1
|
Li X, Wang X, He D, Xu N, Li K, Liu Q, Zhang Y. Dual-network sodium alginate-chitosan aerogel loaded with UiO-66 for efficient removal of organic pollutants in water: Preparation and mechanism study. Int J Biol Macromol 2025; 307:142171. [PMID: 40101833 DOI: 10.1016/j.ijbiomac.2025.142171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Organic pollutants in wastewater pose severe threats to human health and ecosystems. This study used maleic anhydride to adjust chitosan's (CA) surface charge, enhancing solubility and forming a homogenous solution with sodium alginate (SA). Glutaraldehyde cross-linking created a water-stable double network sodium alginate/chitosan composite aerogel (SCCA). UiO-66 was in-situ loaded to produce UiO-66@SCCA, a high-specific-surface-area biopolymer for removing pollutants like ibuprofen (IBP) and methyl orange (MO). UiO-66@SCCA had a surface area of 302.65 m2/g and a UiO-66 loading rate of 48.77 %. Factors affecting adsorption efficiency (time, pH, adsorbent, coexisting ions) were studied. Adsorption followed pseudo-second-order kinetics and Langmuir isotherms, with maximum capacities of 67.39 mg/g for IBP and 45.22 mg/g for MO. Efficiency all remained above 90 % after five cycles. Mechanisms included hydrogen bonding, pore filling, electrostatic interactions, and Electron Donor - Acceptor (EDA) interactions. UiO-66@SCCA shows significant potential for pollutant removal.
Collapse
Affiliation(s)
- Xin Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xin Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Dongjie He
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Nuo Xu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ke Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qun Liu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Yu Zhang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
2
|
Sun L, Zhang J, Qin Y, Guo W, Du M, Pan G, Chang J, Fu Q, Zhang K. Green preparation of highly transparent nano-NH 2-UiO(Zr)-66/cellulose composite films with high-strength, superior flame retardant and UV to high-energy blue light shielding performance. Int J Biol Macromol 2025; 300:140141. [PMID: 39863233 DOI: 10.1016/j.ijbiomac.2025.140141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH2-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH2-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.2 % to 32.9 %). The film self-extinguish quickly once removed from the flame, demonstrating a prominent flame resistance. Compared to the original film, the modified films demonstrate a significant reduction in the peak heat release rate and total heat released, decreasing from 186.6 to 26.8 W/g and 19.7 to 1.2 kJ/g, respectively. Encouragingly, the incorporation of nano-NH2-UiO(Zr)-66 enabled films to achieve excellent UV to high-energy blue light (HEBL) shielding competence (90.8-100 %, 99.6-100 %, and 60.9-89 % for UVB, UVA and HEBL) meanwhile retaining low haze (1.9-2.6 %) and high transmittance (86.2-90.9 %). Furthermore, the incorporation of nano-NH2-UiO(Zr)-66 was observed to enhance the mechanical strength. Overall, this film presents a promising alternative to conventional plastics used in various applications, including electronic devices and packaging materials.
Collapse
Affiliation(s)
- Lijian Sun
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China; Mudanjiang Hengfeng Paper Co., Ltd, No.11 Hengfeng Road, Yangming District, Mudanjiang 157013, PR China.
| | - Jingyuan Zhang
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Ying Qin
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Weimin Guo
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Meiling Du
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Gaofeng Pan
- Mudanjiang Hengfeng Paper Co., Ltd, No.11 Hengfeng Road, Yangming District, Mudanjiang 157013, PR China
| | - Jiang Chang
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China
| | - Qiu Fu
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China.
| | - Kuo Zhang
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China.
| |
Collapse
|
3
|
Huang W, Zhang Z, Xu J, Cui H, Tang K, Crawshaw D, Wu J, Zhang X, Tang L, Liu N. Highly Selective CO 2 Conversion to CH 4 by a N-Doped HTiNbO 5/NH 2-UiO-66 Photocatalyst without a Sacrificial Electron Donor. JACS AU 2025; 5:1184-1195. [PMID: 40151234 PMCID: PMC11937973 DOI: 10.1021/jacsau.4c00998] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 03/29/2025]
Abstract
Photocatalytic reduction of CO2 to value-added chemicals is a promising technology for reducing atmospheric CO2, but selectively producing a specific product still remains a great challenge. In this study, a Z-scheme heterojunction, N-doped HTiNbO5/NH2-UiO-66(Zr) (referred to as NH-NU), is developed to integrate the advantages of semiconductor photocatalysts and porous CO2 adsorbents for CO2-to-CH4 conversion. The NH-NU Z-scheme heterojunctions are fabricated via a simple one-pot solvothermal method, enabling the formation of a tight and uniform interface between the two phases, thereby facilitating the separation and transfer of the photoinduced charge carriers, as confirmed by TEM, EPR, electrochemical studies, and work functions. As a result, the as-prepared photocatalyst demonstrates a significant increase in selectivity for CH4 production through CO2 photoreduction, achieving a 10-fold enhancement compared to that of the pristine MOF, NH2-UiO-66. Moreover, there is no obvious decrease in the photocatalytic activity for CH4 production across four consecutive cycles. In situ FT-IR spectroscopy and DFT calculations reveal that charge-enriched N-doped NH-NU-3 composites stabilize various C1 intermediates in multistep elementary reactions, leading to superior selectivity in the CO2-to-CH4 conversion process. This work establishes that efficient and selective heterogeneous catalytic processes can be achieved through the stabilization of reaction intermediates by designing suitable Z-scheme heterojunctions.
Collapse
Affiliation(s)
- Wenyuan Huang
- School
of Environment and Architecture, University
of Shanghai for Science and Technology, Shanghai 200093, China
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| | - Ziyi Zhang
- School
of Environment and Architecture, University
of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingwen Xu
- School
of Environment and Architecture, University
of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haopeng Cui
- School
of Environment and Architecture, University
of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kexin Tang
- School
of Environment and Architecture, University
of Shanghai for Science and Technology, Shanghai 200093, China
| | - Danielle Crawshaw
- Department
of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
| | - Jinxing Wu
- School
of Environment and Architecture, University
of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaodong Zhang
- School
of Environment and Architecture, University
of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai
Noncarbon Energy Conversion and Utilization Institute, Shanghai 200240, P. R. China
| | - Liang Tang
- Key
Laboratory of Organic Compound Pollution Control Engineering (MOE),
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Ning Liu
- School
of Environment and Architecture, University
of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai
Noncarbon Energy Conversion and Utilization Institute, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Chi L, Du M. Enhanced visible-light-driven photocatalytic antibacterial activity by in-situ synthesized NH 2-MIL-101(Al)/AgI heterojunction and mechanism insight. ENVIRONMENTAL RESEARCH 2025; 267:120733. [PMID: 39736436 DOI: 10.1016/j.envres.2024.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025]
Abstract
Photocatalytic antibacterial technology has the potential to prevent the formation of biofilms and microbial corrosion of metals by rapidly eliminating microorganisms in a short period. In this study, novel NH2-MIL-101(Al)/AgI is in-situ synthesized at ambient temperature, revealing enhanced photocatalytic antibacterial activity and cyclic stability in seawater. A low dosage of 0.1 mg mL-1 NH2-MIL-101(Al)/AgI sterilizes almost all Staphylococcus aureus within 60 min, and all Pseudomonas aeruginosa within 20 min upon visible light irradiation. Microscopic characterizations, photoelectrochemical experiments, and finite element method simulation indicate that the uniform dispersion of AgI nanoparticles and the formation of NH2-MIL-101(Al)/AgI Z-type heterojunction enhance the visible light absorption of NH2-MIL-101(Al), suppress the recombination of the photogenerated carriers, and improve the transfer efficiency. The photocatalytic antibacterial mechanism is also proposed based on the generation of h+, e⁻, and reactive oxygen species (especially 1O2) which induced the rupture of cell structures. Hence, the NH2-MIL-101(Al)-related material is introduced for photocatalytic antibacterial applications and offers insights for protecting metals from microbial corrosion in marine environments.
