1
|
Zhuo Y, Yang Y, Zhang H, Wang X, Cao M, Wang Y. Toxicological evaluation and metabolic profiling of earthworms (Eisenia fetida) after exposure to microplastics and acetochlor. ENVIRONMENTAL RESEARCH 2025; 276:121546. [PMID: 40189011 DOI: 10.1016/j.envres.2025.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/18/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
In recent years, microplastic (MPs) and pesticide pollution have become prominent issues in the field of soil pollution. This research endeavored to assess the impact of ultraviolet radiation (UV) on the characteristics of microplastics, as well as investigating the toxicological effect on earthworms (Eisenia fetida) when subjected to the dual stressors of microplastics and acetochlor (ACT). This research found that microplastics aged under UV were more prone to wear and tear in the environment, and produced more oxygen-containing functional groups. Chronic exposure experiments were conducted on ACT and aged-MPs. The results revealed that aged-MPs and ACT inhibited earthworm growth, induced oxidative stress, and caused damage to both the body cavity muscles and the intestinal lumen. Compared with individual exposure, combined exposure increased the oxidative products (superoxide dismutase (SOD) and catalase (CAT)) and altered the expression levels of related genes (TCTP and Hsp70) significantly. PE inflicted more significant harm to the earthworm intestinal tissue compared to PBAT. By 1H-NMR metabolomics, the investigation delved into the repercussions of PE and ACT on the metabolic pathways of earthworms. Exposure to ACT and PE can disrupt the stability of intestinal membranes stability, amino acid metabolism, neuronal function, oxidative stress and energy metabolism. Overall, the research revealed that combined exposure of MPs and ACT exacerbated the negative effects on earthworms significantly, and contributed valuable insights to environmental risk assessment of the combined toxicity of microplastics and pesticides.
Collapse
Affiliation(s)
- Yonggan Zhuo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China.
| | - Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, China.
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China.
| | - Xingyu Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China.
| | - Meng Cao
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China.
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China.
| |
Collapse
|
2
|
Wu S, Xin K, Chen J, Dambajamts N, Sun Y, Ai J, Ouyang W, Ulziibat B, Batkhuyag EU, Tseren-Ochir SE. Seasonal variations and intercorrelations of polycyclic aromatic hydrocarbons, heavy metals and environmentally persistent free radicals in PM 2.5 in Ulaanbaatar, Mongolia. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137586. [PMID: 39952137 DOI: 10.1016/j.jhazmat.2025.137586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Simulated combustion experiments have identified polycyclic aromatic hydrocarbons (PAHs) and metal oxides as critical species in the formation of environmental persistent free radicals (EPFRs). However, little evidence exists regarding the interactions among PAHs, metals, and EPFRs in the real atmosphere. In this study, we collected PM2.5 samples in downtown Ulaanbaatar in four seasons from 2020 to 2021, and analyzed the seasonal variations of 16 PAHs, 14 heavy metals and EPFRs in PM2.5. The health risks of PM2.5 were determined by calculating the incremental lifetime cancer risks of PAHs and heavy metals and equivalent cigarette numbers of EPFRs. According to the source apportionment results of the Positive Matrix Factorization (PMF) model, coal and biomass combustion, vehicular emission, and fugitive dust were identified as the dominant sources of PAHs, EPFRs, and heavy metals, respectively. The intercorrelations of EPFRs with PAHs and heavy metals from different sources revealed the important roles of most PAHs and some specific metals such as Zn, Pb, Sb, Sn, Tl in the formation of EPFRs. The dominant contribution of vehicular emission to EPFR pollution in PM2.5 could be largely attributed to the co-emissions of PAHs and specific heavy metals in vehicular emission.
Collapse
Affiliation(s)
- Shihan Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Ke Xin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China.
| | - Narmandakh Dambajamts
- Laboratory of Environmental Chemistry and Geochemistry, National University of Mongolia, Ulaanbaatar 14201, Mongolia; Department of Chemical and Biological Engineering, School of Engineering and Technology, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yuewei Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Jing Ai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bilguun Ulziibat
- Department of Chemical and Biological Engineering, School of Engineering and Technology, National University of Mongolia, Ulaanbaatar 14201, Mongolia; Institute of Geography and Geo-ecology, Mongolian Academy of Sciences, Ulaanbaatar 14201, Mongolia
| | - Enkh-Uchral Batkhuyag
- Laboratory of Environmental Chemistry and Geochemistry, National University of Mongolia, Ulaanbaatar 14201, Mongolia; Department of Green Energy and Engineering, School of Engineering and Technology, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Soyol-Erdene Tseren-Ochir
- Laboratory of Environmental Chemistry and Geochemistry, National University of Mongolia, Ulaanbaatar 14201, Mongolia; Department of Green Energy and Engineering, School of Engineering and Technology, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| |
Collapse
|
3
|
Liu C, Jiao Y, Yang C, Li B, Li W, Qian T, Liu X. Interfacial interactions of submicron plastics with carbon dots: Insights into the interface properties of microplastic weathering. WATER RESEARCH 2025; 277:123377. [PMID: 40010125 DOI: 10.1016/j.watres.2025.123377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
The interfacial properties and environmental behavior of microplastics (MPs) will change with weathering. A new idea to study the interfacial properties of MPs is provided based on fluorescence response and light scattering changes. Submicron microspheres (PS-AA) obtained by soap-free emulsion polymerization have a well-defined composition and clean surface with carboxyl groups. The interfacial properties of PS-AA changed after Fenton and UV aging, and the sharp edges became blurred. Information on the interfacial interactions of leaf-derived carbon dots (R-CDs) and citrate carbon dots (B-CDs) with aged PS-AA was obtained by recording fluorescence and scattering changes. R-CDs can fluorescently respond to carrying contaminants on aged PS-AA, and their correlation increases with the degree of aging (R2=0.8388). The scattering peak of PS-AA decreased after aging, and the change in scattering/fluorescence ratios with concentration had a good linear relationship under the coexistence of B-CDs (R2=0.9983). Aging of PS-AA increases the contamination-carrying capacity and decreases the optical properties, which may be attributed to the increased oxygen-containing functional groups, ring opening of substituted benzene, and shell decomposition. The response mechanism of carbon dots (CDs), the aging process of PS-AA, and the interfacial behavior were further explained based on the density functional theory (DFT). This study reveals the changes in interfacial properties of submicron plastics with the aging process based on fluorescence response and scattering changes.
Collapse
Affiliation(s)
- Chao Liu
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China
| | - Yuan Jiao
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China; Wanli Energy Technology Development Co., Ltd, Zhejiang Wanli University, Ningbo, 315100, China
| | - Chunfan Yang
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China
| | - Bo Li
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China; College of Civil Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Wenjun Li
- Shanxi Transportation Holding Ecological Environment Co., Ltd, Shanxi 030000, China
| | - Tianwei Qian
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China; College of Civil Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| | - Xiaona Liu
- College of Environment and Ecology, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong, 030600, China; College of Civil Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| |
Collapse
|
4
|
Yang L, Yang W, Li Q, Zhao Z, Zhou H, Wu P. Microplastics in Agricultural Soils: Sources, Fate, and Interactions with Other Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12548-12562. [PMID: 40377166 DOI: 10.1021/acs.jafc.5c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Microplastics (MPs) are recognized as emerging soil contaminants. However, the potential risks of MPs to agroecosystems have not been fully revealed, especially the compound toxic effects of MPs with co-existing organic or inorganic pollutants (OPs/IPs) in agricultural fields. In this study, we quantified the contributions of different agronomic practices to the sources of MPs in soil and highlighted the important influences of long-term tillage and fertilization on the migration and aging of MPs in agricultural fields. In addition, the antagonistic and synergistic interactions between MPs and OPs/IPs in soil were explored. We emphasized that the degree of adsorption of MPs and soil particles to OPs/IPs is a key determinant of the co-toxicity of those contaminants in soil. Finally, several directions for future research are proposed, and these knowledge gaps provide an important basis for understanding the contamination process of MPs in agricultural soils.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qihang Li
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Li Y, Jia Y, Li K, Tian R, Lu C. Electrochemiluminescence Monitoring on the Photodegraded Radicals from Aromatic Polymers. Anal Chem 2025; 97:10236-10243. [PMID: 40331565 DOI: 10.1021/acs.analchem.5c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Monitoring on the radicals in the early stage of polymer degradation is essential to unveil the degradation mechanism and achieve rational management of polymers. However, it is challenging to provide a sensitive monitoring on the radicals in the early stage degradation of polymers, especially for the nonemissive radicals. In this contribution, we proposed electrochemiluminescence (ECL) to monitor the radical behaviors in the early stage degradation of aromatic polymers. It was disclosed that carbon-centered radicals were generated in the photodegraded polymers, facilitating the formation of hydroxyl and superoxide anion radicals. Accordingly, ECL intensities of the photodegraded polymers were continuously promoted with the prolonged phototreatment from 0 to 12 h. In comparison, obvious signals could only be detected after a long-term phototreatment by the conventional electron spin resonance measurements. Additionally, thermal treatment showed no profound effect on the ECL promotion for the aromatic polymers due to the different radical reaction pathways. Therefore, we have realized sensitive monitoring on the radicals in the early stage degradation of aromatic polymers, providing valuable information for the radical reaction mechanism of polymer degradation evolution.
Collapse
Affiliation(s)
- Yujie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunxiu Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Pingyuan Labortary, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| |
Collapse
|
6
|
Zhu Z, Yang J, Liu N, Xu K, Wang J, Wang W, Yang Y, Han X. Spatiotemporal evolution of small microplastics in agricultural soils from long-term pig manure application. ENVIRONMENTAL RESEARCH 2025; 279:121875. [PMID: 40381716 DOI: 10.1016/j.envres.2025.121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Long-term application of organic fertilizers serves as a nutrient source in agriculture, yet the contamination of these materials with small microplastics (sMPs, 20-500 μm) remains poorly understood. Research on the accumulation and morphological transformation of sMPs in soils under extended fertilization regimes is currently scarce. This study employed Laser Direct Infrared (LDIR) Spectroscopy to quantify and characterize sMPs in soils subjected to four fertilization regimes: no fertilizer (CK), pig manure (M), nitrogen-phosphorus-potassium (NPK) fertilizer, and a combination of NPK and pig manure (MNPK). Temporal and spatial dynamics of sMPs were assessed across treatments with prolonged organic input. A progressive increase in both the abundance and type of sMPs was detected in pig manure, reaching 21,376 ± 1008 items kg-1 in 2023-an increase of 180 % compared to 1979.The initial soil sMPs concentrations in 1979 were approximately 3000 items kg-1; after 44 years, levels in M and MNPK treatments reached 7183 ± 568 items kg-1 and 5557 ± 329 items kg-1, respectively. Soils receiving pig manure consistently exhibited higher sMPs concentrations than untreated controls. The relatively elevated levels of sMPs suggest in-situ degradation of larger MPs. Except in the CK treatment, sMPs abundance increased with soil depth. Across all fertilization types, particles within the 30-100 μm range comprised over 46 % of total sMPs, indicating a consistent size distribution. The polymer types and composition in pig manure-amended soils mirrored those identified in the manure itself. These results demonstrate that long-term pig manure application markedly elevates soil sMPs concentrations, increasing the potential for sMPs contamination in agricultural systems.
