1
|
Sun S, Xu N, Yang J, Wang X, Qin B. Escherichia coli and phosphate mediated the distinct retention of small-sized nano-plastic particles in seawater-saturated porous sands. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137805. [PMID: 40058199 DOI: 10.1016/j.jhazmat.2025.137805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Small nano-plastics (NPs, < 30 nm) with a high accumulation in biological organisms in coastal areas might react with widely presented bacteria and phosphate, which remains unclear. Therefore, the mechanisms governing the transport of two-sized NPs with Escherichia coli (E. coli) and phosphate were investigated in hyper-saline water-saturated sand porous media. The results showed that 20 nm NPs exhibited more hetero-aggregation with E. coli than 80 nm NPs, associated with lower k1d/k1 values (0.268 vs. 0.412) and more substantially suppressed depth of φmax (17.83 KBT vs. 23.44 KBT), based on two-site kinetic attachment retention model fitting and extended-Derjaguin-Landau-Verwey-Overbeek theory. Accordingly, even though the mass recovery percentage of both sized NPs alone was similar, the irreversible deposition of 20 nm NPs doubled by E. coli, increasing the coastal environmental risks. In contrast, 80 nm NPs reversibly attached to the sands with less effect by E. coli, causing secondary pollution. The copresence of phosphate pronouncedly enhanced the transportability of two-sized NPs with E. coli, especially increasing 20 nm NP mobility from 17.7 % to 39.2 % in 200 mM NaCl by preferentially adsorbing onto E. coli to avoid agglomeration with NPs. This study highlights the potential risk of small NPs in complicated coastal ecosystems.
Collapse
Affiliation(s)
- Siyi Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jing Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuelian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bing Qin
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China.
| |
Collapse
|
2
|
Li F, Zeng Z, Wu Y, Wang Y, Shen L, Huang X, Wang X, Sun Y. Characteristics of microplastics in typical poultry farms and the association of environment microplastics colonized-microbiota, waterfowl gut microbiota, and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137808. [PMID: 40043390 DOI: 10.1016/j.jhazmat.2025.137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) pollution is a growing global environmental concern. MPs serve as ecological niches for microbial communities, which may accelerate the spread of antibiotic resistance genes (ARGs), posing risks to the breeding industry. While studies on MPs in aquatic organisms are common, research on farmed poultry is limited. This study investigates MPs in poultry farm environments and waterfowl intestines for the first time. MPs were isolated via density separation and analyzed for characterization in soil, pond water, and waterfowl intestines. Metagenomics was used to investigate the association between environment MPs colonized-microbiota and waterfowl gut microbiota. Our findings reveal that MPs are abundant in soil (6.75 ± 2.78 items/g d.w.), pond water (0.94 ± 0.28 items/g w.w.), and poultry intestines (45.35 ± 19.52 items/g w.w.), primarily appearing as fragmented particles sized 20-50 μm. MPs abundance in intestines correlates with environmental levels. Colonized-microbiota on MPs are linked to poultry intestinal microbiota, with greater diversity and microbial functions. Network analysis reveals that Corynebacterium plays a key role in MPs and poultry intestinal. Polymyxin resistance exhibits high clustering. Procrustes analysis reveals correlations between MPs, bacteria, and ARGs in the farming environment. Overall, MPs in poultry farms may facilitate pathogen and ARGs transmission, posing risks to animal gut health.
Collapse
Affiliation(s)
- Fulin Li
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Ziru Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yixiao Wu
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yefan Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lingyan Shen
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xingru Huang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xue Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Wang Q, Li S, Ding Y. Characteristics, influencing factors, and ecological risks of microplastics in the north branch tidal marshes of the Yangtze River estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126230. [PMID: 40221114 DOI: 10.1016/j.envpol.2025.126230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Microplastic pollution is a growing global environmental issue, particularly in vulnerable tidal marsh ecosystems, where its environmental behaviour and ecological risks remain poorly understood. This study investigated the microplastic contamination in the north branch tidal marshes of the Yangtze River estuary. Surface sediment samples were collected from 42 stations across 6 transects, revealing an average microplastic abundance of 506.80 ± 386.82 items/kg. The distribution of microplastics was strongly influenced by salinity and vegetation, with seawater intrusion playing a critical role. A significant negative correlation between salinity and microplastic abundance was observed; areas dominated by Phragmites australis (low salinity) had higher microplastic abundance compared to high-salinity areas with sparse vegetation. 12 types of microplastics were identified, with polyethylene and polystyrene being the most abundant (20 % and 19 %, respectively). The most common colours were transparent (26 %) and yellow (23 %), while the predominant shapes were granular (37 %) and fragmentary (32 %). Most microplastics measured under 2000 μm, with the 200-500 μm size range accounting for 49 % of the total. Likely sources of microplastics include aquaculture equipment, industrial products, agricultural cultivation supplies, and daily necessities. Although the ecological risk index for the region is relatively low, the presence of diverse species highlights potential ecological threats.
Collapse
Affiliation(s)
- Qing Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438, China; School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Songshuo Li
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yongcheng Ding
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
4
|
Scales KL, Bolin JA, Dunn DC, Hazen EL, Hannah L, Schoeman DS. Climate mediates the predictability of threats to marine biodiversity. Trends Ecol Evol 2025; 40:502-515. [PMID: 40121110 DOI: 10.1016/j.tree.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Anthropogenic climate change is driving rapid changes in marine ecosystems across the global ocean. The spatiotemporal footprints of other anthropogenic threats, such as infrastructure development, shipping, and fisheries, will also inevitably shift under climate change, but we find that these shifts are not yet accounted for in most projections of climate futures in marine systems. We summarise what is known about threat-shifting in response to climate change, and identify sources of predictability that have implications for ecological forecasting. We recommend that, where possible, the dynamics of anthropogenic threats are accounted for in nowcasts, forecasts, and projections designed for spatial management and conservation planning, and highlight key themes for future research into threat dynamics in a changing ocean.
Collapse
Affiliation(s)
- Kylie L Scales
- Ocean Futures Research Cluster, School of Science, Technology & Engineering, University of the Sunshine Coast, Maroochydore, Australia.
| | - Jessica A Bolin
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA, USA; Coastal and Marine Sciences Institute, University of California, Davis, CA, USA
| | - Daniel C Dunn
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, Brisbane, Queensland, Australia; School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Lee Hannah
- Moore Center for Science, Conservation International, Arlington, VA, USA
| | - David S Schoeman
- Ocean Futures Research Cluster, School of Science, Technology & Engineering, University of the Sunshine Coast, Maroochydore, Australia; Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
5
|
Zhang L, Wang W, Wang F, Wu D, Su Y, Zhan M, Li K, Shi H, Xie B. Decoding the Plastic Patch: Exploring the Global Microplastic Distribution in the Surface Layers of Marine Regions with Interpretable Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7656-7666. [PMID: 40226856 DOI: 10.1021/acs.est.4c12227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The marine environment is grappling with microplastic (MP) pollution, necessitating an understanding of its distribution patterns, influencing factors, and potential ecological risks. However, the vast area of the ocean and budgetary constraints make conducting comprehensive surveys to assess MP pollution impractical. Interpretable machine learning (ML) offers an effective solution. Herein, we used four ML algorithms based on MP data calibrated to the size range of 20-5000 μm and considered various factors to construct a robust predictive ML model of marine MP distribution. Interpretation of the ML model indicated that biogeochemical and anthropogenic factors substantially influence global marine MP pollution, while atmospheric and physical factors exert lesser effects. However, the extent of the influence of each factor may vary within specific marine regions and their underlying mechanisms may differ across regions. The predicted results indicated that the global marine MP concentrations ranged from 0.176 to 27.055 particles/m3 and that MPs in the 20-5000-μm size range did not pose a potential ecological risk. The interpretable ML framework developed in this study covered MP data preprocessing, MP distribution prediction, and interpretation of the influencing factors of MPs, providing an essential reference for marine MP pollution management and decision making.
Collapse
Affiliation(s)
- Linjie Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenyue Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Li Q, Zhu L, Pu X, Sui Q, Sun X, Zhao X, Wang R, Xia B. Occurrence, trophic transfer and risk assessment of microplastics in fishery organisms from the Bohai Sea, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138367. [PMID: 40273851 DOI: 10.1016/j.jhazmat.2025.138367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/01/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Marine microplastic (MP) pollution has emerged as a critical environmental issue, posing significant risks to a wide range of marine organisms. However, the trophic transfer of MPs with different characteristics among marine species remain poorly understood. This study investigated the abundances and characteristics of MPs in various fishery organisms from the Bohai Sea, China, and evaluated the influencing factors, trophic transfer and associated risks. Results showed that MP abundances ranged from 0.50 ± 0.52-2.38 ± 1.41 items per individual. Most MPs were smaller than 1 mm (74.6 %), with fiber being the most common shape (80.8 %), and transparent being the dominant color (75.3 %). Among the 13 identified polymer types, cellophane was the most prevalent. MP ingestion by fishery organisms was significantly influenced by body size, biological taxa, and habitat, while showing no correlation with feeding habits. Notably, the trophic transfer and significant biomagnification of MPs occurred through the marine food chain. Specially, MPs within the size ranges from 30 to 500 µm, in fibrous shape, transparent color, and composed of cellophane, PET, PP, and PA polymers, demonstrated enhanced potential for trophic transfer. PHI-based quantitative risk assessment revealed a medium to danger risk of MPs to marine fishery organisms, with hazard indices spanning medium to danger risk levels. These findings provide new insights into the bioaccumulation and risk of MPs across different trophic levels in marine organisms.
Collapse
Affiliation(s)
- Qilong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lin Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Xiaoying Pu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qi Sui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xuemei Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinguo Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Rongyuan Wang
- North China Sea Ecological Center of the Ministry of Natural Resources, Qingdao 266033, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
7
|
Liu X, Wang H, Li J, Xu J, Li Y, Tian C, Zhao L, Luan F, He T, Liu W, Li M, Zhuang X, Shi C, Peng X. Drug Repurposing: Unique Carbon Dot Antibacterial Films for Fruit Postharvest Preservation. ACS APPLIED BIO MATERIALS 2025. [PMID: 40227972 DOI: 10.1021/acsabm.5c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Fruit spoilage caused by oxidation and microbial infection exacerbates resource wastage. Although starch films including chitosan possessed admirable biocompatibility owing to great biodegradability compared with conventional plastics, deficient antibacterial and antioxidant capacity restricted food shelf life. Herein, an environmentally friendly antibacterial film (CS/G-CDs) was constructed by carbon dots derived from Cirsii Herba (CDs), which was formed through high affinity resulting from hydrogen bonding between chitosan molecules and hydroxyl originating from CDs. The prepared CDs presented homogeneous and monodisperse spherical structures with an ultrasmall size, providing favorable conditions for uniform film formation. Encouragingly, the antioxidant capacity of CS/G-CDs increased 5.00-fold, followed by an antibacterial rate of up to 97.0%. Dramatically, CS/G-CDs revealed glorious UV shielding efficacy (99.9% for UVB and 98.2% for UVA), and its preservation time for blueberries was remarkably extended 8 days longer than that of the chitosan film. Overall, Chinese herb-derived antibacterial films exhibited magnified antibacterial/antioxidant properties and great biocompatibility, which provided a promising strategy for sustainable development of packaging materials.
