1
|
Wei LY, Chen XQ, Huang L, Shan QW, Tang Q. Liver transplantation for mitochondrial DNA depletion syndrome caused by MPV17 deficiency: a case report and literature review. Front Surg 2024; 11:1348806. [PMID: 39055132 PMCID: PMC11269130 DOI: 10.3389/fsurg.2024.1348806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Objective To study the effectiveness of liver transplantation (LT) in treating mitochondrial DNA depletion syndrome (MDS) caused by the MPV17 gene variant. Case presentation A boy aged 2.8 years presented with edema of the lower limbs and abdomen, which persisted for over 10 days and was of unknown origin; this was accompanied by abnormal liver function, intractable hypoglycemia, and hyperlactatemia. During the second week of onset, he developed acute-on-chronic liver failure and was diagnosed with MDS due to homozygous variant c.293C>T in the MPV17 gene. Subsequently, he underwent LT from a cadaveric donor. At follow-up after 15 months, his liver function was found to be normal, without any symptoms. Additionally, a literature review was performed that included MDS patients with the MPV17 variant who underwent LT. The results demonstrated that the survival rates for MDS patients who underwent LT were 69.5%, 38.6%, 38.6%, and 38.6% at 1-year, 5-year, 10-year, and 20-year intervals, respectively. Sub-group analyses revealed the survival rate of MDS patients with isolated liver disease (83.33%, 5/6) was higher than that of hepatocerebral MDS patients (44.44%, 8/18). Fifteen variants were identified in the MPV17 gene, and patients with the c.293C>T (p.P98l) variant exhibited the highest survival rate. Conclusion Hepatocerebral MDS patients without neurological symptoms may benefit from LT.
Collapse
Affiliation(s)
- Liu-Yuan Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatrics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou Worker's Hospital, Liuzhou, China
| | - Xiu-Qi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qing-Wen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qing Tang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
3
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
4
|
Jacinto S, Guerreiro P, de Oliveira RM, Cunha-Oliveira T, Santos MJ, Grazina M, Rego AC, Outeiro TF. MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile. Front Cell Neurosci 2021; 15:641264. [PMID: 33815063 PMCID: PMC8011494 DOI: 10.3389/fncel.2021.641264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/08/2021] [Indexed: 02/03/2023] Open
Abstract
Mutations in the MPV17 gene are associated with hepatocerebral form of mitochondrial depletion syndrome. The mechanisms through which MPV17 mutations cause respiratory chain dysfunction and mtDNA depletion is still unclear. The MPV17 gene encodes an inner membrane mitochondrial protein that was recently described to function as a non-selective channel. Although its exact function is unknown, it is thought to be important in the maintenance of mitochondrial membrane potential (ΔΨm). To obtain more information about the role of MPV17 in human disease, we investigated the effect of MPV17 knockdown and of selected known MPV17 mutations associated with MPV17 disease in vitro. We used different approaches in order to evaluate the cellular consequences of MPV17 deficiency. We found that lower levels of MPV17 were associated with impaired mitochondrial respiration and with a quiescent energetic metabolic profile. All the mutations studied destabilized the protein, resulting in reduced protein levels. We also demonstrated that different mutations caused different cellular abnormalities, including increased ROS production, decreased oxygen consumption, loss of ΔΨm, and mislocalization of MPV17 protein. Our study provides novel insight into the molecular effects of MPV17 mutations and opens novel possibilities for testing therapeutic strategies for a devastating group of disorders.
Collapse
Affiliation(s)
- Sandra Jacinto
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Serviço de Neurologia Pediátrica, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central-EPE, Lisboa, Portugal
| | - Patrícia Guerreiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Switch Laboratory, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Katholiek Universiteit (KU), Leuven, Belgium
| | - Rita Machado de Oliveira
- CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | - Maria João Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Manuela Grazina
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
5
|
Della Pepa G, Vetrani C, Lupoli R, Massimino E, Lembo E, Riccardi G, Capaldo B. Uncooked cornstarch for the prevention of hypoglycemic events. Crit Rev Food Sci Nutr 2021; 62:3250-3263. [PMID: 33455416 DOI: 10.1080/10408398.2020.1864617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hypoglycemia is a pathological condition characterized by a low plasma glucose concentration associated with typical autonomic and/or neuroglycopenic symptoms, and resolution of these symptoms with carbohydrate consumption. Hypoglycemia is quite common in clinical practice, particularly in insulin-treated patients with diabetes and in other inherited or acquired conditions involving the regulation of glucose metabolism. Beyond symptoms that might strongly affect the quality of life, hypoglycemia can lead to short- and long-term detrimental consequences for health. Hypoglycemia can be prevented by appropriate changes in dietary habits or by relevant modifications of the drug treatment. Several dietary approaches based on the intake of various carbohydrate foods have been tested for hypoglycemia prevention; among them uncooked cornstarch (UCS) has demonstrated a great efficacy. In this narrative review, we have summarized the current evidence on the UCS usefulness in some conditions characterized by high hypoglycemic risk, focusing on some inherited diseases -i.e. glycogen storage diseases and other rare disorders - and acquired conditions such as type 1 diabetes, postprandial hypoglycemia consequent to esophageal-gastric or bariatric surgery, and insulin autoimmune syndrome. We also considered the possible role of UCS during endurance exercise performance. Lastly, we have discussed the dose requirement, the side effects, the limitations of UCS use, and the plausible mechanisms by which UCS could prevent hypoglycemia.
