1
|
Sun J, Yang W, Li M, Zhang S, Sun Y, Wang F. Metagenomic analysis reveals soil microbiome responses to microplastics and ZnO nanoparticles in an agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138164. [PMID: 40188549 DOI: 10.1016/j.jhazmat.2025.138164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Both microplastics (MPs) and engineered nanoparticles are pervasive emerging contaminants that can produce combined toxicity to terrestrial ecosystems, yet their effects on soil microbiomes remain inadequately understood. Here, metagenomic analysis was employed to investigate the impacts of three common MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and zinc oxide nanoparticles (nZnO) on soil microbiomes. Both MPs and nZnO significantly altered the taxonomic, genetic, and functional diversity of soil microbes, with distinct effects depending on dosage or type. Archaea, fungi, and viruses exhibited more pronounced responses compared to bacteria. Higher doses of MPs and nZnO reduced gene abundance for nutrient cycles like C degradation and N cycling, but enhanced CO2 fixation and S metabolism. nZnO consistently decreased the complexity, connectivity, and modularity of microbial networks; however, these negative effects could be mitigated by co-existing MPs, particularly at elevated doses. Notably, PLA (10 %, w/w) exhibited greater harm to fungal communities and increased negative interactions between microbes and nutrient-cycling genes, posing unique risks compared to PE and PS. These findings demonstrate that MPs and nZnO interact synergistically, complicating ecological predictions and emphasizing the need to consider pollutant interactions in ecological risk assessments, particularly for biodegradable MPs.
Collapse
Affiliation(s)
- Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Weiwei Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Mingwei Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China.
| |
Collapse
|
2
|
Li Y, Liu L, Meng X, Qiu J, Liu Y, Zhao F, Tan H. Microplastics affect the nitrogen nutrition status of soybean by altering the nitrogen cycle in the rhizosphere soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137803. [PMID: 40043389 DOI: 10.1016/j.jhazmat.2025.137803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) are widely distributed in agricultural systems. However, studies on the comprehensive effects of MPs on nitrogen cycling in crop rhizosphere soil, and the changes this effect causes to crop growth is still limited. In this study, we investigated how three types of 5 % MPs (polystyrene, PS; polyethylene, PE; polyvinyl chloride, PVC) affect soybean growth by altering rhizosphere soil nitrogen cycling. These MPs have no direct toxic effects on soybean under hydroponic conditions. However, under soil cultivation conditions, PE and PS promoted soybean growth and increased soybean roots nitrogen content and nitrogen assimilation enzyme activity, while PVC does the opposite. Further study found that PE and PS increased the inorganic nitrogen content, and the activity of nitrogen cycle-related enzymes and the abundance of genes and microorganism in rhizosphere soil. Meanwhile, PVC significantly reduced the inorganic nitrogen contents, inhibited the activity of nitrogen cycling related enzymes, and destroyed the microbial community structure in rhizosphere soil. More importantly, PVC significantly reduced the abundance of nitrogen cycle-related genes and microorganisms, and increased the abundance of viruses. These results indicated that PE and PS promote soybean growth by activating the nitrogen cycle in the rhizosphere soil and increasing the soil nitrogen content, whereas PVC inhibits soybean growth by disrupting the nitrogen cycle in the rhizosphere soil and reducing its nitrogen content.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Liu
- Guangxi Subtropical Crops Research Institute, Nanning, Guangxi 530004, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning, Guangxi 530004, China
| | - Xiaoou Meng
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanmei Liu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
3
|
Luo X, Wang A, Huang S, Ji J, Li Z, Huang Q, Chen W. Deciphering the response of nodule bacteriome homeostasis in the bulk soil-rhizosphere-root-nodule ecosystem to soil microplastic pollution. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137592. [PMID: 39961205 DOI: 10.1016/j.jhazmat.2025.137592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/25/2024] [Accepted: 02/10/2025] [Indexed: 04/16/2025]
Abstract
Microplastic polyethylene (PE) is one of the most widely distributed pollutants in agricultural soils. However, its effects on the assembly and co-occurrence of the coevolved bacteriome of legume plants, especially on nodule bacteriome homeostasis, remain unclear. We analyzed nodule numbers, the difference between leaf δ15N and soil δ15N (Δδ15N), and bacterial communities from nodule, root, rhizosphere, and bulk soil under different microplastic PE treatments. We found that microplastic PE treatments accelerated nodulation, resulting Δδ15N decreased from -2.48 ‰ to -5.06 ‰. The microplastic PE treatments promoted the enrichment of nodule species from the root at an early stage with a source ratio increasing from 0.4 % to 46.6-89.6 %, and reduced selection on the nodule bacteriome with an increase in drift (from 2.8 % to 14.3-36.0 %), probably benefiting the function of Bradyrhizobium in the microbial network whose edges or molecularity increased. In the root, microplastic PE treatments resulted in an increase in homogeneous selection (increase from 29.2 % to 42.8-77.8 %) on the root bacteriome. This study provides new evidence that microplastics can promote nodulation and biological N fixation, revealing a mechanism by which microplastics change nodule bacteriome homeostasis in an Afisol.
Collapse
Affiliation(s)
- Xuesong Luo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Achen Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyun Huang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Ji
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhijie Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Halder U, Radharamanan C, Venkatesan K, Perumal S. Inhibition of Peanut ( Arachis hypogaea L.) Growth, Development, and Promotion of Root Nodulation Including Plant Nitrogen Uptake Triggered by Polyvinyl Chloride Microplastics. ACS OMEGA 2025; 10:18668-18681. [PMID: 40385219 PMCID: PMC12079201 DOI: 10.1021/acsomega.5c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 05/20/2025]
Abstract
Agroecosystem sustainability and global food security may be threatened by the widespread presence and distribution of microplastics (MPs). This study investigates the impact of polyvinyl chloride (PVC) microplastics with four different dosages (0.5, 1.5, 2.5, and 3.5%) on the growth, development, and nitrogen uptake of peanut (Arachis hypogaea L.), a legume that forms symbiotic relationships with nitrogen-fixing root nodules. Oxidative stress was indicated by increases in the activity of hydrogen peroxide, proline, superoxide dismutase, peroxidase, and ascorbate peroxidase of 54.3, 72.93, 135.74, 41.59, and 44.59%, respectively, for the 3.5% dose (T4) and malondialdehyde and catalase of 23.7 and 17.52%, respectively, for the 2.5% dose (T3) over the control. Peanut seedlings' growth and development were inhibited through the suppression of chlorophyll a (30.92%), chlorophyll b (36.36%), and carotenoid (25.65%) for treatment 2 (T2) and plant height (19.52% for T4), plant dry weight (46.09%), leaf number (18.86%), and branch length (59.37%) for T4. However, root nodule number, weight, and plant N content promoted 30.19-72.32, 55.88-141.16, and 1.46-7.01%, respectively, from control to T4, which may be an adaptive mechanism for legumes to overcome N deficiency through the morphological and physiological adjustments in the stressed conditions. The study outcomes may provide worthy implications for correctly managing peanut crops in PVC MP-contaminated soil, which will ensure food security and ecosystem sustainability.
Collapse
Affiliation(s)
- Udayshankar Halder
- Bioresource Technology Laboratory,
Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tennessee 641046, India
| | - Chaithra Radharamanan
- Bioresource Technology Laboratory,
Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tennessee 641046, India
| | - Karthick Venkatesan
- Bioresource Technology Laboratory,
Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tennessee 641046, India
| | - Siddhuraju Perumal
- Bioresource Technology Laboratory,
Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tennessee 641046, India
| |
Collapse
|
5
|
Xu G, Li X, Zhu T, Wang F, Yin J. When Nano- and Microplastics Meet Taro ( Colocasia esculenta) Roots: Their Size-Dependent Adsorption, Penetration, and Promotion on Secondary Wall Reinforcement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8345-8356. [PMID: 40273029 DOI: 10.1021/acs.est.4c11230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Nano/microplastics (N/MPs) induce phytotoxicity and represent a significant global threat to terrestrial and agricultural ecosystems. However, the defense mechanisms of plants against different-sized N/MPs remain largely unknown. To address this knowledge gap, we investigated the interactions between polystyrene (PS) NPs (50 and 100 nm) and PS-MPs (200 and 500 nm) with taro (Colocasia esculenta). We found that PS particles of varying sizes exhibited differential root adsorption and penetration, with PS-NPs capable of penetrating the root epidermis, whereas PS-MPs were totally excluded. Notably, taro demonstrated the capacity to recognize different sizes of N/MPs and responded with varying degrees of resistance. In reaction to the more toxic and penetrating 50 nm PS-NPs, the roots mobilized a robust defense mechanism with three levels: molecular, compositional, and ultrastructural. This defense was achieved by activating lignin synthesis, carbohydrate metabolism, and lipid transport, resulting in a doubling of the lignified region of the root and increases in cell wall thickness of 116%, 56.3%, and 22.5% in the epidermis, exodermis, and cortex, respectively. Consequently, roots excluded all four sizes of N/MPs outside the vascular tissue and prevented the contamination of the corms. Our study provides new insights into the interaction mechanisms of N/MPs with plants and demonstrates the crucial role of root barriers in sustaining food safety.
Collapse
Affiliation(s)
- Guoxin Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, China
| | - Xiaozun Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, China
| | - Tongshan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250100, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingjing Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, China
| |
Collapse
|
6
|
Basumatary T, Biswas D, Boro S, Nava AR, Narayan M, Sarma H. Dynamics and Impacts of Microplastics (MPs) and Nanoplastics (NPs) on Ecosystems and Biogeochemical Processes: The Need for Robust Regulatory Frameworks. ACS OMEGA 2025; 10:17051-17069. [PMID: 40352536 PMCID: PMC12060063 DOI: 10.1021/acsomega.5c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pose significant threats to aquatic and terrestrial ecosystems, disrupting nutrient cycling, altering soil properties, and affecting microbial communities. MPs and NPs bioaccumulate and contribute to global nutrient and water cycle disruptions, intensifying the impact of climate change. Despite the widespread use of plastics, inadequate plastic waste management leads to persistent environmental pollution. Toxic compounds are transported by MPs and NPs, affecting food chains, nutrient cycles, and overall ecosystem health. MPs impact soil biogeochemistry, microbial activity, and greenhouse gas emissions by altering the nitrogen and carbon cycles. One of the largest gaps in microplastic (MP) research today is the lack of standardized sampling and analytical methods. This lack of standardization significantly complicates the comparison of results across different studies. Multidisciplinary research and strict regulatory measures are needed to address MP pollution. This review highlights the critical need for mitigation methods to maintain ecosystem integrity and suggests standardization of sampling and data analysis. It offers insights into MP distribution, best practices for data analysis, and the impacts and interactions of MPs with biogeochemical processes. The Environmental Protection Agency has identified a critical need to improve the identification of nanoplastics. Particles smaller than 10 μm become increasingly difficult to quantify using standard MP detection practices.
