsorption of molecular oxygen. Additionally, the formed carbon layer effectively prevent copper leaching,contributing to increased stability to a certain extent. Subsequently, we propose the catalytic reaction mechanism for the Cu0/NC/air system. Under acidic conditions, Cu0/NC3-600 activates molecular oxygen to produce the •O2-, which serves as the primary active species for NOR degradation. While in alkaline conditions, the high-valent copper species Cu3+ is generated in conjunction with •O2-, both working simultaneously for NOR degradation. Furthermore, based on the LC-MS results, we deduced four possible degradation pathways. This work offers a novel perspective on expanding the pH range of copper-based catalysts with excellent ability to activate molecular oxygen for environmental water treatment.
Collapse
Affiliation(s)
- Yanjing Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Ruitao Wang
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, 315201, China
| | - Shuhong Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Yunsong Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhirong Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ying Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhongping Yao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
12
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas M, Pérez-Cadenas AF, Carrasco-Marín F. Antibiotic Degradation via Fenton Process Assisted by a 3-Electron Oxygen Reduction Reaction Pathway Catalyzed by Bio-Carbon-Manganese Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1112. [PMID: 38998717 PMCID: PMC11243440 DOI: 10.3390/nano14131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Bio-carbon-manganese composites obtained from olive mill wastewater were successfully prepared using manganese acetate as the manganese source and olive wastewater as the carbon precursor. The samples were characterized chemically and texturally by N2 and CO2 adsorption at 77 K and 273 K, respectively, by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. Electrochemical characterization was carried out by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The samples were evaluated in the electro-Fenton degradation of tetracycline in a typical three-electrode system under natural conditions of pH and temperature (6.5 and 25 °C). The results show that the catalysts have a high catalytic power capable of degrading tetracycline (about 70%) by a three-electron oxygen reduction pathway in which hydroxyl radicals are generated in situ, thus eliminating the need for two catalysts (ORR and Fenton).
Collapse
Affiliation(s)
- Edgar Fajardo-Puerto
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Abdelhakim Elmouwahidi
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Esther Bailón-García
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - María Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
- Dpto. Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Av. de Esparta s/n, Las Rozas de Madrid, 28232 Madrid, Spain
| | - Agustín F Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Francisco Carrasco-Marín
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| |
Collapse
|
13
|
Ma W, Ren X, Li J, Wang S, Wei X, Wang N, Du Y. Advances in Atomically Dispersed Metal and Nitrogen Co-Doped Carbon Catalysts for Advanced Oxidation Technologies and Water Remediation: From Microenvironment Modulation to Non-Radical Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308957. [PMID: 38111984 DOI: 10.1002/smll.202308957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Indexed: 12/20/2023]
Abstract
Atomically dispersed metal and nitrogen co-doped carbon catalysts (M-N-C) have been attracting tremendous attentions thanks to their unique MNx active sites and fantastic catalytic activities in advanced oxidation technologies (AOTs) for water remediation. However, precisely tailoring the microenvironment of active sites at atomic level is still an intricate challenge so far, and understanding of the non-radical mechanisms in persulfate activation exists many uncertainties. In this review, latest developments on the microenvironment modulation strategies of atomically dispersed M-N-C catalysts including regulation of central metal atoms, regulation of coordination numbers, regulation of coordination heteroatoms, and synergy between single-atom catalysts (SACs) with metal species are systematically highlighted and discussed. Afterwards, progress and underlying limitations about the typical non-radical pathways from production of singlet oxygen, electron transfer mechanism to generation of high-valent metal species are well demonstrated to inspire intrinsic insights about the mechanisms of M-N-C/persulfate systems. Lastly, perspectives for the remaining challenges and opportunities about the further development of carbon-based SACs in environment remediation are also pointed out. It is believed that this review will be much valuable for the further design of active sites in M-N-C/persulfate catalytic systems and promote the wide application of SACs in various fields.
Collapse
Affiliation(s)
- Wenjie Ma
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Xiaohui Ren
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Jiahao Li
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Shuai Wang
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Xinyu Wei
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Na Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
14
|
Zhang H, He Y, He M, Yang Q, Ding G, Mo Y, Deng Y, Gao P. Single-atom Mn-embedded carbon nitride as highly efficient peroxymonosulfate catalyst for the harmful algal blooms control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170915. [PMID: 38350561 DOI: 10.1016/j.scitotenv.2024.170915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/21/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
In recent years, water quality deterioration caused by harmful algal blooms (HABs) has become one of the global drinking water safety issues, and sulfate radical driven heterogeneous advanced oxidation technology has been widely used for algae removal. However, the shortages of low active site exposure, metal leaching, and secondary contamination limit its further application. Therefore, the single-atom Mn anchored on inorganic carbon nitride was constructed to enhance the oxidation and coagulation of algal cells while maintaining cell integrity in this study. The removal efficiency of Microcystis aeruginosa was as high as 100 % within 30 min under the optimal conditions of 400 mg/L single-atom Mn-embedded g-C3N4 (SA-MCN) and 0.32 mM peroxymonosulfate (PMS). Importantly, the K+ release, malondialdehyde concentration, floccules morphology and variation of algal organic matters further showed that the algal cells still maintained high integrity without severe rupture during the catalytic reaction. Furthermore, the catalytic mechanisms of algae removal by moderate oxidation and simultaneous coagulation in this system were explored by quenching experiments, EPR analysis, theoretical calculation, and Zeta potential. In brief, this study highlighted the single-atom heterogeneous catalyst with high-efficiency and environmental-friendliness in harmful algal blooms control.