Collapse
Affiliation(s)
- Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Roberta Lupoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Elena Massimino
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Erminia Lembo
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| | - Brunella Capaldo
- Department of Clinical Medicine and Surgery, University of Naples Federico II School of Medicine and Surgery, Naples, Italy
| |
Collapse
|
6
|
Shimura M, Kuranobu N, Ogawa-Tominaga M, Akiyama N, Sugiyama Y, Ebihara T, Fushimi T, Ichimoto K, Matsunaga A, Tsuruoka T, Kishita Y, Umetsu S, Inui A, Fujisawa T, Tanikawa K, Ito R, Fukuda A, Murakami J, Kaji S, Kasahara M, Shiraki K, Ohtake A, Okazaki Y, Murayama K. Clinical and molecular basis of hepatocerebral mitochondrial DNA depletion syndrome in Japan: evaluation of outcomes after liver transplantation. Orphanet J Rare Dis 2020; 15:169. [PMID: 32703289 PMCID: PMC7379809 DOI: 10.1186/s13023-020-01441-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatocerebral mitochondrial DNA depletion syndrome (MTDPS) is a disease caused by defects in mitochondrial DNA maintenance and leads to liver failure and neurological complications during infancy. Liver transplantation (LT) remains controversial due to poor outcomes associated with extrahepatic symptoms. The purposes of this study were to clarify the current clinical and molecular features of hepatocerebral MTDPS and to evaluate the outcomes of LT in MTDPS patients in Japan. RESULTS We retrospectively assessed the clinical and genetic findings, as well as the clinical courses, of 23 hepatocerebral MTDPS patients from a pool of 999 patients who were diagnosed with mitochondrial diseases between 2007 and 2019. Causative genes were identified in 18 of 23 patients: MPV17 (n = 13), DGUOK (n = 3), POLG (n = 1), and MICOS13 (n = 1). Eight MPV17-deficient patients harbored c.451dupC and all three DGUOK-deficient patients harbored c.143-307_170del335. The most common initial manifestation was failure to thrive (n = 13, 56.5%). The most frequent liver symptom was cholestasis (n = 21, 91.3%). LT was performed on 12 patients, including nine MPV17-deficient and two DGUOK-deficient patients. Among the 12 transplanted patients, five, including one with mild intellectual disability, survived; while seven who had remarkable neurological symptoms before LT died. Five of the MPV17-deficient survivors had either c.149G > A or c.293C > T. CONCLUSIONS MPV17 was the most common genetic cause of hepatocerebral MTDPS. The outcome of LT for MTDPS was not favorable, as previously reported, however, patients harboring MPV17 mutations associated with mild phenotypes such as c.149G > A or c.293C > T, and exhibiting no marked neurologic manifestations before LT, had a better prognosis after LT.
Collapse
Affiliation(s)
- Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Naomi Kuranobu
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Minako Ogawa-Tominaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Nana Akiyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Yohei Sugiyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Tomohiro Ebihara
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Takuya Fushimi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Keiko Ichimoto
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Tomoko Tsuruoka
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shuichiro Umetsu
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Tobu Hospital, 3-6-1, Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-0012, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Tobu Hospital, 3-6-1, Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-0012, Japan
| | - Tomoo Fujisawa
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Tobu Hospital, 3-6-1, Shimosueyoshi, Tsurumi-ku, Yokohama, Kanagawa, 230-0012, Japan
| | - Ken Tanikawa
- Department of Diagnostic Pathology, Yame General Hospital, 540-2, Takatsuka, Yame-shi, Fukuoka, 834-0034, Japan
| | - Reiko Ito
- Department of General Pediatrics and Interdisciplinary Medicine, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Jun Murakami
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama Chuo Hospital, Kawasaki 1756, Tsuyama-shi, Okayama, 708-0841, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kazuo Shiraki
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan.,Center for Intractable Diseases, Saitama Medical University Hospital, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan.