Collapse
Affiliation(s)
- Lifeng Chi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Min Du
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
5
|
Zhu H, Zhu H, Tian Y, Liang X, Yang X. The design and preparation of PDI modified NH 2-MIL-101(Fe) for high efficiency removal of dimethoate in peroxymonosulfate system: Performance, mechanism, pathway and toxicity assessment. ENVIRONMENTAL RESEARCH 2025; 266:120534. [PMID: 39638022 DOI: 10.1016/j.envres.2024.120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of organophosphorus pesticide dimethoate (DMT) in agriculture poses a threat to human health. In this work, the perylene tetracarboxylic diimide (PDI) modified NH2-MIL-101(Fe) (PDI/MIL) with strong covalent bond C(=O)-N were designed and prepared by a step solvothermal method. The synergistic effect between photocatalytic and peroxymonosulfate (PMS) activation for the DMT elimination over PDI/MIL was gained. Interestingly, PDI/MIL(1:10)/PMS showed boosting degradation efficiency (95.6%) for DMT under 18 min simulated sunlight irradiation. Its apparent reaction rate constant was 24.7 times higher than that of NH2-MIL-101(Fe)/PMS. Moreover, its reusability, stability and mineralization ability were evaluated, and a remarkable mineralization rate of 95.3% with 90 min was achieved. The enhanced activity were attributed to the formation of amide bond that exhibited superior charger transport ability and amount of produced active species. Combined the results obtained from the HPLC-MS and molecular structure characteristics of DMT analyzed by Fukui index, the degradation pathways were proposed. The toxicity of intermediates were predicted by Ecological Structure Activity Relationship (ECOSAR), Toxicity Estimation Software Tool (T.E.S.T.), and Vibrio fischeri experiments. Our work provided deep insights into the mechanisms of DMT degradation via photocatalysis-activated PMS over organic semiconductor modified metal organic frameworks.
Collapse
Affiliation(s)
- Huixia Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Huayi Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yu Tian
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xiaoxia Liang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xia Yang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
6
|
Bai J, Wang C, Zhang X, Li X, Mao Y, Liang W, Zhang C, Xiao X, Shen J. Revealing multi-level shortrange migration of electrons on full-spectrum response e-LDH/t-BiOCl/Bi 2S 3 and their essential role in the detoxification of Cr(VI) and refractory organic pollutants. ENVIRONMENTAL RESEARCH 2025; 266:120479. [PMID: 39617156 DOI: 10.1016/j.envres.2024.120479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
The toxic dyeing wastewater containing both carcinogenic Cr(VI) and refractory dyes poses serious threats to ecological safety and human health. Herein, a novel composite photocatalytic material e-LDH/t-BiOCl/Bi2S3 with an ultrathin sandwich structure constructed achieves removal rate constants of 0.044 and 0.019 min-1 for Cr(VI) and reactive red 2 by adsorption-photocatalysis synergistic mechanism in full-spectrum illumination. This structure employs the interface conditions and built-in electric field to form multilevel short-range charge migration channel, achieving the targeted reduction and oxidation of Cr(VI) and azoxy dyes by electrons (e-) and holes (h+). Besides facilitating the reduction of Cr(VI), e- can also enhance the effective utilization of h+ and mediate the formation of other reactive oxygen species that target RR2 degradation. The degradation mechanism, pathway, and biological toxicity of RR2 single and Cr(VI)/RR2 coexistence reaction system were discussed by DFT calculation, LC-MS characterization, and T.E.S.T. evaluation. Moreover, we further investigated the photocatalytic activity and cost-effectiveness of the e-LDH/t-BiOCl/Bi2S3 system under continuous flow and real water settings, and determined the primary water quality parameters that influence photocatalytic performance. This work establishes a new concept for the rational design of robust ternary heterostructure photocatalysts with desirable morphology and competitive performance for photocatalytic applications.
Collapse
Affiliation(s)
- Jing Bai
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, China.
| | - Xuhao Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Yajia Mao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Liang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Cong Zhang
- Communications Construction Company Second Harbor Consultants Co., Ltd., Wuhan 430060, China
| | - Xinlu Xiao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Shen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Cheng B, Wang R, Wang X, Wang N, Ouyang XK. Heterojunction functionalized sodium alginate/carboxylated cellulose nanocrystals film enhancing sterilization performance for wound healing. Carbohydr Polym 2024; 345:122550. [PMID: 39227117 DOI: 10.1016/j.carbpol.2024.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024]
Abstract
In the realm of natural polysaccharides, hydrogen bonding is a prevalent feature, yet its role in enhancing photocatalytic antimicrobial properties has been underexplored. In this paper, heterojunctions formed by graphene oxide (GO) and ZIF-8 were locked in sodium alginate/ carboxylated cellulose nanocrystals via hydrogen bonding networks, designated as SCGZ. The SCGZ films exhibit superior photocatalytic performance compared to either ZIF-8 or heterojunctions. This enhancement is primarily due to two key factors: firstly, the hydrogen bonding network significantly enhances the transfer of protons and holes, thereby improving the separation efficiency of photo-generated carriers; secondly, the hydrogen bonding between the layers facilitates a more efficient charge transfer, which expedites the movement of electrons from ZIF-8 to GO upon illumination. In vitro studies demonstrated that the SCGZ films possess remarkable antibacterial capabilities, achieving 99.75 % and 99.61 % inhibition rates against S. aureus and E. coli, respectively. In vivo animal experiments have shown that SCGZ films can significantly accelerate the healing process of damaged tissues, with a healing efficiency of up to 90.5 %. This research provides additional insights into the development of natural polysaccharide-based multi‑hydrogen bonded macromolecules with enhanced photocatalytic properties.
Collapse
Affiliation(s)
- Baijie Cheng
- School of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Ruolin Wang
- School of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xinhao Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
8
|
Lan M, Dong X, Zheng N, Gou J, Wang Y. Controllable fabrication of Sb xBi 2-xS 3 solid solution photocatalysts with superior elimination for Cr(VI). J Colloid Interface Sci 2024; 671:790-799. [PMID: 38833911 DOI: 10.1016/j.jcis.2024.05.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
The development of environmentally friendly and cost-effective photocatalysts is of vital significance for the effective removal of heavy metal contamination in water, but it is still a crucial challenge. Herein, the novel SbxBi2-xS3 solid solution photocatalysts with a certain amount of sulfur vacancy were prepared by adjusting the molar ratio of Sb to Bi through a simple hydrothermal strategy, and was applied to the effective photocatalytic reduction of hexavalent chromium (Cr(VI)). Sb1.75Bi0.25S3 with optimized ratio has superior reduction performance of Cr(VI), and the photocatalytic efficiency of Cr(VI) can achieve 91.9 % within 1 h of visible light illumination. The remarkable catalytic efficiency is due to the more applicable band structure of the solid solution photocatalyst, which is conducive for the photocatalytic reaction. Moreover, the substitution of Bi causes the crystal distortion of Sb2S3 and induce the generation of sulfur defects, which can effectively capture photoelectrons, accelerate the carriers separation, and improve the reduction performance. This study provides a hopeful photocatalyst for wastewater purification and promotes the exploration of solid solution photocatalyst in water environment remediation.