Collapse
Affiliation(s)
- Hangjun Zhang
- Hangzhou Normal University, Hangzhou 311121, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Yunyi He
- Hangzhou Normal University, Hangzhou 311121, China
| | - Mengfan He
- Hangzhou Normal University, Hangzhou 311121, China
| | - Qiyue Yang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Guoyi Ding
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yuanshuai Mo
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| | - Panpan Gao
- Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
15
|
Wang Z, Zeng Y, Deng J, Wang Z, Guo Z, Yang Y, Xu X, Song B, Zeng G, Zhou C. Preparation and Application of Single-Atom Cobalt Catalysts in Organic Synthesis and Environmental Remediation. SMALL METHODS 2024; 8:e2301363. [PMID: 38010986 DOI: 10.1002/smtd.202301363] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/04/2023] [Indexed: 11/29/2023]
Abstract
The development of high-performance catalysts plays a crucial role in facilitating chemical production and reducing environmental contamination. Single-atom catalysts (SACs), a class of catalysts that bridge the gap between homogeneous and heterogeneous catalysis, have garnered increasing attention because of their unique activity, selectivity, and stability in many pivotal reactions. Meanwhile, the scarcity of precious metal SACs calls for the arrival of cost-effective SACs. Cobalt, as a common non-noble metal, possesses tremendous potential in the field of single-atom catalysis. Despite their potential, reviews about single-atom Co catalysts (Co-SACs) are lacking. Accordingly, this review thoroughly summarized various preparation methodologies of Co-SACs, particularly pyrolysis; its application in the specific domain of organic synthesis and environmental remediation is discussed as well. The structure-activity relationship and potential catalytic mechanism of Co-SACs are elucidated through some representative reactions. The imminent challenges and development prospects of Co-SACs are discussed in detail. The findings and insights provided herein can guide further exploration and development in this charming area of catalyst design, leading to the realization of efficient and sustainable catalytic processes.
Collapse
Affiliation(s)
- Zihao Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Zicong Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, Jiangxi Province, 330013, P. R. China
| |
Collapse
|
16
|
Zheng K, Xiao L. Fe loading 3D micro-meso-porous carbon sphere derived from natural cellulose of sawdust activating peroxymonosulfate for degradation of enrofloxacin. Int J Biol Macromol 2024; 259:129366. [PMID: 38218278 DOI: 10.1016/j.ijbiomac.2024.129366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Fe loading 3D micro-meso-porous carbon sphere (Fe@3C-2N) was derived from natural cellulose of sawdust and melamine through sodium alginate and ferric chloride cross-linking followed by carbonization processes, which served as peroxymonosulfate (PMS) activators for enrofloxacin (ENR) degradation. The cellulose was produced by the delignification of sawdust with sodium chlorite. The delignification of sawdust and the addition of melamine increased the porosity and electron transport capacity of Fe@3C-2N. When the dosages of Fe@3C-2N and PMS were 0.60 g L-1 and 0.20 g L-1 respectively, the degradation rate of ENR (20 mg L-1) reached 92.17 % within 80 min, suggesting the satisfactory activation performance of PMS. The good structural stability of Fe@3C-2N makes it suitable for use as packing in continuous flow reactors for wastewater treatment. Quenching experiments and electron paramagnetic resonance (EPR) suggested that SO4•- and 1O2 were the dominant reactive oxygen species (ROSs) in Fe@3C-2N/PMS system. X-ray photoelectron spectroscopy (XPS) revealed that Fe3C, pyrrolic N and graphitic N were the potential active sites.
Collapse
Affiliation(s)
- Kewang Zheng
- School of Resource and Environmental Science, Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan 430072, China; School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, China
| | - Ling Xiao
- School of Resource and Environmental Science, Key Laboratory for Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Zheng J, Lin Q, Liu Y, Deng Y, Fan X, Xu K, Ma Y, He J. Efficient activation of peroxymonosulfate by Fe single-atom: The key role of Fe-pyrrolic nitrogen coordination in generating singlet oxygen and high-valent Fe species. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132753. [PMID: 37839371 DOI: 10.1016/j.jhazmat.2023.132753] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Nitrogen-doped carbon matrix single-atom catalysts (SACs) for the efficient removal of organic pollutants have attracted widespread attention. However, the ligand structure and the origin of the high activity between nitrogen species and single-atoms remain elusive. Herein, nitrogen-doped carbon matrix iron single-atom catalysts (Fe/NC-SACs) that exhibit high catalytic reactivity (98.2% SMX degradation in 5 min), broad pH resistance (pH 3.0-11.1), high stability, and sustainable water treatment capacity are reported. High-valent iron (Fe IV=O) and singlet oxygen (1O2) were the reactive oxygen species observed. The electrochemical results demonstrated the generation of catalyst-PMS complexes. The DFT calculations revealed that Fe-pyrrolic N4 was the best ligand for PMS, exhibiting the highest adsorption energy, bond length variation and electron transfer capacity. The central Fe single atom and the carbon electrons adjacent to the pyrrolic N were the reactive sites of the PMS. The main source of 1O2 was the oxidation of PMS. This work provides guidance for the discovery of high-performance catalysts and provides a single-atom catalyst that can be used for practical environmental purification.