Collapse
Affiliation(s)
- Tanushree Basumatary
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| | - Debajyoti Biswas
- Department
of English, Bodoland University, Kokrajhar (BTR), Assam 783370, India
| | - Swrangsri Boro
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| | - Amy R. Nava
- Department
of Molecular and Cellular Physiology, Stanford
University, Stanford, California 94305, United States
| | - Mahesh Narayan
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation
Technology Research Group, Department of Botany, Bodoland University, Kokrajhar
(BTR), Assam 783370, India
| |
Collapse
|
7
|
Bai F, Fan J, Zhang X, Wang X, Liu S. Biodegradation of polyethylene with polyethylene-group-degrading enzyme delivered by the engineered Bacillus velezensis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137330. [PMID: 39862780 DOI: 10.1016/j.jhazmat.2025.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI). Polyethylene (PE) is the main type of microplastic pollution in vegetable growing soils in Harbin. In this study, the engineered Bacillus velezensis with polyethylene-group-degrading enzyme pathway (BCAv-PEase) was constructed to enhance the degradation of MPs of PE (PE-MPs). BCAv-PEase increased the biodegradation of PE-MPs, promoted weight loss of PE films, elevated surface tension, and decreased the surface hydrophobicity of PE through upregulating activities of depolymerases, dehydrogenase, and catalase. Mechanism analysis showed that BCAv-PEase degraded PE-MPs by promoting the secretion of PEase, thereby leading to the generation of new oxygenated functional groups within the PE-MPs substrate, which further accelerated the metabolic pathway of PE-MPs. The analysis of the microbial community during the PE-MPs degradation processes revealed that BCAv-PEase emerged as the principal bacterial player and stimulated the abundance of microbes and functional genes associated with the biodegradation of PE. In conclusion, this study provides a potential mechanism for biodegradation of PE-MPs mediated by BCAv-PEase via modulating substrate selectivity and optimizing biocatalytic pathways.
Collapse
Affiliation(s)
- Fuliang Bai
- School of Geographical Science, Harbin Normal University, Harbin 150025, China.
| | - Jie Fan
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xiangyu Zhang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xuemeng Wang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Shuo Liu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
8
|
Radharamanan C, Rajeev A, Venkatesan K, Perumal S. Effects of polyethylene microplastics on seed germination, growth performance, biomass production and physiological function of cowpea (Vigna unguiculata) young seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:12133-12146. [PMID: 40274736 DOI: 10.1007/s11356-025-36340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Microplastics (MPs) in terrestrial ecosystems have recently raised concerns; here, we performed a pot experiment and investigated the growth and development by different doses of polyethylene microplastics (PE MPs) in a net house under natural conditions and tested the effects of PE MPs on seed germination, growth performance, physiological function and biomass production of cowpea (Vigna unguiculata) for 25 days. According to the hypothesis, a significant dose-dependent inhibition of cowpea seedling's growth and development was observed depicting the phytotoxicity of PE MPs. Results indicate that high concentrations of PE MPs have antagonistic effects on the growth of plant such as plant height, leaf length and root length within a short period of time. Plants grown in PE MPs show less nutritional characters and exhibit a significant drop in leghemoglobin content as the concentration of MP increases which is one of the novel findings. The results showed a significantly increased antioxidant enzyme activity indicating the stress condition of plants due to exposure to PE MPs. PE MPs undergo initial stage of partial disintegration when it contacts with soil which were detected through SEM analysis when compared to control. Comprehensive field study involving MPs at different concentrations throughout the cowpea's whole life cycle until harvest is needed to better clarify the effects of PE MPs and produce reliable results.
Collapse
Affiliation(s)
- Chaithra Radharamanan
- Bioresource Technology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TN, India
| | - Anjali Rajeev
- Bioresource Technology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TN, India
| | - Karthick Venkatesan
- Bioresource Technology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TN, India
| | - Siddhuraju Perumal
- Bioresource Technology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TN, India.
| |
Collapse
|
9
|
Lin Z, Xu D, Zhao Y, Sheng B, Wu Z, Wen X, Zhou J, Chen G, Lv J, Wang J, Liu G. Micro/Nanoplastics in plantation agricultural products: behavior process, phytotoxicity under biotic and abiotic stresses, and controlling strategies. J Nanobiotechnology 2025; 23:231. [PMID: 40114145 PMCID: PMC11927206 DOI: 10.1186/s12951-025-03314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
With the extensive utilization of plastic products, microplastics/nanoplastics (MPs/NPs) contamination not only poses a global hazard to the environment, but also induces a new threat to the growth development and nutritional quality of plantation agricultural products. This study thoroughly examines the behavior of MPs/NPs, including their sources, entry routes into plants, phytotoxicity under various biotic and abiotic stresses (e.g., salinity, polycyclic aromatic hydrocarbons, heavy metals, antibiotics, plasticizers, nano oxide, naturally occurring organic macromolecular compounds, invasive plants, Botrytis cinerea mycorrhizal fungi.) and controlling strategies. MPs/NPs in agricultural systems mainly originate from mulch, sewage, compost fertilizer, municipal solid waste, pesticide packaging materials, etc. They enter plants through endocytosis, apoplast pathways, crack-entry modes, and leaf stomata, affecting phenotypic, metabolic, enzymatic, and genetic processes such as seed germination, growth metabolism, photosynthesis, oxidative stress and antioxidant defenses, fruit yield and nutrient quality, cytotoxicity and genotoxicity. MPs/NPs can also interact with other environmental stressors, resulting in synergistic, antagonistic, or neutral effects on phytotoxicity. To address these challenges, this review highlights strategies to mitigate MPs/NPs toxicity, including the development of novel green biodegradable plastics, plant extraction and immobilization, exogenous plant growth regulator interventions, porous nanomaterial modulation, biocatalysis and enzymatic degradation. Finally, the study identifies current limitations and future research directions in this critical field.
Collapse
Affiliation(s)
- Zhihao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| | - Yiming Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Bin Sheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhijian Wu
- College of Horticulture, Hunan Agricultural University, Hunan, 410125, China
| | - Xiaobin Wen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jie Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| |
Collapse
|
10
|
Tang KHD, Zhou J. Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies. ENVIRONMENTAL MANAGEMENT 2025; 75:663-679. [PMID: 39730878 DOI: 10.1007/s00267-024-02106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants. Their phytotoxicity becomes more pronounced when blended with polybutylene adipate terephthalate (PBAT) MPs. Polyhydroxybutyrate (PHB) and polybutylene succinate (PBS) MPs show lower phytotoxicity than PLA MPs. At high doses, PLA and PHB MPs may cause dose-dependent developmental toxicity to aquatic organisms. Nano-PLA could induce oxidative stress and genetic damage in insects, indicating its toxicity could be size-dependent and affected by weathering. PBAT MPs have been observed to affect plant growth at lower concentrations (0.1%) than PLA MPs, while polycaprolactone (PCL) affected seed germination only at high temperatures. PCL MPs and extracts could also cause developmental and reproductive toxicity, alter metabolisms, and induce oxidative stress in aquatic organisms at high concentrations. Polypropylene carbonate (PPC) ( > 40 g/kg) MPs have caused earthworm behavioral changes. Non-biodegradable bioplastics are potentially toxic to embryos, larvae, immune systems, reproductive systems, and endocrine systems of animals. However, it is important to note that toxicity studies are still lacking for biodegradable and bio-based plastics, particularly PHB, PBS, PCL, PPC, starch-based, and non-biodegradable bioplastics. More research into the MPs of these plastics is essential to better understand their ecotoxicity and applicability.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| |
Collapse
|
11
|
Li H, Yang L, Luo C, Liu L, Li C, Wang J, Qiao W, Zhong H. Soil aggregation alterations under soil microplastic and biochar addition and aging process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125655. [PMID: 39778733 DOI: 10.1016/j.envpol.2025.125655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Soil microplastics (MPs) are a substantial threat to soil health, particularly by disrupting soil aggregation. Additionally, MPs undergo aging processes in the soil, which may significantly alter their long-term impacts on soil structure. To investigate these effects, we conducted an eight-month soil incubation experiment, examining the influence of MPs and their aging on soil aggregation. The experiment utilized a factorial design with various combinations of MPs and biochar additions: 1% by weight of 1000-mesh polyethylene and polypropylene MPs, and 5-mm biochar, resulting in six treatment groups: [CK], [PE], [PP], [Biochar], [PE + biochar], and [PP + biochar]. Our findings revealed that both MPs and biochar underwent aging throughout the incubation, evidenced by the formation of oxygen-containing functional groups on their surfaces. Microplastics, particularly polyethylene, primarily affected the 0.5-1 mm and >2 mm aggregate fractions, with average reductions of 21% and 77%, respectively. These adverse effects intensified with the aging of MPs. Contrary to expectations, the addition of biochar was found to exacerbate the negative impacts of MPs on the 0.25-0.5 mm aggregates, with a decrease of 11% associated with PE MPs. The influence of biochar on mitigating the damage caused by MPs to soil aggregation is dependent on aggregate size.
Collapse
Affiliation(s)
- Haixiao Li
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Longyuan Yang
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Chenghui Luo
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Le Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Cheng Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ji Wang
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Wei Qiao
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Hua Zhong
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
12
|
Zhang L, Hoagland L, Yang Y, Becchi PP, Sobolev AP, Scioli G, La Nasa J, Biale G, Modugno F, Lucini L. The combination of hyperspectral imaging, untargeted metabolomics and lipidomics highlights a coordinated stress-related biochemical reprogramming triggered by polyethylene nanoparticles in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178604. [PMID: 39862496 DOI: 10.1016/j.scitotenv.2025.178604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg-1 of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance. Hyperspectral imaging highlighted a reduced plant growth pattern. Several vegetative indexes indicated plant toxicity, with 20 mg kg-1 NPs significantly decreasing lettuce density and vegetation health (as indicated by NDVI and plant senescence reflectance indexes). Consistently, photosynthetic activity also decreased. At the biochemical level, metabolomics and lipidomics pointed out a multi-layered broad biochemical reprogramming of primary and secondary metabolism involving a decrease in sterols, sphingolipids, glycolipids, and glycerophospholipids in response to NPs. The reduction in phosphatidylinositol coincided with an accumulation of diacylglycerols (DAG), suggesting the activation of the phospholipase C lipid signaling pathway. Moreover, nanoplastic treatments down-modulated different biosynthetic pathways, particularly those involved in N-containing compounds and phenylpropanoids. Our mechanistic basis of NPs stress in plants will contribute to a better understanding of their environmental impact.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Yang Yang
- Institute for Plant Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Pier Paolo Becchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Anatoly P Sobolev
- Institute for Biological Systems, National Research Council (CNR), 00015 Monterotondo, Rome, Italy
| | - Giuseppe Scioli
- Institute for Biological Systems, National Research Council (CNR), 00015 Monterotondo, Rome, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, 52125 Pisa, Italy
| | - Greta Biale
- Department of Chemistry and Industrial Chemistry, University of Pisa, 52125 Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, 52125 Pisa, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
13
|
Tian M, Zhao C, Xie X, Liang Q, Li C. NO 3--N pulse supply caused by biodegradable plastics exacerbates Trifolium repens L. invasion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125510. [PMID: 39662578 DOI: 10.1016/j.envpol.2024.125510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/16/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
The exacerbation of plant invasion by microplastics attracted widespread attention. Pulse resource hypothesis is popular theory to elucidate plant invasion. Our previous work demonstrated biodegradable microplastics (BMPs) could increase the arbuscular mycorrhizal fungi (AMF) colonization rate. Reportedly, AMF can enhance rhizobia colonization. Therefore, we infer the coexistence of BMPs with legumes may lead to an increased colonization of rhizobia with negative feedback regulation of N fixation. This could result in NO3--N pulse supply, thereby exacerbating plant invasion. Subsequently, a 60-day pot experiment was conducted using Trifolium repens L. as invasive plant and Oxalis corniculata L. as native plant, with 1% or 5% wt BMPs. AMF colonization, BMPs degradation, NO3--N content and pulse supply, rhizobia colonization, relative competitive intensity, replacement diagrams and NO3--N utilization were determined. The mechanism was clarified through heat map and structural equation model. The results reveal the greater the NO3--N consumption by BMPs, the more AMF promoted rhizobia colonization in T. repens, thereby the larger the pulse amplitude of NO3--N supply, then, the higher the NO3--N utilization rate of T. repens. It exacerbates T. repens invasion. This study clarifies effects of BMPs on rhizobia's N fixation, and enriches the evidence on mechanism of BMPs exacerbating plant invasion.