| |
Collapse
|
7
|
Mahjoub G, Habibzadeh P, Dastsooz H, Mirzaei M, Kavosi A, Jamali L, Javanmardi H, Katibeh P, Faghihi MA, Dastgheib SA. Clinical and molecular characterization of three patients with Hepatocerebral form of mitochondrial DNA depletion syndrome: a case series. BMC MEDICAL GENETICS 2019; 20:167. [PMID: 31664948 PMCID: PMC6819644 DOI: 10.1186/s12881-019-0893-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
Abstract
Background Mitochondrial DNA depletion syndromes (MDS) are clinically and phenotypically heterogeneous disorders resulting from nuclear gene mutations. The affected individuals represent a notable reduction in mitochondrial DNA (mtDNA) content, which leads to malfunction of the components of the respiratory chain. MDS is classified according to the type of affected tissue; the most common type is hepatocerebral form, which is attributed to mutations in nuclear genes such as DGUOK and MPV17. These two genes encode mitochondrial proteins and play major roles in mtDNA synthesis. Case presentation In this investigation patients in three families affected by hepatocerebral form of MDS who were initially diagnosed with tyrosinemia underwent full clinical evaluation. Furthermore, the causative mutations were identified using next generation sequencing and were subsequently validated using sanger sequencing. The effect of the mutations on the gene expression was also studied using real-time PCR. A pathogenic heterozygous frameshift deletion mutation in DGUOK gene was identified in parents of two affected patients (c.706–707 + 2 del: p.k236 fs) presenting with jaundice, impaired fetal growth, low-birth weight, and failure to thrive who died at the age of 3 and 6 months in family I. Moreover, a novel splice site mutation in MPV17 gene (c.461 + 1G > C) was identified in a patient with jaundice, muscle weakness, and failure to thrive who died due to hepatic failure at the age of 4 months. A 5-month-old infant presenting with jaundice, dark urine, poor sucking, and feeding problems was also identified to have another novel mutation in MPV17 gene leading to stop gain mutation (c.277C > T: p.(Gln93*)). Conclusions These patients had overlapping clinical features with tyrosinemia. MDS should be considered a differential diagnosis in patients presenting with signs and symptoms of tyrosinemia.
Collapse
Affiliation(s)
- Ghazale Mahjoub
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Dastsooz
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Italian Institute for Genomic Medicine (IIGM), University of Turin, Turin, Italy
| | - Malihe Mirzaei
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arghavan Kavosi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Laila Jamali
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Javanmardi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Katibeh
- Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
El-Hattab AW, Wang J, Dai H, Almannai M, Staufner C, Alfadhel M, Gambello MJ, Prasun P, Raza S, Lyons HJ, Afqi M, Saleh MAM, Faqeih EA, Alzaidan HI, Alshenqiti A, Flore LA, Hertecant J, Sacharow S, Barbouth DS, Murayama K, Shah AA, Lin HC, Wong LJC. MPV17-related mitochondrial DNA maintenance defect: New cases and review of clinical, biochemical, and molecular aspects. Hum Mutat 2018; 39:461-470. [PMID: 29282788 DOI: 10.1002/humu.23387] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatric Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Julia Wang
- Medical Scientist Training Program and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Mohammed Almannai
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Christian Staufner
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Michael J Gambello
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Saleem Raza
- Department of Pediatrics, St John Hospital and Medical Center and Wayne State University School of Medicine, Detroit, Michigan
| | - Hernando J Lyons
- Department of Pediatrics, St John Hospital and Medical Center and Wayne State University School of Medicine, Detroit, Michigan
| | - Manal Afqi
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Mohammed A M Saleh
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Hamad I Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abduljabbar Alshenqiti
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Leigh Anne Flore
- Division of Genetic, Genomic, and Metabolic Disorders, Children's Hospital of Michigan and Wayne State University, Detroit, Michigan
| | - Jozef Hertecant
- Division of Clinical Genetics and Metabolic Disorders, Pediatric Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Deborah S Barbouth
- Division of Clinical and Translational Genetics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Amit A Shah
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Henry C Lin
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1539-1555. [PMID: 28215579 DOI: 10.1016/j.bbadis.2017.02.017] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 01/12/2023]
Abstract
The maintenance of mitochondrial DNA (mtDNA) depends on a number of nuclear gene-encoded proteins including a battery of enzymes forming the replisome needed to synthesize mtDNA. These enzymes need to be in balanced quantities to function properly that is in part achieved by exchanging intramitochondrial contents through mitochondrial fusion. In addition, mtDNA synthesis requires a balanced supply of nucleotides that is achieved by nucleotide recycling inside the mitochondria and import from the cytosol. Mitochondrial DNA maintenance defects (MDMDs) are a group of diseases caused by pathogenic variants in the nuclear genes involved in mtDNA maintenance resulting in impaired mtDNA synthesis leading to quantitative (mtDNA depletion) and qualitative (multiple mtDNA deletions) defects in mtDNA. Defective mtDNA leads to organ dysfunction due to insufficient mtDNA-encoded protein synthesis, resulting in an inadequate energy production to meet the needs of affected organs. MDMDs are inherited as autosomal recessive or dominant traits, and are associated with a broad phenotypic spectrum ranging from mild adult-onset ophthalmoplegia to severe infantile fatal hepatic failure. To date, pathogenic variants in 20 nuclear genes known to be crucial for mtDNA maintenance have been linked to MDMDs, including genes encoding enzymes of mtDNA replication machinery (POLG, POLG2, TWNK, TFAM, RNASEH1, MGME1, and DNA2), genes encoding proteins that function in maintaining a balanced mitochondrial nucleotide pool (TK2, DGUOK, SUCLG1, SUCLA2, ABAT, RRM2B, TYMP, SLC25A4, AGK, and MPV17), and genes encoding proteins involved in mitochondrial fusion (OPA1, MFN2, and FBXL4).