Collapse
Affiliation(s)
- Xinyu Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Haobin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jianan Xu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yanhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Lijun Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Tao He
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Weijian Liu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Mingle Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chao Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Peng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Ding X, Zhang B, Shen C, Wang R, Yin S, Li F, Xu C. Are we underestimating the driving factors and potential risks of freshwater microplastics from in situ and in silico perspective? WATER RESEARCH 2025; 281:123568. [PMID: 40174563 DOI: 10.1016/j.watres.2025.123568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
The high loads of heterogeneous microplastics (MPs) in water system sparked the exploration of MPs source and impact in the environment. However, the contributions of driving factors to MPs contamination and the potential risks posed by multidimensional characteristics are still poorly understood. By incorporating in situ investigation with machine learning predictions, this study reported widespread MPs contamination in both textile upstream and receiving watershed in the Yangtze River Delta. The dominant MPs categories were fibers (0.1-0.5 mm in size), transparent in color, and composed of polyethylene terephthalate. These morphological characteristics indicated a conditional fragmentation process, suggesting that larger MPs are more prone to fragmentation. Multivariable analysis revealed significant correlations between MPs occurrence and factors of metal concentrations, geographic locations, and water qualities, highlighting the roles of textile production and automotive tire wear in determining MPs abundance. Among five machine learning models, Random Forest outperformed others in predicting MPs abundance. The interpretable analysis indicated that longitude (35.3 %), TN (13.8 %) and Sb (13.4 %) were pivotal nodes in shaping the MPs abundance. Emission point sources from express, autotire and textile yield feature importance from 6.60 % to 7.88 %. A total 12.39 % of the predicted variability can be further explained by interaction effects. Besides, MPERI and MultiMP indices based on abundance, size, color, shape, and polymer distributions suggested that most sampling sites fell within moderate to high-risk categories. Artificial neural network-based assessment results are suitable for explaining the MPs induced risks and polymer type was the most influential variable in determining the risk values. These quantitative insights into the driving factors and potential risks behind MPs occurrence improve our knowledge to manage MPs pollution in large-scale watersheds, providing crucial information for the development of effective mitigation strategies.
Collapse
Affiliation(s)
- Xiaowei Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Binyan Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Rundong Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
9
|
Alvarez E. Comparing quantity of marine debris to California horn shark sightings and egg appearances in Redondo Beach, California, USA. MARINE POLLUTION BULLETIN 2025; 212:117499. [PMID: 39765183 DOI: 10.1016/j.marpolbul.2024.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 03/05/2025]
Abstract
Marine debris such as plastic, metal, and rubber, is a significant source of anthropogenic waste pollution in oceanic waters. Debris continues to be found along Southern California's coastlines and poses serious risks to biodiversity and ecosystem health through entrapment, ingestion, and entanglement. One particular species that drops eggs in the South Bay, particularly in the Palos Verdes peninsula, is the California horn shark (Heterodontus francisci). In California, H. francisci is managed by the California Department of Fish and Wildlife under general finfish regulations. The International Union for Conservation of Nature (IUCN) has published a 'Red List of Threatened Species' and H. francisci is characterized as being 'data deficient.' Additionally, several studies have noted dwindling H. francisci populations and have indicated a need for more localized management strategies to ensure their protection. Using the citizen science app, Marine Debris Tracker, this study geotagged and characterized waste, and used ArcGIS to generate heat maps of marine debris, H. francisci sightings and egg appearances to assess relationships. These maps help to address the data gaps that exist on (1) debris found on the Redondo Beach Esplanade, (2) local beach H. francisci sightings, and (3) H. francisci egg casings in the Palos Verdes peninsula to understand potential impacts of environmental waste on H. francisci. With these maps, citizen scientists, conservationists, and other local stakeholders can focus their efforts on key hotspots that could potentially endanger nesting practices of the H. francisci. Since oceanic pollution is an international issue that threatens ecosystems and biodiversity including nesting practices, leveraging citizen science applications can be a critical tool for conservation and management strategies.
Collapse
Affiliation(s)
- Evelyn Alvarez
- California State University, Los Angeles, 5151 State University Drive ST 305, Los Angeles, CA 90032, USA.
| |
Collapse
|
10
|
Hu X, Dong X, Wang Z. Common issues of data science on the eco-environmental risks of emerging contaminants. ENVIRONMENT INTERNATIONAL 2025; 196:109301. [PMID: 39884250 DOI: 10.1016/j.envint.2025.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Data-driven approaches (e.g., machine learning) are increasingly used to replace or assist laboratory studies in the study of emerging contaminants (ECs). In the past ten years, an increasing number of models or approaches have been applied to ECs, and the datasets used are continuously enriched. However, there are large knowledge gaps between what we have found and the natural eco-environmental meaning. For most published reviews, the contents are organized by the types of ECs, but the common issues of data science, regardless of the type of pollutant, are not sufficiently addressed. To close or narrow the knowledge gaps, we highlight the following issues ignored in the field of data-driven EC research. Complicated biological and ecological data and ensemble models revealing mechanisms and spatiotemporal trends with strong causal relationships and without data leakage deserve more attention in the future. In addition, the matrix influence, trace concentration, and complex scenario have often been ignored in previous works. Therefore, an integrated research framework related to natural fields, ecological systems, and large-scale environmental problems, rather than relying solely on laboratory data-related analysis, is urgently needed. Beyond the current prediction purposes, data science can inspire the discovery of scientific questions, and mutual inspiration among data science, process and mechanism models, and laboratory and field research is a critical direction. Focusing on the above urgent and common issues related to data, frameworks, and purposes, regardless of the type of pollutant, data science is expected to achieve great advancements in addressing the eco-environmental risks of ECs.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xu Dong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhangjia Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
Rezania S, Miri S, Cho J, Hur J, Kamyab H, Darajeh N, Mohammadi AA, Molani F, Taghavijeloudar M. Microplastic pollution in the marine environment: Distribution factors and mitigation strategies in different oceans. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104496. [PMID: 39793407 DOI: 10.1016/j.jconhyd.2025.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
As the COVID-19 pandemic began in 2020, plastic usage spiked, and microplastic (MP) generation has increased dramatically. It is documented that MP can transfer from the source to the ocean environment where they accumulate as the destination. Therefore, it is essential to understand their transferring pathways and effective environmental factors to determine the distribution of MPs in the marine environment. This article reviews the environmental factors that affect MP distribution in the oceans including abiotic such as ocean currents and wind direction, physical/chemical and biological reactions of MPs, natural sinking, particle size and settling velocity, and biotic including biofouling, and incorporation in fecal material. It was found that velocity and physical shearing are the most important parameters for MP accumulation in the deep ocean. Besides, this review proposes different research-based, national-level, and global-level strategies for the mitigation of MPs after the pandemic. Based on the findings, the level of MP pollution in the oceans is directly correlated to coastal areas with high populations, particularly in African and Asian countries. Future studies should focus on establishing predictive models based on the movement and distribution of MPs to mitigate the levels of pollution.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Negisa Darajeh
- Aurecon Group, 110 Carlton Gore Road, Newmarket, Auckland 1023, New Zealand
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran; Workplace Health Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Farzad Molani
- Department of Chemistry, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744 Seoul, South Korea
| |
Collapse
|
12
|
Hou Y, Wang Y, Zhang Y, Lu Z, Zhang Z, Dong Z, Qiu Y. Cotransport of nanoplastics with nZnO in saturated porous media: From brackish water to seawater. J Environ Sci (China) 2025; 148:541-552. [PMID: 39095187 DOI: 10.1016/j.jes.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 08/04/2024]
Abstract
The ocean serves as a repository for various types of artificial nanoparticles. Nanoplastics (NPs) and nano zinc oxide (nZnO), which are frequently employed in personal care products and food packaging materials, are likely simultaneously released and eventually into the ocean with surface runoff. Therefore, their mutual influence and shared destiny in marine environment cannot be ignored. This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions. Results showed that NPs remained dispersed in brine, while nZnO formed homoaggregates. In seawater of 35 practical salinity units (PSU), nZnO formed heteroaggregates with NPs, inhibiting NPs mobility and decreasing the recovered mass percentage (Meff) from 24.52% to 12.65%. In 3.5 PSU brackish water, nZnO did not significantly aggregate with NPs, and thus barely affected their mobility. However, NPs greatly enhanced nZnO transport with Meff increasing from 14.20% to 25.08%, attributed to the carrier effect of higher mobility NPs. Cotransport from brackish water to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU, below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport. This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.
Collapse
Affiliation(s)
- Yuanzhang Hou
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yange Wang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yidi Zhang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhibo Lu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenbo Zhang
- School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhiqiang Dong
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China; China Railway Engineering Group Co., Beijing 100039, China
| | - Yuping Qiu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Xu Z, Deng X, Lin Z, Wang L, Lin L, Wu X, Wang Y, Li H, Shen J, Sun W. Microplastics in agricultural soil: Unveiling their role in shaping soil properties and driving greenhouse gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177875. [PMID: 39644637 DOI: 10.1016/j.scitotenv.2024.177875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microplastics (MPs) contamination is pervasive in agricultural soils, significantly influencing carbon and nitrogen biogeochemical cycles and altering greenhouse gas (GHG) fluxes. This review examines the sources, status, mechanisms, and ecological consequences of MPs pollution in agricultural soils, with a focus on how MPs modified soil physicochemical properties and microbial gene expression, ultimately impacting GHG emissions. MPs were found to reduce soil water retention, decreasing soil respiration and increasing emissions of CO2, CH₄, and N2O. They also enhanced soil aggregate stability and influenced soil organic carbon (SOC) sequestration, contributing further to GHG emissions. MPs-induced increases in soil pH were associated with suppressed CH₄ and N2O emissions, whereas the abundance of genes encoding enzymes for cellulose and lignin decomposition (e.g., abfA and mnp) stimulated enzyme activity, intensifying N2O release. Additionally, a reduced soil C/N ratio promoted denitrification processes. Changes in microbial communities, including increases in Actinomycetes and Proteobacteria, were observed, with a rise in genes associated with carbon cycling (abfA, manB, xylA) and nitrification-denitrification (nifH, amoA, nirS, nirK), further exacerbating CO2 and N2O emissions. This review provides valuable insights into the complex roles of MPs in GHG dynamics in agricultural soils, offering perspectives for improving environmental management strategies.