Collapse
Affiliation(s)
- Zefang Zhu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, 110866, China; Monitoring and Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture of China, Shenyang, 110866, China
| | - Jinfeng Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, 110866, China; Monitoring and Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture of China, Shenyang, 110866, China.
| | - Ning Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, 110866, China; Monitoring and Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture of China, Shenyang, 110866, China
| | - Kangbo Xu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, 110866, China; Monitoring and Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture of China, Shenyang, 110866, China
| | - Jing Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, 110866, China; Monitoring and Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture of China, Shenyang, 110866, China
| | - Wenda Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, 110866, China; Monitoring and Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture of China, Shenyang, 110866, China
| | - Yanru Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, 110866, China; Monitoring and Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture of China, Shenyang, 110866, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, 110866, China; Monitoring and Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture of China, Shenyang, 110866, China.
| |
Collapse
|
7
|
Ye J, Zhang Y, Gao Y, Li C, Zou B, Cheng R, Chi B, Xue X, Domingo-Félez C. Impacts of environmentally persistent free radicals on the denitrification toxicity of photoaged tire wear particles in estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138623. [PMID: 40381342 DOI: 10.1016/j.jhazmat.2025.138623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
The widespread detection of tire wear particles (TWPs) in estuaries has raised concerns about their potential environmental hazards. However, knowledge of photoaging-induced environmentally persistent free radicals (EPFRs) formation on TWPs in estuarine environments and their impact on sediment denitrification remains limited. This study investigated the formation of EPFRs on TWP during photoaging in estuarine environments and evaluated their effects on sediment denitrification and nitrous oxide (N2O) accumulation. Sixty days of illumination increased EPFR concentration on TWPs by 373 %, with the generated EPFRs persisting in sediments for over 20 days. Exposure to pristine TWP (PTWP) reduced denitrification rates by 10.3 ± 5.6 % and increased N2O accumulation by 18.3 ± 4.5 %. Further exposure to photoaged TWP (ATWP) under 10-60 days of illumination expanded denitrification suppression and N2O accumulation to 28.1 ± 7.1-42.5 ± 6.6 % and 18.8 ± 4.3-31.7 ± 4.6 %, respectively. EPFRs exacerbated the accumulation of reactive nitrogen species in sediment and compromised the antioxidant systems. Structural equation modeling confirmed that EPFRs indirectly suppressed denitrification rates by directly impairing microbial processes involved in carbon metabolism and electron transfer. This study is the first to report that the formation of EPFRs enhances the negative effects of ATWP on the sediment's nitrogen cycle, offering valuable insights for assessing the ecological risks associated with TWP.
Collapse
Affiliation(s)
- Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Yuhan Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Gao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Chen Li
- Wenzhou Environmental Technology Co., Ltd, Wenzhou 325088, China
| | - Baoping Zou
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Ruotong Cheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Baoyan Chi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiangdong Xue
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China.
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
8
|
Zhai K, Yin K, Lin Y, Chen S, Bi Y, Xing R, Ren C, Chen Z, Yu Z, Chen Z, Zhou S. Free Radicals on Aging Microplastics Regulated the Prevalence of Antibiotic Resistance Genes in the Aquatic Environment: New Insight into the Effect of Microplastics on the Spreading of Biofilm Resistomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40359213 DOI: 10.1021/acs.est.4c12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The spread of antibiotic resistance genes (ARGs) by microplastics has received a great concern in coexisting "hotspots". Despite most microplastics suffering from natural aging, little is known about the effect of aging microplastics (A-MPs) on ARGs dissemination. Here, we demonstrated significant suppression of A-MPs on ARGs dissemination in natural rivers. Although ARGs and mobile genetic elements (MGEs) were effectively enriched on A-MPs, the relative abundance of ARGs and MGEs on A-MPs as well as in receiving water decreased by approximately 21.4% to 42.3% during a period of 30 days of dissemination. Further investigation revealed that •OH was consistently generated on A-MPs with a maximum value of 0.2 μmol/g. Importantly, scavenging of •OH significantly increased the relative abundance of ARGs and MGEs both on A-MPs and in receiving water 1.4-29.1 times, indicating the vital role of •OH in suppressing ARGs dissemination. Microbial analysis revealed that •OH inhibited the potential antibiotic-resistant bacteria in surface biofilms, such as Pseudomonas and Acinetobacter (with a decrease of 68.8% and 89.3%). These results demonstrated that •OH was extensively produced on A-MPs, which greatly reduced both the vertical and horizontal gene transfer of ARGs. This study provided new insights into the dissemination of ARGs through microplastics in natural systems.
Collapse
Affiliation(s)
- Kaipeng Zhai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Keke Yin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shu Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuzhang Bi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenjia Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziyu Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Li C, Shi L, Ding J, Zhao Q, Dong K, Liu T, Zhang Y. Enhancing the aging of polystyrene microplastics through a flow-through electrochemical membrane system: Mechanism of confinement effect. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137478. [PMID: 39908763 DOI: 10.1016/j.jhazmat.2025.137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/12/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Microplastics (MPs) are emerging pollutants in aquatic environments that pose serious health risks, and traditional wastewater treatments are ineffective at removing them. In this study, a flow-through electrochemical membrane (F-T) system was developed to simultaneously separate and age polystyrene microplastics (PS-MPs) in water. Under membrane pressure, PS-MPs were tightly pressed onto the surface of membrane electrode, forming a confinement space. The confinement effect overcomes the short lifetime of free radicals and accelerates the aging process of PS-MPs. This study identified the optimal conditions for aging PS-MPs in the F-T system, characterized the material properties before and after aging, and analyzed the degradation intermediates. After 8 h of treatment, the oxygen-to-carbon ratio (O/C) of the PS-MPs following the F-T system was 2.00 times greater than that following the traditional flow-by (F-B) system. In addition, the unit energy consumption (kW·h/g) for the aging of PS-MPs in the F-T system was 645.19 kW·h/g, which was 3.70 times lower than the F-B system. Free radicals, especially O2•- and •OH, played a major role in PS-MPs aging. Free radicals attack the main chain of PS-MPs, leading to subsequent chain breakage, hydrogen abstraction, and rearrangement reactions. After aging in the F-T system, the crystallinity, molecular weight, and zeta potential of the PS-MPs significantly decreased. In addition, carbon-centered environmental persistent free radicals formed on the surface of the PS-MPs. This study presents an energy-efficient method for the remediation of MPs in water and suggests that the aging efficiency can be increased through confinement.
Collapse
Affiliation(s)
- Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lixia Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Keke Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Sun L, Liu S, Wu G, Shen H, Zhu Y, Huang W, Huang H, Peng D, Zeng S, Guan J. Strong, tough, and UV-resistant polylactic acid composites by incorporating doped carbon dots. Int J Biol Macromol 2025; 308:142416. [PMID: 40122416 DOI: 10.1016/j.ijbiomac.2025.142416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
The application of polylactic acid (PLA) is still restricted due to its suboptimal mechanical and thermal properties, as well as its vulnerability to oxidative degradation under ultraviolet light (UV). To enhance these properties, fluorine, nitrogen, sulfur-doped carbon dots (FNS-CDs) were fabricated in this study and further employed as nano-reinforcing materials for PLA. Here, FNS-CDs were obtained via the solvothermal method, with citric acid and 3-fluoroaniline serving as carbon, fluorine, and nitrogen sources, while dimethylsulfoxide functioned as the solvent and sulfur source. Subsequently, PLA-based composites were produced by the melt blending technique through blending FNS-CDs with PLA. With the optimal loading of FNS-CDs, the resulting PLA-based composites exhibited remarkable strength and toughness, excellent thermal stability, and efficient UV resistance. Compared with pure PLA, the tensile strength and tensile toughness of PLA-based composites containing 1.5 wt% FNS-CDs increased by 81.4 % and 147.6 % respectively, the crystallinity rose by 25.5 %, and the UV-resistance value was also significantly enhanced. This research demonstrates the considerable potential applications of doped carbon dots in the field of high performance and multi-functional polymer composites.
Collapse
Affiliation(s)
- Ling Sun
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Song Liu
- China State Construction International Engineering Limited, Hefei 230092, China
| | - Guoqi Wu
- China Energy Conservation DADI (Hangzhou) Environmental Remediation Co., Ltd., Hangzhou 310021, China
| | - Huangzhe Shen
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Yu Zhu
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Weichen Huang
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Haozhe Huang
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Daizhong Peng
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; Anhui Anli Material Technology Co., Ltd., Hefei 231283, China.
| | - Jun Guan
- China State Construction International Engineering Limited, Hefei 230092, China
| |
Collapse
|
11
|
Zhu N, Li Z, Yu Y, Liu Z, Liang X, Wang W, Zhao J. Fate of microplastics in soil-water systems: View from free radicals driven by global climate change. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118138. [PMID: 40185036 DOI: 10.1016/j.ecoenv.2025.118138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Microplastics are ubiquitously distributed and persistently present in soil-water systems, posing potential ecological and health risks worldwide. Free radicals are highly reactive in soil-water systems, particularly at soil-water-air interface. The dynamic changes of free radicals sensitive to environmental conditions may greatly impact the fate of microplastics. However, the pathways, reaction kinetics, or transformation products of microplastic degradation by free radicals in soil-water systems remains unclear. Climate change alters the physical and chemical environment of soil-water systems and this transformation can directly affect the degradation of microplastics, or indirectly influence it by altering the generation and species of free radicals. Here, we summarized and analyzed the impact of fluctuations in free radicals (such as superoxide radicals, hydrogen peroxide, peroxyl radicals, and hydroxyl radicals) in soil-water systems on the degradation of microplastics and their derivants. We also discussed how changes in free radicals driven by climate change affect the fate of microplastics. By integrating aspects such as climate change, free radical chemistry, and microplastic pollution, this work delineates the critical issues of microplastic pollution exacerbated by environmental condition changes. In response to the existing challenges and deficiencies in current research, feasible countermeasures are proposed. This work offers valuable insights for future research on predicting and controlling ecotoxicity and health risks caused by microplastics associated with global climate change.
Collapse
Affiliation(s)
- Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Ziyin Liu
- College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 13, Shaanxi 712100, China
| | - Wei Wang
- College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiating Zhao
- College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Cui H, Jiang X, Cao J, Yang W, Yang B, Li M. Comparative Analysis of Metabolic Dysfunctions Associated with Pristine and Aged Polyethylene Microplastic Exposure via the Liver-Gut Axis in Mice. ACS NANO 2025; 19:14272-14283. [PMID: 40189833 DOI: 10.1021/acsnano.5c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The accumulation of plastic waste in the environment has raised widespread concern about the impact of microplastics (MPs) on human and environmental health, particularly regarding aged MPs. This study investigated the effects of subchronic dietary intake on pristine and aged polyethylene microplastics (PE-MPs) in C57BL/6J mice. Results revealed that both pristine and aged PE-MPs, at doses of 0.01 and 1 mg/day, induced plasma metabolic changes primarily associated with lipid metabolism and digestive processes. These alterations were reflected in the expression changes of proteins involved in unsaturated fatty acid pathways in the liver as well as a reduction in beneficial gut microbiota. Key contributors in the toxicity of aged PE-MPs included ATP-binding cassette transporters, gut bacteria alterations (notably Lactobacillus, Akkermansia, Parasutterella, and Turicibacter), and significantly altered proteins related to fatty acid elongation, such as acyl-CoA thioesterase enzyme family and elongation of very long chain fatty acid protein 5. These disruptions exacerbated lipid metabolism disorders, potentially contributing to metabolic diseases. Additionally, decreased levels of glutathione S-transferase A proteins, along with reduced hepatic glutathione and increased reactive oxygen species in both the small intestine and liver, suggested that aged PE-MPs aggravated hepatic and intestinal damage through oxidative stress. These findings indicated that aged PE-MPs caused more severe hepatic dysfunction and gut microbiota disruption. This effect was likely mediated by the transfer of fatty acids and signaling molecules through the gut-liver axis, ultimately leading to hepatic lipid metabolism disorders and oxidative stress.