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Ghosh A, Banerjee I, Morris AAM. Recognition, assessment and management of hypoglycaemia in childhood. Arch Dis Child 2016; 101:575-580. [PMID: 26718813 DOI: 10.1136/archdischild-2015-308337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023]
Abstract
Hypoglycaemia is frequent in children and prompt management is required to prevent brain injury. In this article we will consider hypoglycaemia in children after the neonatal period. The most common causes are diabetes mellitus and idiopathic ketotic hypoglycaemia (IKH) but a number of endocrine disorders and inborn errors of metabolism (IEMs) need to be excluded. Elucidation of the diagnosis relies primarily on investigations during a hypoglycaemic episode but may also involve biochemical tests between episodes, dynamic endocrine tests and molecular genetics. Specific treatment such as cortisol replacement and pancreatic surgery may be required for endocrine causes of hypoglycaemia, such as adrenal insufficiency and congenital hyperinsulinism. In contrast, in IKH and most IEMs, hypoglycaemia is prevented by limiting the duration of fasting and maintaining a high glucose intake during illnesses.
Collapse
Affiliation(s)
- Arunabha Ghosh
- Paediatric Inherited Metabolic Disease, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Indraneel Banerjee
- Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew A M Morris
- Paediatric Inherited Metabolic Disease, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| |
Collapse
|
11
|
Choi YR, Hong YB, Jung SC, Lee JH, Kim YJ, Park HJ, Lee J, Koo H, Lee JS, Jwa DH, Jung N, Woo SY, Kim SB, Chung KW, Choi BO. A novel homozygous MPV17 mutation in two families with axonal sensorimotor polyneuropathy. BMC Neurol 2015; 15:179. [PMID: 26437932 PMCID: PMC4595119 DOI: 10.1186/s12883-015-0430-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Background Mutations in MPV17 cause the autosomal recessive disorder mitochondrial DNA depletion syndrome 6 (MTDPS6), also called Navajo neurohepatopathy (NNH). Clinical features of MTDPS6 is infantile onset of progressive liver failure with seldom development of progressive neurologic involvement. Methods Whole exome sequencing (WES) was performed to isolate the causative gene of two unrelated neuropathy patients (9 and 13 years of age) with onset of the syndrome. Clinical assessments and biochemical analysis were performed. Results A novel homozygous mutation (p.R41Q) in MPV17 was found by WES in both patients. Both showed axonal sensorimotor polyneuropathy without liver and brain involvement, which is neurophysiologically similar to axonal Charcot-Marie-Tooth disease (CMT). A distal sural nerve biopsy showed an almost complete loss of the large and medium-sized myelinated fibers compatible with axonal neuropathy. An in vitro assay using mouse motor neuronal cells demonstrated that the abrogation of MPV17 significantly affected cell integrity. In addition, the expression of the mutant protein affected cell proliferation. These results imply that both the loss of normal function of MPV17 and the gain of detrimental effects of the mutant protein might affect neuronal function. Conclusion We report a novel homozygous mutation in MPV17 from two unrelated patients harboring axonal sensorimotor polyneuropathy without hepatoencephalopathy. This report expands the clinical spectrum of diseases caused by mutations of MPV17, and we recommend MPV17 gene screening for axonal peripheral neuropathies. Electronic supplementary material The online version of this article (doi:10.1186/s12883-015-0430-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Ri Choi
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea.
| | - Young Bin Hong
- Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea.
| | - Sung-Chul Jung
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea.
| | - Ja Hyun Lee
- Department of Biological Science, Kongju National University, 56 Gonjudaehak-ro, Gongju, Chungnam, 314-701, Korea.
| | - Ye Jin Kim
- Department of Biological Science, Kongju National University, 56 Gonjudaehak-ro, Gongju, Chungnam, 314-701, Korea.
| | - Hyung Jun Park
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, Korea.
| | - Jinho Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 135-710, Korea.
| | - Heasoo Koo
- Department of Pathology, Ewha Womans University School of Medicine, Seoul, Korea.
| | - Ji-Su Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 135-710, Korea.
| | - Dong Hwan Jwa
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 135-710, Korea.
| | - Namhee Jung
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea.
| | - So-Youn Woo
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea.
| | - Sang-Beom Kim
- Department of Neurology, Kyung Hee University, College of Medicine, Seoul, Korea.
| | - Ki Wha Chung
- Department of Biological Science, Kongju National University, 56 Gonjudaehak-ro, Gongju, Chungnam, 314-701, Korea.