Collapse
Affiliation(s)
- Mengfei Tian
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin, 150040, China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin, 150040, China
| | - Xiaofei Xie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin, 150040, China
| | - Qi Liang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin, 150040, China
| | - Chunying Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin, 150040, China.
| |
Collapse
|
14
|
Guimarães A, Guimarães ATB, de Brito RR, Gomes AR, Freitas ÍN, de Lima Rodrigues AS, Santiago OC, da Luz TM, de Matos LP, de Oliveira RF, Malafaia G. Necroecological Trophic Transfer of Microplastics: Insights into the Ecotoxicity of Petroleum-Derived and Biodegradable Polymers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:210-229. [PMID: 39922933 DOI: 10.1007/s00244-025-01120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Although the toxicity of petroleum-derived microplastics (MPs) has been widely investigated, the impact of biomicroplastics (BioMPs) remains controversial, and the necroecological trophic transfer of both is still poorly understood. Our study reveals that biomicroplastics may pose ecotoxicological risks comparable to or greater than those of petroleum-derived plastics, a finding that should raise concern. We aimed to evaluate the possible translocation of polystyrene (PS) and polylactic acid (PLA) MPs from mice to the necrophagous fly Synthesiomyia nudiseta and their potential effects on the larval stage. Mice were inoculated intraperitoneally with different doses of MPs [9 (I) and 90 mg/kg (II)] and subjected to the decomposition process (for ten days), allowing colonization by larvae. Our results confirmed the translocation of MPs from mice to S. nudiseta larvae, resulting in a greater accumulation of PLA-MPs compared to PS-MPs. We observed that exposure to MPs significantly influenced biomass accumulation, with larvae from the PS-I and PLA-I groups showing increased biomass. In contrast, those from the PLA-II group exhibited lower biomass. AChE activity was modulated in a concentration-dependent manner, with an increase observed in larvae exposed to PLA-MPs, indicating a potential neurotoxic effect. In addition, there was an increased production of reactive oxygen species (ROS), especially in the groups exposed to higher concentrations of MPs, without a proportional response of antioxidant enzymes, suggesting a redox imbalance and oxidative stress. The elevated serotonin levels and reduced dopamine observed in larvae exposed to MPs indicate a possible redirection of energy resources and changes related to a metabolic adaptation to the stress imposed by MPs. Principal component analysis (PCA) showed that PC1 was strongly influenced by biomarkers such as trypsin, chymotrypsin, AChE, ROS, and dopamine activity, highlighting that PLA-MPs (at the highest concentration) induced more pronounced toxic effects than PS-MPs. This finding was corroborated by discriminant analysis, which revealed a clear separation between the experimental groups, and by multiple regression analysis, which confirmed a strong relationship between MP concentration and larval biomarker responses, indicating that the type and concentration of MPs explained approximately 65% of the variation in the biomarkers evaluated. In conclusion, our study demonstrates for the first time the necroecological trophic translocation of MPs between vertebrates and invertebrates, highlighting the potential risks of biomicroplastics.
Collapse
Affiliation(s)
- Ariane Guimarães
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
| | - Abraão Tiago Batista Guimarães
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
| | - Rafaela Ribeiro de Brito
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Ítalo Nascimento Freitas
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Omar Cruz Santiago
- Department of Environmental Sciences, Division of Life Sciences, Campus Irapuato-Salamanca, Guanajuato University, Irapuato-Guanajuato, Mexico
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
| | - Raíssa Ferreira de Oliveira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil.
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
15
|
Wang F, Sun J, Han L, Liu W, Ding Y. Microplastics regulate soil microbial activities: Evidence from catalase, dehydrogenase, and fluorescein diacetate hydrolase. ENVIRONMENTAL RESEARCH 2024; 263:120064. [PMID: 39332793 DOI: 10.1016/j.envres.2024.120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Soil microbiomes drive many soil processes and maintain the ecological functions of terrestrial ecosystems. Microplastics (MPs, size <5 mm) are pervasive emerging contaminants worldwide. However, how MPs affect soil microbial activity has not been well elucidated. This review article first highlights the effects of MPs on overall soil microbial activities represented by three soil enzymes, i.e., catalase, dehydrogenase, and fluorescein diacetate hydrolase (FDAse), and explores the underlying mechanisms and influencing factors. Abundant evidence confirms that MPs can change soil microbial activities. However, existing results vary greatly from inhibition to promotion and non-significance, depending on polymer type, degradability, dose, size, shape, additive, and aging degree of the target MPs, soil physicochemical and biological properties, and exposure conditions, such as exposure time, temperature, and agricultural practices (e.g., planting, fertilization, soil amendment, and pesticide application). MPs can directly affect microbial activities by acting as carbon sources, releasing additives and pollutants, and shaping microbial communities via plastisphere effects. Smaller MPs (e.g., nanoplastics, 1 to <1000 nm) can also damage microbial cells through penetration. Indirectly, MPs can change soil attributes, fertility, the toxicity of co-existing pollutants, and the performance of soil fauna and plants, thus regulating soil microbiomes and their activities. In conclusion, MPs can regulate soil microbial activities and consequently pose cascading consequences for ecosystem functioning.
Collapse
Affiliation(s)
- Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yuanhong Ding
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| |
Collapse
|
16
|
Wang L, Qi Y, Cao L, Song L, Hu R, Li Q, Zhao Y, Liu J, Zhang H. Promoting role of nitrogen-fixing bacteria and biochar on nitrogen retention and degradation of PBAT plastics during composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125228. [PMID: 39486677 DOI: 10.1016/j.envpol.2024.125228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Since the increasing number of polybutylene adipate terephthalate (PBAT)-based plastics entering the environment, the search for sustainable treatment methods has become a primary focus of contemporary research. Composting offers a novel approach for managing biodegradable plastics. However, a significant challenge in the composting process is how to control nitrogen loss and enhance plastic degradation. In this context, the effect of various additives on nitrogen retention, PBAT plastics degradation, and microbial community dynamics during composting was investigated. The findings revealed that the addition of nitrogen-fixing bacteria Azotobacter vinelandii and biochar (AzBC) significantly improved nitrogen retention and accelerated PBAT rupture within 40 days of composting. Specifically, the PBAT degradation rate in the AzBC group reached 29.6%, which increased by 12.14% (P < 0.05) compared to the control group. In addition, the total nitrogen (TN) content increased by 6.20% (P < 0.05), and the Nitrogen-fixing enzyme (NIT) content increased by 190 IU/L (P < 0.05). Further analysis of GC-MS confirmed the presence of low molecular weight fragmentation products, such as 6-(4-hydroxybutoxy)-6-oxohexanoic acid. The AzBC treatment promoted the proliferation of Klebsiella at the genus level that could enhance nitrogen retention and the bacteria that have the ability to degrade PBAT, such as Proteobacteria and Firmicutes at the phyla level, and Pseudoxanthomonas, Pseudomonas, and Flavobacterium genera at the genera level (P < 0.05). Correlation analysis indicated that the degradation of PBAT is positively correlated with Temperature (T), NIT, and TN, but negatively correlated with the organic matter (OM) content and germination index (GI). In conclusion, the co-application of biochar and Azotobacter vinelandii offers promising sustainable prospects for enhancing PBAT plastic degradation and reducing nitrogen loss during composting.
Collapse
Affiliation(s)
- Linshan Wang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730000, China; Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Yanjiao Qi
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730000, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, 730000, China.
| | - Long Cao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730000, China
| | - Lisha Song
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Run Hu
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, 730000, China
| | - Qian Li
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, 730000, China
| | - Yamin Zhao
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Junyan Liu
- Gansu Jiyang Plastic Co., Ltd, Lanzhou, 730000, China
| | - Hong Zhang
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China; Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Kumar S, Dubey N, Kumar V, Choi I, Jeon J, Kim M. Combating micro/nano plastic pollution with bioplastic: Sustainable food packaging, challenges, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125077. [PMID: 39369869 DOI: 10.1016/j.envpol.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The widespread use of plastic in food packaging provides significant challenges due to its non-biodegradability and the risk of hazardous chemicals seeping into food and the environment. This highlights the pressing need to come up with alternatives to traditional plastic that prioritize environmental sustainability, food quality, and safety. The current study presents an up-to-date examination of micro/nano plastic (MP/NP) consumption and their associated toxicity to human health, while also considering bioplastic as safer and eco-friendly alternative materials for packaging. The study contributes to a deeper comprehension of the primary materials utilized for bioplastic manufacturing and their potential for large-scale use. The key findings underscore the distinctive features of bioplastics, such as starch, polyhydroxyalkanoates, polylactic acid, and polybutylene succinate, as well as their blends with active agents, rendering them suitable for innovative food packaging applications. Moreover, the study includes a discussion of insights from various scientific literature, agency reports (governmental and non-governmental), and industry trends in bioplastic production and their potential to combat MP/NP pollution. In essence, the review highlights future research directions for the safe integration of bioplastics in food packaging, addresses outstanding questions, and proposes potential solutions to challenges linked with plastic usage.
Collapse
Affiliation(s)
- Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Namo Dubey
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
18
|
Zhang J, Liu M, Landry NBJ, Duan Y, Li X, Zhou X. The impact of Ricinus straw on tomato growth and soil microbial community. Front Microbiol 2024; 15:1499302. [PMID: 39687867 PMCID: PMC11646993 DOI: 10.3389/fmicb.2024.1499302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Returning straw can alter the soil microbial community, reduce the occurrence of soilborne diseases, and promote plant growth. In this study, we aimed to evaluate the effects of Ricinus straw on tomato growth and rhizosphere microbial community. We carried out microcosm experiments to investigate the effects of Ricinus straw with different dosages (0, 1, and 3%) on tomato dry biomass and rhizosphere bacterial and fungal communities. The results indicated that the dry biomass of tomato seedlings with 1% addition of Ricinus straw increased by 53.98%. In addition, Ricinus straw also changed the abundance, diversities, and composition of tomato rhizosphere microbial communities. In detail, the addition of 1% Ricinus straw increased the relative abundance of putative beneficial bacteria and fungi in straw decomposition, such as Ramlibacter sp., Azohydromonas sp., Schizothecium sp., and Acaulium sp., and decreased the relative abundance of Fusarium sp. Meanwhile, Ricinus straw inhibited the growth of putative pathogenic microorganisms. The correlation analysis showed that the changes in fungal community operational taxonomic units stimulated by the addition of Ricinus straw may play a crucial positive regulatory role in tomato growth. Finally, the representative fungal strain Fusarium oxysporum f. sp. Lycopersici (FOL), named TF25, was isolated and cultured. We found that Ricinus straw extract inhibited the growth of TF25 in an in vitro experiment with an inhibition rate of 34.95-51.91%. Collectively, Ricinus straw promoted plant growth by changing the rhizosphere microbial community composition and inhibiting FOL growth, which provides new evidence for understanding the improvement of key microorganism composition in improving crop growth and the sustainability of agriculture.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Minghao Liu
- School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - N’da Brou Jean Landry
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Yaping Duan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xin Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Liu Y, Cai H, Wen Y, Song X, Wang X, Zhang Z. Research progress on degradation of biodegradable micro-nano plastics and its toxic effect mechanism on soil ecosystem. ENVIRONMENTAL RESEARCH 2024; 262:119979. [PMID: 39270956 DOI: 10.1016/j.envres.2024.119979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biodegradable plastics (BPs) are known to decompose into micro-nano plastics (BMNPs) more readily than conventional plastics (CPs). Given the environmental risks posed by BMNPs in soil ecosystems, their impact has garnered increasing attention. However, research focusing on the toxic effects of BMNPs on soils remains relatively limited. The degradation process and duration of BMNPs in soil are influenced by numerous factors, which directly impact the toxic effects of BMNPs. This highlights the urgent need for further research. In this context, this review delineates the classification of BPs, investigates the degradation processes of BPs along with their influencing factors, summarizes the toxic effects on soil ecosystems, and explores the potential mechanisms that underlie these toxic effects. Finally, it provides an outlook on related research concerning BMNPs in soil. The results indicate that specific BMNPs release additives at a faster rate during decomposition, degradation, and aging, with certain compounds exhibiting increased bioavailability. Importantly, a substantial body of research has shown that BMNPs generally manifest more pronounced toxic effects in comparison to conventional micro-nano plastics (CMNPs). The toxic effects associated with BMNPs encompass a decline in soil quality and microbial biomass, disruption of nutrient cycling, inhibition of plant root growth, and negative impacts on invertebrate reproduction, survival, and fertilization rates. The rough and complex surfaces of BMNPs contribute to increased mechanical damage to tested organisms, enhance absorption by microorganisms, and disrupt normal physiological functions. Notably, the toxic effects of BMNPs on soil ecosystems are influenced by factors including concentration, type of BMNPs, exposure conditions, degradation products, and the nature of additives used. Therefore, it is crucial to standardize detection technologies and toxicity testing conditions for BMNPs. In conclusion, this review provides scientific evidence that supports effective prevention and management of BMNP pollution, assessment of its ecological risks, and governance of BMNPs-related products.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang, 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, 110000, China.