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Cao
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weishu Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bin Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Lee CE, Messer LF, Wattiez R, Matallana‐Surget S. Decoding Microbial Plastic Colonisation: Multi-Omic Insights Into the Fast-Evolving Dynamics of Early-Stage Biofilms. Proteomics 2025; 25:e202400208. [PMID: 39760247 PMCID: PMC11962581 DOI: 10.1002/pmic.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Marine plastispheres represent dynamic microhabitats where microorganisms colonise plastic debris and interact. Metaproteomics has provided novel insights into the metabolic processes within these communities; however, the early metabolic interactions driving the plastisphere formation remain unclear. This study utilised metaproteomic and metagenomic approaches to explore early plastisphere formation on low-density polyethylene (LDPE) over 3 (D3) and 7 (D7) days, focusing on microbial diversity, activity and biofilm development. In total, 2948 proteins were analysed, revealing dominant proteomes from Pseudomonas and Marinomonas, with near-complete metagenome-assembled genomes (MAGs). Pseudomonas dominated at D3, whilst at D7, Marinomonas, along with Acinetobacter, Vibrio and other genera became more prevalent. Pseudomonas and Marinomonas showed high expression of reactive oxygen species (ROS) suppression proteins, associated with oxidative stress regulation, whilst granule formation, and alternative carbon utilisation enzymes, also indicated nutrient limitations. Interestingly, 13 alkanes and other xenobiotic degradation enzymes were expressed by five genera. The expression of toxins, several type VI secretion system (TVISS) proteins, and biofilm formation proteins by Pseudomonas indicated their competitive advantage against other taxa. Upregulated metabolic pathways relating to substrate transport also suggested enhanced nutrient cross-feeding within the more diverse biofilm community. These insights enhance our understanding of plastisphere ecology and its potential for biotechnological applications.
Collapse
Affiliation(s)
- Charlotte E. Lee
- Division of Biological and Environmental SciencesFaculty of Natural SciencesUniversity of StirlingStirlingScotlandUK
| | - Lauren F. Messer
- Division of Biological and Environmental SciencesFaculty of Natural SciencesUniversity of StirlingStirlingScotlandUK
| | - Ruddy Wattiez
- Laboratory of Proteomics and MicrobiologyResearch Institute for BiosciencesUniversity of MonsMonsBelgium
| | - Sabine Matallana‐Surget
- Division of Biological and Environmental SciencesFaculty of Natural SciencesUniversity of StirlingStirlingScotlandUK
| |
Collapse
|
14
|
Li C, Shi L, Liu T, Dong K, Ren W, Zhang Y. Changes in electron distribution of aged microplastic and their environmental impacts in aquatic environments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:124. [PMID: 40113611 DOI: 10.1007/s10653-025-02430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) are widespread environmental pollutants. This study primarily examines the changes in electro distribution of aged MPs in aquatic environments and their subsequent impact on the environment. Under the action of natural and artificial aging, the electron cloud arrangement of MPs will change, thus affecting the relevant properties of MPs. Among them, the free radicals formed by advanced oxidation technology will be enriched on the surface of MPs carrying benzene rings, and react with other pollutants (organic pollutants, heavy metals, etc.) adsorbed by MPs to form environmental persistent free radicals (EPFRs). The electron cloud density of MPs carrying EPFRs increases, and the reactivity will also increase. Additionally, the oxygen-containing functional groups on the surface of aged MPs enhance their selective adsorption, altering their environmental impact. MPs can serve as a source of free radicals in the environment, enhance the oxidation capacity of other substances in the environment, and even affect the expression of antibiotic resistance genes. In addition, MPs have a high mobility, which will have a greater negative impact in the environment. Additionally, the high mobility of MPs amplifies their negative environmental impact. This study examines the changes in electron distribution of aged MPs and highlights their effects on aquatic ecosystems, providing insights into pollution control, toxicity, and degradation mechanisms.
Collapse
Affiliation(s)
- Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lixia Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Keke Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weiwei Ren
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
15
|
Amparán MAA, Palacios A, Flores GM, Olivera PMC. Review and future outlook for the removal of microplastics by physical, biological and chemical methods in water bodies and wastewaters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:429. [PMID: 40106081 PMCID: PMC11923036 DOI: 10.1007/s10661-025-13883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) have become a major global environmental problem due to their accelerated distribution throughout different environments. Their widespread presence is a potential threat to the ecosystems because they alter the natural interaction among their constituent elements. MPs are considered as emergent pollutants due to the huge amount existing in the environment and by the toxic effects they can cause in living beings. The removal of MPs from water bodies and wastewaters is a control strategy that needs to be implemented from the present on and strictly constantly in the near future to control and mitigate their distribution into other environments. The present work shows a detailed comparison of the current potential technologies for the remediation of the MPs pollution. That is, physical, biological, and chemical methods for the removal of MPs from water bodies and wastewaters. Focusing mainly on the discussion of the perspective on the current innovative technologies for the removal or degradation of the MPs, rather than in a deep technical discussion of the methodologies. The selected novel physical methods discussed are adsorption, ultrafiltration, dynamic membranes and flotation. The physical methods are used to modify the physical properties of the MPs particles to facilitate their removal. The biological methods for the removal of MPs are based on the use of different bacterial strains, worms, mollusks or fungus to degrade MPs particles due to the hydrocarbon chain decrease of the particles, because these kinds of microorganisms feed on these organic chains. The degradation of MPs in water bodies and wastewaters by chemical methods is focusing on coagulation, electrocoagulation, photocatalysis, and ozonation. Chemical methods achieve the degradation of MPs by the modification of the chemical structure of the particles either by the change of the surface of the particles or by attacking radicals with a high oxidation capacity. Additionally, some interesting combinations of physical, chemical, and biological methods are discussed. Finally, this work includes a critical discussion and comparison of several novel methods for the removal or degradation of MPs from water bodies and wastewaters, emphasizing the areas of opportunity and challenges to be faced.
Collapse
Affiliation(s)
- Marco Antonio Alvarez Amparán
- Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México.
| | - Adriana Palacios
- Departamento de Ingeniería Química, Universidad de Las Américas Puebla, Alimentos y Ambiental. Santa Catarina Mártir, Puebla. C.P. 72810, San Andrés Cholula, México
| | - German Miranda Flores
- Departamento de Ingeniería Química, Universidad de Las Américas Puebla, Alimentos y Ambiental. Santa Catarina Mártir, Puebla. C.P. 72810, San Andrés Cholula, México
| | - Pedro Manuel Castro Olivera
- Departamento de Ingeniería Química, Universidad de Las Américas Puebla, Alimentos y Ambiental. Santa Catarina Mártir, Puebla. C.P. 72810, San Andrés Cholula, México
| |
Collapse
|
16
|
Duan J, Zheng D, Wu Y, Sleiman M, Dong W. Photoaging of Terrestrial Plastic Pollution: A Process Affected by Precipitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4652-4662. [PMID: 40009565 DOI: 10.1021/acs.est.4c10844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Rainwater is the primary water source with which terrestrial plastic pollutants interact. Not only could active substances in rainwater generate additional reactive oxygen species but water could also react with the photoaging intermediates of plastic. Precipitation and evaporation lead to repeated shifts between the solid-liquid and solid-gas interfaces during photoaging. To investigate the impact of these interfaces on photoaging, polyvinyl chloride, polypropylene, polystyrene, and polyethylene microplastics were exposed to UVA, UVB, or UVC radiation in common rainwater (CR), rainwater residue (RR), or rainwater-free (RF) treatments. Seasonal field exposure to the corresponding commercial plastics was also conducted. FT-IR spectroscopy was utilized to analyze the chemical changes in both microplastics and commercial plastics. Compared with RF and RR, CR exposure advanced the relative time of carbonyl production in the photoaging process. A model based on local precipitation and radiation data successfully predicted the carbonyl index of field-exposed commercial plastics and highlighted the importance of alternating interface transitions. The increase in the carbonyl index due to each wet-dry cycle was 1.013-5.460 times greater than that of plastics not exposed to rainwater. These findings indicate that plastics undergo different photochemical reactions on different interfaces, and alternating interface transitions can accelerate the photoaging of plastic.
Collapse
Affiliation(s)
- Jiehan Duan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Danqing Zheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanlin Wu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Mohamad Sleiman
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Shanghai institute of pollution control and ecological security, Shanghai 200092, China
| |
Collapse
|
17
|
Neale PJ, Hylander S, Banaszak AT, Häder DP, Rose KC, Vione D, Wängberg SÅ, Jansen MAK, Busquets R, Andersen MPS, Madronich S, Hanson ML, Schikowski T, Solomon KR, Sulzberger B, Wallington TJ, Heikkilä AM, Pandey KK, Andrady AL, Bruckman LS, White CC, Zhu L, Bernhard GH, Bais A, Aucamp PJ, Chiodo G, Cordero RR, Petropavlovskikh I, Neale RE, Olsen CM, Hales S, Lal A, Lingham G, Rhodes LE, Young AR, Robson TM, Robinson SA, Barnes PW, Bornman JF, Harper AB, Lee H, Calderón RM, Ossola R, Paul ND, Revell LE, Wang QW, Zepp RG. Environmental consequences of interacting effects of changes in stratospheric ozone, ultraviolet radiation, and climate: UNEP Environmental Effects Assessment Panel, Update 2024. Photochem Photobiol Sci 2025; 24:357-392. [PMID: 40095356 PMCID: PMC11971163 DOI: 10.1007/s43630-025-00687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) addresses the interacting effects of changes in stratospheric ozone, solar ultraviolet (UV) radiation, and climate on the environment and human health. These include new modelling studies that confirm the benefits of the Montreal Protocol in protecting the stratospheric ozone layer and its role in maintaining a stable climate, both at low and high latitudes. We also provide an update on projected levels of solar UV-radiation during the twenty-first century. Potential environmental consequences of climate intervention scenarios are also briefly discussed, illustrating the large uncertainties of, for example, Stratospheric Aerosol Injection (SAI). Modelling studies predict that, although SAI would cool the Earth's surface, other climate factors would be affected, including stratospheric ozone depletion and precipitation patterns. The contribution to global warming of replacements for ozone-depleting substances (ODS) are assessed. With respect to the breakdown products of chemicals under the purview of the Montreal Protocol, the risks to ecosystem and human health from the formation of trifluoroacetic acid (TFA) as a degradation product of ODS replacements are currently de minimis. UV-radiation and climate change continue to have complex interactive effects on the environment due largely to human activities. UV-radiation, other weathering factors, and microbial action contribute significantly to the breakdown of plastic waste in the environment, and in affecting transport, fate, and toxicity of the plastics in terrestrial and aquatic ecosystems, and the atmosphere. Sustainability demands continue to drive industry innovations to mitigate environmental consequences of the use and disposal of plastic and plastic-containing materials. Terrestrial ecosystems in alpine and polar environments are increasingly being exposed to enhanced UV-radiation due to earlier seasonal snow and ice melt because of climate warming and extended periods of ozone depletion. Solar radiation, including UV-radiation, also contributes to the decomposition of dead plant material, which affects nutrient cycling, carbon storage, emission of greenhouse gases, and soil fertility. In aquatic ecosystems, loss of ice cover is increasing the area of polar oceans exposed to UV-radiation with possible negative effects on phytoplankton productivity. However, modelling studies of Arctic Ocean circulation suggests that phytoplankton are circulating to progressively deeper ocean layers with less UV irradiation. Human health is also modified by climate change and behaviour patterns, resulting in changes in exposure to UV-radiation with harmful or beneficial effects depending on conditions and skin type. For example, incidence of melanoma has been associated with increased air temperature, which affects time spent outdoors and thus exposure to UV-radiation. Overall, implementation of the Montreal Protocol and its Amendments has mitigated the deleterious effects of high levels of UV-radiation and global warming for both environmental and human health.