Collapse
Affiliation(s)
- Junli Zheng
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuxin Liu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation and Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510045, China
| | - Xindan Fan
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kehuan Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongjie Ma
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin He
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Xu W, Liang F, Liu Z, Li S, Li J, Jiang X, Pillai SC, Wu X, Wang H. Rational design of animal-derived biochar composite for peroxymonosulfate activation: Understanding the mechanism of singlet oxygen-mediated degradation of sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122807. [PMID: 37907192 DOI: 10.1016/j.envpol.2023.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Animal-derived biochar are identified as a promising candidate for peroxymonosulfate (PMS) activation due to the abundant aromatics and oxygen-containing functional groups. The current investigation focuses on pig carcass-derived biochar (800-BA-PBC) by ball milling-assisted alkali activation. The results showed that 800-BA-PBC could effectively activate PMS and degraded 94.2% sulfamethoxazole (SMX, 10 mg/L) within 40 min. The reaction rate constant was found to be 47 times higher than that observed with PBC. The enhanced catalytic activity is mainly attributed to the increase in specific surface area, the increase content of oxygen-containing groups on the surface, and the formation of graphitic nitrogen. The quenching tests and electron paramagnetic resonance (EPR) analysis demonstrated that 1O2 is the main active species in the degradation of SMX. Moreover, the 800-BA-PBC + PMS system can maintain excellent degradation rate under different water quality, wide pH range, and the presence of different anions. The degradation pathways of SMX in the optimal system are also evaluated through intermediate identification and DFT calculation. These results indicate that the catalytic system has high anti-interference ability and practical application potential. This investigation provides new insight into the rational design of animal-derived biochar and develops a low-cost technology for the treatment of antibiotic containing wastewater.
Collapse
Affiliation(s)
- Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Fawen Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, PR China
| | - Shuai Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China.
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Xiaolian Wu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| |
Collapse
|
19
|
Zhang J, Sun P, Mo Z, Zhu X, Shouquat Hossain MD, Wu G, Miao Z, Yan P, Chen Z, Xu H. Adjacent Mn site boosts photocatalytic hydrogen evolution of Mn XCd 1-XS solid solution through a dual-metal-site design. J Colloid Interface Sci 2023; 652:470-479. [PMID: 37604058 DOI: 10.1016/j.jcis.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
CdS has emerged as a possible candidate for photocatalytic hydrogen generation. However, further improvement in the performance of the Cd metal site is challenging due to limited optimization space. To solve this limitation, in this work, the Mn-Cd dual-metal photocatalyst was synthesized by a one-step solvothermal method, and the effects of different proportions of bimetals on hydrogen production activity were systematically studied. The ingenious design of the bimetallic sites enhances the carrier separation efficiency and the built-in electric field intensity, which leads to significant improvement in the photocatalytic hydrogen production performance of MCS0.19. Density functional theory (DFT) calculations confirm that the introduction of the Mn element can drive electrons through the Fermi level, resulting in enhanced conductivity of the catalyst. Meanwhile, electron channels are built between Mn and S, which speeds up the rate of electron transfer and is conducive to improving hydrogen production activity. This work provides a technical-methodological entrance to improve the photocatalytic hydrogen production performance of dual-metal S solid solutions and also promises to open a novel approach to creating high-efficiency solid solution photocatalysts.
Collapse
Affiliation(s)
- Jinyuan Zhang
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Peipei Sun
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhao Mo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xianglin Zhu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - M D Shouquat Hossain
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Guanyu Wu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China; School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihuan Miao
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengcheng Yan
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhigang Chen
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Xu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
20
|
Li J, Zhao S, Li C, Kawi S, Wang K, Huang J, Liu S. Single atom manganese catalyst boosting selective oxidation of alcohols with activated peroxymonosulfate. J Colloid Interface Sci 2023; 656:58-67. [PMID: 37984171 DOI: 10.1016/j.jcis.2023.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Selective oxidations are important reactions in organic synthesis for fine chemical industry and conventional methods are expensive and produce a lot of toxic wastes. Herein, we demonstrate a facile and environmentally benign technique for liquid phase selective oxidation based on graphene-supported Mn single-atom-catalyst (SAMn-G) for efficient peroxymonosulfate (PMS) activation. The active Mn component in the developed SAMn-G catalyst reached single-atomic dispersion on graphene substrate via the coordination of individual Mn atoms with the doped N from the graphene framework. SAMn-G activated PMS via a nonradical-dominated pathway, which could convert aromatic alcohols into aldehydes or ketones at a mild temperature. The SAMn-G catalyst exhibited superior conversion and aldehyde selectivity in alcohol oxidation in comparison with their counterpart catalysts possessing either homogeneous Mn ions or oxide particles. The high activation efficiency of SAMn-G is due to the synergistic effect between Mn atoms and graphene substrate, as well as the dominated reaction pathway from nonradical oxidation, which is more selective than these free radicals to oxidize the alcohols. Concerted experimental evidence indicates that the non-radical oxidation process was highly possible to follow the electron transfer mechanism by PMS/organic adsorption on the surface of the catalyst. This study provides a fundamental understanding of PMS activation mediated by single atom catalyst for organic synthesis and the achieved insights can also help the catalyst design for other liquid phase selective oxidation processes.