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-Gu, Seoul, 135-710, Korea. .,Neuroscience center, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
12
|
Hänninen RL, Ahonen S, Màrquez M, Myöhänen MJ, Hytönen MK, Lohi H. Canine MPV17 truncation without clinical manifestations. Biol Open 2015; 4:1253-8. [PMID: 26353863 PMCID: PMC4610228 DOI: 10.1242/bio.013870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial DNA depletion syndromes (MDS) are often serious autosomal recessively inherited disorders characterized by tissue-specific mtDNA copy number reduction. Many genes, including MPV17, are associated with the hepatocerebral form of MDS. MPV17 encodes for a mitochondrial inner membrane protein with a poorly characterized function. Several MPV17 mutations have been reported in association with a heterogeneous group of early-onset manifestations, including liver disease and neurological problems. Mpv17-deficient mice present renal and hearing defects. We describe here a MPV17 truncation mutation in dogs. We found a 1-bp insertion in exon 4 of the MPV17 gene, resulting in a frameshift and early truncation of the encoded protein. The mutation halves MPV17 expression in the lymphocytes of the homozygous dogs and the truncated protein is not translated in transfected cells. The insertion mutation is recurrent and exists in many unrelated breeds, although is highly enriched in the Boxer breed. Unexpectedly, despite the truncation of MPV17, we could not find any common phenotypes in the genetically affected dogs. The lack of observable phenotype could be due to a late onset, mild symptoms or potential tissue-specific compensatory mechanisms. This study suggests species-specific differences in the manifestation of the MPV17 defects and establishes a novel large animal model to further study MPV17 function and role in mitochondrial biology.
Collapse
Affiliation(s)
- Reetta L Hänninen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Helsinki 00014, Finland
| | - Saija Ahonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Helsinki 00014, Finland
| | - Merce Màrquez
- Banc de Teixits Animals de Catalunya (BTAC), Department Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona 08193, Spain
| | - Maarit J Myöhänen
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki 00014, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Helsinki 00014, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Helsinki 00014, Finland
| |
Collapse
|
13
|
Löllgen S, Weiher H. The role of the Mpv17 protein mutations of which cause mitochondrial DNA depletion syndrome (MDDS): lessons from homologs in different species. Biol Chem 2015; 396:13-25. [PMID: 25205723 DOI: 10.1515/hsz-2014-0198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/27/2014] [Indexed: 01/30/2023]
Abstract
Mitochondrial DNA depletion syndromes (MDDS) are severe pediatric diseases with diverse clinical manifestations. Gene mutations that underlie MDDS have been associated with alterations in the mitochondrial DNA (mtDNA) replication machinery or in mitochondrial deoxyribonucleoside triphosphate pools. However, the nuclear gene MPV17, whose mutated forms are associated with hepatocerebral MDDS in humans, plays a so-far unknown role in mtDNA maintenance. A high degree of conservation has been determined between MPV17 and its mouse (Mpv17), zebrafish (tra) and yeast (SYM1) homologs, respectively, whereby mutants in these cause very different phenotypes. While dysfunction in this gene in humans causes fatal liver disease, kidney pathology is induced in mice. Moreover, in zebrafish inactivation of the Mpv17 homolog was detected as a viable dyscolouration mutant. Knock out of the yeast ortholog results in a temperature-sensitive metabolic growth phenotype. Detailed analyses on common denominators between these different phenotypes strengthen the hypothesis that the Mpv17 protein forms a channel in the inner mitochondrial membrane, allowing small molecules - in vertebrates probably nucleotides, and in yeast probably intermediates of the tricarboxylic acid cycle - to pass. Moreover, a function modifying the pathologic manifestations of MPV17-related disease in mice has been identified. This signaling pathway remarkably involves the non-mitochondrial catalytic subunit of DNA-dependent protein kinase (PRKDC), important in double-strand break repair resistance against reactive oxygen-induced genotoxic stress.