Collapse
Affiliation(s)
- Patrick J Neale
- Environmental Research Center, Smithsonian Institution, Edgewater, MD, USA
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Anastazia T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Donat-P Häder
- Biology, Friedrich-Alexander-University (Retired), Erlangen, Germany
| | - Kevin C Rose
- Department of Biological Sciences and Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Davide Vione
- Department of Chemistry, University of Turin, Turin, Italy
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gotheburg, Sweden
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
- Civil Environmental & Geomatic Engineering, University College London, London, UK
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Sasha Madronich
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
- USDA UV-B Monitoring and Research Program, Colorado State University, Fort. Collins, CO, USA
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Tamara Schikowski
- Working Group Environmental Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Department of Environment and Health, School of Public Health, University of Bielefeld, Bielefeld, Germany
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Barbara Sulzberger
- Retired From Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Anu M Heikkilä
- Climate Research, Finnish Meteorological Institute, Helsinki, Finland
| | | | - Anthony L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | | | - Alkiviadis Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Gabriel Chiodo
- Institute of Geosciences, Spanish National Research Council (IGEO-UCM-CSIC), Madrid, Spain
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Raúl R Cordero
- Department of Physics, Universidad de Santiago, Santiago, Chile
| | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Simon Hales
- Public Health, University of Otago, Wellington, New Zealand
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Gareth Lingham
- Centre for Ophthalmology and Visual Science (Incorporating Lion's Eye Institute), University of Western Australia, Perth, Australia
- Centre for Eye Research Ireland, Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Lesley E Rhodes
- School of Biological Sciences, University of Manchester, Manchester, UK
- Dermatology Centre, Salford Royal Hospital, Manchester, UK
| | | | - T Matthew Robson
- UK National School of Forestry, Institute of Science and Environment, University of Cumbria, Ambleside, UK
- Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- Environmental Futures, University of Wollongong, Wollongong, Australia
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University, New Orleans, LA, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | - Anna B Harper
- Department of Geography, University of Georgia, Athens, GA, USA
| | - Hanna Lee
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Roy Mackenzie Calderón
- Cape Horn International Center, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, Santiago, Chile
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Richard G Zepp
- Office of Research and Development, United States Environmental Protection Agency (retired), Athens, GA, USA
| |
Collapse
|
18
|
Qian J, Sadri M, Valdez S, Clemons C, Qiang Z. Integrating Community Service into Student Learning: A Model Event of a Plastic Waste Cleanup. JOURNAL OF CHEMICAL EDUCATION 2025; 102:661-670. [PMID: 39958393 PMCID: PMC11823409 DOI: 10.1021/acs.jchemed.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/18/2025]
Abstract
Plastic recycling has gained increasing attention due to the negative impacts of improper plastic waste management and its end-of-life outcomes. Despite growing research and educational efforts on sustainability, the integration of community service into student learning experiences remains limited. To address this gap and promote sustainable practices among the younger generation, a cleanup outreach event is developed in conjunction with pre- and post-cleanup lectures. The lectures covered the knowledge of plastic waste and recycling, relevant policies, and advancements in sustainability within industry and academia. The waste cleanup activity, held at Biloxi Beach and Hattiesburg, Mississippi, provided students with hands-on experience in addressing local plastic pollution and connected classroom learning to real-life plastic waste issues. Integrating community service with educational content provides an approach to learning about sustainable practices while raising awareness of societal needs and future technological opportunities.
Collapse
Affiliation(s)
- Jin Qian
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Mikaela Sadri
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Sara Valdez
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Claire Clemons
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
19
|
Xie L, Zhu K, Chen N, Deng Y, Jiang W, Jia H. A Critical Review of an Environmental Risk Substance Induced by Aging Microplastics: Insights into Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22502-22518. [PMID: 39661042 DOI: 10.1021/acs.est.4c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Microplastics (MPs), as an emerging contaminants category, can undergo complex aging in a variety of environmental matrices in which the chemical bonds of polymer molecules can be broken to form free radicals. While the existence of free radicals in aged plastics has been known for over half a century, only recently has significant research on a new type of environmentally risky substance, namely environmentally persistent free radicals (EPFRs), present in aged MPs and their environmental effects, been started, but it is still in its infancy. To address these issues, this work examines EPFR generation on MPs and their environmental effect by reviewing publications from 2012 to 2023. The aging processes and mechanisms of MPs in the environment are first summarized. Then, the occurrence and formation mechanisms of EPFRs on aged MPs are specifically discussed. Additionally, the reactivity of EPFRs on aging MPs and their influencing factors are comprehensively considered, such as their physicochemical properties, oxygen content, and coexisting substances. Due to their reactivity, EPFRs can interact directly with some substances (e.g., p-nitrophenol and proteins, etc.) or induce the generation of reactive oxygen species, leading to diverse environmental effects, including pollutant transformation, biotoxicity, and health risks. Finally, research challenges and perspectives for EPFRs formation on aging MPs and related environmental implications are presented. Given the environmental fate and risk of MPs-EPFRs, our urgent call for a better understanding of the potential hazards of aged MPs is to help develop a sustainable path for plastics management.
Collapse
Affiliation(s)
- Linyang Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Na Chen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Wenjun Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
20
|
Gao Y, Gao W, Liu Y, Zou D, Li Y, Lin Y, Zhao J. A comprehensive review of microplastic aging: Laboratory simulations, physicochemical properties, adsorption mechanisms, and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177427. [PMID: 39522785 DOI: 10.1016/j.scitotenv.2024.177427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As a new type of ecological environment problem, microplastic pollution is a severe challenge faced by the world, and its threat and potential risk to the ecosystem have become a hot research spot in the current environmental field. Microplastics (MPs) in the natural environment will experience aging effect, aging will change the physical and chemical properties of MPs and affect the adsorption behavior. Recently reported characterization techniques of MPs and laboratory simulation of aging are reviewed. The aging mechanism between MPs and different pollutants and the intervention mechanism of environmental factors (MPs, pollutants and water quality environment) were revealed. In addition, to further understand the potential ecological toxicity of MPs after aging, the release and harm of additives during aging, produce the environmentally persistent free radicals, and the mechanism of reactive oxygen species (ROS) removal of pollutants adsorbed on the surface of MPs were summarized. Future research efforts should focus more on bridging the disparity between laboratory aging simulations and natural environmental conditions to enhance the authenticity and ecological relevance of such studies. The ROS production mechanism of MPs provides a reference direction for removing pollutants adsorbed by aged MPs.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China; Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Wei Gao
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhi Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Donglei Zou
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Yuan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
21
|
Zhang S, Xing Z, Li Y, Jiang L, Shi W, Zhao Y, Fang L. Plastic film from the source of anaerobic digestion: Surface degradation, biofilm and UV response characteristics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135793. [PMID: 39276739 DOI: 10.1016/j.jhazmat.2024.135793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
This study simulates a major environmental scenario involving "organic fertilizer source" plastics, by exploring the key factors influencing the changes in plastic-films during anaerobic digestion (AD), as well as the responses of the anaerobically digested plastics to ultraviolet (UV) radiation exposure. The results demonstrate that the degradation effect of AD on plastics is reflected by their yellowish and ruptured appearance, slightly worn surfaces, hardening and opacity, and fragmentation. AD significantly increases the content of oxygen-containing functional groups and the degree of unsaturation in plastic films, with thermophilic temperature processes proving more effective than those conducted at mesophilic temperatures. Exposure to UV light has been found to amplify the degradative effects, suggesting the potential cumulative impact of AD and UV. Both AD and UV irradiation reduced the hydrophilicity of plastics. In particular, the hydrophobicity of polylactic acid films was completely disrupted under overlay-exposure. Furthermore, microbial populations on plastic surfaces were mainly bacterial. These bacterial populations were primarily influenced by temperature, and moderately by the plastic types. In contrast, archaea were predominantly affected by both temperature and digested substrate. This study offers a theoretical foundation for strategies aimed at preventing and controlling plastic pollution derived from organic fertilizers.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, PR China.
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Luoyun Fang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
22
|
Zhang X, Zhang XX, Ma L. New Horizons in Micro/Nanoplastic-Induced Oxidative Stress: Overlooked Free Radical Contributions and Microbial Metabolic Dysregulations in Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39499580 DOI: 10.1021/acs.est.4c08865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Excessive production of reactive oxygen species (ROS) induced by micro/nanoplastics (MPs/NPs) is highly toxic to microbes. However, the mechanisms underlying ROS generation and metabolic regulation within anaerobic guilds remain poorly understood. In this study, we investigated the effects of environmentally relevant levels of polypropylene (PP)-MPs/NPs on oxidative stress and microbial ecology during anaerobic digestion (AD). Electron paramagnetic resonance spectroscopy revealed that PP-MPs/NPs elevated the concentrations of environmentally persistent free radicals (EPFRs) and derived hydroxyl radicals (•OH). EPFRs were identified as the primary contributors to •OH generation, as evidenced by a high Spearman correlation coefficient (r = 0.884, p < 0.001) and free radical-quenching studies. The formation of •OH enhanced ROS production by 86.2-100.9%, resulting in decreased cellular viability and methane production (by 37.5-50.5%) at 100 mg/g TS PP-MPs/NPs. Genome-centric metagenomic and metatranscriptomic analyses suggested that PP-MPs/NPs induced the reassembly of community structures, re-evolution of functional traits, and remodeling of interspecies interactions. Specifically, PP-MPs/NPs induced a shift in methanogen consortia from hydrogenotrophic Methanofollis sp. to acetoclastic and hydrogenotrophic Methanothrix soehngenii, primarily because of the latter's diverse ingestion patterns, electron bifurcation complexes, and ROS-scavenging abilities. Downregulation of genes associated with antioxidative defense systems (i.e., sodN, katA, and osmC) and ROS-driven redox signal transduction pathways (c-di-AMP and phosphorylation signaling pathways) provided insights into the mechanisms underlying ROS-induced microbial metabolic dysregulation. Our findings enhance the understanding of microbial ecological and metabolic traits under MPs/NPs stressors, facilitating the control of MPs/NPs toxicity and the stabilization of AD processes.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, P. R. China
| |
Collapse
|
23
|
Ferrer M, Harada D, Martin CJ, Métivier R, Allain C, Nakatani K, Louis M, Kawaguchi N, Yanagida T, Yasuhara K, Kawai T. Cascade Fluorescence Modulation in Photochromic Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57626-57635. [PMID: 39319449 PMCID: PMC11503518 DOI: 10.1021/acsami.4c09023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Certain derivatives of terarylene are able to undergo a highly efficient oxidative cycloreversion cascade effect, a ring opening reaction with quantum yields above unity, resulting in a colored-to-colorless transition in solution. In the presence of chloroform, high-energy UV and X-rays can trigger this phenomenon, potentially acting as a visual detection system for ionizing radiation. However, chloroform is sensitive to different irradiation wavelengths without distinction, making it difficult to adapt to a reusable device. Chlorobenzene was chosen as an alternative halogenated solvent, as it offers wavelength selectivity between photocyclization and cascade effect cycloreversion. Nile Red was also incorporated into the system with the aim of improving the sensitivity of the visual detection via fluorescence photoswitching. Finally, microencapsulation of both terarylene and Nile Red was targeted to obtain both the cascade effect and photoswitching in a single system. In microcapsules made from a Pickering emulsion, this terarylene-Nile Red system showed high fatigue resistance to repeated photocyclization and cycloreversion irradiation, giving access to repeated ON/OFF fluorescence photoswitching. The cascade effect was also successfully demonstrated along with fluorescence recovery, showing the versatility of the two phenomena in different media.