Collapse
Affiliation(s)
- Jiaquan Li
- School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2037, Australia
| | - Shiyong Zhao
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 119260, Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 119260, Singapore.
| | - Kai Wang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6102, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2037, Australia.
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, WA 6102, Australia
| |
Collapse
|
21
|
Diao Y, Shan R, Li M, Li S, Huhe T, Yuan H, Chen Y. Magnetized algae catalyst by endogenous N to effectively trigger peroxodisulfate activation for ultrafast degraded sulfathiazole: Radical evolution and electron transfer. CHEMOSPHERE 2023; 342:140205. [PMID: 37722535 DOI: 10.1016/j.chemosphere.2023.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
An innovative Fe-N co-coupled catalyst MN-2 was prepared from waste spirulina by co-pyrolysis as a highly active carbon-based catalyst for the activation of peroxydisulfate (PDS) for the degradation of sulfathiazole (ST). The protein-rich raw material Spirulina provided sufficient N during the pyrolysis process, thus achieving N doping without an additional nitrogen source, optimizing the interlayer structure of the biochar material and effectively inhibiting the leaching of the ligand metal Fe. MN-2 showed highly efficient catalytic activity for peroxydisulfate (PDS), with a degradation efficiency of 100% for ST within 30 min and a kinetic constant (kobs) reached 0.306 min-1, benefiting from the excellent adsorption ability of MN-2 forming MN-2-PDS* complexes and the electron transfer process generated by Fe3+ and Fe2+ cycling, oxygen-containing functional groups. The effects of PDS dosage, initial pH and coexisting anions on the oxidation process were also investigated. Free radical quenching, electron paramagnetic resonance and electrochemical measurements were employed to explain the hydroxyl (·OH) and sulfate (SO4·-) as the dominant active species and the electron transfer effect on the removal of ST. MN-2 maintained a ST removal rate of 84% after four recycling experiments, showing a high reusability performance. This work provides a simple way to prepare magnetized N-doped biochar, a novel catalyst (MN-2) for efficient activation of PDS for ST degradation, and a feasible method for removing sulfanilamide antibiotics in water environment.
Collapse
Affiliation(s)
- Yuan Diao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Mei Li
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China
| | - Shuang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Taoli Huhe
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Yong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|
22
|
Cai L, Yao Q, Du X, Zhong J, Lu H, Tao X, Zhou J, Dang Z, Lu G. Validation of quenching effectiveness and pollutant degradation ability of singlet oxygen through model reaction system. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132488. [PMID: 37696208 DOI: 10.1016/j.jhazmat.2023.132488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Quenching method is widely used to assess the contribution of specified reactive species through the probe inhibition efficiency (IE) caused by adding excessive quencher. However, for reactive species with weak ability such as singlet oxygen (1O2), the quenching results are prone to ambiguity. In this study, an 1O2 system using furfuryl alcohol (FFA) as a probe was successfully constructed by methylene-blue-N vis-photosensitization, to discuss the quenching, interference elimination and pollutant degradation ability of 1O2. Inhibition of FFA transformation caused by both quenching and interrupting of 1O2 production was found. The quenching is affected by quencher dosage and ability, which depends on the second-order-rate constant (k). A high k means a strong ability, and less dosage is required to achieve the same IE. Comparison between the calculated ratio of reactive species consumed by quencher and experimental IE helps to judge the interruption of 1O2 production. None of the organic-solvents (methanol, ethanol, iso-propanol, n-butanol, iso-butanol, tert-butanol, tetrahydrofuran, acetonitrile, acetone and chloroform) scavenged 1O2, which would be used as screening-agent for other reactive species (e.g., hydroxyl radicals) that would interrupt 1O2 contribution assessment. Besides, 1O2 was powerless to degrade most selected pollutants. These results encourage proper use of quenchers and better experimental design.