Collapse
|
14
|
Sezer T, Ozçay F, Balci O, Alehan F. Novel deoxyguanosine kinase gene mutations in the hepatocerebral form of mitochondrial DNA depletion syndrome. J Child Neurol 2015; 30:124-8. [PMID: 24423689 DOI: 10.1177/0883073813517000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxyguanosine kinase (DGUOK) gene mutations have been identified in the hepatocerebral form of mitochondrial DNA depletion syndromes. We report here clinical and laboratory features of 3 infants with novel DGUOK gene mutations, c.130G>A (Glu44Lys), c.493G>A (Glu165Lys), and c.707+3_6delTAAG.
Collapse
Affiliation(s)
- Taner Sezer
- Division of Pediatric Neurology, Baskent University School of Medicine, Ankara, Turkey
| | - Figen Ozçay
- Division of Pediatric Gastroenterology Hepatology and Nutrition, Baskent University School of Medicine, Ankara, Turkey
| | - Oya Balci
- Division of Pediatric Gastroenterology Hepatology and Nutrition, Baskent University School of Medicine, Ankara, Turkey
| | - Füsun Alehan
- Division of Pediatric Neurology, Baskent University School of Medicine, Ankara, Turkey
| |
Collapse
|
15
|
Nogueira C, Almeida LS, Nesti C, Pezzini I, Videira A, Vilarinho L, Santorelli FM. Syndromes associated with mitochondrial DNA depletion. Ital J Pediatr 2014; 40:34. [PMID: 24708634 PMCID: PMC3985578 DOI: 10.1186/1824-7288-40-34] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/28/2014] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial dysfunction accounts for a large group of inherited metabolic disorders most of which are due to a dysfunctional mitochondrial respiratory chain (MRC) and, consequently, deficient energy production. MRC function depends on the coordinated expression of both nuclear (nDNA) and mitochondrial (mtDNA) genomes. Thus, mitochondrial diseases can be caused by genetic defects in either the mitochondrial or the nuclear genome, or in the cross-talk between the two. This impaired cross-talk gives rise to so-called nuclear-mitochondrial intergenomic communication disorders, which result in loss or instability of the mitochondrial genome and, in turn, impaired maintenance of qualitative and quantitative mtDNA integrity. In children, most MRC disorders are associated with nuclear gene defects rather than alterations in the mtDNA itself. The mitochondrial DNA depletion syndromes (MDSs) are a clinically heterogeneous group of disorders with an autosomal recessive pattern of transmission that have onset in infancy or early childhood and are characterized by a reduced number of copies of mtDNA in affected tissues and organs. The MDSs can be divided into least four clinical presentations: hepatocerebral, myopathic, encephalomyopathic and neurogastrointestinal. The focus of this review is to offer an overview of these syndromes, listing the clinical phenotypes, together with their relative frequency, mutational spectrum, and possible insights for improving diagnostic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura Vilarinho
- National Institute of Health, Genetics Department, Research and Development Unit, Porto, Portugal.
| | | |
Collapse
|
16
|
Al Sarkhy A, Al-Sunaid A, Abdullah A, AlFadhel M, Eiyad W. A novel MPV17 gene mutation in a Saudi infant causing fatal progressive liver failure. Ann Saudi Med 2014; 34:175-8. [PMID: 24894789 PMCID: PMC6074855 DOI: 10.5144/0256-4947.2014.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We describe in this report the clinical, biochemical, and molecular features of a Saudi infant with hepatocerebral MDS secondary to a novel homozygous mutation in the MPV17 gene. An automated sequencing of the nuclear MPV17 gene was performed. The coding region (7 exons) of the MPV17 gene was amplified using an M13-tagged intronic primer and screened by direct sequencing of the PCR-amplified products (GenBank Association Number NM_002437.4). The sequencing of the entire coding region and intron-exon boundaries of MPV17 gene revealed a single homozygous variant, -c.278A > C(p.Q93P), which predicts the substitution of a highly conserved amino acid. This particular sequence variant has not been previously reported as a single-nucleotide polymorphism (SNP) or pathogenic mutation. Diagnostic workup for neonatal liver disorders should include mutation screening for known genes. The new advances in molecular genetics can help clinicians establish the diagnosis in a timely fashion, which may prevent a child from undergoing invasive and expensive investigations.