Collapse
Affiliation(s)
- Magin
Benedict Ferrer
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Université
Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette 91190, France
| | - Daiyu Harada
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Colin J. Martin
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Rémi Métivier
- Université
Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette 91190, France
| | - Clémence Allain
- Université
Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette 91190, France
| | - Keitaro Nakatani
- Université
Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette 91190, France
| | - Marine Louis
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Noriaki Kawaguchi
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takayuki Yanagida
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kazuma Yasuhara
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Kawai
- Graduate
School of Science and Technology, Nara Institute
of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Medilux
Resaerch Center, Nara Institute of Science
and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
24
|
Liu M, Liu HM, Yang K, Li J, Huang C, Yang J, Chen W, Ying K, Leung KMY, Zhang K, Xu X, Liao R, Yan M. Advancing the Understanding of Microplastic Weathering: Insights from a Novel Polarized Light Scattering Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19004-19015. [PMID: 39388491 DOI: 10.1021/acs.est.4c08711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Weathering is a significant process that alters the properties of microplastics (MPs) and consequently affects their environmental behaviors. In this study, we introduced a novel approach based on polarized light scattering technique, which offers advantages in terms of rapid, high-throughput, and submicron-sized detection. This technique was successfully applied to characterize the weathered MPs after a 180-day laboratory simulation of coastal environments. By employing polarization measurements, we obtained a 46-dimensional matrix data set for the weathered MP fragments and subsequently processed them using a backpropagation neural network. The successful extraction of effective polarization pulses confirmed the presence of MP fragments within the size range of 0.2-60 μm, yielding total accuracies for size classification ranging from 78.9 to 86.9%. Furthermore, this technique achieved an overall accuracy of 93.8% in classifying MPs with different weathering degrees and polymer types, revealing polarization parameters associated with size and morphological changes play a dominant role in characterizing the weathering process of MPs. Compared with conventional approaches, the novel polarized light scattering approach holds great promise for rapid, high-throughput, and accurate characterization of MPs with small sizes. The findings of this study provided new insights into how MPs change after long-term weathering in aquatic environments.
Collapse
Affiliation(s)
- Mengyang Liu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Hoi Man Liu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Keran Yang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jiajin Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengqi Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianxiong Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wenqing Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | | | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ran Liao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
25
|
Huang X, Huang J, Lu M, Liu Y, Jiang G, Chang M, Xu W, Dai Z, Zhou C, Hong P, Li C. In situ surface-enhanced Raman spectroscopy for the detection of nanoplastics: A novel approach inspired by the aging of nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174249. [PMID: 38936740 DOI: 10.1016/j.scitotenv.2024.174249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Nanoplastics (NPs) present a hidden risk to organisms and the environment via migration and enrichment. Detecting NPs remains challenging because of their small size, low ambient concentrations, and environmental variability. There is an urgency to exploit detection approaches that are more compatible with real-world environments. Herein, this study provides a surface-enhanced Raman spectroscopy (SERS) technique for the in situ reductive generation of silver nanoparticles (Ag NPs), which is based on photoaging-induced modifications in NPs. The feasibility of generating Ag NPs on the surface of NPs was derived by exploring the photoaging mechanism, which was then utilized to SERS detection. The approach was applied successfully for the detection of polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET) NPs with excellent sensitivity (e.g., as low as 1 × 10-6 mg/mL for PVC NPs, and an enhancement factor (EF) of up to 2.42 × 105 for small size PS NPs) and quantitative analytical capability (R2 > 0.95579). The method was successful in detecting NPs (PS NPs) in lake water. In addition, satisfactory recoveries (93.54-105.70 %, RSD < 12.5 %) were obtained by spiking tap water as well as lake water, indicating the applicability of the method to the actual environment. Therefore, the proposed approach offers more perspectives for testing real environmental NPs.
Collapse
Affiliation(s)
- Xiaoxin Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Jinchan Huang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Meilin Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangzheng Jiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Min Chang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wenhui Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
26
|
Chelomin VP, Istomina AA, Mazur AA, Slobodskova VV, Zhukovskaya AF, Dovzhenko NV. New Insights into the Mechanisms of Toxicity of Aging Microplastics. TOXICS 2024; 12:726. [PMID: 39453146 PMCID: PMC11510949 DOI: 10.3390/toxics12100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Nowadays, synthetic polymer (plastic) particles are ubiquitous in the environment. It is known that for several decades microplastics (MPs) have been accumulating in the World Ocean, becoming available to a large variety of marine organisms. Particularly alarming is the accumulation of aging plastic particles, as the degradation processes of such particles increase their toxicity. The diverse display of negative properties of aging MPs and its effect on biota are still poorly understood. In this study, in vitro experiments modeling the interaction of pristine and UV-irradiated aging polypropylene (PP) fragments with hemocytes and mitochondria of bivalve mollusks Mytilus sp. were performed. The appearance of free radicals in the environment was recorded by spectral characteristics of indicator dyes-methylene blue (MB) and nitroblue tetrazolium (NBT). It was found that due to photooxidation, aging PP fragments sorbed more than threefold MB on their modified surface compared to pristine samples of this polymer. Using NBT, the formation of reactive oxygen species in seawater in the presence of pristine and photoactivated PP was recorded. It was also found that photodegraded PP fragments largely stimulated the development of lipid peroxidation processes in mitochondrial membranes and reduced the stability of hemocyte lysosome membranes compared to pristine PP fragments. In general, the results obtained concretize and supplement with experimental data the previously stated hypothesis of toxicity of aging MPs.
Collapse
|
27
|
Zhao J, Wang H, Zheng L, Wang Q, Song Y. Comparison of pristine and aged poly-L-lactic acid and polyethylene terephthalate as microbe carriers in surface water: Displaying apparent differences. Int J Biol Macromol 2024; 280:136014. [PMID: 39326610 DOI: 10.1016/j.ijbiomac.2024.136014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) in water environment are potential carriers for many substances. In this study, pristine degradable poly-L-lactic acid (PLLA) and non-degradable polyethylene terephthalate (PET) MPs and their UV-aged counterparts were exposed to the Yuhangtang River (Y-River). The results showed that the surface morphology and structure of all MPs markedly changed after exposure. Oxygen-containing functional groups and hydrophilicity of aged MPs were higher compared with their pristine counterparts, and further increased after river exposure. The content of extracellular polymers (EPS) of biofilms on MPs increased with the exposure time, and was higher on aged MPs than on pristine ones. Similar results were obtained for most antibiotic resistance genes (ARGs) between pristine and aged MPs, and ARGs were positively related to pathogens. Dominant bacteria on all MPs were Proteobacteria (51.3 %-81.1 %), Chloroflexi (5.2 %-20.9 %) and Firmicutes (0.4 %-15.9 %), which markedly differed from the Y-River community. Aged MPs could enrich more microbes but relatively fewer bacterial species than pristine MPs, and higher enrichment and species diversity were observed on PLLA compared with PET. This study demonstrates that MPs are highly effective carriers for microbes, and the results provide valuable insights for evaluating the potential impact of bio-MPs on aquatic ecological environment.
Collapse
Affiliation(s)
- Jianqi Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
28
|
Zheng D, Duan J, Wu Y, Dong W. Mechanistic insight into the photoconversion of losartan potassium mediated by different types of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135143. [PMID: 39018600 DOI: 10.1016/j.jhazmat.2024.135143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/22/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Nowadays the proliferation of microplastics (MPs) in aquatic environments and impacts on the fate of organic contaminants (OCs) has drawn sustained worldwide attention. In this study, we investigated the effects of different types and aging degrees of MPs, specifically polystyrene (PSMPs), polyethylene terephthalate (PETMPs), and polylactic acid (PLAMPs), on the photo-transformation of LSTPs. Our results revealed that the facilitation of LSTP photoconversion by PSMPs exhibited a positive linear relationship with aging degree. On the other hand, the effects of PETMPs with different oxidation levels on LSTP photoconversion were weak, while the contribution of PLAMPs decreased as aging increased. Characterizations, quenching and probing experiments showed the aging mechanisms and the generation of reactive oxygen species (ROS) converged among various MPs. Specifically, theoretical calculations, TOC and GC-MS were conducted to verify that in the PLA0-mediated systems, it was the intermediates of PLA0 that prevailed in promoting the photoconversion of LSTP. The aged PLA own have a large propensity to consume ROS, which diminished their promotion of LSTP degradation. This differd from the reactions involving PSMPs and PETMPs, where the microplastic particles themselves were the main drivers of the photoconversion process rather than intermediates.
Collapse
Affiliation(s)
- Danqing Zheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Jiehan Duan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yanlin Wu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
29
|
Wang H, Gao Z, Zhu Q, Wang C, Cao Y, Chen L, Liu J, Zhu J. Overview of the environmental risks of microplastics and their controlled degradation from the perspective of free radicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124227. [PMID: 38797348 DOI: 10.1016/j.envpol.2024.124227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Owing to the significant environmental threat posed by microplastics (MPs) of varying properties, MPs research has garnered considerable attention in current academic discourse. Addressing MPs in river-lake water systems, existing studies have seldom systematically revealed the role of free radicals in the aging/degradation process of MPs. Hence, this review aims to first analyze the pollution distribution and environmental risks of MPs in river-lake water systems and to elaborate the crucial role of free radicals in them. After that, the study delves into the advancements in free radical-mediated degradation techniques for MPs, emphasizing the significance of both the generation and elimination of free radicals. Furthermore, a novel approach is proposed to precisely govern the controlled generation of free radicals for MPs' degradation by interfacial modification of the material structure. Hopefully, it will shed valuable insights for the effective control and reduction of MPs in river-lake water systems.