Collapse
Affiliation(s)
- Meng Lan
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Nan Zheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jialin Gou
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Wang Q, Zhang C, Huo R, Zheng S, Liu A, Hui Y, Ji Y, Jin Q, Zhang Z, Tu Y, Zhu H, Du H. Novel Ag@NH 2-UiO-66(Zr) photocatalyst with controllable charge transfer pathways for efficient Cr(VI) remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122046. [PMID: 39094410 DOI: 10.1016/j.jenvman.2024.122046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Rational fabrication of core-shell photocatalysts to hamper the charge recombination is extraordinarily essential to enhance photocatalytic activity. In this work, core-shell Ag@NH2-UiO-66 (Ag@NU) Schottky heterojunctions with low Ag content (1 wt%) were constructed by a two-step solvothermal method and adopted for Cr(VI) reduction under LED light. Typically, the one with the Ag: NH2-UiO-66 mass ratio (1 : 100) led to 100% Cr(VI) removal within 1 h, superior to bare NH2-UiO-66 and Ag/NH2-UiO-66 (Ag was directly decorated on NH2-UiO-66 surface). The enhanced photocatalytic activity was related to the migration of the electrons on the CB of NH2-UiO-66 to Ag NPs through a Schottky barrier, and thus the undesired charge carriers recombination was avoided. This result was also evidenced by Density functional theory (DFT) calculations. The computational simulations indicate that the introduction of Ag effectively narrowed the band gap of NH2-UiO-66, facilitating the transfer of photo-generated electrons, expanding the light absorption area, and significantly enhancing photocatalytic efficiency. Most importantly, such a core-shell structure can inhibit the formation of •O2-, letting the direct Cr(VI) reduction by photo-excited e-. In addition, this structure can also protect Ag from being oxidized by O2. Ten cyclic tests evidenced the Ag@NU had excellent chemical and structural stability. This research offers a novel strategy for regulating the Cr(VI) reduction by establishing core-shell photocatalytic materials.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chao Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Rubin Huo
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu, 225009, China
| | - Shuzhen Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Aoxiang Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuxin Hui
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yun Ji
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qin Jin
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu, 225009, China
| | - Zhe Zhang
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu, 225009, China
| | - Yusong Tu
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu, 225009, China
| | - Huayue Zhu
- Insititute of Environmental Engineering Technology, Taizhou University, Taizhou, 318000, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Deng Y, Che Q, Li Y, Luo J, Gao X, He Y, Liu Y, Liu T, Zhao X, Hu X, Zhao W. Non-radical activation of persulfate with Bi 2O 3/BiO 1.3I 0.4 for efficient degradation of propranolol under visible light. J Environ Sci (China) 2024; 142:57-68. [PMID: 38527896 DOI: 10.1016/j.jes.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 03/27/2024]
Abstract
Non-radical activation of persulfate (PS) by photocatalysts is an effective approach for removing organic pollutants from aqueous environments. In this study, a novel Bi2O3/BiO1.3I0.4 heterojunction was synthesized using a facile solvothermal approach and used for the first time for non-radical activation of PS to degrade propranolol (PRO) in the presence of visible light. The findings found that the degradation rate of PRO in the Bi2O3/BiO1.3I0.4/PS system was significantly increased from 19% to more than 90% within 90 min compared to the Bi2O3/BiO1.3I0.4 system. This indicated that the composite system exerted an excellent synergistic effect between the photocatalyst and the persulfate-based oxygenation. Quenching tests and electron paramagnetic resonance demonstrated that the non-radical pathway with singlet oxygen as the active species played a major role in the photocatalytic process. The existence of photo-generated holes during the reaction could also be directly involved in the oxidation of pollutants. Meanwhile, a possible PRO degradation pathway was also proposed. Furthermore, the impacts of pH, humic acid and common anions on the PRO degradation by the Bi2O3/BiO1.3I0.4/PS were explored, and the system's stability and reusability were also studied. This study exhibits a highly productive catalyst for PS activation via a non-radical pathway and provides a new idea for the degradation of PRO.
Collapse
Affiliation(s)
- Yuehua Deng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Qianqian Che
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yani Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiating Luo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yiling Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tong Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiaolong Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaobin Hu
- School of Life Science, Huzhou University, Huzhou 313000, China
| | - Wei Zhao
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| |
Collapse
|
11
|
Liu Z, Wang J, Dong S, Wang L, Li L, Cao Z, Zhang Y, Cheng L, Yang J. Ultrasonic controllable synthesis of sulfur-functionalized metal-organic frameworks (S-MOFs) and their application in piezo-photocatalytic rapid reduction of hexavalent chromium (Cr). ULTRASONICS SONOCHEMISTRY 2024; 107:106912. [PMID: 38762940 PMCID: PMC11130732 DOI: 10.1016/j.ultsonch.2024.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The United Nations' Sustainable Development Goals (SDGs) are significant in guiding modern scientific research. In recent years, scholars have paid much attention to MOFs materials as green materials. However, piezo catalysis of MOFs materials has not been widely studied. Piezoelectric materials can convert mechanical energy into electrical energy, while MOFs are effective photocatalysts for removing pollutants. Therefore, it is crucial to design MOFs with piezoelectric properties and photosensitivity. In this study, sulfur-functionalized metal-organic frameworks (S-MOFs) were prepared using organic sulfur-functionalized ligand (H2TDC) ultrasonic synthesis to enhance their piezoelectric properties and visible light absorption. The study demonstrated that the S-MOFs significantly enhanced the reduction of a 10 mg/L solution of hexavalent chromium to 99.4 % within 10 min, using only 15 mg of catalyst. The orbital energy level differences of the elements were analyzed using piezo response force microscopy (PFM) and X-ray photoelectron spectroscopy (XPS). The results showed that MOFs functionalized with sulfur atom ligands have a built-in electric field that facilitates charge separation and migration. This study presents a new approach to enhance the piezoelectric properties of MOFs, which broadens their potential applications in piezo catalysis and piezo-photocatalysis. Additionally, it provides a sustainable method for reducing hexavalent chromium, contributing to the achievement of sustainable development goals, specifically SDG-6, SDG-7, SDG-9, and SDG-12.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Jingjing Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Shanghai Dong
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Liying Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China.
| | - Lu Li
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Zhenzhu Cao
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Yongfeng Zhang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Lin Cheng
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Jucai Yang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| |
Collapse
|
12
|
Wei G, Chen J, Yue Q, Guo C, Qu F, Lin H. The loading of Fe ions on N-doped carbon nanosheets to boost photocatalytic cascade for water disinfection. J Colloid Interface Sci 2024; 664:992-1001. [PMID: 38508034 DOI: 10.1016/j.jcis.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
The pervasive presence of pathogenic bacteria in water environment poses a serious threat to public health. Here, a photocatalytic cascade was developed to reveal great water disinfection. Firstly, N-doped carbon nanosheets (N-CNSs) about 30-50 nm in size were synthesized by a hydrothermal strategy. It revealed wide-spectrum photocatalysis for H2O2 generation via a typical two-step single-electron process. A Fenton agent (Fe ion) was loaded, N-CNSs-Fe can in-situ convert photocatalytic H2O2 into ·OH with high oxidation potential. Moreover, its Fenton active is three times greater than pure Fe2+ owing to electron enrichment from N-CNSs to Fe for Fe3+/Fe2+ cycle. Further investigation displayed that Fe loading also could decrease bad gap and promote charge separation to boost photocatalysis. In addition, N-CNSs-Fe possesses positive surface potential to exhibit strong interaction with negative bacteria, facilitating the capture. Therefore, the nanocomposite can effectively inactivate E. coli with a lethality rate of 99.7 % under stimulated sunlight irradiation. In addition, it also was employed to treat a complex lake water sample, revealing great antibacterial (95.1 %) and dye-decolored (92.3 %) efficiency at the same time. With novel biocompatibility and antibacterial ability, N-CNSs-Fe possessed great potential for water disinfection.
Collapse
Affiliation(s)
- Guoyu Wei
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jiaxin Chen
- College of life sciences and technology, Harbin Normal University, Harbin 150025, China
| | - Qunfeng Yue
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Changhong Guo
- College of life sciences and technology, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
13
|
Bhat BA, Jadon N, Dubey L, Mir SA. Facile Synthesis of a Crystalline Zinc Sulfide/Chitosan Biopolymer Nanocomposite: Characterization and Application for Photocatalytic Degradation of Textile Dyes and Anticancer Activity. ACS OMEGA 2024; 9:24425-24437. [PMID: 38882115 PMCID: PMC11170694 DOI: 10.1021/acsomega.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 06/18/2024]
Abstract
In the present study, we have synthesized a zinc sulfide/chitosan (ZS/CS) nanocomposite by utilizing simple, economical, and environmentally friendly methods. The synthesized nanomaterials were characterized by different analytical techniques such as XRD, FE-SEM, EDS, and FTIR to determine the phase structure, morphology, and elemental composition. FTIR spectroscopy was used to confirm the functional groups of the synthesized zinc sulfide (ZS) nanoparticles and ZS/CS composite. Besides, the optical properties of the as-synthesized nanocomposite was analyzed by a UV-visible spectrophotometer, and the estimated band gap energy is ∼3.03 eV. The photocatalytic efficiency of the synthesized ZS/CS nanocomposite was investigated against two textile dyes, Crystal Violet (CV) and Acid Red-I (AR-I), under UV-visible light irradiation. The nanocomposite showed excellent photocatalytic activity against the dyes, and photodegradation was estimated to be about 93.44 and 90.67% for CV and AR-I, respectively. The nanocomposite was reused for three consecutive cycles. The results revealed that the photocatalyst displayed good reusability during the photocatalytic decomposition and thus is considered a cost-effective and promising photocatalyst in degrading dye pollutants. The kinetic study proved that the pseudo-first-order reaction kinetics was followed by the degradation process. We also examined the anticancer activity of ZS and ZS/CS against human breast and myelogenous leukemia cancer cell lines, namely, MCF-7 and K-562, and the half minimal inhibitory concentrations were found to be less than 50 μg/mL.
