1
|
Xiong S, Zhao H, Sun Q, Li X, Qiu H, van Gestel CAM, Cao L, Wang S, Li J, Chen G. Maternal exposure to polystyrene nanoplastics during gestation and lactation impaired skeletal growth in progeny mice by inhibiting neutrophil extracellular trap formation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118355. [PMID: 40424725 DOI: 10.1016/j.ecoenv.2025.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/10/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025]
Abstract
Microplastics and nanoplastics are widely distributed in the natural environment and shown to accumulate in living organisms. While their potential impact on human health has been investigated, significant uncertainties remain regarding their toxic effects and mechanisms of interaction with the human skeletal system. We examined the potential effects of polystyrene nanoplastics (PS-NPs, 100 nm) on skeletal health and the underlying molecular mechanisms using the human RAW264.7 and MC3T3-E1 cell lines as in-vitro models, along with a murine model. Maternal exposure to PS-NPs (10 mg/L) through drinking water during the prenatal and lactational periods led to an increase in osteoblasts, as well as a significant rise in bone mineral density (BMD) and bone content in offspring mice. Exposure to 100 mg/L PS-NPs resulted in a significant reduction in the thickness of the femoral growth plates. Multi-omics analysis revealed that both high (100 mg/L) and low (10 mg/L) maternal PS-NP exposure concentrations disrupted gene expression and metabolic regulation in the skeletal system of offspring mice. Regulatory analysis showed PS-NPs probably induced inflammation and abnormal immune infiltration levels by inhibiting the formation of neutrophil extracellular traps (NETs), especially in 100 mg/L exposure. In in-vitro tests, the PS-NPs dose-relatedly reduced the relative viability of RAW264.7 cells and promoted osteoclast differentiation, but did not affect MC3T3-E1 cells up to 500 mg/L. Our findings demonstrate that maternal exposure to PS-NPs has detrimental effects on skeletal development and function in progeny mice, providing new insights into their toxicological effects on the skeletal system.
Collapse
Affiliation(s)
- Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Han Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Qianqian Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 Hz, the Netherlands
| | - Liang Cao
- Department of Ophthalmology, Shanghai International Medical Center, Shanghai, China
| | - Shanshan Wang
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, School of medicine, Tongji University, Shanghai 201204, China
| | - Jing Li
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, School of medicine, Tongji University, Shanghai 201204, China.
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| |
Collapse
|
2
|
Ahmadi P, Doyle D, Mojarad N, Taherkhani S, Janzadeh A, Honardoost M, Gholami M. Effects of micro- and nanoplastic exposure on macrophages: a review of molecular and cellular mechanisms. Toxicol Mech Methods 2025:1-24. [PMID: 40323219 DOI: 10.1080/15376516.2025.2500546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Micro- and nanoplastics (MNPs), pervasive environmental pollutants, contaminate water, soil, air, and the food chain and ultimately accumulate in living organisms. Macrophages are the main immune cells that gather around MNPs and engulf them through the process of phagocytosis. This internalization triggers M1 polarization and the secretion of inflammatory cytokines, including IL-1, IL-18, IL-12, TNF-α, and IFN-γ. Furthermore, MNPs damage mitochondria and lysosomes, causing overactivation of iNOS and excessive production of ROS. This results in cellular stress and induce apoptosis, necroptosis, and, in some cases, metosis in macrophages. The internalization of MNPs also increases the expression of receptors, involving CD36, SR-A, LOX-1, and the macrophage receptor with a collagenous structure (MARCO) while decreasing ABCA-1 and ABCG-1. MNPs in adipose tissue macrophages trigger proinflammatory cytokine secretion, causing adipogenesis, lipid accumulation, insulin resistance, and the secretion of inflammatory cytokines in adipocytes. Various factors influence the rate of MNP internalization by macrophages, including size, charge, and concentration, which affect internalization through passive diffusion. Receptor-mediated phagocytosis of MNPs occurs directly via receptors like T-cell immunoglobulin and mucin domain containing 4 (TIM-4) and MARCO. The attachment of biomolecules, including proteins, antibodies, opsonins, or microbes to MNPs (forming corona structures) promotes indirect receptor-mediated endocytosis, as macrophages possess receptors like TLRs and FcγRIII. MNPs also cause gut dysbiosis, a risk factor for proinflammatory microenvironment and M1 polarization. Here, we review the mechanisms and consequences of MNP macrophage exposure, which is linked to autoimmunity, inflammation, and cardiometabolic syndrome manifestations, including atherosclerosis and obesity, highlighting the immunotoxicity of MNPs.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - David Doyle