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan, 610000, China
| |
Collapse
|
20
|
Shao X, Liang W, Gong K, Qiao Z, Zhang W, Shen G, Peng C. Effect of biodegradable microplastics and Cd co-pollution on Cd bioavailability and plastisphere in soil-plant system. CHEMOSPHERE 2024; 369:143822. [PMID: 39608653 DOI: 10.1016/j.chemosphere.2024.143822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Biodegradable plastics (BPs) are regarded as ecomaterials and are emerging as a substitute for traditional non-degradable plastics. However, the information on the interaction between biodegradable microplastics (BMPs) and cadmium (Cd) in agricultural soil is still limited. Here, lettuce plants were cultured in BMPs (polylactic acid (PLA) MPs and poly(butylene-adipate-co-terephthalate) (PBAT) MPs) and Cd co-polluted soil for 35 days. The results show that diffusive gradient in thin films technique (DGT) but not diethylenetriaminepentaacetic acid (DTPA) extraction method greatly improved the prediction reliability of Cd bioavailability in non-rhizosphere soil treated with BMPs (R2 = 0.902). BMPs increased the Cd bioavailability in non-rhizosphere soil indirectly by decreasing soil pH, cation exchange capacity (CEC), and dissolved organic carbon (DOC), rather than by directly adsorbing Cd on their surface. PLA MPs incubated in rhizosphere soil showed more considerable degradation with extremely obvious cavities and the fracture of ester functional groups on their surface than PBAT MPs. BMPs could provide ecological niches to colonize and induce microorganisms associated with BMPs' degradation to occupy a more dominant position. In addition, Cd only affected the composition and function of microbial communities in soil but not on BMPs. However, co-exposure to BMPs and Cd significantly reduced the degrees of co-occurrence network of fungal communities on PLA MPs and PBAT MPs by 37.7% and 26.7%, respectively, compared to single exposure to BMPs.
Collapse
Affiliation(s)
- Xuechun Shao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
21
|
Cao Z, Kim C, Li Z, Jung J. Comparing environmental fate and ecotoxicity of conventional and biodegradable plastics: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175735. [PMID: 39187074 DOI: 10.1016/j.scitotenv.2024.175735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Plastic pollution is a consequential problem worldwide, prompting the widespread use of biodegradable plastics (BPs). However, not all BPs are completely degradable under natural conditions, but instead produce biodegradable microplastics (BMPs), release chemical additives, and absorb micropollutants, thus causing toxicity to living organisms in similar manners to conventional plastics (CPs). The new problems caused by biodegradable plastics cannot be ignored and requires a thorough comparison of the differences between conventional and biodegradable plastics and microplastics. This review comprehensively compares their environmental fates, such as biodegradation and micropollutant sorption, and ecotoxicity in soil and water environments. The results showed that it is difficult to determine the natural conditions required for the complete biodegradation of BPs. Some chemical additives in BPs differ from those in CPs and may pose new threats to ecosystems. Because of functional group differences, most BMPs had higher micropollutant sorption capacities than conventional microplastics (CMPs). The ecotoxicity comparison showed that BMPs had similar or even greater adverse effects than CMPs. This review highlights several knowledge gaps in this new field and suggests directions for future studies.
Collapse
Affiliation(s)
- Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Zhihua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
Dainelli M, Chiavacci B, Colzi I, Coppi A, Corti E, Daghio M, Falsini S, Ristori S, Papini A, Toni E, Viti C, Gonnelli C. Impact of PET micro/nanoplastics on the symbiotic system Azolla filiculoides-Trichormus azollae. CHEMOSPHERE 2024; 368:143718. [PMID: 39521286 DOI: 10.1016/j.chemosphere.2024.143718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The symbiotic system Azolla filiculoides-Trichormus azollae was exposed for ten days to environmentally relevant concentrations (i.e. 0.05 and 0.1 g L-1) of polyethylene terephthalate micro-nanoplastics (PET-MNPs). Plastic particles did not induce any visible toxicity symptoms or growth disorders to the fern, as well as any effects on leaf anatomy and chlorophyll fluorescence parameters. Nonetheless, in treated plants a decrease of chlorophyll content occurred and was coupled to reduction of Nitrogen Balance Index (NBI), an informative parameter of the plant nitrogen status. In the presence of MNPs, plants exhibited a substantial decline in the absorption of essential elements, as evidenced by decreased tissue concentration of Ca, Mg, Co and Mn. The exposure to the pollutants compromised root integrity and possibly its functioning in nutrient accumulation, with evident physical damages not only in the rhizodermis and cortex, but also in the vascular system. In addition, a DNA-based estimation of T. azollae revealed a decreasing trend in the relative abundance of the N2-fixing cyanobacteria for PET-treated samples. This was coupled with an alteration of the symbiont's phenotype highlighted by microscopy analysis, showing a reduction in number of vegetative cells between two consecutive heterocysts and in heterocyst size. This work is the first evidence of MNPs disturbing a strict symbiosis, with possible implications on nitrogen cycling in ecosystems, bio fertilization of agricultural lands and evolutionary pathways.
Collapse
Affiliation(s)
- Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Beatrice Chiavacci
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Emilio Corti
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Matteo Daghio
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Piazzale delle Cascine 18, Firenze, 50144, Italy.
| | - Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Sandra Ristori
- Department of Chemistry & CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Elisabetta Toni
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Piazzale delle Cascine 18, Firenze, 50144, Italy.
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), Piazzale delle Cascine 18, Firenze, 50144, Italy.
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| |
Collapse
|
23
|
Guo W, Ye Z, Zhao Y, Lu Q, Shen B, Zhang X, Zhang W, Chen SC, Li Y. Effects of different microplastic types on soil physicochemical properties, enzyme activities, and bacterial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117219. [PMID: 39427539 DOI: 10.1016/j.ecoenv.2024.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Global concern continues to mount regarding the accumulation of microplastics (MPs) in soil. However, little is known about how various types of MPs influence the properties of soil ecosystems. Here, we evaluated the effects of six different types of MPs, including low-density polyethylene (LDPE), polyamide (PA), polystyrene (PS), polyhydroxy-alkanoates (PHA), polybutadiene styrene (PBS), and polylactide (PLA), on soil physicochemical properties, enzyme activities, and microbial communities. At the end of a 230-day soil incubation, we observed significant changes in soil moisture content, soil organic carbon, pH, NH4+-N, NO3--N, and available phosphorus. The addition of MPs had a significant influence on the activities of soil β-glucosidase, acid phosphatase, urease, and fluorescein diacetate hydrolase, with effects varying with MP type. Results of 16S rRNA gene high throughput sequencing showed that MP exposure had little effect on soil microbial alpha diversity, but that PHA contamination significantly reduced ACE, Chao1, and Shannon index values. MP contamination also altered soil microbial community composition. In particular, the relative abundance of Firmicutes increased significantly while the relative abundance of Actinobacteriota, Proteobacteria (especially the nitrogen-fixing rhizobia), and Acidobacteriota decreased following exposure to PHA. Redundancy analysis showed that acid phosphatase and pH were the two main environmental factors affecting bacterial community structure at the phylum and order levels. Furthermore, Tax4Fun2 analysis found that MP treatment disrupted fundamental bacterial metabolic pathways. Our findings indicate that different types of MPs can affect soil fertility, bacterial community structure, and function in various ways, and highlight that biodegradable MPs may alter soil bacterial communities more than conventional MPs.
Collapse
Affiliation(s)
- Wenjie Guo
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian 365004, China; College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian 365004, China
| | - Zhiwei Ye
- School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Yanna Zhao
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian 365004, China; School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Qianle Lu
- School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Bin Shen
- School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Xin Zhang
- School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Sheng-Chung Chen
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian 365004, China; College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Yin Li
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian 365004, China; College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian 365004, China.