Collapse
Affiliation(s)
- Bilal Ahmad Bhat
- School of Studies in Environmental Science (IGAEERE), Jiwaji University, Gwalior 474011, India
| | - Nimisha Jadon
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior 474011, India
| | - Laxmi Dubey
- Department of Botany, SMS, Govt. Model Science College, Gwalior 474009, India
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| |
Collapse
|
14
|
Truong HB, Doan TTL, Hoang NT, Van Tam N, Nguyen MK, Trung LG, Gwag JS, Tran NT. Tungsten-based nanocatalysts with different structures for visible light responsive photocatalytic degradation of bisphenol A. J Environ Sci (China) 2024; 139:569-588. [PMID: 38105077 DOI: 10.1016/j.jes.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Environmental pollution, such as water contamination, is a critical issue that must be absolutely addressed. Here, three different morphologies of tungsten-based photocatalysts (WO3 nanorods, WO3/WS2 nanobricks, WO3/WS2 nanorods) are made using a simple hydrothermal method by changing the solvents (H2O, DMF, aqueous HCl solution). The as-prepared nanocatalysts have excellent thermal stability, large porosity, and high hydrophilicity. The results show all materials have good photocatalytic activity in aqueous media, with WO3/WS2 nanorods (NRs) having the best activity in the photodegradation of bisphenol A (BPA) under visible-light irradiation. This may originate from increased migration of charge carriers and effective prevention of electron‒hole recombination in WO3/WS2 NRs, whereby this photocatalyst is able to generate more reactive •OH and •O2- species, leading to greater photocatalytic activity. About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO3/WS2 NRs and 5.0 mg/L BPA at pH 7.0. Additionally, the optimal conditions (pH, catalyst dosage, initial BPA concentration) for WO3/WS2 NRs are also elaborately investigated. These rod-like heterostructures are expressed as potential catalysts with excellent photostability, efficient reusability, and highly active effectivity in different types of water. In particular, the removal efficiency of BPA by WO3/WS2 NRs reduces by only 1.5% after five recycling runs and even reaches 89.1% in contaminated lake water. This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources, which is advantageous to various applications in environmental remediation.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam, E-mail: (Hai Bang Truong); Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Thu Loan Doan
- The University of Da Nang, University of Science and Technology, 54 Nguyen Luong Bang, Da Nang, Viet Nam
| | - Nguyen Tien Hoang
- The University of Da Nang, University of Science and Education, 459 Ton Duc Thang St., Lien Chieu, Da Nang 550000, Viet Nam
| | - Nguyen Van Tam
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam
| | - Minh Kim Nguyen
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam.
| | - Le Gia Trung
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| |
Collapse
|
15
|
Li J, Duan Y, Wang L, Ma J. Preparation of core-shell structure Ag@TiO 2 plasma photocatalysts and reduction of Cr(VI): Size dependent and LSPR effect. ENVIRONMENTAL RESEARCH 2024; 248:118265. [PMID: 38266898 DOI: 10.1016/j.envres.2024.118265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
The poor light absorption and low carrier separation efficiency of Titanium dioxide (TiO2) limit its further application. The introduction of plasma metal Ag have the potential to solve these drawbacks owing to its plasma resonance effect. Thus core-shell structure Ag@TiO2 plasma photocatalysts was prepared by using facile reduction method in this work. More specifically, Ag@TiO2 composite catalysts with different Ag loading amounts were prepared in the presence of surfactant PVP. Ag@TiO2 demonstrates excellent light absorption performance and photoelectric separation efficiency compared with pure TiO2. As a result, it displays excellent performance of Cr(VI) reduction under visible light. The optimal composite catalysts Ag@TiO2-5P achieves exceptional visible-light-driven photocatalytic Cr(VI) reduction efficiency of 0.01416 min-1 that is 2.29 times greater than pure TiO2. To investigate the role of PVP, we also synthesized Ag@TiO2-5 without PVP. The experimental results show that although Ag@TiO2-5 Cr(VI) reduction performance is superior to pure TiO2, it significantly decreases compared with Ag@TiO2-5P. The results of TEM and optoelectronic testing show that agglomeration of Ag particles leads to a decrease in the photoelectric separation efficiency of Ag@TiO2-5. The smaller Ag particles provide more active sites and demonstrating a stronger overall local surface plasmon resonance (LSPR) effect. DMPO spin-trapping ESR spectra testing indicates that ∙O2- and ∙OH are the main reactive species. This research provides a potential strategy to prepare Ag-based plasma photocatalysts for environment protection.
Collapse
Affiliation(s)
- Jiwen Li
- College of Science and Technology, Hebei Agricultural University, Huanghua 061100, PR China.
| | - Yaqian Duan
- College of Science and Technology, Hebei Agricultural University, Huanghua 061100, PR China
| | - Linlin Wang
- College of Science and Technology, Hebei Agricultural University, Huanghua 061100, PR China
| | - Jingjun Ma
- College of Science and Technology, Hebei Agricultural University, Huanghua 061100, PR China.
| |
Collapse
|
16
|
Hu W, Zhang F, Tan X, Tu Y, Nie S. Antibacterial PVDF Coral-Like Hierarchical Structure Composite Film Fabrication for Self-Cleaning and Radiative Cooling Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19828-19837. [PMID: 38567790 DOI: 10.1021/acsami.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Passive radiative cooling (PRC) is a zero-energy-consumption technology that reflects sunlight and radiates heat to cold outer space. In this work, a porous poly(vinylidene fluoride)-poly(methyl methacrylate) (PVDF-PMMA) composite film is fabricated by decorating zinc-imidazolate metal-organic framework (MOF) (ZIF-8) particles obtained by phase inversion. Due to the competent scattering via the coral-like hierarchical structures and the vibration excitations of specific functional groups, the prepared film exhibits good solar reflectance (92.6%) and intermediate infrared emittance (99.1%), with an average sub-ambient cooling of 10.4 °C under a solar radiation intensity of 0.6 AM1.5. Additionally, poly(vinylidene fluoride) has a low surface energy, while the ZIF-8 particles and coral-like hierarchical structures enhance the surface roughness, endowing the surface with significant superhydrophobicity characterized by a water contact angle (WCA) of 157.5° and a sliding angle (SA) of 2°. These films exhibit excellent antibacterial properties. When the content of ZIF-8 particles in the film is 300 mg·L-1, the antibacterial rate reaches 100% after 1 h of treatment. Thus, the ZIF-8 porous poly(vinylidene fluoride)-poly(methyl methacrylate) composite (ZPPP) film has potential application prospects in areas with high health and environmental requirements, such as cold chain transportation and public spaces.
Collapse
Affiliation(s)
- Weiwei Hu
- College of Science and College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, China Three Gorges University, Hubei, Yichang 443000, China
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Hubei, Yichang 443000, China
| | - Fatao Zhang
- College of Science and College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, China Three Gorges University, Hubei, Yichang 443000, China
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Hubei, Yichang 443000, China
| | - Xinyu Tan
- College of Science and College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, China Three Gorges University, Hubei, Yichang 443000, China
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Hubei, Yichang 443000, China
| | - Yiteng Tu
- State Grid Yichang Electric Power Supply Company, Yichang 443000, China
| | - Shijin Nie
- Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
17
|
Wang Q, Ma W, Qian J, Li N, Zhang C, Deng M, Du H. S-scheme towards interfacial charge transfer between POMs and MOFs for efficient visible-light photocatalytic Cr (VI) reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123707. [PMID: 38447652 DOI: 10.1016/j.envpol.2024.123707] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The establishment of heterojunctions was considered as an exceptional strategy to obtain high-efficiency charge separation and enhanced photocatalytic performance. Herein, a series of FePMo/MIL-53(Fe) (FeM-53) heterojunctions were successfully constructed through in-situ growth of FePMo onto MIL-53(Fe) surface and their photocatalytic capacity were examined by visible-light-induced Cr(VI) reduction. Interestingly, the as-fabricated composites offered various photocatalytic activities controllably relying on the mass ratio of FePMo to MIL-53(Fe). Particularly, the one with the 10% ratio displayed the highest Cr(VI) reduction rate (100%) within 75 min, which was respectively over 4 and 2 folds higher than pure FePMo and MIL-53(Fe). The boosted photoactivity might be ascribed to the establishment of S-scheme heterojunction with suitable band alignment between FePMo and MIL-53(Fe), which broadened the light absorption range and improved charge separation. Further mechanism investigations implied both •O2- and e- were the key reactive species for Cr(VI) removal. Besides, the composite preserved excellent stability after 4 consecutive tests, and performed well in the presence of organic dyes. Such a S-scheme heterojunction may promise for highly efficient environmental mitigation.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wanggang Ma
- Hangzhou Hangda Environmental Protection Engineering Co., Ltd., Hangzhou, Zhejiang, 310018, China
| | - Jianying Qian
- CCTEG Hangzhou Research Institute Co., Ltd., Hangzhou, Zhejiang, 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chao Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Man Deng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
18
|
Ebrahimi A, Haghighi M, Shabani M. Design of novel solar-light-induced KBi 6O 9I/Ag-AgVO 3 nanophotocatalyst with Ag-bridged Z-scheme charge carriers separation and boosted photo-elimination of hospital effluents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123584. [PMID: 38367690 DOI: 10.1016/j.envpol.2024.123584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
In this research, a novel solar-light-induced KBi6O9I/Ag-AgVO3 nanophotocatalyst with an Ag-bridged Z-scheme structure has been designed and synthesized through a sonochemical method to photo-degrade antibiotic hospital contaminants under simulated solar-light irradiation. Synthesized nanophotocatalysts with varying KBi6O9I to Ag-AgVO3 weight ratios underwent N2 Adsorption-Desorption, XRD, TEM, UV-Vis DRS, FESEM and PL analyses. The Ag-bridged Z-scheme-structured KBi6O9I/Ag-AgVO3 (1:1) nanophotocatalyst, demonstrated broad light absorption within the solar-light spectrum and showcased effective photocatalytic efficacy in degrading tetracycline antibiotic (88.3% and 83.5% removal for 25 and 50 mg/L, respectively, after 120 min). This performance outperformed other composited photocatalysts, as well as pure Ag-AgVO3 and KBi6O9I photocatalysts. The enhanced degradation efficiency of the KBi6O9I/Ag-AgVO3 (1:1) composite can be ascribed to the synergistic interaction of various elements. These include the surface plasmon resonance impact of silver nanoparticles, their pronounced sensitivity to solar irradiation, and the Z-scheme heterojunction configuration. Collectively, these factors work together to minimize the recombination rate of photoinduced electron-hole pairs, thereby amplifying the efficacy of photodegradation. Furthermore, the KBi6O9I/Ag-AgVO3 (1:1) composite photocatalyst displayed sustained pollutants elimination performance even after undergoing four consecutive cycles.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Mohammad Haghighi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran.