Collapse
Affiliation(s)
- Limiao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qian Yao
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiayi Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haijian Lu
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
23
|
Li M, Yuan X, Lai Y, Qin C, Jiang L, Duan A, Wang H. Assisted wet deposition targeted synthesis of Co-N coordination single-atom catalysts for efficient Fenton-like catalytic degradation of micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132316. [PMID: 37634377 DOI: 10.1016/j.jhazmat.2023.132316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Assisted wet deposition methods to localize the active phase metal on the carrier surface and prevent atomic aggregation during conventional heat treatment are strongly preferred. Herein, single-atom cobalt catalysts (SA-Co-PCN) with different metal-central content were target-prepared using a combination of impregnation and secondary annealing on polymerized carbon nitride (PCN) through reticular confinement. Fitting the coordination configuration of the Co-N pathway within the first coordination shell according to quantitative EXAFS indicated that the ligancy of Co-N was 4. The removal efficiency of representative micropollutants in the SA-Co-PCN/PMS system achieved 100% within 15 min. The outstanding degradation properties of micropollutants were ascribed to the SA-Co-PCN boosts PMS to a 1O2-dominated system. Moreover, the effects of substituents on the degradation behavior and ecotoxicology of sulfonamides (SAs) in PMS-activated systems were investigated in depth. The combination of DFT theoretical calculations and LC-MS further confirmed that the similar electron-rich sites on the SAs molecules allowed for commonality in the degradation pathway. Both S-N bond and C-S bond fragments became the initial attack and cleavage sites in the series of SAs. Ecotoxicity predictions indicated that most intermediates of SAs exhibited lower acute and chronic toxicity, especially acute toxicity, than the parent compounds. ENVIRONMENTAL IMPLICATION: Assisted wet deposition to localize the active phase metal on the carrier surface allows easy target formation of single-atom cobalt catalysts (SA-Co-PCN), which could boost PMS to a 1O2-dominated system for efficient oxidation of typical micropollutants. The degradation behavior and ecotoxicology of sulfonamides in the SA-Co-PCN/PMS system were investigated in depth, revealing that most intermediates of sulfonamides exhibited lower acute and chronic toxicity, especially acute toxicity, than the parent compounds. This work provides a strategy for the development of facilely prepared single-atom catalysts and contributes to the development and application potential of PMS advanced oxidation technology for water pollution control.
Collapse
Affiliation(s)
- Miao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yilei Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chencheng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
24
|
Wu S, Yang Z, Zhou Z, Li X, Lin Y, Cheng JJ, Yang C. Catalytic activity and reaction mechanisms of single-atom metals anchored on nitrogen-doped carbons for peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132133. [PMID: 37499492 DOI: 10.1016/j.jhazmat.2023.132133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/02/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Single-atom catalysts have attracted tremendous interests in peroxymonosulfate (PMS)-based advanced oxidation processes due to their maximum atom utilization and high reactivity, however the role of nitrogen-coordinated metal (MNx) sites with different metal centers remain blurred. Herein, a series of single-atom metals anchored on nitrogen-doped carbons (denoted as M-N/C, M = Fe, Co, Cu, and Mn) using zeolitic imidazolate frameworks as precursors are constructed for PMS activation. Their catalytic activity order follows Fe > Co > undoped N/C > Cu > Mn, especially the degradation rates of the eight model pollutants for Fe-N/C and Co-N/C are 2.5-22.4 and 1.5-19.5 times higher than those for undoped N/C, respectively. Moreover, the nature of catalytic metal center can govern the degradation behaviors in the coexisting water constituents. Experimental and theoretical results reveal that singlet oxygen (1O2) is the main oxidant responsible for pollutant degradation and its evolution path over FeN4 or CoN4 sites (PMS→OH*→*O→1O2) is elucidated, between which FeN4 with lower energy barrier is more conducive to 1O2 generation. This study can not only provide guidance for the development of highly active atomic M-N/C catalysts, but also lead to a better molecular-level understanding of PMS activation mechanism over MN4 sites.
Collapse
Affiliation(s)
- Shaohua Wu
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Zhongwen Yang
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ziyang Zhou
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jay J Cheng
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| |
Collapse
|
25
|
Xiang T, Liang Y, Zeng Y, Deng J, Yuan J, Xiong W, Song B, Zhou C, Yang Y. Transition Metal Single-Atom Catalysts for the Electrocatalytic Nitrate Reduction: Mechanism, Synthesis, Characterization, Application, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303732. [PMID: 37300329 DOI: 10.1002/smll.202303732] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Excessive accumulation of nitrate in the environment will affect human health. To combat nitrate pollution, chemical, biological, and physical technologies have been developed recently. The researcher favors electrocatalytic reduction nitrate reaction (NO3 RR) because of the low post-treatment cost and simple treatment conditions. Single-atom catalysts (SACs) offer great activity, exceptional selectivity, and enhanced stability in the field of NO3 RR because of their high atomic usage and distinctive structural characteristics. Recently, efficient transition metal-based SACs (TM-SACs) have emerged as promising candidates for NO3 RR. However, the real active sites of TM-SACs applied to NO3 RR and the key factors controlling catalytic performance in the reaction process remain ambiguous. Further understanding of the catalytic mechanism of TM-SACs applied to NO3 RR is of practical significance for exploring the design of stable and efficient SACs. In this review, from experimental and theoretical studies, the reaction mechanism, rate-determining steps, and essential variables affecting activity and selectivity are examined. The performance of SACs in terms of NO3 RR, characterization, and synthesis is then discussed. In order to promote and comprehend NO3 RR on TM-SACs, the design of TM-SACs is finally highlighted, together with the current problems, their remedies, and the way forward.