Collapse
Affiliation(s)
- Hailong Wang
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhimin Gao
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiuzi Zhu
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Cunshi Wang
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanyan Cao
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Chen
- Jiangsu Qinhuai River Water Conservancy Project Management Office, Nanjing, 210029, China
| | - Jianlong Liu
- Jiangsu Qinhuai River Water Conservancy Project Management Office, Nanjing, 210029, China
| | - Jianzhong Zhu
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
30
|
Li H, Jiang Y, Gu Y, Chen C, Yu J, Wang C, Shi C, Pan R, Chen H. Environmentally persistent free radicals on photoaging microplastics shortens longevity via inducing oxidative stress in Caenorhabditis elegans. CHEMOSPHERE 2024; 361:142560. [PMID: 38851504 DOI: 10.1016/j.chemosphere.2024.142560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/20/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants that exert multiple toxicological effects. Current studies have mainly focused on modeled or unaged MPs, which lack environmental relevance. The generation and toxicity of environmentally persistent free radicals (EPFRs) on photoaging polystyrene (PS) have not been well studied, and the role of EPFRs on the toxic effects of photoaged PS is easily ignored. Photoaging primarily produces EPFRs, followed by an increase in reactive oxygen species (ROS) content and oxidative potential, which alter the physicochemical properties of photoaged PS. The mean lifespan and lipofuscin content were significantly altered after acute exposure to photoaged PS for 45 d (PS-45) and 60 d (PS-60) in Caenorhabditis elegans. Intestinal ROS and gst-4::GFP expression were enhanced, concomitant with the upregulation of associated genes. Treatment with N-acetyl-l-cysteine by radical quenching test significantly decreased EPFRs levels on the aged PS and inhibited the acceleration of the aging and oxidative stress response in nematodes. Pearson's correlation analysis also indicated that the EPFRs levels were significantly associated with these factors. Thus, the EPFRs generated on photoaged PS contribute to the acceleration of aging by oxidative stress. This study provides new insights into the potential toxicity and highlights the need to consider the role of EPFRs in the toxicity assessment of photoaged PS.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chao Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jun Yu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ruolin Pan
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
31
|
Zhu Z, Cao X, Wang K, Guan Y, Ma Y, Li Z, Guan J. The environmental effects of microplastics and microplastic derived dissolved organic matter in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173163. [PMID: 38735318 DOI: 10.1016/j.scitotenv.2024.173163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Currently, microplastics (MPs) have ubiquitously distributed in different aquatic environments. Due to the unique physicochemical properties, MPs exhibit a variety of environmental effects with the coexisted contaminants. MPs can not only alter the migration of contaminants via vector effect, but also affect the transformation process and fate of contaminants via environmental persistent free radicals (EPFRs). The aging processes may enhance the interaction between MPs and co-existed contaminants. Thus, it is of great significance to review the aging mechanism of MPs and the influence of coexisted substances, the formation mechanism of EPFRs, environmental effects of MPs and relevant mechanism. Moreover, microplastic-derived dissolved organic matter (MP-DOM) may also influence the elemental biogeochemical cycles and the relevant environmental processes. However, the environmental implications of MP-DOM are rarely outlined. Finally, the knowledge gaps on environmental effects of MPs were proposed.
Collapse
Affiliation(s)
- Zhichao Zhu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xu Cao
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Kezhi Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yujie Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yuqi Ma
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zhuoyu Li
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
32
|
Wang Y, Zhang F, Zhang G, Wang H, Zhu S, Zhang H, He T, Guo T. Trace metals coupled with plasticisers in microplastics strengthen the denitrification function of the soil microbiome in the Qinghai Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134593. [PMID: 38749249 DOI: 10.1016/j.jhazmat.2024.134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Due to the lack of research on the co-effects of microplastics and trace metals in the environment on nitrogen cycling-related functional microorganisms, the occurrence of microplastics and one of their plasticisers, phthalate esters, as well as trace metals, were determined in soils and river sediments in the Qinghai-Tibet Plateau. Relationship between microplastics and phthalate esters in the area was determined; the co-effects of these potentially toxic materials, and key factors and pathways affecting nitrogen functions were further explored. Significant correlations between fibre- and film-shaped microplastics and phthalate esters were detected in the soils from the plateau. Copper, lead, cadmium and di-n-octyl phthalate detected significantly affected nitrogen cycling-related functional microorganisms. The co-existence of di-n-octyl phthalate and copper in soils synergistically stimulated the expression of denitrification microorganisms nirS gene and "nitrate_reduction". Additionally, di-n-octyl phthalate and dimethyl phthalate more significantly affected the variation of nitrogen cycling-related functional genes than the number of microplastics. In a dimethyl phthalate- and cadmium-polluted area, nitrogen cycling-related functional genes, especially nirK gene, were more sensitive and stressed. Overall, phthalate esters originated from microplastics play a key role in nitrogen cycling-related functions than microplastics themselves, moreover, the synergy between di-n-octyl phthalate and copper strengthen the expression of denitrification functions.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Huaxin Wang
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China
| | - Shiliang Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Tiantian He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Tingyu Guo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
33
|
Ahmed Dar A, Chen Z, Sardar MF, An C. Navigating the nexus: climate dynamics and microplastics pollution in coastal ecosystems. ENVIRONMENTAL RESEARCH 2024; 252:118971. [PMID: 38642636 DOI: 10.1016/j.envres.2024.118971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Microplastics (MPs) pollution is an emerging environmental health concern, impacting soil, plants, animals, and humans through their entry into the food chain via bioaccumulation. Human activities such as improper solid waste dumping are significant sources that ultimately transport MPs into the water bodies of the coastal areas. Moreover, there is a complex interplay between the coastal climate dynamics, environmental factors, the burgeoning issue of MPs pollution and the complex web of coastal pollution. We embark on a comprehensive journey, synthesizing the latest research across multiple disciplines to provide a holistic understanding of how these inter-connected factors shape and reshape the coastal ecosystems. The comprehensive review also explores the impact of the current climatic patterns on coastal regions, the intricate pathways through which MPs can infiltrate marine environments, and the cascading effects of coastal pollution on ecosystems and human societies in terms of health and socio-economic impacts in coastal regions. The novelty of this review concludes the changes in climate patterns have crucial effects on coastal regions, proceeding MPs as more prevalent, deteriorating coastal ecosystems, and hastening the transfer of MPs. The continuous rising sea levels, ocean acidification, and strong storms result in habitat loss, decline in biodiversity, and economic repercussion. Feedback mechanisms intensify pollution effects, underlying the urgent demand for environmental conservation contribution. In addition, the complex interaction between human, industry, and biodiversity demanding cutting edge strategies, innovative approaches such as remote sensing with artificial intelligence for monitoring, biobased remediation techniques, global cooperation in governance, policies to lessen the negative socioeconomic and environmental effects of coastal pollution.
Collapse
Affiliation(s)
- Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada.
| | | | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
34
|
Chelomin VP, Slobodskova VV, Dovzhenko NV, Mazur AA, Kukla SP. Photoaging Elevated the Genotoxicity of Polystyrene Microplastics to Marine Mussel Mytilus trossulus (Gould, 1850). Int J Mol Sci 2024; 25:5740. [PMID: 38891928 PMCID: PMC11171553 DOI: 10.3390/ijms25115740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Micro-sized particles of synthetic polymers (microplastics) are found in all parts of marine ecosystems. This fact requires intensive study of the degree of danger of such particles to the life activity of hydrobionts and needs additional research. It is evident that hydrobionts in the marine environment are exposed to microplastics modified by biotic and abiotic degradation. To assess the toxic potential of aging microplastic, comparative studies were conducted on the response of cytochemical and genotoxic markers in hemocytes of the mussel Mytilus trossulus (Gould, 1850) after exposure to pristine and photodegraded (UV irradiation) polystyrene microparticles (µPS). The results of cytochemical tests showed that UV-irradiated µPS strongly reduced metabolism and destabilized lysosome membranes compared to pristine µPS. Using a Comet assay, it was shown that the nuclear DNA of mussel hemocytes showed high sensitivity to exposure to both types of plastics. However, the level of DNA damage was significantly higher in mussels exposed to aging µPS. It is suggested that the mechanism of increased toxicity of photo-oxidized µPS is based on free-radical reactions induced by the UV irradiation of polymers. The risks of toxic effects will be determined by the level of physicochemical degradation of the polymer, which can significantly affect the mechanisms of toxicity.
Collapse
Affiliation(s)
| | | | | | - Andrey Alexandrovich Mazur
- Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | |
Collapse
|
35
|
Wei Z, Wei T, Chen Y, Zhou R, Zhang L, Zhong S. Seasonal dynamics and typology of microplastic pollution in Huixian karst wetland groundwater: Implications for ecosystem health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120882. [PMID: 38663080 DOI: 10.1016/j.jenvman.2024.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
This study offers an insightful and detailed examination of microplastic pollution in the Huixian karst wetland's groundwater, providing novel insights into the complex interplay of microplastic characteristics and their seasonal dynamics. We meticulously quantified microplastic concentrations, observing significant seasonal variation with values ranging from 4.9 to 13.4 n·L-1 in the wet season and 0.53-49.4 n·L-1 in the dry season. Our analysis pinpoints human activities and atmospheric deposition as key contributors to this contamination. A critical finding of our research is the pronounced disparity in microplastic levels between open wells and covered artesian wells, highlighting the vulnerability of open wells to higher pollution levels. Through correlation analysis, we unearthed the crucial influence of the karst region's unique hydrogeological characteristics on microplastic migration, distinctively different from non-karst areas. The karst terrain, characterized by its caves and subterranean rivers, facilitates the downward movement of microplastics from surface to groundwater, exacerbating pollution levels. Our investigation identifies agricultural runoff and domestic wastewater as primary pollution sources. These findings not only underscore the urgent need for environmental stewardship in karst regions but also provide a crucial foundation for formulating effective strategies to mitigate microplastic pollution in karst groundwater. The implications of this study extend beyond the Huixian karst wetland, offering a template for addressing microplastic pollution in similar ecosystems globally.
Collapse
Affiliation(s)
- Zengxian Wei
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Tao Wei
- School of Automobile Engineering, Guilin University of Aerospace Technology, Guilin, 541004, China
| | - Yan Chen
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Ruyue Zhou
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Lishan Zhang
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Shan Zhong
- College of Life Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
36
|
Yesildagli B, Göktaş RK, Ayaz T, Olgun B, Dokumacı EN, Özkaleli M, Erdem A, Yurtsever M, Doğan G, Yurdakul S, Yılmaz Civan M. Phthalate ester levels in agricultural soils of greenhouses, their potential sources, the role of plastic cover material, and dietary exposure calculated from modeled concentrations in tomato. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133710. [PMID: 38364582 DOI: 10.1016/j.jhazmat.2024.133710] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Soil samples collected from 50 greenhouses (GHs) cultivated with tomatoes (plastic-covered:24, glass-covered:26), 5 open-area tomato growing farmlands, and 5 non-agricultural areas were analyzed in summer and winter seasons for 13 PAEs. The total concentrations (Σ13PAEs) in the GHs ranged from 212 to 2484 ng/g, wheeas the concentrations in open-area farm soils were between 240 and 1248 ng/g. Σ13PAE in non-agricultural areas was lower (35.0 - 585 ng/g). PAE exposure through the ingestion of tomatoes cultivated in GH soils and associated risks were estimated with Monte Carlo simulations after calculating the PAE concentrations in tomatoes using a partition-limited model. DEHP was estimated to have the highest concentrations in the tomatoes grown in both types of GHs. The mean carcinogenic risk caused by DEHP for tomato grown in plastic-covered GHs, glass-covered GHs, and open-area soils were 2.4 × 10-5, 1.7 × 10-5 and 1.1 × 10-5, respectively. Based on Positive Matrix Factorization results, plastic material usage in GHs (including plastic cover material source for plastic-GHs) was found to be the highest contributing source in both types of GHs. Microplastic analysis indicated that the ropes and irrigation pipes inside the GHs are important sources of PAE pollution. Pesticide application is the second highest contributing source.