| |
Collapse
|
24
|
Chen ZW, Hua ZL. Eco-environmental responses of Eichhornia crassipes rhizobacteria community to co-stress of per(poly)fluoroalkyl substances and microplastics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107109. [PMID: 39368209 DOI: 10.1016/j.aquatox.2024.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
The stabilization of rhizobacteria communities plays a crucial role in sustaining healthy macrophyte growth. In light of increasing evidence of combined pollution from microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs), Selecting typical floating macrophyte as a case, this study explored their impacts using hydroponic simulations and 16S rRNA high-throughput sequencing. A total of 31 phyla, 77 classes, 172 orders, 237 families, 332 genera, and 125 rhizobacteria species were identified. Proteobacteria (16.19% to 57.70%) was the dominant phylum, followed by Bacteroidota (12.34% to 44.48%) and Firmicutes (11.31% to 36.36%). In terms of α-diversity, polystyrene (PS) MPs and PFASs significantly impacted community abundance (ACE and PD-tree) rather than evenness (Shannon and Pielou) compared to the control. βMNTD and βNTI analyses revealed that PS MPs enhanced deterministic assembly processes driven by F-53B and GenX, while mitigating those induced by PFOA and PFOS. Contamination treatments narrowed the ecological niche breadths at both the phylum (5% (PS) to 49.91% (PS & PFOA)) and genus levels (8% (PS) to 63.96% (PS & PFOA)). Functionally, MPs and PFASs decreased the anaerobic capacity and ammonia nitrogen utilization of rhizosphere bacteria. This study enhances our understanding of the microecological responses of macrophyte-associated bacteria to combined MP and PFAS contamination and offers insights into ecological restoration strategies and mitigating associated environmental risks.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| |
Collapse
|
25
|
Zhou W, Zheng H, Wu Y, Lin J, Ma X, Xing Y, Ou H, Vasquez HE, Zheng X, Yu F, Gu Z. Microplastic-Enhanced Cadmium Toxicity: A Growing Threat to the Sea Grape, Caulerpa lentillifera. Antioxidants (Basel) 2024; 13:1268. [PMID: 39456520 PMCID: PMC11505291 DOI: 10.3390/antiox13101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The escalating impact of human activities has led to the accumulation of microplastics (MPs) and heavy metals in marine environments, posing serious threats to marine ecosystems. As essential components of oceanic ecosystems, large seaweeds such as Caulerpa lentillifera play a crucial role in maintaining ecological balance. This study investigated the effects of MPs and cadmium (Cd) on the growth, physiology, biochemistry, and Cd accumulation in C. lentillifera while elucidating the underlying molecular regulatory mechanisms. The results demonstrated that exposure to MPs alone significantly promoted the growth. In contrast, exposure to Cd either alone or in combination with MPs significantly suppressed growth by reducing stem and stolon length, bud count, weight gain, and specific growth rates. Combined exposure to MPs and Cd exhibited the most pronounced inhibitory effect on growth. MPs had negligible impact while Cd exposure either alone or combined with MPs impaired antioxidant defenses and exacerbated oxidative damage; with combined exposure being the most detrimental. Analysis of Cd content revealed that MPs significantly increased Cd accumulation in algae intensifying its toxic effects. Gene expression analysis revealed that Cd exposure down-regulated key genes involved in photosynthesis, impairing both photosynthetic efficiency and energy conversion. The combined exposure of MPs and Cd further exacerbated these effects. In contrast, MPs alone activated the ribosome pathway, supporting ribosomal stability and protein synthesis. Additionally, both Cd exposure alone or in combination with MPs significantly reduced chlorophyll B and soluble sugar content, negatively impacting photosynthesis and nutrient accumulation. In summary, low concentrations of MPs promoted C. lentillifera growth, but the presence of Cd hindered it by disrupting photosynthesis and antioxidant mechanisms. Furthermore, the coexistence of MPs intensified the toxic effects of Cd. These findings enhance our understanding of how both MPs and Cd impact large seaweed ecosystems and provide crucial insights for assessing their ecological risks.
Collapse
Affiliation(s)
- Weilong Zhou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Haolong Zheng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Yingyin Wu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Junyi Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Xiaofei Ma
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi 214000, China;
| | - Yixuan Xing
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 570228, China;
| | - Huilong Ou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
| | - Hebert Ely Vasquez
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Xing Zheng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572024, China
| | - Feng Yu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572024, China
| | - Zhifeng Gu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572024, China
| |
Collapse
|
26
|
She Y, Qi X, Li Z. Insights into soil autotrophic ammonium oxidization under microplastics stress: Crossroads of nitrification, comammox, anammox and Feammox. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135443. [PMID: 39128156 DOI: 10.1016/j.jhazmat.2024.135443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Microplastics (MPs) are widespread in agroecosystems and profoundly impact soil microbiome and nutrient cycling. However, the effects of MPs on soil autotrophic ammonium oxidization processes, including nitrification, complete ammonium oxidation (comammox), anaerobic ammonium oxidation (anammox), and anaerobic ammonium oxidation coupled to iron reduction (Feammox), remain unclear. These processes are the rate-limiting steps of nitrogen cycling in agroecosystems. Here, our work unveiled that exposures of polyethylene (PE), polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT) MPs significantly modulated ammonium oxidization pathways with distinct type- and dose-dependent effects. Nitrification remained the main contributor (56.4-70.7 %) to soil ammonium removal, followed by comammox (11.7-25.6 %), anammox (5.0-20.2 %) and Feammox (3.3-11.6 %). Compared with conventional nonbiodegradable MPs (i.e., PE and PP), biodegradable MPs (i.e., PLA and PBAT) exhibited more pronounced impacts on soil nutrient conditions and functional microbes, which collectively induced alterations in soil ammonium oxidation. Interestingly, low-dose PLA and PBAT remarkably enhanced the roles of anammox and Feammox in soil ammonium removal, contributing to the mitigation of soil acidification in agroecosystems. This study highlights the diverse responses of ammonium oxidization pathways to MPs, further deepening our understanding of how MPs affect biogeochemical cycling and enriching strategies for agricultural managements amid increasing MPs pollution.
Collapse
Affiliation(s)
- Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
27
|
Chen Y, Cui B, Dou Y, Fan H, Fang Y, Wang L, Duan Z. Characteristics of biofilms on polylactic acid microplastics and their inhibitory effects on the growth of rice seedlings: A comparative study of petroleum-based microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135469. [PMID: 39173375 DOI: 10.1016/j.jhazmat.2024.135469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Increasing evidence highlights the negative effects of microplastics (MPs) on crops and bio-based plastics offer an alternative to conventional plastics. However, there is limited knowledge on the impacts and mechanisms of bio-based MPs on crop physiology. In this study, bio-based polylactic acid (PLA) and petroleum-based MPs [polyamide (PA) and polypropylene (PP)] were added to hydroponic cultures planted with rice (Oryza sativa L.) seedlings to assess their toxicity. Compared to PA and PP MPs, PLA MPs experienced greater aging after 28 days of exposure, and their surfaces were loaded with more rod-shaped microorganisms with potential plastic degradation ability, such as Proteobacteria and Bacteroidota, which competed with rice seedlings for carbon and nitrogen sources for self-multiplication, thus altering the carbon fixation and nitrogen cycling processes during rice seedling growth. Down-regulation of amino acid and lipid metabolisms in the PLA treatment inhibited the normal synthesis of chlorophyll in rice seedling leaves. Consequently, decreases in the biomass and height of rice seedling roots and shoots were observed in the PLA MP treatment. This study provides evidence that bio-based MPs may have a more severe impact on crop growth than petroleum-based MPs.
Collapse
Affiliation(s)
- Yizhuo Chen
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Bo Cui
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Yuhang Dou
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huiyu Fan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanjun Fang
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
28
|
Wang S, Li Q, Ye C, Ma W, Sun Y, Zhao B, Zeng W, Yue Z, Li L, Li D. Effects of mulch films with different thicknesses on the microbial community of tobacco rhizosphere soil in Yunnan laterite. Front Microbiol 2024; 15:1458470. [PMID: 39376702 PMCID: PMC11456438 DOI: 10.3389/fmicb.2024.1458470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
The mulch film (MF) management model of the agricultural field affects the physical and chemical properties of soil (PCPS) and the structure of the microorganism community; however, studies on the relationship between the rhizosphere microorganism community structure and the thickness of MF are still limited. To understand the interactions among the MF thickness, PCPS, and rhizosphere microorganism, a study was conducted by using an integrated metagenomic strategy, where tobacco rhizosphere soil was treated with four commonly representative and used thicknesses of MFs (0.004, 0.006, 0.008, and 0.010 mm) in Yunnan laterite. The results showed that agronomic traits such as the tobacco plant height (TPH), leaf number (LN), fresh leaf weight (FLW), and dry leaf weight (DLW) were significantly (p < 0.01) improved in the field mulched with the thickest film (0.010 mm) compared with the exposed field (CK), and there was a 6.81 and 5.54% increase in the FLW and TPH, separately. The correlation analyses revealed a significant positive correlation of the MF thickness with the soil water content (SWC), soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), and available phosphorus (AP; all p < 0.01), while the MF thickness was negatively correlated with the soil temperature (ST; p < 0.01). In addition, the community structure of the rhizosphere soil bacteria was significantly changed overall by the MF thickness, which also interfered with the function of the rhizosphere soil bacteria. The correlation analyses also showed that the abundance of Bradyrhizobium and Nitrospira was positively correlated with the MF thickness, while the abundance of Sphinsinomonas and Massilia was negatively correlated with it. This indicated that with the increase of the MF thickness, the ability of the rhizosphere soil to utilize N and remove harmful molecules was strengthened, while the capacity of the rhizosphere soil to degrade pollutants was greatly reduced. These findings provide additional insights into the potential risks of the application of different thicknesses of MFs, particularly concerning the PCPS and soil microbial communities.
Collapse
Affiliation(s)
- Shuaibing Wang
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Qiuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Changbing Ye
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Wenqing Ma
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yandong Sun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Bin Zhao
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Weiqing Zeng
- Agricultural Environmental Protection and Rural Energy Workstation, Yuxi Agriculture and Rural Bureau, Yuxi, China
| | - Zhiqiang Yue
- Agricultural Environmental Protection and Rural Energy Workstation, Yuxi Agriculture and Rural Bureau, Yuxi, China
| | - Lan Li
- School of Geography and Land Engineering, Yuxi Normal University, Yuxi, China
| | - Dandan Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
29
|
Zou X, Cao K, Wang Q, Kang S, Wang Y. Enhanced degradation of polylactic acid microplastics in acidic soils: Does the application of biochar matter? JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135262. [PMID: 39047572 DOI: 10.1016/j.jhazmat.2024.135262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Biodegradable plastics, as an alternative to petroleum plastics, are fiercely increasing, but their incomplete degradation under natural conditions may lead to the breakdown into microplastics (MPs). Here, we explored the impacts of chicken manure-derived (MBC) and wood waste-derived biochar (WBC) on the degradation of polylactic acid microplastics (PLA-MPs) during soil incubation for one year. Both biochars induced more pronounced degradation characteristics in PLA-MPs, including enhanced surface roughness, the proportion of MPs < 100 µm by 12.89 %-25.67 %, oxygen loading and O/C ratio to 71.74 %-75.87 % and 1.70-1.76, as well as accelerated carbon loss and the cleavage of ester group and C-C bond. Also, biochar increased soil pH, depleted inorganic nitrogen and available phosphorus, and changed enzymic activity in PLA-MP-polluted soils. We proposed that both biochars accelerated the PLA-MP degradation by inducing alkaline, aminolysis/ammonolysis, oxidative, and microbial degradation. Among these, MBC induced aminolysis/ammonolysis by NH4+ via Fe2+-driven NO3-/NO2- reduction and microbial nitrogen fixation, and oxidative degradation by radicals generated through Fenton/Fenton-like reaction. WBC caused aminolysis/ammonolysis and oxidative degradation mainly through dissimilatory nitrate reduction to ammonium and surface free radicals on biochar. These findings indicate that biochar has the potential to accelerate PLA-MP degradation, and its regulatory mechanism depends on the type of biochar.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Kaibo Cao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiang Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shilei Kang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
30
|
Chen H, Huang D, Zhou W, Deng R, Yin L, Xiao R, Li S, Li F, Lei Y. Hotspots lurking underwater: Insights into the contamination characteristics, environmental fates and impacts on biogeochemical cycling of microplastics in freshwater sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135132. [PMID: 39002483 DOI: 10.1016/j.jhazmat.2024.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The widespread presence of microplastics (MPs) in aquatic environments has become a significant concern, with freshwater sediments acting as terminal sinks, rapidly picking up these emerging anthropogenic particles. However, the accumulation, transport, degradation and biochemical impacts of MPs in freshwater sediments remain unresolved issues compared to other environmental compartments. Therefore, this paper systematically revealed the spatial distribution and characterization information of MPs in freshwater (rivers, lakes, and estuaries) sediments, in which small-size (<1 mm), fibers, transparent, polyethylene (PE), and polypropylene (PP) predominate, and the average abundance of MPs in river sediments displayed significant heterogeneity compared to other matrices. Next, the transport kinetics and drivers of MPs in sediments are summarized, MPs transport is controlled by the particle diversity and surrounding environmental variability, leading to different migration behaviors and transport efficiencies. Also emphasized the spatio-temporal evolution of MPs degradation processes and biodegradation mechanisms in sediments, different microorganisms can depolymerize high molecular weight polymers into low molecular weight biodegradation by-products via secreting hydrolytic enzymes or redox enzymes. Finally, discussed the ecological impacts of MPs on microbial-nutrient coupling in sediments, MPs can interfere with the ecological balance of microbially mediated nutrient cycling by altering community networks and structures, enzyme activities, and nutrient-related functional gene expressions. This work aims to elucidate the plasticity characteristics, fate processes, and potential ecological impact mechanisms of MPs in freshwater sediments, facilitating a better understanding of environmental risks of MPs in freshwater sediments.