Collapse
Affiliation(s)
- Zhimin Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Jianlin Shen
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
14
|
Gao M, Zheng G, Lei C, Cui R, Chen J, Lou J, Sun L, Lu T, Qian H. Machine learning models reveal how polycyclic aromatic hydrocarbons influence environmental bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177032. [PMID: 39447913 DOI: 10.1016/j.scitotenv.2024.177032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are harmful and widespread pollutants in the environment, posing an ecological threat. However, exploring the influence of PAHs on environmental bacterial communities in different habitats (soil, water, and sediment) remains a major challenge. We collected and reanalyzed 1924 16S rRNA sequencing samples to determine the effects of PAHs on bacterial communities in different habitats and used machine learning to predict potential degrading bacteria. It was found that PAHs had substantial effects on the bacterial community, and that the bacterial community structure changed differently in different habitats. PAH contamination decreased the relative abundance of Proteobacteria in the soil (16.3 %) and sediment (10.1 %), whereas the abundance of Proteobacteria in water increased by 20.2 %. Among the tested models, the random forest model best identified the effects of PAHs on bacterial groups, with an accuracy of 99.51 % for soil, 97.72 % for sediment, and 100 % for water at the genus level. Using the random forest model, we identified 70 biomarkers that respond to PAHs, including potentially degrading microorganisms such as A4b, Bacillus, Flavobacterium and Polynucleobacter. Furthermore, PAH contamination did not significantly alter the functions of bacterial communities in the environment. This study provides a candidate strain set for future screening of PAH-degrading bacteria and contributes to the study of the adaptability of engineered PAH-degrading bacteria to the environment.
Collapse
Affiliation(s)
- Mingyu Gao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Guogang Zheng
- Zhejiang Anglikang Pharmaceutical Cooperation, Shengzhou 312400, PR China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Rui Cui
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiajie Lou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| |
Collapse
|
15
|
Büngener L, Postila H, Ronkanen AK, Heiderscheidt E. Distribution of microplastics between ice and water in aquatic systems: The influence of particle properties, salinity and freshwater characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176160. [PMID: 39260475 DOI: 10.1016/j.scitotenv.2024.176160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) are an anthropogenic emerging pollutant, with global contamination of both marine and freshwater systems extensively documented. The interplay of MP particle properties and environmental conditions needs to be understood in order to assess the environmental fate and evaluate mitigation measures. In cold climate, ice formation has appeared to significantly affect the distribution of MPs, but so far, limited research is available comparing different aquatic systems, especially freshwater. Experiments often rely on artificial water and specific MP model particles. This study used laboratory tests to investigate the ice-water distribution of a variety of environmentally relevant MP particle types (PP, PE, PS and PVC fragments (25-1000 μm), PET fibers (average length 821 μm, diameter 15 μm)) across different water types, including artificial water of high and low salinity, as well as natural water from a lake and a treatment wetland. Overall, ice entrapment of MPs occurred in almost all tests, but the ice-water distribution of MPs differed across the different water types tested. Among the tests with artificial water, salinity clearly increased MP concentrations in the ice, but it cannot be resolved whether this is caused by increased buoyancy, changes in ice structure, or thermohaline convection during freezing. In the natural freshwater tests, the partition of MPs was shifted towards the ice compared to what was seen in the artificial freshwater. The influence of different types of dissolved and particulate substances in the different waters on MPs fate should be considered important and further explored. In this study, the higher content of suspended solids in the lake water might have enhanced MP settling to the bottom and thereby contributed to the absence of MPs in the ice of the lake test, compared to the wetland test with low suspended solids and considerably more MPs in the ice. Furthermore, the higher negative charge in the lake water possibly stabilized the negatively charged MPs in suspension, and reduced ice entrapment. Regarding particle properties, shape had a distinct effect, with fibers being less likely incorporated into ice than fragments. No fibers were found in freshwater ice. However, it became clear that ice entrapment of MPs depends on factors other than the particles' buoyancy based on density differences and particle size and shape alone.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland.
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| | - Anna-Kaisa Ronkanen
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland; Finnish Environment Institute, Marine and freshwater solutions, Paavo Havaksen Tie 3, P.O. Box 413, FI-90014 Oulu, Finland
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| |
Collapse
|
16
|
Ruiz-Fernández AC, Pérez-Bernal LH, Sanchez-Cabeza JA, Valencia-Castañeda G, Ontiveros-Cuadras JF, Alonso-Hernández CM. Accelerating microplastic contamination in 210Pb dated sediment cores from an urbanized coastal lagoon (NW Mexico) since the 1990s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175613. [PMID: 39168330 DOI: 10.1016/j.scitotenv.2024.175613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The ubiquity of microplastics (MP) across all ecosystems raises concerns about their potential harm to the environment and living organisms. Sediments are a MP sink, reflecting long-term accumulation and historical anthropogenic impacts. Three 210Pb-dated sediment cores were used to understand the temporal variations of MP abundances (particles kg-1) and fluxes (particles m-2 year-1) within the past century in Estero de Urías Lagoon, an urbanized coastal lagoon in the Mexican Pacific. MP particles, extracted from sediments by density separation (saturated NaCl solution) were counted using a stereomicroscope, under visible and ultraviolet light on Nile red (NR) stained filters. The polymer composition was determined in ∼10 % of the suspected MP particles using Fourier Transform Infrared spectrometry. Fibers (66 to 89 % of the total particles) predominated over fragments (11 to 34 %). Before 1950, no MP particles were detected. Polyethylene terephthalate (PET) was the prevalent synthetic polymer (up to 50 % of the particles), while semisynthetic cellulosic fibers were predominant, underscoring the broader scope of anthropogenic contamination. Suspected MP abundances (NR stained filters) were highest in the core collected at the innermost area, which was attributed to the lagoon's hydrodynamics, since current velocities decrease from the proximal to the distal area to the sea. From the regression between MP fluxes and time elapsed since sediments deposited, the cores showed consistent accelerated increases of MP burial since mid-20th century, most likely because of the increasing availability of plastic products and population growth, with the consequent increment in plastic waste and wastewater releases. Our findings emphasize the growing MP pollution challenges at EUL, which may directly impact subsistence fishing and shrimp aquaculture activities, threatening local livelihoods and food sources; and also highlight the need for improved waste management and pollution control strategies in rapidly industrializing regions, to protect both aquatic ecosystems and human populations dependent on fishing products.
Collapse
Affiliation(s)
- Ana Carolina Ruiz-Fernández
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Sinaloa, Mexico.
| | - Libia Hascibe Pérez-Bernal
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Sinaloa, Mexico.
| | - Joan-Albert Sanchez-Cabeza
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Sinaloa, Mexico.
| | - Gladys Valencia-Castañeda
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Sinaloa, Mexico
| | - Jorge Feliciano Ontiveros-Cuadras
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, UAPOC-Ciudad Universitaria, Mexico City, Mexico.
| | | |
Collapse
|
17
|
Wang YF, Liu YJ, Fu YM, Xu JY, Zhang TL, Cui HL, Qiao M, Rillig MC, Zhu YG, Zhu D. Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nat Commun 2024; 15:9788. [PMID: 39532872 PMCID: PMC11557862 DOI: 10.1038/s41467-024-54237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of microplastics on antibiotic resistance has attracted widespread attention. However, previous studies primarily focused on the effects of individual microplastics. In reality, diverse microplastic types accumulate in soil, and it remains less well studied whether microplastic diversity (i.e., variations in color, shape or polymer type) can be an important driver of increased antibiotic resistance gene (ARG) abundance. Here, we employed microcosm studies to investigate the effects of microplastic diversity on soil ARG dynamics through metagenomic analysis. Additionally, we evaluated the associated potential health risks by profiling virulence factor genes (VFGs) and mobile genetic elements (MGEs). Our findings reveal that as microplastic diversity increases, there is a corresponding rise in the abundance of soil ARGs, VFGs and MGEs. We further identified microbial adaptive strategies involving genes (changed genetic diversity), community (increased specific microbes), and functions (enriched metabolic pathways) that correlate with increased ARG abundance and may thus contribute to ARG dissemination. Additional global change factors, including fungicide application and plant diversity reduction, also contributed to elevated ARG abundance. Our findings suggest that, in addition to considering contamination levels, it is crucial to monitor microplastic diversity in ecosystems due to their potential role in driving the dissemination of antibiotic resistance through multiple pathways.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yan-Jie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yan-Mei Fu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China.
| |
Collapse
|
18
|
Chen Y, Mao L, Wang W, Yuan H, Yang C, Zhang R, Zhou Y, Zhang G. An efficient strategy to tailor PET hydrolase: Simple preparation with high yield and enhanced hydrolysis to micro-nano plastics. Int J Biol Macromol 2024; 281:136479. [PMID: 39393729 DOI: 10.1016/j.ijbiomac.2024.136479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Polyethylene terephthalate (PET) nano/microplastics (PET-NMPs) are regarded as an emergent hazardous waste for the environment. Enzymatic treatment of PET-NMPs is one of the most promising methods. However, strategies for mining or engineering of PET hydrolases with better characteristics and the simple and cost-effective preparation of them are the bottlenecks currently. Herein, we proposed a gene fusion strategy to tailor PET hydrolase (ICCG) with ferritin (namely F-C) towards micro-nano PET degradation. The purified F-C was obtained by an easy scalable low-speed centrifugation with 80.8 % activity recovery and 82.9 % protein recovery compared to the crude protein extraction, with the final high yield of 2.17 g/L. Encouragingly, unlike only hydrolyzing amorphous PET (crystallinity lower than 10 %), the resulted F-C showed 84.53 mgTPA/h/mgEnzyme specific activity at 70 °C for 5 h towards micro-PET with relatively high crystallinity (20.54 %) at the optimized enzyme/PET ratio of 1:100 (Wt), without producing intermediates. The supreme activity of F-C was closely related to its enhanced affinity towards substrate, increased substrate's ester bond tensions and binding pocket volume. More interestingly, F-C exhibited promising stability not only in storage or high temperature, but also in simulated seawater (hypersaline environment), with the half-lives of 128.4 days at 30 °C. Thus, the all-in-one strategy will offer a green and alternative solution to assist the PET-NMPs waste treatments such as recycling in the high-temperature reactor or degradation in seawater.