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Negin Mojarad
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Soroush Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Breast Health and Cancer Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Cui Y, Wu Y, Shi P, Ni Y, Zeng H, Zhang Z, Zhao C, Sun W, Yi Q. Mitigating microplastic-induced organ Damage: Mechanistic insights from the microplastic-macrophage axes. Redox Biol 2025; 84:103688. [PMID: 40412021 DOI: 10.1016/j.redox.2025.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/10/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
We live in a world increasingly dominated by plastic, leading to the generation of microplastic particles that pose significant global health concerns. Microplastics can enter the body via ingestion, inhalation, and direct contact, accumulating in various tissues and potentially causing harm. Despite this, the specific cellular mechanisms and signaling pathways involved remain poorly understood. Macrophages are essential in absorbing, distributing, and eliminating microplastics, playing a key role in the body's defense mechanisms. Recent evidence highlights oxidative stress signaling as a key pathway in microplastic-induced macrophage dysfunction. The accumulation of microplastics generates reactive oxygen species (ROS), disrupting normal macrophage functions and exacerbating inflammation and organ damage. This review serves as the first comprehensive examination of the interplay between microplastics, macrophages, and oxidative stress. It discusses how oxidative stress mediates macrophage responses to microplastics and explores the interactions with gut microbiota. Additionally, it reviews the organ damage resulting from alterations in macrophage function mediated by microplastics and offers a novel perspective on the defense, assessment, and treatment of microplastic-induced harm from the viewpoint of macrophages.
Collapse
Affiliation(s)
- Yinxing Cui
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China; Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Yuqi Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Pan Shi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Yan Ni
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Huaying Zeng
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Zhao Zhang
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Chunling Zhao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China.
| |
Collapse
|
4
|
Viana M, Tonin FS, Ladeira C. Assessing the Impact of Nanoplastics in Biological Systems: Systematic Review of In Vitro Animal Studies. J Xenobiot 2025; 15:75. [PMID: 40407539 PMCID: PMC12101406 DOI: 10.3390/jox15030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/26/2025] Open
Abstract
Nanoplastic (NP) pollution has emerged as a growing concern due to its potential impact on human health, although its adverse effects on different organ systems are not yet fully understood. This systematic scoping review, conducted in accordance with international guidelines, aimed to map the current evidence on the biological effects of NPs. In vitro animal studies assessing cellular damage caused by exposure to any type of NP were searched on PubMed, Web of Science, and Scopus. Data on primary outcomes related to genotoxicity and cytotoxicity (cell viability, oxidative stress, inflammation, DNA and cytoplasmic damage, apoptosis) were extracted from the included studies, and overall reporting quality was assessed. A total of 108 articles published between 2018 and 2024, mostly by China (54%), Spain (14%), and Italy (9%), were included. Polystyrene (PS) was the most frequently studied polymer (85%). NP sizes in solution ranged from 15 to 531 nm, with a higher prevalence in the 40-100 nm range (38%). The overall quality of studies was rated as moderate (60%), with many lacking essential details about cell culture conditions (e.g., pH of the medium, passage number, substances used). A higher frequency of negative effects from NP exposure was observed in respiratory cell lines, while immune, digestive, and hepatic cell lines showed greater resistance. Nervous, urinary, and connective tissue systems were impacted by NPs. Positively charged and smaller PS particles were consistently associated with higher toxicity across all systems. In summary, this review highlights the multifactorial nature of NP toxicity, influenced by size, surface charge, and polymer type. It also reveals a significant knowledge gap, stemming from the predominant use of immortalized monocultures exposed to commercially available PS NPs, the limited use of environmentally relevant particles, and the underutilization of advanced experimental models (e.g., organ-on-chip systems) that better mimic physiological conditions.