Collapse
Affiliation(s)
- Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China.
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Lingshi Yin
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Lei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
31
|
Wu J, Wu Z, Yu T, Zhang J, Zhang Z, Wang H, Zheng Y, Yang J, Wu Y. Polyvinyl chloride and polybutylene adipate microplastics affect peanut and rhizobium symbiosis by interfering with multiple metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134897. [PMID: 38876018 DOI: 10.1016/j.jhazmat.2024.134897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Microplastics (MPs), widely presented in cultivated soil, have caused serious stresses on crop growth. However, the mechanism by which MPs affect legumes and rhizobia symbiosis is still unclear. Here, peanut seedlings were inoculated with Bradyrhizobium zhanjiangense CCBAU 51778 and were grown in vermiculite with 3 %/5 % (w/w) addition of PVC (polyvinyl chloride)-MPs/PBAT (polybutylene adipate)-MPs. PVC-MPs and PBAT-MPs separately decreased nodule number by 33-100 % and 2.62-80.91 %. Transcriptome analysis showed that PVC-MPs affected more DEGs (differentially expressed genes) than PBAT-MPs, indicating PVC-MPs were more devastating for the symbiosis than PBAT-MPs. Functional annotation revealed that PVC-MPs and PBAT-MPs enriched DEGs related to biosynthesis pathways such as flavonoid, isoflavonoid, and phenylpropanoid, in peanut. And when the dose increased from 3 % to 5 %, PVC-MPs mainly enriched the pathways of starch and sucrose metabolism, alanine, aspartate and glutamate metabolism, diterpenoid biosynthesis, etc.; PBAT-MPs enriched cysteine and methionine metabolism, photosynthesis, MAPK signaling, and other pathways. These significantly enriched pathways functioned in reducing nodule number and promoting peanut tolerance to MPs stresses. This study reveals the effect of PVC-MPs and PBAT-MPs on peanut and rhizobium symbiosis, and provides new perspectives for legume production and environmental safety.
Collapse
Affiliation(s)
- Juxiang Wu
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Zhengfeng Wu
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Tianyi Yu
- Shandong Peanut Research Institute, Qingdao 266100, China
| | | | - Zhimeng Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Hongfeng Wang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Yongmei Zheng
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Jishun Yang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Yue Wu
- Shandong Peanut Research Institute, Qingdao 266100, China.
| |
Collapse
|
32
|
Song T, Liu J, Han S, Li Y, Xu T, Xi J, Hou L, Lin Y. Effect of conventional and biodegradable microplastics on the soil-soybean system: A perspective on rhizosphere microbial community and soil element cycling. ENVIRONMENT INTERNATIONAL 2024; 190:108781. [PMID: 38880060 DOI: 10.1016/j.envint.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
As an exogenous carbon input, microplastics (MPs), especially biodegradable MPs, may significantly disrupt soil microbial communities and soil element cycling (CNPS cycling), but few studies have focused on this. Here, we focused on assessing the effects of conventional low-density polyethylene (LDPE), biodegradable polybutylene adipate terephthalate (PBAT), and polylactic acid (PLA) MPs on rhizosphere microbial communities and CNPS cycling in a soil-soybean system. The results showed that PBAT-MPs and PLA-MPs were more detrimental to soybean growth than LDPE-MPs, resulting in a reduction in shoot nitrogen (14.05% and 11.84%) and shoot biomass (33.80% and 28.09%) at the podding stage. In addition, dissolved organic carbon (DOC) increased by 20.91% and 66.59%, while nitrate nitrogen (NO3--N) significantly decreased by 56.91% and 69.65% in soils treated with PBAT-MPs and PLA-MPs, respectively. PBAT-MPs and PLA-MPs mainly enhanced copiotrophic bacteria (Proteobacteria) and suppressed oligotrophic bacteria (Verrucomicrobiota, Gemmatimonadota, etc.), increasing the abundance of CNPS cycling-related functional genes. LDPE-MPs tended to enrich oligotrophic bacteria (Verrucomicrobiota, etc.) and decrease the abundance of CNPS cycling-related functional genes. Correlation analysis revealed that MPs with different degradation properties selectively affected the composition and function of the bacterial community, resulting in changes in the availability of soil nutrients (especially NO3--N). Redundancy analysis further indicated that NO3--N was the primary constraining factor for soybean growth. This study provides a new perspective for revealing the underlying ecological effects of MPs on soil-plant systems.
Collapse
Affiliation(s)
- Tianjiao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Xi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Hou
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
Wang J, Liu W, Zeb A, Wang Q, Mo F, Shi R, Sun Y, Wang F. Biodegradable Microplastic-Driven Change in Soil pH Affects Soybean Rhizosphere Microbial N Transformation Processes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16674-16686. [PMID: 39021203 DOI: 10.1021/acs.jafc.4c04206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The potential impacts of biodegradable and nonbiodegradable microplastics (MPs) on rhizosphere microbial nitrogen (N) transformation processes remain ambiguous. Here, we systematically investigated how biodegradable (polybutylene succinate, PBS) MPs and nonbiodegradable (polyethylene, PE) MPs affect microbial N processes by determining rhizosphere soil indicators of typical Glycine max (soybean)-soil (i.e., red and brown soils) systems. Our results show that MPs altered soil pH and dissolved organic carbon in MP/soil type-dependent manners. Notably, soybean growth displayed greater sensitivity to 1% (w/w) PBS MP exposure in red soil than that in brown soil since 1% PBS acidified the red soil and impeded nutrient uptake by plants. In the rhizosphere, 1% PBS negatively impacted microbial community composition and diversity, weakened microbial N processes (mainly denitrification and ammonification), and disrupted rhizosphere metabolism. Overall, it is suggested that biodegradable MPs, compared to nonbiodegradable MPs, can more significantly influence the ecological function of the plant-soil system.
Collapse
Affiliation(s)
- Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuebin Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, China
| |
Collapse
|
34
|
Liang R, Zhang C, Zhang R, Li Q, Liu H, Wang XX. Effects of microplastics derived from biodegradable mulch film on different plant species growth and soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174899. [PMID: 39043299 DOI: 10.1016/j.scitotenv.2024.174899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Biodegradable mulch residues contribute significantly to the presence of microplastics in soil ecosystems. The environmental impact of microplastics, especially biodegradable microplastics (bio-MPs), on soil and plants is of increasing concern. In this study, the responses of five crop species potted in soil treated with different mass concentrations of bio-MPs were assessed for one month. The shoot and root biomasses of cabbages and strawberries were inhibited by bio-MPs treatment. There was little variation in the growth indicators of identical plants with the addition of different mass concentrations of bio-MPs; however, a significant difference was observed among different plants with the addition of the same concentration of bio-MPs. The detrimental effects of bio-MPs were more pronounced in strawberries and cabbages than in the other plant species. Moreover, bio-MPs can affect the availability of soil nutrients and enzyme activities. Structural equation modeling showed that changes in soil properties may indirectly affect plant growth and nutrient uptake when exposed to bio-MPs. This study provides a theoretical basis for understanding the ecological effects of biodegradable mulch films.
Collapse
Affiliation(s)
- Rong Liang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China; Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Chi Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Ruifang Zhang
- Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China
| | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China
| | - Hongquan Liu
- College of Urban and Rural Construction, Hebei Agricultural University, Baoding 071002, People's Republic of China
| | - Xin-Xin Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China; Mountain Area Research Institute, Hebei Agricultural University, Baoding 071001, People's Republic of China; College of Horticulture, Hebei Agricultural University, Hebei, Baoding 071001, People's Republic of China.
| |
Collapse
|
35
|
Zantis LJ, Adamczyk S, Velmala SM, Adamczyk B, Vijver MG, Peijnenburg W, Bosker T. Comparing the impact of microplastics derived from a biodegradable and a conventional plastic mulch on plant performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173265. [PMID: 38754499 DOI: 10.1016/j.scitotenv.2024.173265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Agricultural lands have been identified as plastic sinks. One source is plastic mulches, which are a source of micro- and nano-sized plastics in agricultural soils. Because of their persistence, there is now a push towards developing biodegradable plastics, which are designed to undergo (partial) breakdown after entering the environment. Yet, limited research has investigated the impacts of both conventional and biodegradable plastics on distinct plants. Moreover, comparisons among studies are difficult due to differences in experimental design. This study directly compares the effects of artificially weathered conventional polyethylene (PE) and starch-based biodegradable polybutylene adipate terephthalate (PBAT) on four food crops, including two monocots (barley, Hordeum vulgare, and wheat, Triticum aestivum L.) and two dicots (carrot, Daucus carota, and lettuce, Lactuca sativa L.). We investigated the effects of environmentally relevant low, medium, and high (0.01 %, 0.1 %, 1 % w/w) concentrations of PE and starch-PBAT blend on seed germination (acute toxicity), and subsequently on plant growth and chlorophyll through a pot-plant experiment (chronic toxicity). Germination of all species was not affected by both plastics. However, root length was reduced for lettuce and wheat seedlings. No other effects were recorded on monocots. We observed a reduction in shoot length and bud wet weight of carrot seedlings for the highest concentration of PE and starch-PBAT blend. Chronic exposure resulted in a significant decrease in shoot biomass of barley and lettuce. Additionally, a positive increase in the number of leaves of lettuce was observed for both plastics. Chlorophyll content was increased in lettuce when exposed to PE and starch-PBAT blend. Overall, adverse effects in dicots were more abundant than in monocots. Importantly, we found that the biodegradable plastic caused more commonly adverse effects on plants compared to conventional plastic, which was confirmed by a mini-review of studies directly comparing the impact of conventional and biodegradable microplastics.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Sylwia Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Sannakajsa M Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Bartosz Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
36
|
Fang C, Yang Y, Zhang S, He Y, Pan S, Zhou L, Wang J, Yang H. Unveiling the impact of microplastics with distinct polymer types and concentrations on tidal sediment microbiome and nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134387. [PMID: 38723479 DOI: 10.1016/j.jhazmat.2024.134387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024]
Abstract
Microplastics (MPs) are distributed widely in the ocean surface waters and sediments. Increasing MPs contamination in intertidal zone profoundly impacts microbial ecosystem services and biogeochemical process. Little is known about the response of tidal sediment microbiome to MPs. We conducted a 30-day laboratory microcosm study using five polymers (PE, PBS, PC, PLA and PET) at three concentrations (1 %, 2 % and 5 %, w/w). High throughput sequencing of 16 S rRNA, qPCR and enzyme activity test were applied to demonstrate the response of microbial community and nitrogen cycling functional genes to MPs. MPs reduced the microbial alpha diversity and the microbial dissimilarity while the effects of PLA-MPs were concentration dependent. LEfSe analysis indicated that the Proteobacteria predominated for all MP treatments. Mantel's test, RDA and correlation analysis implied that pH may be the key environmental factor for causing microbial alterations. MPs enhanced nitrogen fixation in tidal sediment. PLA levels of 1 % but not 5 % produced the most significant effects in nitrogen cycling functional microbiota and genes. PLS-PM revealed that impacts of MPs on tidal sediment microbial communities and nitrogen cycling were dominated by indirect effects. Our study deepened understanding and filled the knowledge gap of MP contaminants affecting tidal sediment microbial nitrogen cycling.