Collapse
Affiliation(s)
- Tianyi Xiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuntao Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jili Yuan
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, Jiangxi Province, 330013, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
26
|
Ma W, Jing C, Wu P, Li W. Understanding the selection of catalytic pathway on graphene-supported nitrogen coordinated Ru-atom by ab initio molecular dynamics simulation. J Mol Model 2023; 29:212. [PMID: 37322382 DOI: 10.1007/s00894-023-05620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
CONTEXT In the paper, the ORR/OER on graphene-supported nitrogen coordinated Ru-atom (Ru-N-C) is simulated. We discuss nitrogen coordination influences electronic properties, adsorption energies, and catalytic activity in a single-atom Ru active site. The over potentials on Ru-N-C are 1.12 eV/1.00 eV for ORR/OER. We calculate Gibbs-free energy (ΔG) for every reaction step in ORR/OER process. In order to gain a deeper understanding of the catalytic process on the surface of single atom catalysts, the ab initio molecular dynamics (AIMD) simulations show that Ru-N-C has a structural stability at 300 K and that ORR/OER on Ru-N-C can occur along a typical four-electron process of reaction. AIMD simulations of catalytic processes provide detailed information about atom interactions. METHODS In this paper, we use density functional theory (DFT) with PBE functional to study the electronic properties and adsorption properties of graphene-supported nitrogen coordinated Ru-atom (Ru-N-C) Gibbs-free energy and Gibbs-free energy for very reaction step. The structural optimization and all the calculations are carried out by Dmol3 package, adopting the PNT basis set and DFT semicore pseudopotential. Ab initio molecular dynamics simulations (AIMD) were run for 10 ps. The canonical (NVT) ensemble, massive GGM thermostat, and a temperature of 300 K are taken into account. The functional of B3LYP and the DNP basis set are chosen for AIMD.
Collapse
Affiliation(s)
- Wenqiang Ma
- School of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, Henan, People's Republic of China.
| | - Cuiyu Jing
- School of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, Henan, People's Republic of China
| | - Ping Wu
- Aircraft Strength Research Institute of China, Xi'an, 710065, People's Republic of China
| | - Weiyin Li
- School of Electrical and Information Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China
| |
Collapse
|
27
|
Zhang J, Tang X, Hong Y, Chen G, Chen Y, Zhang L, Gao W, Zhou Y, Sun B. Carbon-based single-atom catalysts in advanced oxidation reactions for water remediation: From materials to reaction pathways. ECO-ENVIRONMENT & HEALTH 2023; 2:47-60. [PMID: 38075290 PMCID: PMC10702890 DOI: 10.1016/j.eehl.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 01/01/2024]
Abstract
Single-atom catalysts (SACs) have been widely recognized as state-of-the-art catalysts in environment remediation because of their exceptional performance, 100% metal atomic utilization, almost no secondary pollution, and robust structures. Most recently, the activation of persulfate with carbon-based SACs in advanced oxidation processes (AOPs) raises tremendous interest in the degradation of emerging contaminants in wastewater, owning to its efficient and versatile reactive oxidant species (ROS) generation. However, the comprehensive and critical review unraveling the underlying relationship between structures of carbon-based SACs and the corresponding generated ROS is still rare. Herein, we systematically summarize the fundamental understandings and intrinsic mechanisms between single metal atom active sites and produced ROS during AOPs. The types of emerging contaminants are firstly elaborated, presenting the prior pollutants that need to be degraded. Then, the preparation and characterization methods of carbon-based SACs are overviewed. The underlying material structure-ROS type relationship in persulfate-based AOPs is discussed in depth to expound the catalytic mechanisms. Finally, we briefly conclude the current development of carbon-based SACs in AOPs and propose the prospects for rational design and synthesis of carbon-based SACs with on-demand catalytic performances in AOPs in future research.
Collapse
Affiliation(s)
- Junjie Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xu Tang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yongjia Hong
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guanyu Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yong Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Li Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wenran Gao
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Zhou
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
28
|
Li CF, Pan WG, Zhang ZR, Wu T, Guo RT. Recent Progress of Single-Atom Photocatalysts Applied in Energy Conversion and Environmental Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300460. [PMID: 36855324 DOI: 10.1002/smll.202300460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Photocatalysis driven by solar energy is a feasible strategy to alleviate energy crises and environmental problems. In recent years, significant progress has been made in developing advanced photocatalysts for efficient solar-to-chemical energy conversion. Single-atom catalysts have the advantages of highly dispersed active sites, maximum atomic utilization, unique coordination environment, and electronic structure, which have become a research hotspot in heterogeneous photocatalysis. This paper introduces the potential supports, preparation, and characterization methods of single-atom photocatalysts in detail. Subsequently, the fascinating effects of single-atom photocatalysts on three critical steps of photocatalysis (the absorption of incident light to produce electron-hole pairs, carrier separation and migration, and interface reactions) are analyzed. At the same time, the applications of single-atom photocatalysts in energy conversion and environmental protection (CO2 reduction, water splitting, N2 fixation, organic macromolecule reforming, air pollutant removal, and water pollutant degradation) are systematically summarized. Finally, the opportunities and challenges of single-atom catalysts in heterogeneous photocatalysis are discussed. It is hoped that this work can provide insights into the design, synthesis, and application of single-atom photocatalysts and promote the development of high-performance photocatalytic systems.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| |
Collapse
|
29
|
Ramanathan S, Kasemchainan J, Chuang HC, Sobral AJFN, Poompradub S. Rhodamine B dye degradation using used face masks-derived carbon coupled with peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121386. [PMID: 36868547 DOI: 10.1016/j.envpol.2023.121386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Catalytic carbon materials from used face masks (UFM) activated by peroxymonosulfate (PMS) were developed for the degradation of rhodamine B (RhB) dye in aqueous solution. The UFM-derived carbon (UFMC) catalyst had a relatively large surface area as well as active functional groups and promoted the generation of singlet 1O2 and radicals from PMS, giving a high RhB degradation performance (98.1% after 3 h) in the presence of 3 mM PMS. The UFMC could degrade only 13.7% at a minimal RhB dose of 10-5 M. The principal reactive oxygen species of sulphate (SO4•), hydroxyl radicals (•OH), and singlet 1O2 were discovered using electron paramagnetic resonance and radical scavenger studies. Finally, a toxicological plant and bacterial study was performed to demonstrate the potential non-toxicity of the degraded RhB water sample.