Collapse
Affiliation(s)
- Maria Viana
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
| | - Fernanda S. Tonin
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- Pharmacy and Pharmaceutical Technology Department, Social and Legal Pharmacy Section, University of Granada, 18071 Granada, Spain
| | - Carina Ladeira
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| |
Collapse
|
5
|
Nahiduzzaman FNU, Rahman MZ, Akhi MAJ, Manik M, Khatun MM, Islam MA, Matin MN, Haque MA. Potential Biological Impacts of Microplastics and Nanoplastics on Farm Animals: Global Perspectives with Insights from Bangladesh. Animals (Basel) 2025; 15:1394. [PMID: 40427269 PMCID: PMC12108168 DOI: 10.3390/ani15101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs), formed through the degradation of larger plastic materials, are emerging pollutants of significant concern. While their impact on aquatic ecosystems is well documented, their effects on terrestrial, especially farm animals remain underexplored. This review assesses the potential threats of MPs and NPs to Bangladesh's livestock sector by analyzing the results of experimental models and environmental studies. In Bangladesh, MPs and NPs have been detected in agricultural soils, air, water bodies, and aquatic organisms, indicating possible entry into animal systems through contaminated feed, water, and inhalation. Once internalized, these particles may trigger oxidative stress, inflammation, and tissue damage, impairing vital biological systems. Documented health consequences include reduced fertility, hematotoxicity, gut microbiota imbalance, gut-brain axis disruption, skeletal disorders, and metabolic dysfunction. Additionally, MPs and NPs can induce genomic changes, including altered gene expression and DNA hypomethylation, intensifying physiological damage and reducing productivity. Therefore, managing plastic contamination is vital in protecting animal health, ensuring food safety, and preserving human well-being around the globe, especially in vulnerable regions like Bangladesh. Given the critical role of livestock and poultry in ensuring food security and public health, the findings highlight an urgent need for comprehensive research and mitigation strategies.
Collapse
Affiliation(s)
- FNU Nahiduzzaman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (F.N.); (M.Z.R.); (M.M.K.)
| | - Md Zaminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (F.N.); (M.Z.R.); (M.M.K.)
| | - Mst. Arjina Jannat Akhi
- Department of Electrical and Electronic Engineering, Eastern University, Dhaka 1205, Bangladesh;
| | - Mohammed Manik
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Mst Minara Khatun
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (F.N.); (M.Z.R.); (M.M.K.)
| | - Md. Ariful Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (F.N.); (M.Z.R.); (M.M.K.)
| | - Mohammad Nurul Matin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
6
|
Vanetti C, Broggiato M, Pezzana S, Clerici M, Fenizia C. Effects of microplastics on the immune system: How much should we worry? Immunol Lett 2025; 272:106976. [PMID: 39900298 DOI: 10.1016/j.imlet.2025.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Plastics are everywhere. It is widely recognized that they represent a global problem, the extent of which is yet to be defined. Humans are broadly exposed to plastics, whose effects and consequences are poorly characterized so far. The main route of exposure is via alimentary and respiratory intake. Plastics pollutions may come from both: water and food contamination itself, and their packaging. The smaller sizes (i.e. microplastics <150 µm - MPs) are considered to be the most pervasive of living organisms and, therefore, potentially the most harmful. As humans occupy one of the apex positions of the food chain, we are exposed to bioaccumulation and biomagnification effects of MPs. In fact, MPs are commonly found in human stools and blood. However, there are no data available yet on their ability to accumulate and to produce detrimental consequences on biological systems. Even though the effects of plastics pollution are poorly studied in mammals, including humans, they appear to have inflammatory effects, which is rather concerning as many etiologies of disease are based on a pro-inflammatory status.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Martina Broggiato