Collapse
Affiliation(s)
- Yaxin Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Lei Mao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Weijuan Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Hang Yuan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Chun Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yanhong Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
19
|
Davidov K, Marsay KS, Itzahri S, Rubin-Blum M, Sobral P, Kranzler CF, Oren M. Community composition and seasonal dynamics of microplastic biota in the Eastern Mediterranean Sea. Sci Rep 2024; 14:26131. [PMID: 39477997 PMCID: PMC11526100 DOI: 10.1038/s41598-024-73281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Marine plastic pollution poses a growing environmental threat, with microplastics accumulating in the global oceans. This study profiles the seasonal dynamics and taxonomic composition of the plastisphere, the microplastic ecosystem, in the Eastern Mediterranean Sea. Using long-read 16 S and 18 S metabarcoding, we analyzed offshore microplastic and whole seawater samples across each season over a two-year period. The analysis revealed a higher richness of prokaryotic communities on microplastics compared to seawater, which was predominantly composed of Proteobacteria and Bacteroidota and exhibited notable seasonal variability. Benthic eukaryotes were enriched on microplastics compared to the surrounding seawater. Diatoms (Bacillariophyceae), in particular, showed significant enrichment within the microplastic eukaryotic community with primarily pennate diatoms of Amphora, Navicula, and Nitzschia genera, whereas the seawater included mostly centric diatoms. Seasonal fluctuations were less pronounced in the microplastic communities than in seawater, highlighting the relative stability of this new human-made ecosystem. These findings underscore the unique ecological niche of microplastic-associated communities in marine environments.
Collapse
Affiliation(s)
- Keren Davidov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Sheli Itzahri
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa, Israel
| | - Paula Sobral
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, NOVA School of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Chana F Kranzler
- Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
20
|
Zhang W, Geng J, Sun M, Jiang C, Lin H, Chen H, Yang Y. Distinct species turnover patterns shaped the richness of antibiotic resistance genes on eight different microplastic polymers. ENVIRONMENTAL RESEARCH 2024; 259:119562. [PMID: 38971360 DOI: 10.1016/j.envres.2024.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs β diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life.
Collapse
Affiliation(s)
- Weihong Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Jun Geng
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Mengge Sun
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Chunxia Jiang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Hui Lin
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| |
Collapse
|
21
|
Pei Y, Lin Y, Guo J, Luo K, Wu J, Wu J, Yang W, Gao J. Microplastics in wild fish in the Three Gorges Reservoir, China: A detailed investigation of their occurrence, characteristics, biomagnification and risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135551. [PMID: 39154484 DOI: 10.1016/j.jhazmat.2024.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Microplastics (MPs) pollution in freshwater poses a risk to various ecosystems and health security. In 2018, the Chinese government banned fishing since 2018 in the Three Gorges Reservoir (TGR), but the fate and risk of MPs in wild fish remain unclear. Therefore, a detailed investigation was conducted into the occurrence of MPs in 18 wild fish species in the TGR using a Micro Fourier Transform Infrared Spectrometer, and the trophic transfer and risks were assessed. MPs in fish were aged, with abundances ranging from 0.68 ± 0.98 to 4.00 ± 2.12 items/individual. Most particles were less than 1 mm in size (73.4 %), with fibers being the dominant shape (48.9 %) and transparent as the dominant color (35 %). Polyethylene (PE) was the most prevalent type. The bioconcentration factor (BCF), bioaccumulation factor (BAF), trophic magnification factor (TMF) and polymer hazard index (PHI) were low, suggesting no trophic transfer and a low risk of MPs. The BAF may provide a more reasonable description of the degree of enrichment of MPs, and 'items/individual' or 'g/individual' can be used to describe MPs concentrations in fish. This study proposes new insights and prospectives that can help researchers better understand MPs enrichment in fish across various trophic levels.
Collapse
Affiliation(s)
- Yizhi Pei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kongyan Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jianyong Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jingcheng Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wenhao Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Junmin Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
22
|
Dai Y, Guo Z, Guo X, Deng R, Li L, Fan T, Cui K, Pan T. Plastic particles and fluorescent brightener co-modify Chlorella pyrenoidosa photosynthesis and a machine learning approach predict algae growth. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135406. [PMID: 39098198 DOI: 10.1016/j.jhazmat.2024.135406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Global release of plastics exerts various impacts on the ecological cycle, particularly on primary photosynthesis, while the impacts of plastic additives are unknown. As a carrier of fluorescent brightener, plastic particles co-modify Chlorella pyrenoidosa (C. pyrenoidosa) growth and its photosynthetic parameters. In general, adding to the oxidative damage induced by polystyrene, fluorescent brightener-doped polystyrene produces stronger visible light and the amount of negative charge is more likely to cause photodamage in C. pyrenoidosa leading to higher energy dissipation through conditioning than in the control group with a date of ETR (II) inhibition rate of 33 %, Fv/Fm inhibition rate of 8.3 % and Pm inhibition rate of 48.8 %. To elucidate the ecological effect of fluorescent brightener doping in plastic particles, a machine learning method is performed to establish a Gradient Boosting Machine model for predicting the impact of environmental factors on algal growth. Upon validation, the model achieved an average fitting degree of 88 %. Relative concentration of plastic particles and algae claimed the most significant factor by interpretability analysis of the machine learning. Additionally, both Gradient Boosting Machine prediction and experimental results indicate a matching result that plastic additives have an inhibitive effect on algal growth.
Collapse
Affiliation(s)
- Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Institute of Ecological Civilization, Hefei 230022, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Institute of Ecological Civilization, Hefei 230022, China.
| | - Xingpan Guo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Institute of Ecological Civilization, Hefei 230022, China
| | - Ting Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tao Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Institute of Ecological Civilization, Hefei 230022, China
| |
Collapse
|
23
|
Duan Q, Zhai B, Zhao C, Liu K, Yang X, Zhang H, Yan P, Huang L, Lee J, Wu W, Zhou C, Quan X, Kang W. Nationwide meta-analysis of microplastic distribution and risk assessment in China's aquatic ecosystems, soils, and sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135331. [PMID: 39067288 DOI: 10.1016/j.jhazmat.2024.135331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Microplastic (MP) accumulation has recently become a pressing global environmental challenge. As a major producer and consumer of plastic products, China's MP pollution has garnered significant attention from researchers. However, accurate and comprehensive investigations of national-level MP pollution are still lacking. In this study, we systematically collated a national MP pollution dataset consisting of 7766 water, soil, and sediment sampling sites from 544 publicly published studies, revealing the spatiotemporal distribution and potential risks of MP pollution in China. The results indicate that MP distribution is influenced by various regional factors, including economic development level, population distribution, and geographical environment, exhibiting considerable range and complexity. MP concentrations are generally higher in economically prosperous areas, but the degree of pollution varies significantly across different environmental media. Given the uncertainty and lack of standardized data in traditional microplastic risk assessment methods, this article highlights the urgency of developing a comprehensive big data and artificial intelligence (AI)-based regulatory framework. This work provides a substantial amount of accurate MP pollution data and offers a fresh perspective on leveraging AI for microplastic pollution regulation.
Collapse
Affiliation(s)
- Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Baoxin Zhai
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Chen Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Kangping Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Xiangyi Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Hailong Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Pengwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Jianchao Lee
- Department of Environment Science, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Weidong Wu
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| | - Chi Zhou
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| | - Xudong Quan
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| | - Wei Kang
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| |
Collapse
|
24
|
Zhao B, Richardson RE, You F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135329. [PMID: 39088945 DOI: 10.1016/j.jhazmat.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Bu Zhao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fengqi You
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Yin Y, Ma Y, Li Q, Chen N, Wen S. Stressful Effects of Individual and Combined Exposure to Low-Concentration Polylactic Acid Microplastics and Chromium on Marine Medaka Larvae ( Oryzias melastigma). TOXICS 2024; 12:594. [PMID: 39195695 PMCID: PMC11359823 DOI: 10.3390/toxics12080594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Microplastics and heavy metal pollution frequently co-occur in the marine environment, raising concerns about their potentially harmful impacts on marine fish. This study undertook a comprehensive evaluation of the individual and combined stress effects of polylactide microplastics (PLA-MPs) and chromium (Cr) on marine medaka larvae. Following a 14-day exposure to PLA-MPs (100 μg/L) and Cr (50 μg/L), both individually and in combination, significant increases in heart rate and body length were observed. Notably, the combined exposure to PLA-MPs and Cr caused marked histopathological alterations, including shedding, atrophy, and lysis of the intestinal tissues. Furthermore, both individual and combined exposure induced oxidative stress in fish larvae, leading to changes in various enzyme activity indices. Individual exposure to either PLA-MPs or Cr led to anxious behavior in the larvae, whereas combined exposure not only caused anxious behavior but also altered swimming patterns. These findings suggest that combined exposure to PLA-MPs and Cr can exacerbate the toxic effects on marine medaka larvae.
Collapse
Affiliation(s)
- Yuan Yin
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Y.Y.)
| | - Yini Ma
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Y.Y.)
| | - Nan Chen
- Hainan Ecological Environmental Monitoring Center, Haikou 570100, China
| | - Shaobai Wen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (Y.Y.)
| |
Collapse
|
26
|
Xiang Q, Stryhanyuk H, Schmidt M, Kümmel S, Richnow HH, Zhu YG, Cui L, Musat N. Stable isotopes and nanoSIMS single-cell imaging reveals soil plastisphere colonizers able to assimilate sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124197. [PMID: 38782163 DOI: 10.1016/j.envpol.2024.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The presence and accumulation of both, plastics and antibiotics in soils may lead to the colonization, selection, and propagation of soil bacteria with certain metabolic traits, e.g., antibiotic resistance, in the plastisphere. However, the impact of plastic-antibiotic tandem on the soil ecosystem functioning, particularly on microbial function and metabolism remains currently unexplored. Herein, we investigated the competence of soil bacteria to colonize plastics and degrade 13C-labeled sulfamethoxazole (SMX). Using single-cell imaging, isotope tracers, soil respiration and SMX mineralization bulk measurements we show that microbial colonization of polyethylene (PE) and polystyrene (PS) surfaces takes place within the first 30 days of incubation. Morphologically diverse microorganisms were colonizing both plastic types, with a slight preference for PE substrate. CARD-FISH bacterial cell counts on PE and PS surfaces formed under SMX amendment ranged from 5.36 × 103 to 2.06 × 104, and 2.06 × 103 to 3.43 × 103 hybridized cells mm-2, respectively. Nano-scale Secondary Ion Mass Spectrometry measurements show that 13C enrichment was highest at 130 days with values up to 1.29 atom%, similar to those of the 13CO2 pool (up to 1.26 atom%, or 22.55 ‰). Independent Mann-Whitney U test showed a significant difference between the control plastisphere samples incubated without SMX and those in 13C-SMX incubations (P < 0.001). Our results provide direct evidence demonstrating, at single-cell level, the capacity of bacterial colonizers of plastics to assimilate 13C-SMX from contaminated soils. These findings expand our knowledge on the role of soil-seeded plastisphere microbiota in the ecological functioning of soils impacted by anthropogenic stressors.