Collapse
Affiliation(s)
- Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yuting Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Shuping Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Sentao Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
37
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
38
|
Wang J, Jia M, Zhang L, Li X, Zhang X, Wang Z. Biodegradable microplastics pose greater risks than conventional microplastics to soil properties, microbial community and plant growth, especially under flooded conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172949. [PMID: 38703848 DOI: 10.1016/j.scitotenv.2024.172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biodegradable plastics (bio-plastics) are often viewed as viable option for mitigating plastic pollution. Nevertheless, the information regarding the potential risks of microplastics (MPs) released from bio-plastics in soil, particularly in flooded soils, is lacking. Here, our objective was to investigate the effect of polylactic acid MPs (PLA-MPs) and polyethylene MPs (PE-MPs) on soil properties, microbial community and plant growth under both non-flooded and flooded conditions. Our results demonstrated that PLA-MPs dramatically increased soil labile carbon (C) content and altered its composition and chemodiversity. The enrichment of labile C stimulated microbial N immobilization, resulting in a depletion of soil mineral nitrogen (N). This specialized environment created by PLA-MPs further filtered out specific microbial species, resulting in a low diversity and simplified microbial community. PLA-MPs caused an increase in denitrifiers (Noviherbaspirillum and Clostridium sensu stricto) and a decrease in nitrifiers (Nitrospira, MND1, and Ellin6067), potentially exacerbating the mineral N deficiency. The mineral N deficit caused by PLA-MPs inhibited wheatgrass growth. Conversely, PE-MPs had less effect on soil ecosystems, including soil properties, microbial community and wheatgrass growth. Overall, our study emphasizes that PLA-MPs cause more adverse effect on the ecosystem than PE-MPs in the short term, and that flooded conditions exacerbate and prolong these adverse effects. These results offer valuable insights for evaluating the potential threats of bio-MPs in both uplands and wetlands.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
39
|
Sun J, Zhang X, Gong X, Sun Y, Zhang S, Wang F. Metagenomic analysis reveals gene taxonomic and functional diversity response to microplastics and cadmium in an agricultural soil. ENVIRONMENTAL RESEARCH 2024; 251:118673. [PMID: 38493845 DOI: 10.1016/j.envres.2024.118673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Both microplastics (MPs) and heavy metals are common soil pollutants and can interact to generate combined toxicity to soil ecosystems, but their impact on soil microbial communities (e.g., archaea and viruses) remains poorly studied. Here, metagenomic analysis was used to explore the response of soil microbiome in an agricultural soil exposed to MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and/or Cd. Results showed that MPs had more profound effects on microbial community composition, diversity, and gene abundances when compared to Cd or their combination. Metagenomic analysis indicated that the gene taxonomic diversity and functional diversity of microbial communities varied with MPs type and dose. MPs affected the relative abundance of major microbial phyla and genera, while their coexistence with Cd influenced dominant fungi and viruses. Nitrogen-transforming and pathogenic genera, which were more sensitive to MPs variations, could serve as the indicative taxa for MPs contamination. High-dose PLA treatments (10%, w/w) not only elevated nitrogen metabolism and pathogenic genes, but also enriched copiotrophic microbes from the Proteobacteria phylum. Overall, MPs and Cd showed minimal interactions on soil microbial communities. This study highlights the microbial shifts due to co-occurring MPs and Cd, providing evidence for understanding their environmental risks.
Collapse
Affiliation(s)
- Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong Province, 261000, PR China
| | - Xiaoqing Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Xiaoqiang Gong
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan Province, 621010, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| |
Collapse
|
40
|
Xu S, Zhao R, Sun J, Sun Y, Xu G, Wang F. Microplastics change soil properties, plant performance, and bacterial communities in salt-affected soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134333. [PMID: 38643581 DOI: 10.1016/j.jhazmat.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.
Collapse
Affiliation(s)
- Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| |
Collapse
|
41
|
Cao Y, Li Z, Du P, Ji J, Sun W, Xu J, Liang B. Effects of different dwarfing interstocks on the rhizosphere, endophytic bacteria, and drought resistance of apple trees. Microbiol Res 2024; 283:127690. [PMID: 38461571 DOI: 10.1016/j.micres.2024.127690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Rootstock is commonly used to enhance plant resistance to drought stress. However, it is necessary to investigate the effects of different rootstock, interstock, and scion combinations on rhizosphere and root endophytic bacteria under drought stress. We conducted a pot experiment to investigate how interstock [SH40, Jizhen 1 (J1), and Jizhen 2 (J2)] affects the drought tolerance and nitrogen (N) uptake and utilization of apple trees under drought stress. The results showed that the total dry weight, total chlorophyll content, carotenoid content, photosynthesis rate, and N absorption and utilization efficiency of apple trees decreased significantly, whereas relative electrolyte leakage increased significantly under drought stress. Membership function analysis showed that the apple plants with the J1 interstock had the greatest drought resistance. In addition, drought treatment significantly affected the diversity and composition of rhizosphere and root endophytic communities in all three rootstock/interstock/scion combinations. Further analysis revealed that the relative abundance of the plant pathogen Ralstonia was significantly increased in J2 drought-treated roots, compared to the other groups, whereas those of some potentially beneficial bacteria (0134_terrestrial_group, Phenylobacterium, Ellin6067, Kribbella, Chloronema, and Streptomyces) increased significantly in the J1 drought-treated sample. Co-occurrence network analysis showed that some potentially beneficial bacteria (Ellin6067, S0134_terrestrial_group, Pedomicrobium, and Subgroup_10) were significantly positively correlated with N content. These modifications of the rhizosphere and endophytic bacterial communities may influence the drought resilience and N uptake efficiency of different combinations of interstocks and scions. This study is a much-needed step towards understanding the stress response mechanism of scion-rootstock combinations.
Collapse
Affiliation(s)
- Yang Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhongyong Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Peihua Du
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiahao Ji
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Wei Sun
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
42
|
Liu S, Huang J, He W, Shi L, Zhang W, Li E, Hu J, Zhang C, Pang H. Effects of microplastics on microbial community structure and wheatgrass traits in Pb-contaminated riparian sediments under flood-drainage-planting conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134283. [PMID: 38613956 DOI: 10.1016/j.jhazmat.2024.134283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The coexistence of microplastics (MPs) and heavy metals in sediments has caused a potential threat to sediment biota. However, differences in the effects of MPs and heavy metals on microbes and plants in sediments under different sediment conditions remain unclear. Hence, we investigated the influence of polyethylene (PE) and polylactic acid (PLA) MPs on microbial community structure, Pb bioavailability, and wheatgrass traits under sequential incubation of sediments (i.e., flood, drainage, and planting stages). Results showed that the sediment enzyme activities presented a dose-dependent effect of MPs. Besides, 10 % PLA MPs significantly increased the F1 fractions in three stages by 11.13 %, 30.10 %, and 17.26 %, respectively, thus resulting in higher Pb mobility and biotoxicity. MPs altered sediment bacterial composition and structures, and bacterial community differences were evident in different incubation stages. Moreover, the co-exposure of PLA MPs and Pb significantly decreased the shoot length and total biomass of wheatgrass and correspondingly activated the antioxidant enzyme activity. Further correlation analysis demonstrated that community structure induced by MPs was mainly driven by sediment enzyme activity. This study contributes to elucidating the combined effects of MPs and heavy metals on sediment ecosystems under different sediment conditions.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lixiu Shi
- College of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinying Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
43
|
Palansooriya KN, Zhou Y, An Z, Cai Y, Chang SX. Microplastics affect the ecological stoichiometry of plant, soil and microbes in a greenhouse vegetable system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171602. [PMID: 38461987 DOI: 10.1016/j.scitotenv.2024.171602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Microplastic (MP) pollution is a growing global issue due to its potential threat to ecosystem and human health. Low-density polyethylene (LDPE) MP is the most common type of plastics polluting agricultural soils, negatively affecting soil-microbial-plant systems. However, the effects of LDPE MPs on the carbon (C): nitrogen (N): phosphorus (P) of soil-microbial-plant systems have not been well elucidated. Thus, we conducted a pot experiment with varying LDPE MP concentrations (w/w) (control without MPs; 0.2 % MPs (PE1); 5 % MPs (PE2); and 10 % MPs (PE3)) to study their effects on soil-microbial-plant C-N-P stoichiometry. Soil C:N ratio increased 2.3 and 3.4 times in PE2 and PE3, respectively. Soil C:P ratio increased 2.2 and 3.6 times in PE2 and PE3, respectively. Soil microbial C:N ratios decreased by 46.2 % in PE1, while C:P ratios decreased by 59.2, 38.6, and 67.9 % in PE1, PE2, and PE3, respectively. Soil microbial N:P ratio decreased in PE1 (17.2) and PE3 (59.1 %). MPs increased shoot C content and C:N ratios, particularly at the 5 % MP addition rate. MP addition altered dissolved organic C, N, and P concentrations, depending on the MP addition rate. Microbial community responses to MP exposure were complex, leading to variable effects on different microbial groups at different MP addition rates. Structural equation modeling showed that MP addition had a direct positive effect (β = 0.96) on soil C-N-P stoichiometry and a direct negative effect (β = -1.34) on microbial C-N-P stoichiometry. These findings demonstrate the complex interactions between MPs, soil microorganisms, and nutrient dynamics, highlighting the need for further research to better understand the ecological implications of MP pollution in terrestrial ecosystems.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| | - Ying Zhou
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfeng An
- Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China.
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada.
| |
Collapse
|
44
|
He B, Liu Z, Wang X, Li M, Lin X, Xiao Q, Hu J. Dosage and exposure time effects of two micro(nono)plastics on arbuscular mycorrhizal fungal diversity in two farmland soils planted with pepper (Capsicum annuum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170216. [PMID: 38278273 DOI: 10.1016/j.scitotenv.2024.170216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
As emerging environmental pollutants, micro(nano)plastics (MPs) like polyethylene terephthalate (PET) and low-density polyethylene (LDPE) have adverse effects on terrestrial biota and ecosystem function. However, the performance and roles of soil arbuscular mycorrhizal (AM) fungi in MPs-contaminated vegetable fields are poorly understood. Thus, a 120-day pot experiment was conducted to test the impacts of two input levels of either PET (~13 μm) or LDPE (~500 nm) on AM fungal diversity and pepper (Capsicum annuum L.) growth in two farmland soils collected from Nanjing (NJ) and Chongqing (CQ), respectively. In the vast majority of cases, 1 % rather than 0.1 % of both MPs greatly decreased the observed richness, Shannon and Simpson's indices, and Pielou's evenness of AM fungi, and decreased mycorrhizal colonization, root and shoot biomasses, fruit yield, and leaf superoxide dismutase, peroxidase, and catalase activities of pepper, while increased leaf malondialdehyde content. From day 40 to 120, the inhibition of either diversity or vitality of AM fungi by 1 % and 0.1 % of MPs gradually increased and weakened, respectively. Compared with PET, LDPE with substantially smaller particle size was more toxic to mycorrhization at day 40, but no longer at day 120. Almost all plant parameters significantly correlated to mycorrhizal colonization, which significantly correlated to both Shannon and Simpson's indices of AM fungi, and soil pH, available P and K concentrations, and alkaline phosphatase activity. All diversity indices of AM fungi clearly negatively correlated to soil pH from 4.4 to 5.6 for the NJ soil and from 5.3 to 6.5 for the CQ soil, and also positively to mineral N and negatively to available P concentrations for the NJ and CQ soils, respectively. Thus, the study emphasized that high input of MPs significantly inhibited soil AM fungal diversity and vitality and thereby vegetable growth via changing soil pH and major nutrient availability.