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Pezzana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione Don Carlo Gnocchi, IRCCS Milan Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Liu H, Ciric L, Bhatti M. Effects of nanoplastics and compound pollutants containing nanoplastics on plants, microorganisms and rhizosphere systems: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118084. [PMID: 40158378 DOI: 10.1016/j.ecoenv.2025.118084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Nanoplastics (NPs) are the most widespread and least detectable type of plastic pollutant due to their extremely small particle size. The root system of plants has become an important pathway for NPs to enter the food chain from the natural environment. By combining with heavy metals or organic pollutants, NPs can exhibit greater biological toxicity compared to single pollutants. Although many studies have focused on the phytotoxicity and microbial toxicity of NPs separately, to the best of our knowledge, no review summarizes the toxicity of NPs from the perspective of the plant rhizosphere system with a combination of pollutants. By summarizing samples from 2015 to 2025, this review highlights that NPs can affect photosynthesis, gene transcription, and enzyme activity in both plants and microorganisms. NPs with large particle size can also disrupt the chemical balance of the rhizosphere environment and intensify competition for nutrients between plants and microorganisms, ultimately affecting the geochemical cycle. NPs of different particle sizes and concentrations can poison various biological structures, from surface layers to genetic material. In compound pollutants, where NPs combine with other contaminants, they can further disrupt elemental cycles in plants, reduce microbial community diversity, and increase the accumulation of other pollutants in the rhizosphere system compared to single pollutants. These findings provide new insights into the biotoxicity of NPs and the degradation of compound pollutants containing NPs. In addition, combined with the research results of this review, some research prospects on the relationship between NPs and rhizosphere systems are given.
Collapse
Affiliation(s)
- Haoran Liu
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Lena Ciric
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Manpreet Bhatti
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom.
| |
Collapse
|
8
|
Huang Q, Qu Y, Tang M, Lan K, Zhang Y, Chen S, Li W, Gu L. ROS-responsive hydrogel for bone regeneration: Controlled dimethyl fumarate release to reduce inflammation and enhance osteogenesis. Acta Biomater 2025; 195:183-200. [PMID: 39956305 DOI: 10.1016/j.actbio.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Large bone defects, often arising from trauma or infection, pose a considerable therapeutic challenge due to their limited capacity for spontaneous healing, thus requiring bone graft materials for effective reparative procedures. The persistence of inflammation and elevated levels of reactive oxygen species (ROS) within these defect sites significantly impede bone regeneration process. Addressing this, an injectable hydrogel system with ROS-responsive functionality is developed, specifically tailored to the high ROS microenvironment characteristic of bone defects. This system incorporates hyaluronic acid functionalized with dopamine to introduce catechol moieties, and employs 4-formylphenylboronic acid as a crosslinking agent to form a dynamic hydrogel matrix (HAC) with carboxymethyl chitosan. The HAC hydrogel serves as a carrier for dimethyl fumarate (DMF), a compound with established anti-inflammatory and antioxidant effects, enabling its controlled release in response to ROS levels. Herein, we investigated the physicochemical properties of DMF loaded hydrogel (DHAC) by microstructure observation, in vitro degradation assay, self-healing test, injectability experiments, DMF drug release assay. Meanwhile, we systematically investigated its effects on inflammation, intracellular ROS, and osteogenesis. Consequently, the DHAC significantly reduced pro-inflammatory cytokines secreted by RAW264.7 cells and scavenged intracellular ROS in MC3T3 cells. This effect was accompanied by an augmentation in the osteogenic potential of MC3T3 cells and a promotion in the repair of cranial defects in rats. The DHAC, which exhibits anti-inflammatory, antioxidant, and osteogenic activity, hold great potential as an effective strategy for the management of large bone defects. STATEMENT OF SIGNIFICANCE: Here, a novel dimethyl fumarate-loaded ROS-responsive hydrogel system was developed for effective treatment of large bone defects. Our findings demonstrated that the hydrogel not only promotes bone regeneration but also controls inflammation, addressing two critical challenges in bone healing. Comprehensive evaluations show significant improvements in bone formation and reduction of pro-inflammatory cytokines in animal models. Additionally, the hydrogel exhibits excellent reactive oxygen species scavenging ability, effectively modulating oxidative stress in the bone defect microenvironment. Findings suggest the hydrogel system may serve as a promising therapeutic strategy for clinical management of critical-sized bone defects.