Collapse
Affiliation(s)
- Berkay Yesildagli
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| | - Recep Kaya Göktaş
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey.
| | - Tuğba Ayaz
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| | - Bihter Olgun
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ebru Nur Dokumacı
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Merve Özkaleli
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ayça Erdem
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Meral Yurtsever
- Department of Environmental Engineering, Sakarya University, 54187, Sakarya, Turkey
| | - Güray Doğan
- Department of Environmental Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Sema Yurdakul
- Department of Environmental Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Mihriban Yılmaz Civan
- Department of Environmental Engineering, Kocaeli University, Umuttepe Campus, 41001 Kocaeli, Turkey
| |
Collapse
|
37
|
Gu Y, Jiang Y, Chen X, Li L, Chen H, Chen J, Wang C, Yu J, Chen C, Li H. Generation of environmentally persistent free radicals on photoaged tire wear particles and their neurotoxic effects on neurotransmission in Caenorhabditis elegans. ENVIRONMENT INTERNATIONAL 2024; 186:108640. [PMID: 38608385 DOI: 10.1016/j.envint.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Tire wear particles (TWP) are a prevalent form of microplastics (MPs) extensively distributed in the environment, raising concerns about their environmental behaviors and risks. However, knowledge regarding the properties and toxicity of these particles at environmentally relevant concentrations, specifically regarding the role of environmentally persistent free radicals (EPFRs) generated during TWP photoaging, remains limited. In this study, the evolution of EPFRs on TWP under different photoaging times and their adverse effects on Caenorhabditis elegans were systematically investigated. The photoaging process primarily resulted in the formation of EPFRs and reactive oxygen species (O2•-, ⋅OH, and 1O2), altering the physicochemical properties of TWP. The exposure of nematodes to 100 μg/L of TWP-50 (TWP with a photoaging time of 50 d) led to a significant decrease in locomotory behaviors (e.g., head thrashes, body bends, and wavelength) and neurotransmitter contents (e.g., dopamine, glutamate, and serotonin). Similarly, the expression of neurotransmission-related genes was reduced in nematodes exposed to TWP-50. Furthermore, the addition of free-radical inhibitors significantly suppressed TWP-induced neurotoxicity. Notably, correlation analysis revealed a significantly negative correlation between EPFRs levels and the locomotory behaviors and neurotransmitter contents of nematodes. Thus, it was concluded that EPFRs on photoaged TWP induce neurotoxicity by affecting neurotransmission. These findings elucidate the toxicity effects and mechanisms of EPFRs, emphasizing the importance of considering their contributions when evaluating the environmental risks associated with TWP.
Collapse
Affiliation(s)
- Yulun Gu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jinyu Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
38
|
Guo Q, Wang M, Jin S, Ni H, Wang S, Chen J, Zhao W, Fang Z, Li Z, Liu H. Photoaged microplastics enhanced the antibiotic resistance dissemination in WWTPs by altering the adsorption behavior of antibiotic resistance plasmids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170824. [PMID: 38340861 DOI: 10.1016/j.scitotenv.2024.170824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Growing concerns have raised about the microplastic eco-coronas in the ultraviolet (UV) disinfection wastewater, which accelerated the pollution of antibiotic resistance genes (ARGs) in the aquatic environment. As the hotspot of gene exchange, microplastics (MPs), especially for the UV-aged MPs, could alter the spread of ARGs in the eco-coronas and affect the resistance of the environment through adsorbing antibiotic resistant plasmids (ARPs). However, the relationship between the MP adsorption for ARPs and ARG spreading characteristics in MP eco-corona remain unclear. Herein, this study explored the distribution of ARGs in the MP eco-corona through in situ investigations of the discharged wastewater, and the adsorption behaviors of MPs for ARPs by in vitro adsorption experiments and in silico calculations. Results showed that the adsorption capacity of MPs for ARPs was enhanced by 42.7-48.0 % and the adsorption behavior changed from monolayer to multilayer adsorption after UV-aging. It was related to the increased surface roughness and oxygen-containing functional groups of MPs under UV treatment. Moreover, the abundance of ARGs in MP eco-corona of UV-treated wastewater was 1.33-1.55 folds higher than that without UV treatment, promoting the proliferation of drug resistance. DFT and DLVO theoretical calculations indicated that the MP-ARP interactions were dominated by electrostatic physical adsorption, endowing the aged MPs with low potential oxygen-containing groups to increase the electrostatic interaction with ARPs. Besides, due to the desorption of ARPs on MPs driven by the electrostatic repulsion, the bioavailability of ARGs in the MP eco-coronas was increased with pH and decreased with salinity after the wastewater discharge. Overall, this study advanced the understanding of the adsorption behavior of MPs for ARPs and provided inspirations for the evaluation of the resistance spread in the aquatic environment mediated by MP eco-coronas.
Collapse
Affiliation(s)
- Qian Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Mengjun Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Siyuan Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Haohua Ni
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shuping Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
39
|
Xie P, Li P, Zhu X, Chen D, Ommati MM, Wang H, Han L, Xu S, Sun P. Hepatotoxic of polystyrene microplastics in aged mice: Focus on the role of gastrointestinal transformation and AMPK/FoxO pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170471. [PMID: 38296072 DOI: 10.1016/j.scitotenv.2024.170471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Microplastic (MP) toxicity has attracted widespread attention, whereas before triggering hepatotoxicity, ingested MPs first undergo transportation and digestion processes in the gastrointestinal tract, possibly interacting with the gastrointestinal contents (GIC). More alarming is the need for more understanding of how this process may impact the liver health of aged animals. This study selected old mice. Firstly, we incubated polystyrene microplastics (PS-MPs, 1 μm) with GIC extract. The results of SEM/EDS indicated a structural alteration in PS-MPs. Additionally, impurities resembling corona, rich in heteroatoms (O, N, and S), were observed. This resulted in an enhanced aggregating phenomenon of MPs. We conducted a 10-day experiment exposing aged mice to four concentrations of PS-MPs, ranging from 1 × 103 to 1 × 1012 particles/L. Subsequent measurements of tissue pathology and body and organ weights were conducted, revealing alterations in liver structure. In the liver, 12 crucial metabolites were found by LC-MS technology, including purines, lipids, and amino acids. The AMPK/FoxO pathway was enriched, activated, and validated in western blotting results. We also comprehensively examined the innate immune system, inflammatory factors, and oxidative stress indicators. The results indicated decreased C3 levels, stable C4 levels, inflammatory factors (IL-6 and IL-8), and antioxidant enzymes were increased to varying degrees. PS-MPs also caused DNA oxidative damage. These toxic effects exhibited a specific dose dependence. Overall, after the formation of the gastrointestinal corona, PS-MPs subsequently impact various cellular processes, such as cycle arrest (p21), leading to hepatic and health crises in the elderly. The presence of gastrointestinal coronas also underscores the MPs' morphology and characteristics, which should be distinguished after ingestion.
Collapse
Affiliation(s)
- Pengfei Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Pengcheng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xiaoshan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Deshan Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Mohammad Mehdi Ommati
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Lei Han
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
40
|
Chen X, Yue Y, Wang Z, Sun J, Dong S. Co-existing inorganic anions influenced the Norrish I and Norrish II type photoaging mechanism of biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171756. [PMID: 38494013 DOI: 10.1016/j.scitotenv.2024.171756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The degradation of biodegradable plastics (BPs) in natural environments is constrained, and the mechanisms underlying their photoaging in aquatic settings remain inadequately understood. In view of this, this study systematically investigated the photoaging process of biodegradable Poly (butyleneadipate-co-terephthalate) microplastics (PBAT-MPs), which are more widely used. The investigation was carried out in the presence of common inorganic anions (Br-, Cl- and NO3-). The results of EPR, FTIR and FESEM tests, along with pseudo-first-order kinetics analyses, showed that the presence of NO3- promoted the photoaging of PBAT-MPs, while the presence of Br- and Cl- inhibited the photoaging of PBAT-MPs. In addition, the results of the Two-Dimensional Correlation Spectroscopy (2D-COS) analysis determined the order of the changes in the functional groups, revealing that the Norrish I and Norrish II reaction mechanisms are presented by PBAT-MPs during the aging process, and the process is closely related to the ion concentration and UV irradiation time. This study provides valuable insights for understanding the phototransformation process of BPs in natural aqueous environments.
Collapse
Affiliation(s)
- Xi Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yiying Yue
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Zihan Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jianhui Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Shuying Dong
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
41
|
Cao Y, Zhao Q, Jiang F, Geng Y, Song H, Zhang L, Li C, Li J, Li Y, Hu X, Huang J, Tian S. Interactions between inhalable aged microplastics and lung surfactant: Potential pulmonary health risks. ENVIRONMENTAL RESEARCH 2024; 245:117803. [PMID: 38043900 DOI: 10.1016/j.envres.2023.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The relationship between microplastics (MPs) and human respiratory health has garnered significant attention since inhalation constitutes the primary pathway for atmospheric MP exposure. While recent studies have revealed respiratory risks associated with MPs, virgin MPs used as plastic surrogates in these experiments did not represent the MPs that occur naturally and that undergo aging effects. Thus, the effects of aged MPs on respiratory health remain unknown. We herein analyzed the interaction between inhalable aged MPs with lung surfactant (LS) extracted from porcine lungs vis-à-vis interfacial chemistry employing in-vitro experiments, and explored oxidative damage induced by aged MPs in simulated lung fluid (SLF) and the underlying mechanisms of action. Our results showed that aged MPs significantly increased the surface tension of the LS, accompanied by a diminution in its foaming ability. The stronger adsorptive capacity of the aged MPs toward the phospholipids of LS appeared to produce increased surface tension, while the change in foaming ability might have resulted from a variation in the protein secondary structure and the adsorption of proteins onto MPs. The adsorption of phospholipid and protein components then led to the aggregation of MPs in SLF, where the aged MPs exhibited smaller hydrodynamic diameters in comparison with the unaged MPs, likely interacting with biomolecules in bodily fluids to exacerbate health hazards. Persistent free radicals were also formed on aged MPs, inducing the formation of reactive oxygen species such as superoxide radicals (O2•-), hydrogen peroxide (HOOH), and hydroxyl radicals (•OH); this would lead to LS lipid peroxidation and protein damage and increase the risk of respiratory disease. Our investigation was the first-ever to reveal a potential toxic effect of aged MPs and their actions on the human respiratory system, of great significance in understanding the risk of inhaled MPs on lung health.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Fanshu Jiang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
42
|
Cao H, Ding P, Li X, Huang C, Li X, Chen X, Zhang L, Qi J. Environmentally persistent free radicals on photoaged microplastics from disposable plastic cups induce the oxidative stress-associated toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132990. [PMID: 37976855 DOI: 10.1016/j.jhazmat.2023.132990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants that exerting multiple toxicological effects. Most studies have focused primarily on the models of unaged MPs and lack environmental relevance. The generation and toxicity of environmentally persistent free radicals (EPFRs) on photoaging MPs from disposable plastic cups (DPC-MPs) have not been well studied. Here, the formation of EPFRs on photoaged DPC-MPs and their toxic effects in nematodes were investigated. UV irradiation generated EPFRs, which influenced the characterization of DPC-MPs. Exposure to photoaged DPC-MPs at environmentally relevant concentrations (100-1000 μg/L) reduced the locomotion behavior, body length, and brood size. The Reactive oxygen species (ROS) production, lipofuscin accumulation, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were increased along with the downregulation of the expression levels of associated genes, such as clk-1, clt-1, and gst-4,in nematodes. Moreover, the toxicity and oxidative stress response of nematodes were significantly inhibited due to N-acetyl-l-cysteine (NAC). Pearson's correlation analysis revealed that the oxidative stress was significantly associated with adverse physiological effects. Therefore, EPFRs on photoaged DPC-MPs cause toxicity in nematodes, and oxidative stress is important for regulating toxicity. This study offers novel insights into the potential risks of DPC-MPs under UV irradiation, highlighting the need to consider the role of EPFRs in toxicity assessments of DPC-MPs.