Collapse
Affiliation(s)
- Qian Xiang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Niculina Musat
- Department of Isotope Biochemistry, Currently Merged As Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany; Department of Biology, Section for Microbiology, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
27
|
Hu B, Dai Y, Zhou H, Sun Y, Yu H, Dai Y, Wang M, Ergu D, Zhou P. Using artificial intelligence to rapidly identify microplastics pollution and predict microplastics environmental behaviors. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134865. [PMID: 38861902 DOI: 10.1016/j.jhazmat.2024.134865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
With the massive release of microplastics (MPs) into the environment, research related to MPs is advancing rapidly. Effective research methods are necessary to identify the chemical composition, shape, distribution, and environmental impacts of MPs. In recent years, artificial intelligence (AI)-driven machine learning methods have demonstrated excellent performance in analyzing MPs in soil and water. This review provides a comprehensive overview of machine learning methods for the prediction of MPs for various tasks, and discusses in detail the data source, data preprocessing, algorithm principle, and algorithm limitation of applied machine learning. In addition, this review discusses the limitation of current machine learning methods for various task analysis in MPs along with future prospect. Finally, this review finds research potential in future work in building large generalized MPs datasets, designing high-performance but low-computational-complexity algorithms, and evaluating model interpretability.
Collapse
Affiliation(s)
- Binbin Hu
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hai Zhou
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China
| | - Ying Sun
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China
| | - Hongfang Yu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yueyue Dai
- School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Wang
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Daji Ergu
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China
| | - Pan Zhou
- College of Electronic and Information, Southwest Minzu University, Chengdu 610225, China; Key Laboratory of Electronic Information Engineering, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
28
|
Yang H, Zhao H, Mao H, Pu Y, Peng Q, Xu Z, Zhang X, Huang F, Li Z. Lower concentration polyethylene microplastics can influence free-floating macrophyte interactions by combined effects of many weak interactions: A nonnegligible ecological impact. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107028. [PMID: 39047441 DOI: 10.1016/j.aquatox.2024.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) are ubiquitous in freshwater ecosystems and their accumulation has been considered an emerging threat. Early research on the effects of MPs on macrophytes primarily focused on the toxicological impacts on individual macrophytes, with several studies suggesting that lower concentrations of MPs have little impact on macrophytes. However, the ecological implications of lower MP concentrations on macrophyte communities remain largely unexplored. Here, we experimented to assess the effects of lower concentrations including 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L of polyethylene (PE) microplastics on Spirodela polyrhiza and Lemna minor, and their community. Our results also indicated that PE concentrations below 100 mg/L had no significant effect on relative growth rate, specific leaf area, Chlorophyll a, Chlorophyll b, Chlorophyll a + b, carotenoid, malondialdehyde (MDA), catalase, and soluble sugar of monocultural S. polyrhiza. However, a lower concentration of PE significantly decreased the MDA of monocultural L. minor and significantly affected the comprehensive index of S. polyrhiza. These findings suggested that lower concentrations of PE can influence interactions between macrophytes maybe due to the cumulative effects of many weak interactions. Additionally, our study showed that 75 mg/L and 100 mg/L PE additions decreased the competitive balance index value of two macrophytes under mixed-culture condition. This result implied that the ecological influence of lower concentration MPs on macrophytes may manifest at the community level rather than at the population level, due to species-specific responses and varying degrees of sensitivity of macrophytes to PE concentrations. Thus, our study emphasizes the need to closely monitor the ecological consequences of emerging contaminants such as MPs accumulation on macrophyte communities, rather than focusing solely on the morphology and physiology of individual macrophytes.
Collapse
Affiliation(s)
- Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Hongbo Zhao
- The Forestry Prospect & Design Institute of Hubei Province, Wuhan, 430223, PR China
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Yunhai Pu
- Wildlife Conservation Chief Station of Hubei Province, Wuhan, PR China
| | - Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Xu Zhang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Feng Huang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
29
|
Tuncelli G, Can Tuncelli I, Dagsuyu E, Turkyilmaz IB, Yanardag R, Erkan N. The effect of different types of microplastic and acute cadmium exposure on the Mytilus galloprovincialis (Lamarck, 1819). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173505. [PMID: 38797408 DOI: 10.1016/j.scitotenv.2024.173505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Microplastic (MP) pollution is a pressing issue for both environmental health and the safety of human food sources. This study provides a comprehensive analysis of the effects of MPs on Mediterranean mussels (Mytilus galloprovincialis, Lamarck 1819), focusing on the food safety risks associated with MP and cadmium (Cd) exposure in these organisms intended for consumption. The retention of different polymer types of MPs in mussels was specifically evaluated, and the influence of Cd on MP retention across these polymers was investigated. Mussels were exposed to polystyrene (PS), polypropylene (PP), and polyethylene terephthalate (PET) MPs individually and in combination with the toxic metal Cd for a duration of 7 days. Antioxidant enzymes, oxidative stress parameters, and digestive system enzyme activities, selected as biomarkers for Cd and MPs pollution, were assessed. Furthermore, human consumption risk evaluations and limits regarding mussel intake were analysed in terms of food safety. The results suggest that exposure to Cd, MPs, or their combination induces oxidative stress, tissue damage, and neurotoxicity. Alterations in digestive enzyme activities could impact the mussels' energy acquisition from food and their capacity to conserve energy reserves. The estimated daily intake (EDI), provisional tolerable weekly intake (PTWI), target hazard quotient (THQ), and target cancer risk (TCR) levels for all groups surpassed established limits, implying a significant health risk for humans consuming these products. These results underscore the potential health risks for humans associated with consuming mussels exposed to Cd and/or MPs and provide valuable data for monitoring pollution levels and ecological risks in aquatic organisms. Additionally, our findings reveal that the retention of Cd in mussel tissues varies significantly after exposure, with combinations of PET and Cd showing lower levels of Cd accumulation compared to other groups, suggesting a differential interaction that influences Cd retention.
Collapse
Affiliation(s)
- Gokhan Tuncelli
- Istanbul University, Faculty of Aquatic Sciences, Department of Aquaculture and Fish Diseases, Aquaculture Programme, 34134 Fatih, Istanbul, Türkiye
| | - Idil Can Tuncelli
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Technology Programme, 34134 Fatih, Istanbul, Türkiye.
| | - Eda Dagsuyu
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Türkiye
| | - Ismet Burcu Turkyilmaz
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Türkiye
| | - Refiye Yanardag
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Türkiye
| | - Nuray Erkan
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Food Safety Programme, 34134 Fatih, Istanbul, Türkiye
| |
Collapse
|
30
|
Zhang D, Calmanovici B, Marican H, Reisser J, Summers S. The assembly and ecological roles of biofilms attached to plastic debris of Ashmore reef. MARINE POLLUTION BULLETIN 2024; 205:116651. [PMID: 38917500 DOI: 10.1016/j.marpolbul.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Plastic pollution in the ocean is a global environmental hazard aggravated by poor management of plastic waste and growth of annual plastic consumption. Microbial communities colonizing the plastic's surface, the plastisphere, has gained global interest resulting in numerous efforts to characterize the plastisphere. However, there are insufficient studies deciphering the underlying metabolic processes governing the function of the plastisphere and the plastic they reside upon. Here, we collected plastic and seawater samples from Ashmore Reef in Australia to examine the planktonic microbes and plastic associated biofilm (PAB) to investigate the ecological impact, pathogenic potential, and plastic degradation capabilities of PAB in Ashmore Reef, as well as the role and impact of bacteriophages on PAB. Using high-throughput metagenomic sequencing, we demonstrated distinct microbial communities between seawater and PAB. Similar numbers of pathogenic bacteria were found in both sample types, yet plastic and seawater select for different pathogen populations. Virulence Factor analysis further illustrated stronger pathogenic potential in PAB, highlighting the pathogenicity of environmental PAB. Furthermore, functional analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed xenobiotic degradation and fatty acid degradation to be enriched in PABs. In addition, construction of metagenome-assembled genomes (MAG) and functional analysis further demonstrated the presence of a complete Polyethylene (PE) degradation pathway in multiple Proteobacteria MAGs, especially in Rhodobacteriaceae sp. Additionally, we identified viral population presence in PAB, revealing the key role of bacteriophages in shaping these communities within the PAB. Our result provides a comprehensive overview of the various ecological processes shaping microbial community on marine plastic debris.
Collapse
Affiliation(s)
- Dong Zhang
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Tropical Marine Science Institute, St. John's Island National Marine Laboratory, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Bruna Calmanovici
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Hana Marican
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 117456, Singapore
| | - Julia Reisser
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Stephen Summers
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Tropical Marine Science Institute, St. John's Island National Marine Laboratory, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.
| |
Collapse
|
31
|
Yuan Y, Yang L, Wan X, Zhao Y, Gong Y, Xing W, Xue T, Tao J. Microplastics in heavy metal-contaminated soil drives bacterial community and metabolic changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174770. [PMID: 39032735 DOI: 10.1016/j.scitotenv.2024.174770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Microplastic (MP) and heavy metal pollution in soil are global issues. When MPs invade the soil, they combine with heavy metals and adversely affect soil organisms. Six common MPs-polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, and polytetrafluoroethylene-were selected for this study to examine the effects of various concentrations and MP types on the physicochemical properties, bacterial community, and soil metabolism of heavy metal-contaminated soil. MP enhanced predation and competition among heavy metal-contaminated soil bacteria. Heavy metal-MPs alter metabolites in lipid metabolism, other pathways, and the bacterial community. MP treatment promotes energy production and oxidative stress of soil bacteria to resist the toxicity of heavy metals and degrade MP pollution. In conclusion, MP treatment changed the metabolism of the microbiome in heavy metal-contaminated soil and increased the abundance of Proteobacteria that responded to MPs and heavy metal pollution by 11.54 % on average. This study explored bacteria for the ecological regeneration and provided ideas for MPs and heavy metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liping Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xin Wan
- Jiangsu Academy of Forestry, Nanjing, China; Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Yuxue Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yizhao Gong
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Wei Xing
- Jiangsu Academy of Forestry, Nanjing, China; Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China.
| | - Tingting Xue
- Department of Civil and Architecture and Engineering, Chuzhou University, Anhui 239000, China.