Collapse
Affiliation(s)
- Qiuxia Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Yang Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Mengchen Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Kaiwen Lan
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Yilin Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Sishi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Weichang Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China.
| | - Lisha Gu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, Guangzhou 510080, China.
| |
Collapse
|
9
|
Bianchi MG, Casati L, Sauro G, Taurino G, Griffini E, Milani C, Ventura M, Bussolati O, Chiu M. Biological Effects of Micro-/Nano-Plastics in Macrophages. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:394. [PMID: 40072197 PMCID: PMC11901536 DOI: 10.3390/nano15050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The environmental impact of plastics is worsened by their inadequate end-of-life disposal, leading to the ubiquitous presence of micro- (MPs) and nanosized (NPs) plastic particles. MPs and NPs are thus widely present in water and air and inevitably enter the food chain, with inhalation and ingestion as the main exposure routes for humans. Many recent studies have demonstrated that MPs and NPs gain access to several body compartments, where they are taken up by cells, increase the production of reactive oxygen species, and lead to inflammatory changes. In most tissues, resident macrophages engage in the first approach to foreign materials, and this interaction largely affects the subsequent fate of the material and the possible pathological outcomes. On the other hand, macrophages are the main organizers and controllers of both inflammatory responses and tissue repair. Here, we aim to summarize the available information on the interaction of macrophages with MPs and NPs. Particular attention will be devoted to the consequences of this interaction on macrophage viability and functions, as well as to possible implications in pathology.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Lavinia Casati
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giulia Sauro
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Erika Griffini
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Christian Milani
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Marco Ventura
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| |
Collapse
|
10
|
Fusagawa H, Youn A, Wilkerson E, Pandya N, Feeley BT. The Effects of Microplastics on Musculoskeletal Disorder; A Narrative Review. Curr Rev Musculoskelet Med 2025; 18:39-47. [PMID: 39572502 PMCID: PMC11775366 DOI: 10.1007/s12178-024-09932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/29/2025]
Abstract
PURPOSE OF REVIEW The physical health impacts of microplastics have received increasing attention in recent years. However, limited data impedes a full understanding of the internal exposure to microplastics, especially concerning the musculoskeletal system. The purpose of this review is to summarize the recent literature regarding the effects of microplastics on the musculoskeletal system. RECENT FINDINGS Microplastics have been shown to cause abnormal endochondral ossification and disrupt the normal function of pre-osteoblasts, osteocyte-like cells, and pre-osteoclasts through gene mutations, endoplasmic reticulum stress induction, and reduced autophagosome formation in bone growth areas. Although there are few reports on their effects on muscle, it has been noted that microplastics inhibit energy and lipid metabolism, decrease type I muscle fiber density, impair muscle angiogenesis, cause muscle atrophy, and increase lipid deposition. Only a few recent studies have shown that microplastics interfere with the normal function of bone growth-related cells and reduce muscle mass and quality. This review underscores the need for further research into other parts of the musculoskeletal system and studies using human tissues at the disease level.
Collapse
Affiliation(s)
- Hiroyori Fusagawa
- Department of Orthopaedic Surgery, University of California-San Francisco, 1500 Owens Street, San Francisco, CA, 94158, USA.