Collapse
Affiliation(s)
- Subramaninan Ramanathan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jitti Kasemchainan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | | | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulanongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
30
|
Si Q, Wang H, Kuang J, Liu B, Zheng S, Zhao Q, Jia W, Wu Y, Lu H, Wu Q, Yu T, Guo W. Light and nitrogen vacancy-intensified nonradical oxidation of organic contaminant with Mn (III) doped carbon nitride in peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131463. [PMID: 37141778 DOI: 10.1016/j.jhazmat.2023.131463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Recently, Mn-based materials have a great potential for selective removal of organic contaminants with the assistance of oxidants (PMS, H2O2) and the direct oxidation. However, the rapid oxidation of organic pollutants by Mn-based materials in PMS activation still presents a challenge due to the lower conversion of surface Mn (III)/Mn (IV) and higher reactive energy barrier for reactive intermediates. Here, we constructed Mn (III) and nitrogen vacancies (Nv) modified graphite carbon nitride (MNCN) to break these aforementioned limitations. Through analysis of in-situ spectra and various experiments, a novel mechanism of light-assistance non-radical reaction is clearly elucidated in MNCN/PMS-Light system. Adequate results indicate that Mn (III) only provide a few electrons to decompose Mn (III)-PMS* complex under light irradiation. Thus, the lacking electrons necessarily are supplied from BPA, resulting in its greater removal, then the decomposition of the Mn (III)-PMS* complex and light synergism form the surface Mn (IV) species. Above Mn-PMS complex and surface Mn (IV) species lead to the BPA oxidation in MNCN/PMS-Light system without the involvement of sulfate (SO4• ̶) and hydroxyl radicals (•OH). The study provides a new understanding for accelerating non-radical reaction in light/PMS system for the selective removal of contaminant.
Collapse
Affiliation(s)
- Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Junyan Kuang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Shanshan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Hao Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Tao Yu
- Tianjin Univ, Sch Chem Eng & Technol, Tianjin 300350, People's Republic of China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China.
| |
Collapse
|
31
|
Ben Ayed S, Mansour L, Vaiano V, Halim Harrath A, Ayari F, Rizzo L. Magnetic Fe3O4-natural iron ore/calcium alginate beads as heterogeneous catalyst for Novacron blue dye degradation in water by (photo)Fenton process. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Hasija V, Singh P, Thakur S, Nguyen VH, Van Le Q, Ahamad T, Alshehri SM, Raizada P, Matsagar BM, Wu KCW. O and S co-doping induced N-vacancy in graphitic carbon nitride towards photocatalytic peroxymonosulfate activation for sulfamethoxazole degradation. CHEMOSPHERE 2023; 320:138015. [PMID: 36746247 DOI: 10.1016/j.chemosphere.2023.138015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Doping-induced vacancy engineering of graphitic carbon nitride (GCN) is beneficial for bandgap modulation, efficient electronic excitation, and facilitated charge carrier migration. In this study, synthesis of oxygen and sulphur co-doped induced N vacancies (OSGCN) by the hydrothermal method was performed to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) antibiotic degradation and H2 production. The results from experimental and DFT simulation studies validate the synergistic effects of co-dopants and N-vacancies, i.e., bandgap lowering, electron-hole pairs separation, and high solar energy utilization. The substitution of sp2 N atom by O and S co-dopants causes strong delocalization of HOMO-LUMO distribution, enhancing carrier mobility, increasing reactive sites, and facilitating charge-carrier separation. Remarkably, OSGCN/PMS photocatalytic system achieved 99.4% SMX degradation efficiency and a high H2 generation rate of 548.23 μ mol g-1 h-1 within 60 min and 36 h, respectively under visible light irradiations. The SMX degradation kinetics was pseudo-first-order with retained recycling efficiency up to 4 catalytic cycles. The results of EPR and chemical scavenging experiments revealed the redox action of reactive oxidative species, wherein 1O2 was the dominant reactive species in SMX degradation. The identification of formed intermediates and the SMX stepwise degradation pathway was investigated via LC-MS analysis and DFT studies, respectively. The results from this work anticipated deepening the understanding of PMS activation by substitutional co-doping favoring N-vacancy formation in GCN lattice for improved photocatalytic activity.