| | - Maryam Shabani
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| |
Collapse
|
19
|
Rao S, Zhi C, Wang X, Su J, Sun Y, Sun Y, Ma R, Liu Q, Yang J, Sun Z. In situ synthesis of graphitic carbon nitride nanosheet/Ti 3C 2T x MXene/TiO 2 Z-scheme heterojunctions boosting charge transfer for full-spectrum driven photocatalytic sterilization. J Colloid Interface Sci 2024; 659:594-602. [PMID: 38198936 DOI: 10.1016/j.jcis.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The development of a full-spectrum responsive photocatalytic germicide with excellent charge separation efficiency to harvest high antimicrobial efficacy is a key goal yet a challenging conundrum. Herein, graphitic carbon nitride nanosheet (PCNS)/Ti3C2Tx MXene/TiO2 (PMT) Z-scheme heterojunctions with robust interface contact were crafted by in situ interfacial engineering. The strong internal electrical field (IEF) from PCNS to TiO2, evinced by the Kelvin Probe Force Microscopy (KPFM) characterization, can obtain high charge separation efficiency with 73.99%, compared to Schottky junction PCNS/Ti3C2Tx (PM, 32.88%) and PCNS (17.70%). The Ti3C2Tx component can not only serve as a transfer pathway to accelerate the recombination of photoexcited electrons of TiO2 and holes of PCNS under the Ultraviolet-visible (UV-vis) light irradiation, but also replenish the photogenic electron concentrations to semiconductors in the near-infrared (NIR) light illumination. Meanwhile, the increased temperature due to the localized surface plasmon resonance (LSPR) can further boost the electronic activity to the generation of reactive oxygen species (ROS). Taken together, the PMT performs a high disinfection efficiency up to 99.40% under full solar spectrum illumination, 3.88 and 9.75 times higher than PCNS and TiO2, respectively, surpassing many reported Z-scheme heterojunctions. This work offers guidance for the design of Z-scheme heterojunction with the implanting of plasmons to secure excellent full-spectrum responsive photocatalytic sterilization performance.
Collapse
Affiliation(s)
- Shaosheng Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuang Zhi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xingyu Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaming Su
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingjie Sun
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yangyang Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rong Ma
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; Hebei Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
20
|
Deng Z, Wu Z, Wu Q, Yu J, Zou C, Deng H, Jin P, Fang D. Cellulose nanocrystals intercalated clay biocomposite for rapid Cr(VI) removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29719-29729. [PMID: 38584232 DOI: 10.1007/s11356-024-33066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
The application of bentonite (Bt) as an adsorbent for heavy metals has been limited due to its hydrophobicity and insufficient surface area. Herein, we present cellulose nanocrystal (CNC) modified Bt composite (CNC@Bt) with enhanced efficiency for Cr(VI) removal. CNC@Bt exhibited an increased specific surface area and a porous structure, while maintaining the original crystal structure of Bt. This was achieved through a synergistic function of ion exchange, hydrogen bonding, electrostatic interactions, and steric hindrance. The adsorption of Cr(VI) by CNC@Bt followed the pseudo-second-order kinetic and Langmuir isotherm adsorption model. Moreover, the process was endothermic and spontaneous. At an initial Cr(VI) concentration of 20 mg/L and pH = 4.0, 10 g/L CNC@Bt achieved a removal rate of 92.7%, and the adsorption capacity was 1.85 mg/g, significantly higher than bare Bt (37.9% and 0.76 mg/g). The removal efficiency remained consistently above 80% over a wide pH range, indicating the potential practical applicability of CNC@Bt. With its fast adsorption rate, pH adaptability, and stable performance, CNC@Bt presents promising prospects for the rapid treatment of Cr-contaminated wastewater.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qin Wu
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, China
| | - Junlei Yu
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang, 330046, Jiangxi, China
| | - Chenglong Zou
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, China
| | - Huali Deng
- Shanghai Dongfang Guochuang Advanced Textile Innovation Center Co. Ltd, Shanghai Textile Science Research Institute Co. Ltd, Shanghai, 200082, China
| | - Pingliang Jin
- Shanghai Dongfang Guochuang Advanced Textile Innovation Center Co. Ltd, Shanghai Textile Science Research Institute Co. Ltd, Shanghai, 200082, China
| | - Donglu Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
21
|
Rajan A, Yazhini C, Dhileepan MD, Neppolian B. Leveraging the photocatalytic Cr (VI) reduction by an IRMOF-3@NH 2-MIL-101 (Fe) heterostructure based on interfacial Lewis acid-base interaction. CHEMOSPHERE 2024; 352:141473. [PMID: 38382721 DOI: 10.1016/j.chemosphere.2024.141473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
A strategy to enhance the photocatalytic performance of metal-organic framework (MOF) based systems for the efficient elimination of Cr(VI) ions from polluted water under visible light irradiation has been developed by constructing MOF@MOF heterojunctions. Specifically, IRMOF-3 was grown in situ around NH2-MIL-101(Fe) based on interfacial Lewis acid-base interaction using 2-aminoterephthalic acid (ATA) as a linker, resulting in the formation of a MOF@MOF heterojunction, designated as IRMOF-3@NH2-MIL-101(Fe). In comparison to individual MOFs, the IRMOF-3@NH2-MIL-101(Fe) heterojunction exhibited a significantly higher photocatalytic reduction efficiency for Cr(VI), achieving a reduction of 95.98% within 120 min under visible-light irradiation. This performance surpasses that of individual MOFs and most reported photocatalysts. Additionally, the mechanism underlying Cr(VI) reduction by IRMOF-3@NH2-MIL-101(Fe) was comprehensively elucidated by analyzing optoelectronic properties, energy band structure, and structural results. It is worth noting that this study represents the first documented instance of photocatalytic Cr(VI) reduction utilizing IRMOF-3 and its interaction with NH2-MIL-101(Fe). The MOF@MOF photocatalyst, leveraging the synergistic effects of its various components, holds great promise for efficiently removing harmful pollutants from water and finds significant potential applications in environmental remediation.