| | - Alex Youn
- School of Medicine, University of California-San Francisco, 505 Parnassus Ave MU 320W, San Francisco, CA, 94143, USA
| | - Elyse Wilkerson
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Nirav Pandya
- Department of Orthopaedic Surgery, University of California-San Francisco, 1500 Owens Street, San Francisco, CA, 94158, USA
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California-San Francisco, 1500 Owens Street, San Francisco, CA, 94158, USA
| |
Collapse
|
11
|
Liu Y, Guo F, Han Z, Yin Y, Chen G, Zhang Y, Tang Q, Chen L. Neutrophils inhibit bone formation by directly contacting osteoblasts and suppressing osteogenic differentiation. Bone 2024; 190:117310. [PMID: 39477179 DOI: 10.1016/j.bone.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Neutrophils have been extensively studied for their critical roles in supporting immune defense mechanisms, initiating bone regeneration, and promoting angiogenesis. Nonetheless, the influence of neutrophils on physiological conditions, particularly in the context of bone development, remains incompletely understood. In this study, we examined the effects of non-inflammatory neutrophils on bone physiology by depleting Ly6G+ neutrophils and inducing neutropenia through myelosuppression. Our results demonstrated a notable increase in bone mass and a decrease in the bone marrow cavity upon depletion of the neutrophils. These effects were attributed to the direct interaction between neutrophils and osteoblasts, independent of reduced secretion of typical inflammatory cytokines or diminished osteoclast differentiation. This observation suggests a non-inflammatory function of neutrophils within the endosteal microenvironment, where they regulate osteogenic differentiation to preserve optimal bone mass, shape healthy three-dimensional bone trabecular structures, and create ample space for hematopoietic niche development.
Collapse
Affiliation(s)
- Yijun Liu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Fengyuan Guo
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Zhenshuo Han
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Ying Yin
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guangjin Chen
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yifan Zhang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Lili Chen
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
12
|
Geng Z, Sun T, Yu J, Wang N, Jiang Q, Wang P, Yang G, Li Y, Ding Y, Zhang J, Lin G, Zhao Y. Cinobufagin Suppresses Lipid Peroxidation and Inflammation in Osteoporotic Mice by Promoting the Delivery of miR-3102-5p by Macrophage-Derived Exosomes. Int J Nanomedicine 2024; 19:10497-10512. [PMID: 39439501 PMCID: PMC11495194 DOI: 10.2147/ijn.s483849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Cinobufagin, the primary active compound in toad venom, is commonly used for anti-tumor, anti-inflammatory, and analgesic purposes. However, its specific bone-protective effects remain uncertain. This research aims to ascertain the bone-protective properties of cinobufagin and investigate underlying mechanisms. METHODS Mice were ovariectomized to establish an osteoporosis model, followed by intraperitoneal injections of cinobufagin and cinobufagin-treated RAW.264.7-derived exosomes for therapy. MicroCT, HE staining, and TRAP staining were employed to evaluate bone mass and therapeutic outcomes, while mRNA sequencing and immunoblotting were utilized to assess markers of bone metabolism, inflammation, and lipid peroxidation. Osteoblast and osteoclast precursor cells were differentiated to observe the impact of cinobufagin-treated exosomes derived from RAW264.7 cells on bone metabolism. Exosomes characteristics were studied using transmission electron microscopy and particle size analysis, and miRNA binding targets in exosomes were determined by luciferase reporting. RESULTS In ovariectomized mice, cinobufagin and cinobufagin-treated exosomes from RAW264.7 cells increased trabecular bone density and mass in the femur, while also decreasing inflammation and lipid peroxidation. The effect was reversed by an exosomes inhibitor. In vitro experiments revealed that cinobufagin-treated exosomes from RAW264.7 cells enhanced osteogenic and suppressed osteoclast differentiation, possibly linked to Upregulated miR-3102-5p in RAW-derived exosomes. MiR-3102-5p targets the 3'UTR region of alox15, thereby suppressing its expression and reducing the lipid peroxidation process in osteoblasts. CONCLUSION Overall, this study clarified cinobufagin's bone-protective effects and revealed that cinobufagin can enhance the delivery of miR-3102-5p targeting alox15 through macrophage-derived exosomes, demonstrating anti-lipid peroxidation and anti-inflammatory effects.