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
32
|
Zeng H, Wang Y, Zhao Z, Zhu D, Xia H, Wei Y, Kuang P, An D, Chen K, Li R, Lei Y, Sun G. Travertine deposition rather than tourism activity is the primary contributor to the microplastic risks in alpine karst lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135192. [PMID: 39002479 DOI: 10.1016/j.jhazmat.2024.135192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are emerging as anthropogenic vectors to form plastisphere, facilitating microbiome colonization and pathogenic dissemination, thus contributing to environmental and health crises across various ecosystems. However, a knowledge gap persists regarding MPs risks and their driving factors in certain unique and vulnerable ecosystems, such as Karst travertine lakes, some of which are renowned World Natural Heritage Sites under ever-increasing tourism pressure. We hypothesized that tourism activities serve as the most important factor of MPs pollution, whereas intrinsic features, including travertine deposition can exacerbate potential environmental risks. Thus, metagenomic approaches were employed to investigate the geographical distribution of the microbiome, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their combined environmental risks in Jiuzhaigou and Huanglong, two famous tourism destinations in Southwest China. The plastisphere risks were higher in Huanglong, contradicting our hypothesis that Jiuzhaigou would face more crucial antibiotic risks due to its higher tourist activities. Specifically, the levels of Lipopolysaccharide Lewis and fosD increased by sevenfold and 20-fold, respectively, from upstream to downstream in Huanglong, whereas in Jiuzhaigou, no significant accrual was observed. Structural equation modeling results showed that travertine deposition was the primary contributor to MPs risks in alpine karstic lakes. Our findings suggest that tourism has low impact on MPs risks, possibly because of proper management, and that travertine deposition might act as an MPs hotspot, emphasizing the importance of considering the unique aspects of travertine lakes in mitigating MPs pollution and promoting the sustainable development of World Natural Heritage Sites.
Collapse
Affiliation(s)
- Hanyong Zeng
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijin Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhen Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Dalin Zhu
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongxia Xia
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yihua Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peigang Kuang
- Jiuzhaigou Nature Reserve Administration Bureau, Jiuzhaigou 623402, China
| | - Dejun An
- Huanglong Nature Reserve Administration Bureau, Songpan 623300, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruilong Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yanbao Lei
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Geng Sun
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
33
|
Wang M, Jiang X, Wei Z, Wang L, Song J, Cen P. Enhanced Cadmium Adsorption Dynamics in Water and Soil by Polystyrene Microplastics and Biochar. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1067. [PMID: 38998672 PMCID: PMC11243743 DOI: 10.3390/nano14131067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Microplastics (MPs) are prevalent emerging pollutants in soil environments, acting as carriers for other contaminants and facilitating combined pollution along with toxic metals like cadmium (Cd). This interaction increases toxic effects and poses substantial threats to ecosystems and human health. The objective of this study was to investigate the hydrodynamic adsorption of Cd by conducting experiments where polystyrene microplastics (PS) and biochar (BC) coexisted across various particle sizes (10 µm, 20 µm, and 30 µm). Then, soil incubation experiments were set up under conditions of combined pollution, involving various concentrations (0.5 g·kg-1, 5 g·kg-1, 50 g·kg-1) and particle sizes of PS and BC to assess their synergistic effects on the soil environment. The results suggest that the pseudo-second-order kinetic model (R2 = 0.8642) provides a better description of the adsorption dynamics of Cd by PS and BC compared to the pseudo-first-order kinetic model (R2 = 0.7711), with an adsorption saturation time of 400 min. The Cd adsorption process in the presence of PS and BC is more accurately modeled using the Freundlich isotherm (R2 > 0.98), indicating the predominance of multilayer physical adsorption. The coexistence of 10 µm and 20 µm PS particles with BC enhanced Cd absorption, while 30 µm PS particles had an inhibitory effect. In soil incubation experiments, variations in PS particle size increased the exchangeable Cd speciation by 99.52% and decreased the residual speciation by 18.59%. The addition of microplastics notably impacted the exchangeable Cd speciation (p < 0.05), with smaller PS particles leading to more significant increases in the exchangeable content-showing respective increments of 45.90%, 106.96%, and 145.69%. This study contributes to a deeper understanding of the mitigation mechanisms of biochar in the face of combined pollution from microplastics and heavy metals, offering theoretical support and valuable insights for managing such contamination scenarios.
Collapse
Affiliation(s)
- Mengmeng Wang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Xuyou Jiang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Zhangdong Wei
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Lin Wang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Jiashu Song
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Peitong Cen
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| |
Collapse
|
34
|
Zhou Y, Awasthi MK, Syed A, Bahkali AH. Engineered biochar combined clay for microplastic biodegradation during pig manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124372. [PMID: 38880326 DOI: 10.1016/j.envpol.2024.124372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
This study pursued to regulate bacterial community succession pattern and expedited biodegradation of microplastics (MP) during pig manure (PM) composting employing walnut shell biochar (WSB) and montmorillonite (M). The WSB with concentration of 0%, 2.5%, 5%, 7.5%, 10% and 12% along with 10% M participated into PM for 42 days compost to search the optimal solution. The results confirmed the most prosperous bacterial phylum consisted of Firmicutes (3.02%-91.80%), Proteobacteria (2.08%-48.54%), Chloroflexi (0-44.62%) and Bacteroidetes (0.85%-40.93%). The addition of biochar has dramatically arranged bacterial community at different stages of composting. Energy Dispersive Spectrometer (EDS) revealed that carbon element in MPs decreased since the chemical bond fracture, under the intervention of high-temperature composting and WSB, the carbon content of MPs was maximum reduced by 20.25%. Fourier transform infrared spectrum indicated that CC, C-O, C-H and -COOH abundance of MPs in 10% and 12% dose biochar addition sharply reduced, interestingly, explicating WSB and composting made MP biodegradable. This experiment possesses affirmatory practical meaning for elimination of potential hazards by composting.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
35
|
Huang M, Han K, Liu W, Wang Z, Liu X, Guo Q. Advancing microplastic surveillance through photoacoustic imaging and deep learning techniques. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134188. [PMID: 38579587 DOI: 10.1016/j.jhazmat.2024.134188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Microplastic contamination presents a significant global environmental threat, yet scientific understanding of its morphological distribution within ecosystems remains limited. This study introduces a pioneering method for comprehensive microplastic assessment and environmental monitoring, integrating photoacoustic imaging and advanced deep learning techniques. Rigorous curation of diverse microplastic datasets enhances model training, yielding a high-resolution imaging dataset focused on shape-based discrimination. The introduction of the Vector-Quantized Variational Auto Encoder (VQVAE2) deep learning model signifies a substantial advancement, demonstrating exceptional proficiency in image dimensionality reduction and clustering. Furthermore, the utilization of Vector Quantization Microplastic Photoacoustic imaging (VQMPA) with a proxy task before decoding enhances feature extraction, enabling simultaneous microplastic analysis and discrimination. Despite inherent limitations, this study lays a robust foundation for future research, suggesting avenues for enhancing microplastic identification precision through expanded sample sizes and complementary methodologies like spectroscopy. In conclusion, this innovative approach not only advances microplastic monitoring but also provides valuable insights for future environmental investigations, highlighting the potential of photoacoustic imaging and deep learning in bolstering sustainable environmental monitoring efforts.
Collapse
Affiliation(s)
- Mengyuan Huang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Kaitai Han
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Wu Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zijun Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xi Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China; School of Mechanical Engineering & Hydrogen Energy Research Centre, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| |
Collapse
|
36
|
Zhang Z, Zhang Q, Yang H, Cui L, Qian H. Mining strategies for isolating plastic-degrading microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123572. [PMID: 38369095 DOI: 10.1016/j.envpol.2024.123572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste is a growing global pollutant. Plastic degradation by microorganisms has captured attention as an earth-friendly tactic. Although the mechanisms of plastic degradation by bacteria, fungi, and algae have been explored over the past decade, a large knowledge gap still exists regarding the identification, sorting, and cultivation of efficient plastic degraders, primarily because of their uncultivability. Advances in sequencing techniques and bioinformatics have enabled the identification of microbial degraders and related enzymes and genes involved in plastic biodegradation. In this review, we provide an outline of the situation of plastic degradation and summarize the methods for effective microbial identification using multidisciplinary techniques such as multiomics, meta-analysis, and spectroscopy. This review introduces new strategies for controlling plastic pollution in an environmentally friendly manner. Using this information, highly efficient and colonizing plastic degraders can be mined via targeted sorting and cultivation. In addition, based on the recognized rules and plastic degraders, we can perform an in-depth analysis of the associated degradation mechanism, metabolic features, and interactions.
Collapse
Affiliation(s)
- Ziyao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huihui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
37
|
Curl LF, Hurst SA, Pomory CM, Lamont MM, Janosik AM. Assessing microplastics contamination in unviable loggerhead sea turtle eggs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169434. [PMID: 38104820 DOI: 10.1016/j.scitotenv.2023.169434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Sea turtles, in comparison with marine mammals, sea birds, and fishes, are the most affected by microplastics in terms of number of individuals impacted and concentration within each organism. The ubiquitous nature and persistence of microplastics in the environment further compromises sea turtles as many species are currently vulnerable, endangered, or critically endangered. The objective of this study was to quantify microplastic contamination in unviable loggerhead sea turtle eggs (Caretta caretta). Eggs were collected from seven locations along the northwest coast of Florida. A total of 70 nests and 350 eggs were examined. Microplastics (n = 510) were found in undeveloped loggerhead sea turtle eggs across all seven sites, suggesting that maternal transference and/or exchange between the internal and external environment were possible. The frequency found was 7.29 ± 1.83 microplastic pieces per nest and 1.46 ± 0.01 per egg. Microplastics were categorized based on color, shape, size, and type of polymer. The predominant color of microplastics were blue/green (n = 236), shape was fibers (n = 369), and length was 10-300 μm (n = 191). Identified fragments, films, beads and one foam (n = 187) had the most common area of 1-10 μm2 (n = 45). Micro-Fourier Transform Infrared (μ-FTIR) spectroscopy analysis demonstrated that polyethylene (11 %) and polystyrene (7 %) were the main polymer types. For the first time microplastics were found in unviable, undeveloped loggerhead sea turtle eggs collected in northwest Florida. This work provides insight into the distribution patterns of microplastic pollutants in loggerhead sea turtle eggs and may extend to other species worldwide.