Collapse
Affiliation(s)
- Aswathy Rajan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India, 603203
| | - Crescentia Yazhini
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India, 603203
| | - M D Dhileepan
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India, 603203
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India, 603203.
| |
Collapse
|
22
|
Feng P, He R, Gu Y, Yang F, Pan H, Shuai C. Construction of antibacterial bone implants and their application in bone regeneration. MATERIALS HORIZONS 2024; 11:590-625. [PMID: 38018410 DOI: 10.1039/d3mh01298k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Bacterial infection represents a prevalent challenge during the bone repair process, often resulting in implant failure. However, the extensive use of antibiotics has limited local antibacterial effects at the infection site and is prone to side effects. In order to address the issue of bacterial infection during the transplantation of bone implants, four types of bone scaffold implants with long-term antimicrobial functionality have been constructed, including direct contact antimicrobial scaffold, dissolution-penetration antimicrobial scaffold, photocatalytic antimicrobial scaffold, and multimodal synergistic antimicrobial scaffold. The direct contact antimicrobial scaffold involves the physical penetration or disruption of bacterial cell membranes by the scaffold surface or hindrance of bacterial adhesion through surface charge, microstructure, and other factors. The dissolution-penetration antimicrobial scaffold releases antimicrobial substances from the scaffold's interior through degradation and other means to achieve local antimicrobial effects. The photocatalytic antimicrobial scaffold utilizes the absorption of light to generate reactive oxygen species (ROS) with enhanced chemical reactivity for antimicrobial activity. ROS can cause damage to bacterial cell membranes, deoxyribonucleic acid (DNA), proteins, and other components. The multimodal synergistic antimicrobial scaffold involves the combined use of multiple antimicrobial methods to achieve synergistic effects and effectively overcome the limitations of individual antimicrobial approaches. Additionally, the biocompatibility issues of the antimicrobial bone scaffold are also discussed, including in vitro cell adhesion, proliferation, and osteogenic differentiation, as well as in vivo bone repair and vascularization. Finally, the challenges and prospects of antimicrobial bone implants are summarized. The development of antimicrobial bone implants can provide effective solutions to bacterial infection issues in bone defect repair in the foreseeable future.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410013, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
23
|
Rashid R, Shafiq I, Gilani MRHS, Maaz M, Akhter P, Hussain M, Jeong KE, Kwon EE, Bae S, Park YK. Advancements in TiO 2-based photocatalysis for environmental remediation: Strategies for enhancing visible-light-driven activity. CHEMOSPHERE 2024; 349:140703. [PMID: 37992908 DOI: 10.1016/j.chemosphere.2023.140703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Researchers have focused on efficient techniques for degrading hazardous organic pollutants due to their negative impacts on ecological systems, necessitating immediate remediation. Specifically, TiO2-based photocatalysts, a wide-bandgap semiconductor material, have been extensively studied for their application in environmental remediation. However, the extensive band gap energy and speedy reattachment of electron (e-) and hole (h+) pairs in bare TiO2 are considered major disadvantages for photocatalysis. This review extensively focuses on the combination of semiconducting photocatalysts for commercial outcomes to develop efficient heterojunctions with high photocatalytic activity by minimizing the e-/h+ recombination rate. The improved activity of these heterojunctions is due to their greater surface area, rich active sites, narrow band gap, and high light-harvesting tendency. In this context, strategies for increasing visible light activity, including doping with metals and non-metals, surface modifications, morphology control, composite formation, heterojunction formation, bandgap engineering, surface plasmon resonance, and optimizing reaction conditions are discussed. Furthermore, this review critically assesses the latest developments in TiO2 photocatalysts for the efficient decomposition of various organic contaminants from wastewater, such as pharmaceutical waste, dyes, pesticides, aromatic hydrocarbons, and halo compounds. This review implies that doping is an effective, economical, and simple process for TiO2 nanostructures and that a heterogeneous photocatalytic mechanism is an eco-friendly substitute for the removal of various pollutants. This review provides valuable insights for researchers involved in the development of efficient photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Ruhma Rashid
- Institute of Chemical Science, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | | | - Muhammad Maaz
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Kwang-Eun Jeong
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sungjun Bae
- Department of Civil & Environmental Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504, Republic of Korea.
| |
Collapse
|
24
|
Kim M, Njaramba LK, Yoon Y, Jang M, Park CM. Thermally-activated gelatin-chitosan-MOF hybrid aerogels for efficient removal of ibuprofen and naproxen. Carbohydr Polym 2024; 324:121436. [PMID: 37985070 DOI: 10.1016/j.carbpol.2023.121436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently used drugs and have been frequently detected in aquatic environments. This paper demonstrates a thermally-activated gelatin-chitosan and amine-functionalized metal-organic framework (UiO-66-NH2) aerogel (CGC-MOF), which was successfully synthesized for the efficient removal of ibuprofen (IBP) and naproxen (NPX). Various characterization tools were used to systematically analyze the microstructure and physicochemical properties of the synthesized aerogel. In addition, the effect of key reaction parameters as well as batch and continuous-flow fixed-bed column experiments were carried out to elucidate the adsorption process. Several functional groups in the biopolymer network, combined with excellent MOF properties, synergistically couple to form an adsorbent with great performance. The mesoporous aerogel activated at 200 °C (CGC-MOF200) exhibited a high specific surface area (819.6 m2/g) that is valuable in providing abundant adsorption active sites that facilitate the efficient adsorption of IBP and NPX. CGC-MOF200 exhibited an excellent removal of IBP and NPX, accounting to 99.28 % and 96.39 %, respectively. The adsorption process followed the pseudo-second-order kinetics and the Freundlich isotherm models, suggesting heterogeneous and chemisorption adsorption processes. Overall, this work provides new and valuable insights into the development of a promising biopolymer-MOF composite aerogel for environmental remediation.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA; Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
25
|
Batoo KM, Ijaz MF, Imran A, Pandiaraj S. Duple charge separation and plasmonically enriched DSSC and piezo-photocatalytic efficacy of Au anchored perovskite Gd 3+:BiFeO 3 nanospheres. CHEMOSPHERE 2024; 346:140410. [PMID: 37898467 DOI: 10.1016/j.chemosphere.2023.140410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
Enhancing the solar-physical conversion efficacy ability of the nanomaterials is an essential for real-time implementation. We report the enhanced solar-physical efficiency of the BiFeO3 nanospheres via Gd3+ doping and Au nanoparticles decoration. Initially, we have obtained the Bi1-xGdxFeO3 nanospheres were attained via a simple solvothermal technique and then citrate reduction of Au was conducted. Obtained perovskite BiFeO systems were studied for the Gd3+ doping, crystalline phase and elemental purity using the XRD and XPS techniques. Transmission electron microscope had revealed the ∼400 nm sized BiFeO3 nanospheres. Optical absorption spectrum revealed the enhanced visible photon absorption occurring in BiFeO3 for both Gd3+ doping and Au decoration. The bandgap values of pristine, 1%, 3% and 5% Gd3+ doped in BiFeO3 are 2.2 eV, 2.19 eV, 2.17 eV and 2.12 eV, respectively. Conducted photoluminescence revealed the dual electron trapping occurring in BiFeO3 via Gd3+ ions and Au nanoparticles. LED light assisted 72% of piezo-photocatalytic degradation efficiency of Tetracycline is achieved with Bi0 95Fe0 05O3/Au, whereas the photo catalytic is only 65% and piezo catalytic efficiency is 58%. In recyclable studies the Bi0.95Gd0.05FeO3/Au had shown the consistent piezo-photocatalytic efficiency for 3 reaction cycles. Further, fabricated DSSC studies revealed that near 30 % enhanced solar photovoltaic efficiency for Bi0 95Fe0 05O3/Au (η = 6.5%) solar cells on par to the pristine BiFeO3 (η = 5.02%).
Collapse
Affiliation(s)
- Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia.
| | - Muhammad Farzik Ijaz
- Mechanical Engineering Department, College of Engineering, King Saud University, PO Box 800, Riyadh, 11451, Saudi Arabia
| | - Ahamad Imran
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
26
|
Jabbar ZH, Graimed BH, Hamzah Najm H, Ammar SH, Taher AG. Reasonable decoration of CuO/Cd 0.5Zn 0.5S nanoparticles onto flower-like Bi 5O 7I as boosted step-scheme photocatalyst for reinforced photodecomposition of bisphenol A and Cr(VI) reduction in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119302. [PMID: 37866185 DOI: 10.1016/j.jenvman.2023.119302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Building S-scheme heterostructures is a sophisticated approach to receiving outstanding catalysts for environmental detoxification. Herein, ternary CuO/Cd0.5Zn0.5S/Bi5O7I (CO/CZS/BOI) nanocomposites were constructed by in-situ decorating of CuO and Cd0.5Zn0.5S nanoparticles onto Bi5O7I micro-sphere in a facile route. The optimal CO/CZS/BOI reflected reinforced bisphenol A (BPA) photo-oxidation (95% in 70 min) and Cr(VI) photo-reduction (96.6 in 60 min) under visible light. Besides, CO/CZS/BOI afforded 5.10 (4.44), 4.42 (3.71), and 6.60 (5.27) fold reinforcement in the BPA (Cr(VI)) photo-reaction rate compared to BOI, CZS, and CO, respectively. This behavior was linked to the development of S-scheme mechanisms resulting from the co-effects of BOI, CZS, and CO in retaining the optimum redox capacity, facilitating the dissolution of photo-carriers, increasing reactive sites, and strengthening the visible-light response. The parameters influencing the catalytic reaction of CO/CZS/BOI, such as light intensity, catalyst dosage, and pH, were deeply studied. The quenching tests declared the prominent roles •O2- and •OH in the breaking down of BPA and the participation of electrons and •O2- in the photocatalytic conversion of Cr(VI). The cyclic tests verified the robust photostability of CO/CZS/BOI, which is associated with the reintegration process between the free h+ coming from CZS and the photo-induced e- of CO and BOI in the S-scheme system. In conclusion, the present study provides a profound understanding of the photo-reaction mechanism of CO/CZS/BOI and introduces a novel concept for constructing a superior dual-Scheme system for efficient wastewater detoxification.