Collapse
Affiliation(s)
- Ahmed Al Sarkhy
- Gastroenterology Division, Pediatric Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Areej Al-Sunaid
- Gastroenterology Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ahmad Abdullah
- Gastroenterology Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Majid AlFadhel
- Gastroenterology Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Wafa Eiyad
- Genetic division, Department of Pediatrics, King Saud Bin AbdulAziz University for Health Sciences, King AbdulAziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Bottani E, Giordano C, Civiletto G, Di Meo I, Auricchio A, Ciusani E, Marchet S, Lamperti C, d'Amati G, Viscomi C, Zeviani M. AAV-mediated liver-specific MPV17 expression restores mtDNA levels and prevents diet-induced liver failure. Mol Ther 2014; 22:10-7. [PMID: 24247928 PMCID: PMC3880585 DOI: 10.1038/mt.2013.230] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/21/2013] [Indexed: 12/23/2022] Open
Abstract
Mutations in human MPV17 cause a hepatocerebral form of mitochondrial DNA depletion syndrome (MDS) hallmarked by early-onset liver failure, leading to premature death. Liver transplantation and frequent feeding using slow-release carbohydrates are the only available therapies, although surviving patients eventually develop slowly progressive peripheral and central neuropathy. The physiological role of Mpv17, including its functional link to mitochondrial DNA (mtDNA) maintenance, is still unclear. We show here that Mpv17 is part of a high molecular weight complex of unknown composition, which is essential for mtDNA maintenance in critical tissues, i.e. liver, of a Mpv17 knockout mouse model. On a standard diet, Mpv17-/- mouse shows hardly any symptom of liver dysfunction, but a ketogenic diet (KD) leads these animals to liver cirrhosis and failure. However, when expression of human MPV17 is carried out by adeno-associated virus (AAV)-mediated gene replacement, the Mpv17 knockout mice are able to reconstitute the Mpv17-containing supramolecular complex, restore liver mtDNA copy number and oxidative phosphorylation (OXPHOS) proficiency, and prevent liver failure induced by the KD. These results open new therapeutic perspectives for the treatment of MPV17-related liver-specific MDS.
Collapse
Affiliation(s)
- Emanuela Bottani
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology IRCCS, Milan, Italy
| | - Carla Giordano
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University, Roma, Italy
| | - Gabriele Civiletto
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology IRCCS, Milan, Italy
| | - Ivano Di Meo
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology IRCCS, Milan, Italy
| | - Alberto Auricchio
- Department of Pediatrics, Division of Medical Genetics, Telethon Institute of Genetics and Medicine, “Federico II” University, Naples, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, The Foundation “Carlo Besta” Institute of Neurology IRCCS, Milan, Italy
| | - Silvia Marchet
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology IRCCS, Milan, Italy
| | - Costanza Lamperti
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology IRCCS, Milan, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University, Roma, Italy
| | - Carlo Viscomi
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology IRCCS, Milan, Italy
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology IRCCS, Milan, Italy
- MRC-Mitochondrial Biology Unit, Cambridge, UK
| |
Collapse
|
18
|
Abstract
To highlight differences between early-onset and adult mitochondrial depletion syndromes (MDS) concerning etiology and genetic background, pathogenesis, phenotype, clinical presentation and their outcome. MDSs most frequently occur in neonates, infants, or juveniles and more rarely in adolescents or adults. Mutated genes phenotypically presenting with adult-onset MDS include POLG1, TK2, TyMP, RRM2B, or PEO1/twinkle. Adult MDS manifest similarly to early-onset MDS, as myopathy, encephalo-myopathy, hepato-cerebral syndrome, or with chronic progressive external ophthalmoplegia (CPEO), fatigue, or only minimal muscular manifestations. Diagnostic work-up or treatment is not at variance from early-onset cases. Histological examination of muscle may be normal but biochemical investigations may reveal multiple respiratory chain defects. The outcome appears to be more favorable in adult than in early-onset forms. Mitochondrial depletion syndromes is not only a condition of neonates, infants, or juveniles but rarely also occurs in adults, presenting with minimal manifestations or manifestations like in the early-onset forms. Outcome of adult-onset MDS appears more favorable than early-onset MDS.
Collapse
|
19
|
Rahman S. Gastrointestinal and hepatic manifestations of mitochondrial disorders. J Inherit Metab Dis 2013; 36:659-73. [PMID: 23674168 DOI: 10.1007/s10545-013-9614-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Inherited defects of oxidative phosphorylation lead to heterogeneous, often multisystem, mitochondrial diseases. This review highlights those mitochondrial syndromes with prominent gastrointestinal and hepatic symptoms, categorised according to underlying disease mechanism. Mitochondrial encephalopathies with major gastrointestinal involvement include mitochondrial neurogastrointestinal encephalopathy and ethylmalonic encephalopathy, which are each associated with highly specific clinical and metabolic profiles. Mitochondrial hepatopathies are most frequently caused by defects of mitochondrial DNA maintenance and expression. Although mitochondrial disorders are notorious for extreme clinical, biochemical and genetic heterogeneity, there are some pathognomonic clinical and metabolic clues that suggest a specific diagnosis, and these are highlighted. An approach to diagnosis of these complex disorders is presented, together with a genetic classification, including mitochondrial DNA disorders and nuclear-encoded defects of mitochondrial DNA maintenance and translation, OXPHOS complex assembly and mitochondrial membrane lipids. Finally, supportive and experimental therapeutic options for these currently incurable diseases are reviewed, including liver transplantation, allogeneic haematopoietic stem cell transplantation and gene therapy.