Collapse
Affiliation(s)
| | | | | | - Margaret M Lamont
- United States Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, United States of America
| | | |
Collapse
|
38
|
Dai Y, Li L, Guo Z, Yang X, Dong D. Emerging isolation and degradation technology of microplastics and nanoplastics in the environment. ENVIRONMENTAL RESEARCH 2024; 243:117864. [PMID: 38072105 DOI: 10.1016/j.envres.2023.117864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Microplastics (MPs, less than 5 mm in size) are widely distributed in surroundings in various forms and ways, and threaten ecosystems security and human health. Its environmental behavior as pollutants carrier and the after-effects exposed to MPs has been extensively exploited; whereas, current knowledge on technologies for the separation and degradation of MPs is relatively limited. It is essential to isolate MPs from surroundings and/or degrade to safe levels. This in-depth review details the origin and distribution of MPs. Provides a comprehensive summary of currently available MPs separation and degradation technologies, and discusses the mechanisms, challenges, and application prospects of these technologies. Comparison of the contribution of various separation methods to the separation of NPs and MPs. Furthermore, the latest research trends and direction in bio-degradation technology are outlooked.
Collapse
Affiliation(s)
- Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
39
|
Jin Z, Ren Y, Tao W, Chen Z, Xu G. Study on the release of microplastic particles with different particle sizes in sediments caused by wave-induced liquefaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168788. [PMID: 38007140 DOI: 10.1016/j.scitotenv.2023.168788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Every year, almost 1.15-2.41 million tons of plastic from terrestrial rivers undergo fragmentation under certain conditions and settle in the estuarine delta and shallow marine shelf areas, making this region a "sink" for land-based microplastics. Owing to its fast deposition rate, relatively soft sediment bed, and shallow water depth, the estuarine delta region is prone to liquefaction under high wind and wave conditions. This could potentially release deeply buried microplastic particles during the liquefaction process, posing further threats to marine ecology and human health. To investigate this phenomenon, laboratory experiments were conducted using a water tank to simulate wave-induced liquefaction of sediment beds. The results showed that under the influence of wave-induced liquefaction, 56.2 % of microplastic particles were released back into the sediment surface, with larger particles being released to a greater extent. Based on these experimental results, this study also analyzed and discussed the release rate and mechanisms of microplastic particles from sediment during wave-induced liquefaction, estimating that the maximum release rate of microplastic particles under the experimental conditions could reach 0.34 mm/min.
Collapse
Affiliation(s)
- Zikun Jin
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yupeng Ren
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao 066000, China; Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Wei Tao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyuan Chen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Guohui Xu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
40
|
Sun W, Zhang Y, Zhang H, Wu H, Liu Q, Yang F, Hou M, Qi Y, Zhang W. Exploitation of Enterobacter hormaechei for biodegradation of multiple plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167708. [PMID: 37858813 DOI: 10.1016/j.scitotenv.2023.167708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
The escalating problem of environmental ecological pollution caused by plastics presents a significant challenge, which makes the management of plastic waste urgent nowadays. In this study, a bacterium named WX-2 was isolated and screened for its potential in polymer degradation. Through standard microbiological techniques and 16SrDNA gene sequencing, it was identified as Enterobacter hormaechei. To assess its biodegradability potential, various plastics including High density polyethylene, Polypropylene, Linear low density polyethylene, Poly (butyleneadipate-co-terephthalate) and Polyvinyl chloride were subjected to the study. The biodegradability of the plastics was evaluated using multiphase approaches involving techniques such as Scanning electron microscopy, Fourier transform infrared spectroscopy, Mass loss, X-ray diffraction, X-ray photoelectron spectroscopy, Water contact angle, and Gas chromatography-mass spectrometry. Results indicated that WX-2 possesses the capability to utilize diverse plastic polymers as sole carbon sources, displaying distinct biodegradation capacities. Notably, PBAT exhibited heightened susceptibility to degradation by the screened bacterial population.
Collapse
Affiliation(s)
- Wenxiao Sun
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, China
| | - Yizhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Hong Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, China.
| | - Hui Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, China
| | - Qiang Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, China
| | - Fan Yang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, China
| | - MengZong Hou
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, China
| | - Yanjiao Qi
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China.
| | - Wenbo Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, China.
| |
Collapse
|
41
|
Li C, Gillings MR, Zhang C, Chen Q, Zhu D, Wang J, Zhao K, Xu Q, Leung PH, Li X, Liu J, Jin L. Ecology and risks of the global plastisphere as a newly expanding microbial habitat. Innovation (N Y) 2024; 5:100543. [PMID: 38111463 PMCID: PMC10726253 DOI: 10.1016/j.xinn.2023.100543] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Plastic offers a new niche for microorganisms, the plastisphere. The ever-increasing emission of plastic waste makes it critical to understand the microbial ecology of the plastisphere and associated effects. Here, we present a global fingerprint of the plastisphere, analyzing samples collected from freshwater, seawater, and terrestrial ecosystems. The plastisphere assembles a distinct microbial community that has a clearly higher heterogeneity and a more deterministically dominated assembly compared to natural habitats. New coexistence patterns-loose and fragile networks with mostly specialist linkages among microorganisms that are rarely found in natural habitats-are seen in the plastisphere. Plastisphere microbiomes generally have a great potential to metabolize organic compounds, which could accelerate carbon turnover. Microorganisms involved in the nitrogen cycle are also altered in the plastisphere, especially in freshwater plastispheres, where a high abundance of denitrifiers may increase the release of nitrite (aquatic toxicant) and nitrous oxide (greenhouse gas). Enrichment of animal, plant, and human pathogens means that the plastisphere could become an increasingly mobile reservoir of harmful microorganisms. Our findings highlight that if the trajectory of plastic emissions is not reversed, the expanding plastisphere could pose critical planetary health challenges.
Collapse
Affiliation(s)
- Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Michael R. Gillings
- ARC Centre of Excellence in Synthetic Biology, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Chao Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qinglin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qicheng Xu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Polly Hangmei Leung
- Department of Health Technology and Informatics and Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Department of Health Technology and Informatics and Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
42
|
Song K, Jin W, Yang G, Zhang H, Li P, Huang W, Feng Z. A case study on microplastics pollution characteristics in fouling organisms in typical aquaculture bay, China. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106286. [PMID: 38109802 DOI: 10.1016/j.marenvres.2023.106286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Microplastics (MPs) and fouling organisms are prevalent in oceans worldwide. The study aims to investigate the pollution characteristics of MPs in fouling organisms. The study found significant inter-specific differences in the MPs abundance, while the length of MPs is consistent. The average number of MPs in N. exigua is 0.00 ± 0.00. There is a correlation between MPs abundance and weight in sessile group, while gastropods don't. Direct observation has demonstrated that the radulae of N. radula can envelop MPs. Fiber and blue are the predominant forms and colors of MPs found in fouling organisms. It is noteworthy that all film and fragment MPs observed were of a blue hue and had a size limitation of 500 μm. The characteristics of MPs between sessile organisms are more similar than those between gastropods. This study has improved our understanding of the pollution characteristics of MPs in fouling organisms, specifically gastropods.
Collapse
Affiliation(s)
- Kexin Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China; Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, PR China; University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Wei Jin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Haichao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Pingjing Li
- Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, PR China; University of Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, PR China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China; Key Laboratory of Coastal Salt Marsh Ecology and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
43
|
Guo S, Wu Z, Li X, Shen D, Shentu J, Lu L, Qi S, Zhu M, Long Y. Microplastic, a possible trigger of landfill sulfate reduction process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167662. [PMID: 37820800 DOI: 10.1016/j.scitotenv.2023.167662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The environmental impact of microplastics (MPs) formed from landfill has not been gained enough attention. This research investigated the characteristics of the MPs occurrence in landfills through field sampling. It shows that the MPs abundance in the landfill surface soil and non-landfill areas can reach 3573 items·g-1 and 3041 items·g-1, respectively. The vertical abundance of MPs increases significantly with depth, ranging from 387 to 11,599 items·g-1 with small size (≤10 μm, 65.61 %) and flake or wedge shape (38.48 %). The leachate movement in a longitudinal direction enables MPs to accumulate more easily in the landfill bottom layer with high moisture abundance. The abundance of MPs are significantly correlated with SO42- and S2- content, the two typical metabolic substrate and product of sulfate reduction process. In such heterogeneous environment, this significant correlation is not a random phenomenon in terms of the MPs have known substantial impact on biogeochemical processes. Microplastic is a possible trigger of landfill odor emission related with sulfate reduction. This research could serve as a reference for MPs and odor pollution management in landfills.
Collapse
Affiliation(s)
- Shuli Guo
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zixiao Wu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xianghang Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
44
|
Zhang W, Bhagwat G, Palanisami T, Liang S, Wan W, Yang Y. Lacustrine plastisphere: Distinct succession and assembly processes of prokaryotic and eukaryotic communities and role of site, time, and polymer types. WATER RESEARCH 2024; 248:120875. [PMID: 37992636 DOI: 10.1016/j.watres.2023.120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Microplastics as a carrier can promote microbial diffusion, potentially influencing the ecological functions of microbial communities in aquatic environments. However, our understanding of the assembly mechanism of microbial communities on different microplastic polymers in freshwater lakes during succession is still insufficient, especially for the eukaryotes. Here, the colonization time, site, and polymer types of microplastics were comprehensively considered to investigate the composition and assembly of prokaryotic and eukaryotic communities and their driving factors during the lacustrine plastisphere formation. Results showed that the particle-associated microorganisms in water were the main source of the plastisphere prokaryotes, while the free-living microorganisms in water mainly accounted for the plastisphere eukaryotes. The response of prokaryotic communities to different microplastic polymers was stronger than eukaryotic communities. The assembly of plastisphere prokaryotic communities was dominated by homogenizing processes (mainly homogenous selection), while the assembly of eukaryotic communities was dominated by differentiating processes (mainly dispersal limitation). Colonization time was an important factor affecting the composition of prokaryotic and eukaryotic communities during the formation of the plastisphere. The Chao1 richness of prokaryotic communities in the plastisphere increased with the increase of colonization time, whereas the opposite was true in eukaryotic communities. This differential response of species diversity and composition of prokaryotic and eukaryotic communities in the plastisphere during dynamic succession could lead to their distinct assembly processes. Overall, the results suggest that distinct assembly of microbial communities in the plastisphere may depend more on specific microbial sub-communities and colonization time than polymer types and colonization site.