Collapse
Affiliation(s)
- Hanling Cao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chushan Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
43
|
Huang W, Jiang G, Xie L, Chen X, Zhang R, Fan X. Effect of oxygen-containing functional groups on the micromechanical behavior of biodegradable plastics and their formation of microplastics during aging. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132911. [PMID: 37939564 DOI: 10.1016/j.jhazmat.2023.132911] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Biodegradable plastics (BPs) are more prone to generate harmful microplastics (MPs) in a short time, which have always been ignored. Oxygenated functional group formation is considered to be a key indicator for assessing microplastic formation, while it is difficult to characterize at a very early stage. The micromechanical properties of the aging plastic during the formation of the MPs are highly influenced by the evolution of oxygen-containing functional groups, however, their relationship has rarely been revealed. Herein, we compared changes in the physicochemical properties of BPs and non-degradable plastic bags during aging in artificial seawater, soil, and air. The results showed that the oxidation of plastics in the air was the most significant, with the most prominent oxidation in BPs. The accumulation of carbonyl groups leads to a significant increase in the micromechanical properties and surface brittleness of the plastic, further exacerbating the formation of MPs. It was also verified by the FTIR, 2D-COS, AFM, and Raman spectroscopy analyses. Furthermore, the increased adhesion and roughness caused by oxygen-containing functional groups suggest that the environmental risks of BPs cannot be ignored. Our findings suggest that the testing of micromechanical properties can predicate the formation of the MPs at an early stage.
Collapse
Affiliation(s)
- Wenyi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guoqiang Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Lidan Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xueqin Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Runzhe Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
44
|
Luangrath A, Na J, Kalimuthu P, Song J, Kim C, Jung J. Ecotoxicity of polylactic acid microplastic fragments to Daphnia magna and the effect of ultraviolet weathering. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115974. [PMID: 38266357 DOI: 10.1016/j.ecoenv.2024.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Biodegradable plastics (BPs) are widely used as alternatives to non-BPs due to their inherent ability to undergo facile degradation. However, the ecotoxicological impact of biodegradable microplastics (MPs) rarely remains scientific documented especially to aquatic ecosystem and organisms compared to conventional microplastics. Therefore, this study aimed to investigate the ecotoxicity of biodegradable polylactic acid (PLA) MPs to Daphnia magna with that of conventional polyethylene (PE) MPs with and without ultraviolet (UV) treatment (4 weeks). The acute toxicity (48 h) of PLA MPs was significantly higher than that of PE MPs, potentially attributable to their elevated bioconcentration resulting from their higher density. UV treatment notably reduced the particle size of PLA MPs and induced new hydrophilic functional groups containing oxygen. Thus, the acute lethal toxicity of PLA MPs exhibited noteworthy increase, compared to before UV treatment after UV treatment, which was greater than that of UV-PE MPs. In addition, UV-PLA MPs showed markedly elevated reactive oxygen species concentration in D. magna compared to positive control. However, there was no significant increase in the level of lipid peroxidation, possibly due to successful defense by antioxidant enzymes (superoxide dismutase and catalase). These findings highlight the ecotoxicological risks of biodegradable MPs to aquatic organisms, which require comprehensive long-term studies.
Collapse
Affiliation(s)
- Alisa Luangrath
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea
| | - Joorim Na
- OJeong Resilience Institute, Korea University, Seoul 02841, the Republic of Korea.
| | - Pandi Kalimuthu
- BK21 FOUR R&E Center Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea
| | - Jinyoung Song
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea.
| |
Collapse
|
45
|
Chen H, Gu Y, Jiang Y, Yu J, Chen C, Shi C, Li H. Photoaged Polystyrene Nanoplastics Result in Transgenerational Reproductive Toxicity Associated with the Methylation of Histone H3K4 and H3K9 in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19341-19351. [PMID: 37934861 DOI: 10.1021/acs.est.3c05861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Polystyrene nanoplastics (PS-NPs) are emerging environmental contaminants that are ubiquitously detected in various environments and have toxic effects on various organisms. Nevertheless, the transgenerational reproductive toxicity and underlying mechanisms of PS-NPs remain largely unknown, especially for photoaged PS-NPs under ultraviolet irradiation. In this study, only the parental generation (P0) was exposed to virgin and aged PS-NPs at environmentally relevant concentrations (0.1-100 μg/L), and subsequent generations (F1-F4) were cultured under normal conditions. Ultraviolet irradiation induced the generation of environmentally persistent free radicals and reactive oxygen species, which altered the physical and chemical characteristics of PS-NPs. The results of toxicity testing suggested that exposure to aged PS-NPs caused a more severe decrease in brood size, egg ejection rate, number of fertilized eggs, and hatchability than did the virgin PS-NPs in the P0, F1, and F2 generations. Additionally, a single maternal exposure to aged PS-NPs resulted in transgenerational effects on fertility in the F1 and F2 generations. Increased levels of H3K4 and H3K9 methylation were observed in the F1 and F2 generations, which were concomitant with the transgenerational downregulation of the expression of associated genes, such as spr-5, set-17, and met-2. On the basis of correlation analyses, the levels of histone methylation and the expression of these genes were significantly correlated to transgenerational reproductive effects. Further research showed that transgenerational effects on fertility were not observed in spr-5(by134), met-2(n4256), and set-17(n5017) mutants. Overall, maternal exposure to aged PS-NPs induced transgenerational reproductive effects via H3K4 and H3K9 methylation, and the spr-5, met-2, and set-17 genes were involved in the regulation of transgenerational toxicity. This study provides new insights into the potential risks of photoaging PS-NPs in the environment.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
46
|
Kadoya R, Soga H, Matsuda M, Sato M, Taguchi S. Bacterial Population Changes during the Degradation Process of a Lactate (LA)-Enriched Biodegradable Polymer in River Water: LA-Cluster Preferable Bacterial Consortium. Polymers (Basel) 2023; 15:4111. [PMID: 37896354 PMCID: PMC10610160 DOI: 10.3390/polym15204111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
The lactate-based polyester poly[lactate (LA)-co-3-hydroxybutyrate (3HB)], termed LAHB, is a highly transparent and flexible bio-based polymeric material. There are many unknowns regarding its degradation process in riverine environments, especially the changes in bacterial flora that might result from its degradation and the identities of any LAHB-degrading bacteria. LAHB were immersed in the river water samples (A and B), and LAHB degradation was observed in terms of the weight change of the polymer and the microscopic changes on the polymer surfaces. A metagenomic analysis of microorganisms was conducted to determine the effect of LAHB degradation on the aquatic environment. The bacterial flora obtained from beta diversity analysis differed between the two river samples. The river A water sample showed the simultaneous degradation of LA and 3HB even though the copolymer was LA-enriched, suggesting preferable hydrolysis of the LA-enriched segments. In contrast, only 3HB degraded for the LAHB in the river B water sample. The linear discriminant analysis effect size (LEfSe) analysis revealed 14 bacteria that were significantly increased in the river A water sample during LAHB degradation, suggesting that these bacteria preferentially degraded and assimilated LA-clustering polymers. Our metagenomic analysis provides useful insights into the dynamic changes in microbial communities and LA-clustering polymer-degrading bacteria.
Collapse
Affiliation(s)
- Ryosuke Kadoya
- Department of Food and Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka Motomachi, Chikusa-ku, Nagoya 464-8662, Aichi, Japan; (H.S.); (M.M.)
| | - Hitomi Soga
- Department of Food and Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka Motomachi, Chikusa-ku, Nagoya 464-8662, Aichi, Japan; (H.S.); (M.M.)
| | - Miki Matsuda
- Department of Food and Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka Motomachi, Chikusa-ku, Nagoya 464-8662, Aichi, Japan; (H.S.); (M.M.)
| | - Michio Sato
- Microbial Genetics Laboratory, Department of Agricultural Chemistry, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawsaki 214-8571, Kanagawa, Japan;
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Hyogo, Japan;
| |
Collapse
|
47
|
Yu Y, Craig N, Su L. A Hidden Pathway for Human Exposure to Micro- and Nanoplastics-The Mechanical Fragmentation of Plastic Products during Daily Use. TOXICS 2023; 11:774. [PMID: 37755784 PMCID: PMC10538053 DOI: 10.3390/toxics11090774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
In numerous environmental compartments around the world, the existence of micro- and nanoplastics (MNPs) in the environment has been verified. A growing number of studies have looked at the interaction between MNPs and human activities due to the risks they may pose to humans. Exposure pathways are key factors in measuring MNPs risks. However, current research largely ignores the contribution of mechanical fragmentation pathways to MNPs exposure during the daily use of plastic products. Our critical review demonstrated the research gap between MNP fragmentation and risk assessments via a network analysis. The release of fragmented MNPs and their properties were also described at various scales, with emphasis on environmental stressors and mechanical fragmentation. In the scenarios of daily use, plastic products such as food packaging and clothing provide acute pathways of MNPs exposure. The release tendency of those products (up to 102 mg MNPs) are several orders of magnitude higher than MNPs abundances in natural compartments. Despite the limited evidence available, waste recycling, landfill and municipal activities represented long-term pathways for MNPs fragmentation and point sources of MNPs pollution in environmental media. Assessing the health effects of the fragmentation process, unfortunately, is further hampered by the current absence of human exposure impact assessments for secondary MNPs. We proposed that future studies should integrate aging evaluation into risk assessment frameworks and establish early warning signs of MNPs released from plastic products.
Collapse
Affiliation(s)
- Yang Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Nicholas Craig
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lei Su
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| |
Collapse
|
48
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|