Collapse
Affiliation(s)
- Zixiang Geng
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Tiancheng Sun
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jie Yu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ning Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Qiang Jiang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Peige Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Guangyue Yang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yifei Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Guoqiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yongfang Zhao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
13
|
Liu W, Zeng M, Li Y, Chen G, Wang J. Polystyrene nanoplastics mediate skeletal toxicity through oxidative stress and the BMP pathway in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117096. [PMID: 39317074 DOI: 10.1016/j.ecoenv.2024.117096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
The widespread presence of micro(nano)plastics (MNPs) has generated public concern. Studies have indicated that MNPs can accumulate in mammalian bones; however, research on the skeletal toxicity and underlying molecular mechanisms of MNPs in aquatic organisms remains limited. We subjected zebrafish embryos to three varying levels (1, 10, 100 μg/mL) of polystyrene nanoplastics (PSNPs) exposure over a period of 7 days in our research. The results revealed that PSNPs significantly reduced the body length and hatching rate of zebrafish, leading to skeletal deformities. mRNA level analysis showed significant upregulation of sp7, sparc, and smad1 genes transcription by PSNPs. Moreover, PSNPs markedly downregulated the mRNA levels associated with runx2a, bmp2a, and bmp4. Further investigations demonstrated that PSNPs dramatically increased ROS levels in zebrafish larvae, with significant downregulation of transcription levels of sod1 and cat genes, resulting in a sharp increase in transcription levels of apoptosis-related regulatory genes bcl-2 and bax. Furthermore, PSNPs led to a marked rise in Caspase 3 activity in zebrafish larvae, suggesting the initiation of apoptosis. PSNPs also notably inhibited alkaline phosphatase (AKP) activity. Compared to a 4-day exposure, a 7-day exposure to PSNPs intensified abnormalities across multiple indicators. In summary, our research indicates that PSNPs cause significant oxidative stress in zebrafish larvae, resulting in apoptosis. Moreover, PSNPs disrupt the transcription of genes related to skeletal development through the bone morphogenetic protein (BMP) pathway, further disrupting skeletal development processes and ultimately resulting in skeletal deformities in zebrafish larvae. This study provides new insights into the skeletal toxicity of MNPs.
Collapse
Affiliation(s)
- Wanjing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Public Health, University of South China, Hengyang 421001, China
| | - Min Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
14
|
Pei J, Chen S, Li L, Wang K, Pang A, Niu M, Peng X, Li N, Wu H, Nie P. Impact of polystyrene nanoplastics on apoptosis and inflammation in zebrafish larvae: Insights from reactive oxygen species perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174737. [PMID: 39004365 DOI: 10.1016/j.scitotenv.2024.174737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In recent years, there has been a growing focus on the toxicity and mortality induced by nanoplastics (NPs) in aquatic organisms. However, studies investigating mechanisms underlying oxidative stress (OS), apoptosis, and inflammation induced by NPs in fish remain limited. This study observed that polystyrene NPs (PS-NPs) were accumulated into zebrafish larvae and zebrafish embryonic fibroblast (ZF4 cells), accompanied by the occurrence of pathological damage both at the cellular and tissue-organ level. Additionally, the transcriptional up-regulation of NADPH oxidases (NOXs) and subsequent excessive generation of reactive oxygen species (ROS) resulted in notable changes in the relative mRNA and protein expression levels associated with antioxidant oxidase systems in larvae. Furthermore, the study identified the impact of NPs on mitochondrial ultrastructural, resulting in mitochondrial depolarization and downregulation of mRNA expression related to the electron transport chain due to excessive ROS generation. Short-term exposure to NPs also triggered apoptosis and inflammation in zebrafish larvae, evident from significant up-regulation in mRNA expressions of proapoptotic factors and NF-κB proinflammatory signaling pathway, as well as increased transcription and protein levels of pro-inflammatory factors in larvae. Inhibition of intracellular excessive ROS effectively reduced the induction of apoptosis, NF-κB P65 nuclear migration levels, and cytokine secretion, underscoring OS as a pivotal factor throughout the process of apoptosis and inflammatory responses induced by NPs. This research significantly advances our comprehension of biological effects and underlying mechanisms of NPs in freshwater fish.
Collapse
Affiliation(s)
- Jincheng Pei
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Kailun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Anning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Mengmeng Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Xueyun Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Hongjuan Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|