Collapse
Affiliation(s)
- Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Geetika Bhagwat
- Environmental Plastic and Innovation Cluster, Global Innovation Centre for Advanced Nanomaterials, The University of Newcastle, 2308, NSW, Australia
| | - Thava Palanisami
- Environmental Plastic and Innovation Cluster, Global Innovation Centre for Advanced Nanomaterials, The University of Newcastle, 2308, NSW, Australia
| | - Shuxin Liang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Wenjie Wan
- University of Chinese Academy of Sciences, Beijing, 100049, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.
| |
Collapse
|
45
|
Meng F, Tan L, Cai P, Wang J. Effects of polystyrene nanoplastics on growth and hemolysin production of microalgae Karlodinium veneficum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106810. [PMID: 38134819 DOI: 10.1016/j.aquatox.2023.106810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
There are few studies on the effects of nanoplastics on growth and hemolysin production of harmful algal bloom species at present. In this study, Karlodinium veneficum was exposed to different concentrations (0, 5, 25, 50, 75 mg/L) of polystyrene nanoplastics (PS-NPs, 100 nm) for 96 h. The effects of PS-NPs on growth of K. veneficum were investigated by measuring algal cell abundance, growth inhibition rate (IR), total protein (TP), malondialdehyde (MDA), glutathione reductase (GSH), superoxide dismutase (SOD), ATPase activity (Na+/K+ ATPase and Ca2+/Mg2+ ATPase). Scanning electron microscope and transmission electron microscope (SEM and TEM) images of microalgae with or without nanoplastics were also observed. The effects of PS-NPs on hemolysin production of K. veneficum were studied by measuring the changes of hemolytic toxin production of K. veneficum exposed to PS-NPs on 1, 3, 5 and 7 days. High concentrations (50 and 75 mg/L) of PS-NPs seriously affected the growth of K. veneficum and different degrees of damage to cell morphology and ultrastructure were found. Excessive free radicals and other oxidants were produced in the cells, which disrupted the intracellular redox balance state and caused oxidative damage to the cells, and the basic activities such as photosynthesis and energy metabolism were weakened. The athletic ability of K. veneficum was decreased, but the ability to produce hemolysin was enhanced. It was suggested that the presence of nanoplastics in seawater may strengthen the threat of harmful algal bloom species to aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Fanmeng Meng
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, No.238, Songling Road, Qingdao 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, No.238, Songling Road, Qingdao 266100, China
| | - Peining Cai
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, No.238, Songling Road, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, No.238, Songling Road, Qingdao 266100, China.
| |
Collapse
|
46
|
Tabatabaei F, Mafigholami R, Moghimi H, Khoramipoor S. Investigating biodegradation of polyethylene and polypropylene microplastics in Tehran DWTPs. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2996-3008. [PMID: 38096084 PMCID: wst_2023_360 DOI: 10.2166/wst.2023.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Microplastic (MP) pollution is a growing concern and various methods are being sought to alleviate the level of pollution worldwide. This study investigates the biodegradation capacity of MPs by indigenous microorganisms of raw water from Tehran drinking water treatment plants. By exposing polypropylene (PP) and polyethylene (PE) MPs to selected microbial colonies, structural, morphological, and chemical changes were detected by scanning electron microscope (SEM), cell weight measurement, Fourier transform infrared (FTIR), Raman spectroscopy test, and thermal gravimetric analysis (TGA). Selected bacterial strains include Pseudomonas protegens strain (A), Bacillus cereus strain (B), and Pseudomonas protegens strain (C). SEM analysis showed roughness and cracks on PP MPs exposed to strains A and C. However, PE MPs exposed to strain B faced limited degradation. In samples related to strain A, the Raman spectrum was completely changed, and a new chemical structure was created. Both TGA and FTIR analysis confirmed changes detected by Raman analysis of PP and PE MPs in chemical changes in this study. The results of cell dry weight loss for microbial strains A, B, and C were 13.5, 38.6, and 25.6%, respectively. Moreover, MPs weight loss was recorded at 32.6% for PP MPs with strain A, 13.3% for PE MPs with strain B, and 25.6% for PP MPs with strain C.
Collapse
Affiliation(s)
- Fatemeh Tabatabaei
- Faculty of Environmental Science and Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran E-mail:
| | - Roya Mafigholami
- Faculty of Environmental Science and Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, University of Tehran, Tehran, Iran
| | - Sanaz Khoramipoor
- Faculty of Environmental Science and Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
| |
Collapse
|
47
|
Yang X, Zhang Z, Zhang J. Study of soil microplastic pollution and influencing factors based on environmental fragility theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165435. [PMID: 37442481 DOI: 10.1016/j.scitotenv.2023.165435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Soil microplastics (MPs) pollution is a global concern, but the distribution of MPs and the factors affecting the distribution of MPs in different ecologically fragile karst areas remain poorly understood. Here, we investigated the spatial distribution, characteristics, and composition of MPs in different ecologically fragile karst areas of Guizhou Province and explored the relationship between ecosystem fragility and MPs. Structural equation models combined with robust random forest (RF) models were used to clarify the effects of karst soil properties on MPs and quantify their relative contributions. The abundance of soil MPs in ecologically fragile karst areas was 2949 item kg-1, and the risk of MPs contamination was highest in medium-fragile areas. The robust RF models precisely predicted the abundance of soil MPs in different fragile areas, and the mean root mean square error and R2 were 0.21 and 0.93, respectively. The contribution of karst soil properties to the abundance of MPs was estimated. Some soil chemical properties had a significant effect (p < 0.05) on MPs pollution in ecologically fragile karst areas. The results of our study suggest that the fragile ecological environment may exacerbate MPs pollution. Our study also contributes to establish a scientific theoretical foundation for the utilization of plastics and the prevention and control of microplastics pollution in karst ecosystems.
Collapse
Affiliation(s)
- Xiuyuan Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Jiachun Zhang
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang 550004, Guizhou, China.
| |
Collapse
|
48
|
Qiu C, Zhou Y, Wang H, Chu Y, Zheng L, Chen Y, Song Y, Fang C. Microplastics enrichment characteristics of antibiotic resistance genes and pathogens in landfill leachate. CHEMOSPHERE 2023; 341:140100. [PMID: 37683946 DOI: 10.1016/j.chemosphere.2023.140100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Microplastics (MPs) pollution is a pressing environmental issue for aquatic ecosystems. Landfill leachate is an important contributor of MPs and antibiotic resistant genes (ARGs). However, there are few studies on the colonization of ARGs and pathogens on MPs in leachate. This study conducted incubation experiments with polyethylene terephthalate (PET) and polypropylene (PP) MPs in landfill leachate which were about 3-5 years old (PL) and 5-10 years old (AL). After incubation, the bacterial cells colonized and grew on the surface of MPs, inducing the increase of oxygenated oxygen functional groups (e.g., hydroxyl, carbonyl) on the MPs surface. Real-time PCR indicated that MPs selectively enriched ARGs, such as genes tetM, tetC, mcr-1, aac(6')-Ib-cr, blaTEM and blaSHV in leachate. The diversity of bacterial communities on MPs was significantly increased in AL leachate, but decreased in PL leachate. The differences in bacterial communities in MPs biofilms were related to the type of MPs. Compared with AL leachate, the abundance of Chloroflexi increased by 15.7% on the PET, and the abundance of Acidobacteriota increased by 6.23 fold on the PP. The abundance of Firmicutes increased from 20.7% in PL leachate to 65.8% and 60.7% on PET and PP, respectively. Additionally, pathogens were observed to be more abundant on MPs compared to leachate. In particular, pathogens (Staphylococcus, Streptococcus, Enterobacter and Rhodococcus) associated with sul1 and sul2 were generally present at higher levels on MPs than in the surrounding leachate. These results provide significant implications for understanding the health risk of MPs in the environment.
Collapse
Affiliation(s)
- Cheng Qiu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yiwei Zhou
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China.
| | - Yixuan Chu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yongmin Chen
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| |
Collapse
|
49
|
Liu Y, Harvey CM, Hamlyn FE, Liu C. Bayesian estimation and reconstruction of marine surface contaminant dispersion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:167973. [PMID: 39491183 DOI: 10.1016/j.scitotenv.2023.167973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Discharge of hazardous substances into the marine environment poses a substantial risk to both public health and the ecosystem. In such incidents, it is imperative to accurately estimate the release strength of the source and reconstruct the spatio-temporal dispersion of the substances based on the collected measurements. In this study, we propose an integrated estimation framework to tackle this challenge, which can be used in conjunction with a sensor network or a mobile sensor for environment monitoring. We employ the fundamental convection-diffusion partial differential equation (PDE) to represent the general dispersion of a physical quantity in a non-uniform flow field. The PDE model is spatially discretised into a linear state-space model using the dynamic transient finite-element method (FEM) so that the characterisation of time-varying dispersion can be cast into the problem of inferring the model states from sensor measurements. We also consider imperfect sensing phenomena, including miss-detection and signal quantisation, which are frequently encountered when using a sensor network. This complicated sensor process introduces nonlinearity into the Bayesian estimation process. A Rao-Blackwellised particle filter (RBPF) is designed to provide an effective solution by exploiting the linear structure of the state-space model, whereas the nonlinearity of the measurement model can be handled by Monte Carlo approximation with particles. The proposed framework is validated using a simulated oil spill incident in the Baltic sea with real ocean flow data. The results show the efficacy of the developed spatio-temporal dispersion model and estimation schemes in the presence of imperfect measurements. Moreover, the parameter selection process is discussed, along with some comparison studies to illustrate the advantages of the proposed algorithm over existing methods.
Collapse
Affiliation(s)
- Yang Liu
- School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom.
| | - Christopher M Harvey
- Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Frederick E Hamlyn
- Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Cunjia Liu
- Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
50
|
Mishra SR, Roy P, Gadore V, Ahmaruzzaman M. A combined experimental and modeling approach to elucidate the adsorption mechanism for sustainable water treatment via In 2S 3-anchored chitosan. Sci Rep 2023; 13:18051. [PMID: 37872297 PMCID: PMC10593836 DOI: 10.1038/s41598-023-45506-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
A novel Chitosan/Indium sulfide (CS/In2S3) nanocomposite was created by co-precipitating Chitosan and InCl3 in solution, resulting in In2S3 agglomeration on the Chitosan matrix with a remarkable pore diameter of 170.384 Å, and characterized it for the physical and chemical properties. Under optimal conditions (pH = 7, time = 60 min, catalyst dosage = 0.24 g L-1, and dye concentration = 100 mg L-1), the synthesized nanocomposite demonstrated remarkable adsorption capabilities for Victoria Blue (VB), attaining a removal efficiency of 90.81%. The Sips adsorption isotherm best matched the adsorption process, which followed pseudo-second-order kinetics. With a rate constant of 6.357 × 10-3 g mg-1 min-1, the highest adsorption capacity (qm) was found to be 683.34 mg g-1. Statistical physics modeling (SPM) of the adsorption process revealed multi-interaction and multi-molecular adsorption of VB on the CS/In2S3 surface. The nanocomposite demonstrated improved stability and recyclability, indicating the possibility for low-cost, reusable wastewater dye removal adsorbents. These results have the potential to have practical applications in environmental remediation.
Collapse
Affiliation(s)
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology, Silchar, India
| | - Vishal Gadore
- Department of Chemistry, National Institute of Technology, Silchar, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, India.
| |
Collapse
|