Collapse
Affiliation(s)
- Baiping He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Zihao Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Minghui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingqing Xiao
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China.
| | - Junli Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Tao S, Li T, Li M, Yang S, Shen M, Liu H. Research advances on the toxicity of biodegradable plastics derived micro/nanoplastics in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170299. [PMID: 38272086 DOI: 10.1016/j.scitotenv.2024.170299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The detrimental effects of plastic and microplastic accumulation on ecosystems are widely recognized and indisputable. The emergence of biodegradable plastics (BPs) offers a practical solution to plastic pollution. Problematically, however, not all BPs can be fully degraded in the environment. On the contrary, the scientific community has demonstrated that BPs are more likely than conventional plastics (CPs) to degrade into micro/nanoplastics and release additives, which can have similar or even worse effects than microplastics. However, there is very limited information available on the environmental toxicity assessment of BMPs. The absence of a toxicity evaluation system and the uncertainty regarding combined toxicity with other pollutants also impede the environmental toxicity assessment of BMPs. Currently, research is focused on thoroughly exploring the toxic effects of biodegradable microplastics (BMPs). This paper reviews the pollution status of BMPs in the environment, the degradation behavior of BPs and the influencing factors. This paper comprehensively summarizes the ecotoxicological effects of BPs on ecosystems, considering animals, plants, and microorganisms in various environments such as water bodies, soil, and sediment. The focus is on distinguishing between BMPs and conventional microplastics (CMPs). In addition, the combined toxic effects of BMPs and other pollutants are also being investigated. The findings suggest that BMPs may have different or more severe impacts on ecosystems. The rougher and more intricate surface of BMPs increases the likelihood of causing mechanical damage to organisms and breaking down into smaller plastic particles, releasing additives that lead to a series of cascading negative effects on related organisms and ecosystems. In the case of knowledge gaps, future research is also proposed and anticipated to investigate the toxic effects of BMPs and their evaluation.
Collapse
Affiliation(s)
- Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Mingyu Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shengxin Yang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Hui Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
46
|
Hu Z, Xiao M, Wu J, Tong Y, Ji J, Huang Q, Ding F, Ding J, Zhu Z, Chen J, Ge T. Effects of microplastics on photosynthesized C allocation in a rice-soil system and its utilization by soil microbial groups. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133540. [PMID: 38241834 DOI: 10.1016/j.jhazmat.2024.133540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
The effect of microplastics (MPs) on the allocation of rice photosynthetic carbon (C) in paddy systems and its utilization by soil microorganisms remain unclear. In this study, 13C-CO2 pulse labeling was used to quantify the input and allocation of photosynthetic C in a rice-soil system under MPs amendment. Rice was pulse-labeled at tillering growth stage under 0.01% and 1% w/w polyethylene (PE) and polyvinyl chloride (PVC) MP amendments. Plants and soils were sampled 24 h after pulse labeling. Photosynthesized C in roots in MP treatments was 30-54% lower than that in no-MP treatments. The 13C in soil organic C (SOC) in PVC-MP-amended bulk soil was 4.3-4.7 times higher than that in no-MP treatments. PVC and high-dose PE increased the photosynthetic C in microbial biomass C in the rhizosphere soil. MPs altered the allocation of photosynthetic C to microbial phospholipid fatty acid (PLFA) groups. High-dose PVC increased the 13C gram-positive PLFAs. Low-dose PE and high-dose PVC enhanced 13C in fungal PLFAs in bulk soil (including arbuscular mycorrhizal fungi (AMF) and Zygomycota) by 175% and 197%, respectively. The results highlight that MPs alter plant C input and microbial utilization of rhizodeposits, thereby affecting the C cycle in paddy ecosystems.
Collapse
Affiliation(s)
- Zhi'e Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mouliang Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jialing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Tong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianhong Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology & Environment, Hainan University, Hainan 570228, China
| | - Fan Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110086, China
| | - Jina Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
47
|
Lian Y, Shi R, Liu J, Zeb A, Wang Q, Wang J, Yu M, Li J, Zheng Z, Ali N, Bao Y, Liu W. Effects of polystyrene, polyethylene, and polypropylene microplastics on the soil-rhizosphere-plant system: Phytotoxicity, enzyme activity, and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133417. [PMID: 38183945 DOI: 10.1016/j.jhazmat.2023.133417] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The widespread presence of soil microplastics (MPs) has become a global environmental problem. MPs of different properties (i.e., types, sizes, and concentrations) are present in the environment, while studies about the impact of MPs having different properties are limited. Thus, this study investigated the effects of three common polymers (polystyrene, polyethylene, and polypropylene) with two concentrations (0.01% and 0.1% w/w) on growth and stress response of lettuce (Lactuca sativa L.), soil enzymes, and rhizosphere microbial community. Lettuce growth was inhibited under MPs treatments. Moreover, the antioxidant system, metabolism composition, and phyllosphere microbiome of lettuce leaves was also perturbed. MPs reduced phytase activity and significantly increased dehydrogenase activity. The diversity and structure of rhizosphere microbial community were disturbed by MPs and more sensitive to polystyrene microplastics (PSMPs) and polypropylene microplastics (PPMPs). In general, the results by partial least squares pathway models (PLS-PMs) showed that the presence of MPs influenced the soil-rhizosphere-plant system, which may have essential implications for assessing the environmental risk of MPs.
Collapse
Affiliation(s)
- Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yanyu Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
48
|
Jia Y, Cheng Z, Peng Y, Yang G. Microplastics alter the equilibrium of plant-soil-microbial system: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116082. [PMID: 38335576 DOI: 10.1016/j.ecoenv.2024.116082] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Microplastics (MPs) are widely identified as emerging hazards causing considerable eco-toxicity in terrestrial ecosystems, but the impacts differ in different ecosystem functions among different chemical compositions, morphology, sizes, concentrations, and experiment duration. Given the close relationships and trade-offs between plant and soil systems, probing the "whole ecosystem" instead of individual functions must yield novel insights into MPs affecting terrestrial ecosystems. Here, a comprehensive meta-analysis was employed to reveal an unambiguous response of the plant-soil-microbial system to MPs. Results showed that in view of plant, soil, and microbial functions, the general response patterns of plant and soil functions to MPs were obviously opposite. For example, polyethylene (PE) and polyvinyl chloride (PVC) MPs highly increased plant functions, while posed negative effects on soil functions. Polystyrene (PS) and biodegradable (Bio) MPs decreased plant functions, while stimulating soil functions. Additionally, low-density polyethylene (LDPE), PE, PS, PVC, Bio, and granular MPs significantly decreased soil microbial functions. These results clearly revealed that MPs alter the equilibrium of the plant-soil-microbial system. More importantly, our results further revealed that MPs tended to increase ecosystem multifunctionality, e.g., LDPE and PVC MPs posed positive effects on ecosystem multifunctionality, PE, PS, and Bio MPs showed neutral effects on ecosystem multifunctionality. Linear regression analysis showed that under low MPs size (<100 µm), ecosystem multifunctionality was gradually reduced with the increased size of MPs. The response of ecosystem multifunctionality showed a concave shape pattern along the gradient of experimental duration which was lower than 70 days. More importantly, there was a threshold (i.e., 5% w/w) for the effects of MPs concentration on ecosystem multifunctionality, i.e., under low concentration (< 5% w/w), ecosystem multifunctionality was gradually increased with the increased concentration of MPs, while ecosystem multifunctionality was gradually decreased under high concentration (i.e., > 5% w/w). These findings emphasize the importance of studying the effects of MPs on plant-soil-microbial systems and help us identify ways to reduce the eco-toxicity of MPs and maintain environmental safety in view of an ecology perspective.
Collapse
Affiliation(s)
- Yangyang Jia
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Zhen Cheng
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Yi Peng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Guojiang Yang
- Institute of Farmland Water Conservancy and Soil-fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| |
Collapse
|
49
|
Li X, Wu J, Cheng X, Cai Z, Wang Z, Zhou J. Biodegradable microplastics reduce the effectiveness of biofertilizers by altering rhizospheric microecological functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120071. [PMID: 38246103 DOI: 10.1016/j.jenvman.2024.120071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
The effectiveness of biofertilizers as a cost-effective crop yield enhancer can be compromised by residual soil pollutants. However, the impact of accumulated polyadipate/butylene terephthalate microplastics (PBAT-MPs) from biodegradable mulch films on biofertilizer application and the consequent growth of crop plants remains unclear. Here, the effects of different levels of PBAT-MPs in soil treated with Bacillus amyloliquefaciens biofertilizer were assessed in a four-week potted experiment. PBAT-MPs significantly decreased the growth-promoting effect of the biofertilizer on Brassica chinensis L., resulting in a notable reduction in both above- and belowground biomass (up to 52.91% and 57.53%, respectively), as well as nitrate and crude fiber contents (up to 12.18% and 13.64%, respectively). In the rhizosphere microenvironment, PBAT-MPs increased soil organic carbon by 2.63-fold and organic matter by 2.68-fold, while enhancing sucrase (from 67.55% to 108.89%) and cellulase (from 31.26% to 49.10%) activities. PBAT-MPs also altered the rhizospheric bacterial community composition/diversity, resulting in more complex microbial networks. With regard to microbial function, PBAT-MPs impacted carbon metabolic function by inhibiting the 3-hydroxypropionate/4-hydroxybutyrate fixation pathway and influencing chitin and lignin degradation processes. Overall, the rhizospheric microbial profiles (composition, function, and network interactions) were the main contributors to plant growth inhibition. This study provides a practical case and theoretical basis for rational use of biodegradable mulch films and indicates that the residue of biodegradable films needs pay attention.
Collapse
Affiliation(s)
- Xinyang Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Jialing Wu
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen, PR China
| | - Xueyu Cheng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zongkang Wang
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen, PR China.
| | - Jin Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
50
|
Zeb A, Liu W, Ali N, Shi R, Wang Q, Wang J, Li J, Yin C, Liu J, Yu M, Liu J. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132636. [PMID: 37778309 DOI: 10.1016/j.jhazmat.2023.132636] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MPs) pollution has become a global environmental concern with significant impacts on ecosystems and human health. Although MPs have been widely detected in aquatic environments, their presence in terrestrial ecosystems remains largely unexplored. This review examines the multifaceted issues of MPs pollution in terrestrial ecosystem, covering various aspects from additives in plastics to global legislation and sustainable solutions. The study explores the widespread distribution of MPs worldwide and their potential antagonistic interactions with co-occurring contaminants, emphasizing the need for a holistic understanding of their environmental implications. The influence of MPs on soil and plants is discussed, shedding light on the potential consequences for terrestrial ecosystems and agricultural productivity. The aging mechanisms of MPs, including photo and thermal aging, are elucidated, along with the factors influencing their aging process. Furthermore, the review provides an overview of global legislation addressing plastic waste, including bans on specific plastic items and levies on single-use plastics. Sustainable solutions for MPs pollution are proposed, encompassing upstream approaches such as bioplastics, improved waste management practices, and wastewater treatment technologies, as well as downstream methods like physical and biological removal of MPs. The importance of international collaboration, comprehensive legislation, and global agreements is underscored as crucial in tackling this pervasive environmental challenge. This review may serve as a valuable resource for researchers, policymakers, and stakeholders, providing a comprehensive assessment of the environmental impact and potential risks associated with MPs.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|