Collapse
Affiliation(s)
- Vasudha Hasija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Quyet Van Le
- Faculty of Department of Materials Science and Engineering, Korea University, 145, Anamro Seongbuk-gu, Seoul, 02841, South Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia.
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
33
|
Highly Efficient Copper Doping LaFeO3 Perovskite for Bisphenol A Removal by Activating Peroxymonosulfate. Catalysts 2023. [DOI: 10.3390/catal13030575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
A series of copper doping LaFeO3 perovskite (LaCuxFe1−xO3, LCFO, x = 0.1, 0.4, 0.5, 0.6, 0.9) are successfully synthesized by the sol-gel method under mild conditions. In this study, it is applied for the activation of peroxymonosulfate (PMS) for bisphenol A (BPA) removal. More than 92.6% of BPA was degraded within 30 min at 0.7 g/L of LCFO and 10.0 mM of PMS over a wide pH range with limited leaching of copper and iron ions. The physical–chemical properties of the catalysts were demonstrated by using X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Furthermore, the effects of catalyst dosage, PMS concentration, initial pH value, and inorganic anions on the LCFO/PMS system were fully investigated. Quenching experiments were performed to verify the formation of reactive oxidant species, which showed that the radical reaction and mechanisms play a great role in the catalytic degradation of BPA. The perovskite LCFO is considered a stable, easy to synthesize, and efficient catalyst for the activation of PMS for wastewater treatment.
Collapse
|
34
|
Wang J, Yuan M, Cao N, Zhu J, Ji J, Liu D, Gao R, Pang S, Ma Y. In situ boron-doped cellulose-based biochar for effective removal of neonicotinoids: Adsorption mechanism and safety evaluation. Int J Biol Macromol 2023; 237:124186. [PMID: 36990401 DOI: 10.1016/j.ijbiomac.2023.124186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Biochar materials have been widely employed for adsorption of pollutants, which necessitates further consideration of their efficiency and safety in environmental remediation. In this study, a porous biochar (AC) was prepared through the combination of hydrothermal carbonization and in situ boron doping activation to effectively adsorb neonicotinoids. The adsorption process was shown to be a spontaneous endothermic physical adsorption process, where the predominant interaction forces between the acetamiprid and AC were electrostatic and hydrophobic interactions. The maximum adsorption capacity was 227.8 mg g-1for acetamiprid and the safety of AC was verified by simulating the situation where the aquatic organism (D. magna) was exposed to the combined system (AC & neonicotinoids). Interestingly, AC was observed to reduce the acute toxicity of neonicotinoids owing to the reduced bioavailability of acetamiprid in D. magna and the newly generated expression of cytochrome p450. Thus, it enhanced the metabolism and detoxification response in D. magna, which reducing the biological toxicity of acetamiprid. This study not only demonstrates the potential application of AC from a safety perspective, but also provides insight into the combined toxicity caused by biochar after adsorption of pollutants at the genomic level, which fills the gap in related research.
Collapse
|
35
|
Wang R, He Z, Wang W, Bu J, Wang D, Zeng G, Zhou C, Xiong W, Yang Y. Rational design of cobalt sulfide anchored on nitrogen-doped carbon derived from cyanobacteria waste enables efficient activation of peroxymonosulfate for organic pollutants oxidation. CHEMOSPHERE 2023; 314:137733. [PMID: 36603681 DOI: 10.1016/j.chemosphere.2022.137733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
With the increasing of eutrophication in water body, algae blooms have become one of the global environmental problems. The cyanobacteria waste has placed a severe burden on the environment and transforming cyanobacteria into functional materials may be a wise approach. Herein, cobaltous sulfide/nitrogen-doped biochar (N-BC/CoSx) composite was synthesized by pyrolysis of cyanobacteria waste. The N-BC/CoSx showed excellent performance in peroxymonosulfate (PMS) activation for enrofloxacin (ENR) degradation, which could remove more than 90% ENR within 60 min. The influencing factors of pH and catalyst dosage on ENR removal efficiency were studied. The N-BC/CoSx showed good recyclability in the cycle runs. The radicals (O2•-, OH andSO4•-) and the non-radical species (charge transfer and 1O2) were generated in the ENR degradation. The cycle of Co(II)/Co(III) m ay contribute to the radical generation process. This work proved that metal sulfide modified cyanobacteria biochar has a specific application value in water pollution control and provides a new method for resource utilization of cyanobacteria.
Collapse
Affiliation(s)
- Ronghan Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zixiang He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, 330013, Jiangxi Province, PR China.
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
36
|
Huang Y, Chen Y, Li X, Zhu K, Jiang Z, Yuan H, Yan K. One-step solvothermal construction of coral reef-like FeS2/biochar to activate peroxymonosulfate for efficient organic pollutant removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Xue X, Liao W, Liu D, Zhang X, Huang Y. MgO/Co3O4 composite activated peroxymonosulfate for levofloxacin degradation: Role of surface hydroxyl and oxygen vacancies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|