Collapse
Affiliation(s)
- Zaid H Jabbar
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq.
| | - Bassim H Graimed
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | | | - Saad H Ammar
- Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Athraa G Taher
- Ministry of Oil, Oil Pipelines Company, Daura, Baghdad, Iraq
| |
Collapse
|
27
|
Wang L, Zhang K, Qian J, Qiu M, Li N, Du H, Hu X, Fu Y, Tan M, Hao D, Wang Q. S-scheme MOF-on-MOF heterojunctions for enhanced photo-Fenton Cr(VI) reduction and antibacterial effects. CHEMOSPHERE 2023; 344:140277. [PMID: 37769912 DOI: 10.1016/j.chemosphere.2023.140277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/03/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
The photocatalytic efficiency is commonly restrained by inferior charge separation rate. Herein, the S-scheme MIL-100(Fe)/NH2-MIL-125(Ti) (MN) photo-Fenton catalyst with the built-in electric field (BEF) was successfully constructed by a simple ball-milling technique. As a result, the MN-3 (the mass ratio of MIL-100(Fe) to NH2-MIL-125(Ti) was 3) composite presented the best visible-light-induced photocatalytic ability, in contrast to pure MIL-100(Fe) and NH2-MIL-125(Ti). The reduction efficiency of Cr(VI) almost reached 100% within 35 min of illumination. Moreover, the MN-3 heterojunction also exhibited the highest antibacterial activity, and about 100% E. coli and more than 90% S. aureus were killed within 60 min of illumination. In photo-Fenton system, In the photo-Fenton system, e-, O2•- and Fe2+ played vital roles for Cr(VI) reduction, and •OH, h+ and O2•- and 1O2 were responsible for sterilization. Additionally, 5 cyclic tests and relevant characterizations confirmed the excellent repeatability and stability of the composite. Also, the S-scheme charge transfer process was put forward. This work offers a novel idea for establishing the MOF-on-MOF photo-Fenton catalyst for high-efficiency environmental mitigation.
Collapse
Affiliation(s)
- Longyang Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kejie Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jianying Qian
- CCTEG Hangzhou Research Institute Co., Ltd., Hangzhou, Zhejiang, 310018, China
| | - Mengyi Qiu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xiao Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yangjie Fu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meng Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Derek Hao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
28
|
Tharani S, Rebecca PNB, Durgalakshmi D, Balakumar S, Rakkesh RA. Hydrothermal integration of MoO 2-MoS 2@rGO nanoframe networks: A promising approach for efficient bacterial disinfection in wastewater. CHEMOSPHERE 2023; 343:140273. [PMID: 37758069 DOI: 10.1016/j.chemosphere.2023.140273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
The efficient disinfection of bacterial contaminants in wastewater is a critical challenge in the field of environmental remediation. Herein, we present a novel approach for efficient bacterial disinfection using hydrothermally integrated MoO2-MoS2@rGO nanoframe networks. The developed nanoframe networks exhibit a unique architecture comprising of molybdenum dioxide (MoO2) and molybdenum disulfide (MoS2) impregnated on algae biomass reduced graphene oxide (rGO). The as-synthesized nanoframe networks demonstrate exceptional antibacterial activity against Escherichia coli bacteria. The disinfection efficiency was evaluated by measuring the bacterial viability and observing the morphological changes using scanning electron microscopy. The MoO2-MoS2@rGO nanoframe networks exhibited a remarkable antibacterial effect, achieving a high disinfection rate of 95.8% within a short contact time of 10 min. The efficient bacterial disinfection capability of the nanoframe networks can be attributed to the synergistic effects of MoO2, MoS2, and rGO components. The MoO2 nanoparticles generate reactive oxygen species (ROS), persuading oxidative stress and leading to bacterial inactivation. The MoS2 nanoparticles possess inherent antibacterial properties through the release of Mo and S ions. The rGO nanosheets provide a conductive and stable platform, facilitating the charge transfer during the antibacterial process. Furthermore, the hydrothermal integration method enables easy scalability and cost-effectiveness of the MoO2-MoS2@rGO nanoframe networks. The nanoframe networks can be easily recovered and reused, reducing waste generation and promoting sustainability. Overall, this study presents a promising approach for efficient bacterial disinfection in wastewater using hydrothermally integrated MoO2-MoS2@rGO nanoframe networks. The remarkable antibacterial performance, along with the advantages of scalability and reusability, makes these nanoframe networks a potential candidate for practical applications in environmental remediation and water treatment processes.
Collapse
Affiliation(s)
- S Tharani
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603203, TN, India
| | - P N Blessy Rebecca
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603203, TN, India
| | - D Durgalakshmi
- Department of Medical Physics, Anna University, Chennai - 600 025, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai - 600 025, India
| | - R Ajay Rakkesh
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur - 603203, TN, India.
| |
Collapse
|
29
|
Li Q, Wang E, Zhou H, Fu Y, Deng H, Zheng Y, Xue B, Du H, Yang G, Wang Q, Sun Z, Zhou J. Accelerated electron and mass transfer through constructing H 2WO 4/Ti 3C 2/g-C 3N 4 Z-scheme photocatalyst for environmental remediation. CHEMOSPHERE 2023; 341:140053. [PMID: 37690558 DOI: 10.1016/j.chemosphere.2023.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
The catalytic efficiency of photocatalysts highly depends on electron transport and mass transfer. Herein, we designed and prepared an effective H2WO4/Ti3C2/g-C3N4 (HTC) Z-scheme heterojunction through interfacial engineering strategy. The results manifested that 97.4% of Cr(VI) (80 μM, 50 mL) could be removed by HTC heterojunction within 10 min under visible light irradiation. The reduction rate constant of Cr(VI) for H2WO4/g-C3N4 (HC) heterojunction increased by a factor of 21 after introducing the conductive Ti3C2. Moreover, 96% of tetracycline (TC, 10 mg L-1, 50 mL) could be degraded by HTC heterojunction within 30 min. The electronic conductivity and ionic diffusion coefficient of HC heterojunction increased by a factor of 64 and 1064 after adding Ti3C2, respectively. This result indicated that the introduction of highly conductive Ti3C2 significantly improved the electron and mass transfer of the heterojunction. Meanwhile, the HCT heterojunction displayed favorable photocurrent, and keep excellent photostability during the long-term test. Moreover, density functional theory (DFT) calculations demonstrated that the internal electric field (IEF) from g-C3N4 to H2WO4 in HCT heterojunction promotes the combination of the photoinduced electrons in the H2WO4 conduction band (CB) with photoinduced holes in the g-C3N4 valence band (VB), thus accelerating the charge transfer in the HCT Z-scheme heterojunction. The antibacterial efficiency of HTC heterojunction against E. coli and S. aureus could reach up to 98.4% and 99.7%, respectively. The degradation intermediates and the potential degradation mechanism of TC were analyzed and proposed based on the results of HPLC-MS analysis. Moreover, the toxicity of TC and degradation intermediates were estimated by Toxicity Estimation Software (T.E.S.T.) based on quantitative structure-activity relationship (QSAR). This work provided a valuable guideline for designing the effective MXene-based Z-scheme heterojunction for environmental remediation.
Collapse
Affiliation(s)
- Qiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Erpeng Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Hao Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yangjie Fu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hao Deng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yazhuo Zheng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Biao Xue
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guoxiang Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Jian Zhou
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
30
|
Wang Q, Wang L, Zheng S, Tan M, Yang L, Fu Y, Li Q, Du H, Yang G. The strong interaction and confinement effect of Ag@NH 2-MIL-88B for improving the conversion and durability of photocatalytic Cr(VI) reduction in the presence of a hole scavenger. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131149. [PMID: 36924745 DOI: 10.1016/j.jhazmat.2023.131149] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Selectively regulating active factors in photocatalytic reactions by designing materials is one of the very important factors. Herein, we prepared spindle-like core-shell Ag@NH2-MIL-88B composites (Ag@NM-88) by a two-step hydrothermal method. The as-prepared Ag@NM-88 displayed superior photocatalytic activity for Cr(VI) reduction under LED light, compared with the activities of pure NH2-MIL-88B (NM-88) and Ag/NM-88 (Ag was deposited on NH2-MIL-88B). The core-shell structure Ag@NM-88 was not only beneficial to the absorption of light but also beneficial to the separation of photogenerated e- and h+. More importantly, it was further confirmed by active radical capture experiments and nitroblue tetrazolium (NBT) conversion experiments that the design of the core-shell structure could effectively prevent photogenerated e- from combing with O2 to form •O2-, so that photogenerated e- directly reduced Cr(VI), thereby improving the reaction rate. In addition, it could still maintain good stability after 5 cycles, indicating that the construction of a core-shell structure is also conducive to improving stability. This work provides a strategy for selectively regulating the active components of photocatalysts, and provides new insights into the relationship between interfacial charge transfer and molecular oxygen activation in photocatalytic reduction Cr(VI) systems.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China
| | - Longyang Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shuzhen Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Meng Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lingxuan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yangjie Fu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guoxiang Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
31
|
Xue B, Li Q, Wang L, Deng M, Zhou H, Li N, Tan M, Hao D, Du H, Wang Q. Ferric-ellagate complex: A promising multifunctional photocatalyst. CHEMOSPHERE 2023; 332:138829. [PMID: 37156288 DOI: 10.1016/j.chemosphere.2023.138829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
The semiconductors have exhibited great potential in the field of photocatalytic energy production, environmental remediation and bactericidal. Nevertheless, those inorganic semiconductors are still restricted in commercial application due to the drawbacks of easy agglomeration and low solar energy conversion efficiency. Herein, ellagic acid (EA) based metal-organic complexes (MOCs) were synthesized through a facile stirring process at room temperature with Fe3+, Bi3+ and Ce3+ as the metal center. The EA-Fe photocatalyst exhibited superior photocatalytic activity toward Cr(VI) reduction, where Cr(VI) were completely removed within 20 min. Meanwhile, EA-Fe also displayed good photocatalytic degradation of organic contaminants and photocatalytic bactericidal performance. The photodegradation rates of TC and RhB by EA-Fe were 15 and 5 times that by bare EA, respectively. Moreover, EA-Fe was capable of effectively eliminating both E. coli and S. aureus bacteria. It was found that EA-Fe was capable of generating superoxide radicals, which could participate in the reduction of heavy metals, degradation of organic contaminants and inactivation of bacteria. A photocatalysis-self-Fenton system could be established by EA-Fe solely. This work would provide a new insight for designing multifunctional MOCs with high photocatalytic efficiency.
Collapse
Affiliation(s)
- Biao Xue
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Longyang Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Man Deng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hao Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meng Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Derek Hao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
32
|
Liu X, Bi RX, Peng ZH, Lei L, Zhang CR, Luo QX, Liang RP, Qiu JD. Synergistic effect of double Schottky potential well and oxygen vacancy for enhanced plasmonic photocatalytic U(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131581. [PMID: 37167874 DOI: 10.1016/j.jhazmat.2023.131581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Plasmonic photocatalysis is an effective strategy to solve radioactive uranium hazards in wastewater. A plasmonic photocatalyst Bi/Bi2O3-x@COFs was synthesized by in-situ growth of covalent organic frameworks (COFs) on Bi/Bi2O3-x surface for the U(VI) adsorption and plasmonic photoreduction in rare earth tailings wastewater. The presence of oxygen vacancy in Bi/Bi2O3-x and Schottky potential well formed by Bi and Bi2O3-x interface increased the number of free electrons, which induced localized surface plasmon resonance (LSPR) and enhanced the light absorption performance of composites. In addition, oxygen vacancy improved the Fermi level of Bi/Bi2O3-x, leading to another potential well between Bi2O3-x and COFs interface. The electron transport direction was reversed, thus increasing the electron density of COFs layer. COFs was an N-type semiconductor with specific binding U(VI) groups and suitable band structure, which could be used as an active reaction site. Bi/Bi2O3-x@COFs had 1411.5 mg g-1 removal capacity and high separation coefficient for U(VI) due to the synergistic action of photogenerated electrons and hot electrons. Moreover, the removal rate of uranium from rare earth tailings wastewater by regenerated Bi/Bi2O3-x@COFs was over 93.9%. The scheme of introducing LSPR and Schottky potential well provides another way to improve the photocatalytic effect.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Rui-Xiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Zhi-Hai Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Lan Lei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Cheng-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| | - Jian-Ding Qiu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
33
|
Du H, Ma X, Li N, Yang L, Yang G, Li Q, Wang Q. Exceptional visible-light photoelectrocatalytic activity of dual Z-scheme Bi@BiOI-Bi 2O 3/C 3N 4 heterojunction for simultaneous remediation of Cr(VI) and phenol. J Colloid Interface Sci 2023; 640:132-143. [PMID: 36842419 DOI: 10.1016/j.jcis.2023.02.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Developing highly efficient and stable photocatalysts remains a major challenge for the remediation of environmental pollutants. In this work, the Bi0 decorated BiOI-Bi2O3/C3N4 heterojunction (Bi@BiOI-Bi2O3/C3N4) film was fabricated through ultrasonic stripping, I- etching and in situ UV-reduction processes and then characterized thoroughly by various analytical techniques. The characteristics of simultaneous mitigation of phenol and Cr(VI) were evaluated over Bi@BiOI-Bi2O3/C3N4 photoanode under visible light. The results exhibited that both phenol and Cr(VI) were removed completely by the photoanode at 2.5 V within 1.5 h, superior to our previous report. The synergy of the surface plasmon resonance (SPR) effect of Bi0 and ternary heterojunction accelerated the separation and transfer of photo-induced charge carrier and thus heavily promoted the removal efficiency. Moreover, the excellent stability of this photoanode was hold with no considerably activity attenuation after 4 cycles. Finally, a dual Z-scheme charge transfer process was presented. This work offers an attractive pathway to construct highly active photoelectrode with promising application for simultaneous remediation of organics and heavy metals in wastewater.
Collapse
Affiliation(s)
- Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xin Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lingxuan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guoxiang Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
34
|
Novel graphene quantum dots modified NH2-MIL-125 photocatalytic composites for effective antibacterial property and mechanism insight. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
35
|
Wang J, Wang Z, Gao J, Ye J. Study on the photocatalytic properties differences between the 1-D and 3-D W 18O 49 particles †. RSC Adv 2023; 13:10657-10666. [PMID: 37025667 PMCID: PMC10072200 DOI: 10.1039/d3ra01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The morphology of W18O49 catalysts has a significant effect on their photocatalytic performance. Herein, we successfully prepared two commonly used W18O49 photocatalysts just by changing the reaction temperature in the hydrothermal system, namely 1-D W18O49 nanowires (1-D W18O49) and 3-D urchin-like W18O49 particles (3-D W18O49), and evaluated the difference of their photocatalytic performances by taking the degradation of methylene blue (MB) as an example. Remarkably, 3-D W18O49 exhibited an impressive photocatalytic degradation performance towards MB with photocatalytic reaction rates of 0.00932 min−1, which was about 3 times higher than that of 1-D W18O49. The comprehensive characterization and control experiments could further reveal that the hierarchical structure of 3-D W18O49 brought higher BET surface areas, stronger light harvesting, faster separation of photogenerated charges and so on, which was the main reason for its better photocatalytic performance. ESR results confirmed that the main active substances were superoxide radicals (˙O2−) and hydroxyl radicals (˙OH). This work aims to explore the intrinsic relationship between the morphology and photocatalytic properties of W18O49 catalysts, so as to provide a theoretical basis in the morphology selection of W18O49 or its composite materials in the field of photocatalysis. Comprehensive characterization and control experiments were used to deeply explore the intrinsic relationship between the morphology and photocatalytic properties of W18O49 catalysts.![]()
Collapse
Affiliation(s)
- Juan Wang
- School of Chemistry & Chemical Engineering, Linyi UniversityLinyi 276000P. R. China
| | - Zhaoxiang Wang
- School of Chemistry & Chemical Engineering, Linyi UniversityLinyi 276000P. R. China
| | - Jichao Gao
- School of Chemistry & Chemical Engineering, Linyi UniversityLinyi 276000P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry UniversityHarbin 150040P. R. China
| |
Collapse
|