Collapse
Affiliation(s)
- Shamima Rahman
- Mitochondrial Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
20
|
Clinical, biochemical, cellular and molecular characterization of mitochondrial DNA depletion syndrome due to novel mutations in the MPV17 gene. Eur J Hum Genet 2013; 22:184-91. [PMID: 23714749 PMCID: PMC3895632 DOI: 10.1038/ejhg.2013.112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are severe autosomal recessive disorders associated with decreased mtDNA copy number in clinically affected tissues. The hepatocerebral form (mtDNA depletion in liver and brain) has been associated with mutations in the POLG, PEO1 (Twinkle), DGUOK and MPV17 genes, the latter encoding a mitochondrial inner membrane protein of unknown function. The aims of this study were to clarify further the clinical, biochemical, cellular and molecular genetic features associated with MDS due to MPV17 gene mutations. We identified 12 pathogenic mutations in the MPV17 gene, of which 11 are novel, in 17 patients from 12 families. All patients manifested liver disease. Poor feeding, hypoglycaemia, raised serum lactate, hypotonia and faltering growth were common presenting features. mtDNA depletion in liver was demonstrated in all seven cases where liver tissue was available. Mosaic mtDNA depletion was found in primary fibroblasts by PicoGreen staining. These results confirm that MPV17 mutations are an important cause of hepatocerebral mtDNA depletion syndrome, and provide the first demonstration of mosaic mtDNA depletion in human MPV17 mutant fibroblast cultures. We found that a severe clinical phenotype was associated with profound tissue-specific mtDNA depletion in liver, and, in some cases, mosaic mtDNA depletion in fibroblasts.
Collapse
|
21
|
El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 2013; 10:186-98. [PMID: 23385875 PMCID: PMC3625391 DOI: 10.1007/s13311-013-0177-6] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a genetically and clinically heterogeneous group of autosomal recessive disorders that are characterized by a severe reduction in mtDNA content leading to impaired energy production in affected tissues and organs. MDS are due to defects in mtDNA maintenance caused by mutations in nuclear genes that function in either mitochondrial nucleotide synthesis (TK2, SUCLA2, SUCLG1, RRM2B, DGUOK, and TYMP) or mtDNA replication (POLG and C10orf2). MDS are phenotypically heterogeneous and usually classified as myopathic, encephalomyopathic, hepatocerebral or neurogastrointestinal. Myopathic MDS, caused by mutations in TK2, usually present before the age of 2 years with hypotonia and muscle weakness. Encephalomyopathic MDS, caused by mutations in SUCLA2, SUCLG1, or RRM2B, typically present during infancy with hypotonia and pronounced neurological features. Hepatocerebral MDS, caused by mutations in DGUOK, MPV17, POLG, or C10orf2, commonly have an early-onset liver dysfunction and neurological involvement. Finally, TYMP mutations have been associated with mitochondrial neurogastrointestinal encephalopathy (MNGIE) disease that typically presents before the age of 20 years with progressive gastrointestinal dysmotility and peripheral neuropathy. Overall, MDS are severe disorders with poor prognosis in the majority of affected individuals. No efficacious therapy is available for any of these disorders. Affected individuals should have a comprehensive evaluation to assess the degree of involvement of different systems. Treatment is directed mainly toward providing symptomatic management. Nutritional modulation and cofactor supplementation may be beneficial. Liver transplantation remains controversial. Finally, stem cell transplantation in MNGIE disease shows promising results.
Collapse
Affiliation(s)
- Ayman W. El-Hattab
- />Division of Medical Genetics, Department of Pediatrics, The Children’s Hospital, King Fahad Medical City and Faculty of Medicine, King Saud bin Abdulaziz University for Health Science, Riyadh, Kingdom of Saudi Arabia
| | - Fernando Scaglia
- />Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX 77030 USA
| |
Collapse
|
22
|
Zhou X, Kannisto K, Curbo S, von Döbeln U, Hultenby K, Isetun S, Gåfvels M, Karlsson A. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation. PLoS One 2013; 8:e58843. [PMID: 23505564 PMCID: PMC3591375 DOI: 10.1371/journal.pone.0058843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/07/2013] [Indexed: 02/06/2023] Open
Abstract
Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2−/−) that progressively loses its mtDNA. The TK2−/− mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2−/− mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2−/− mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2−/− mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2−/− mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Division of Clinical Microbiology F-68, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Kristina Kannisto
- Division of Clinical Chemistry, C1-72, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Sophie Curbo
- Division of Clinical Microbiology F-68, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
- * E-mail:
| | - Ulrika von Döbeln
- Division of Metabolic Diseases, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Center, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Sindra Isetun
- Division of Metabolic Diseases, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Mats Gåfvels
- Division of Clinical Chemistry, C1-72, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
- Division of Clinical Chemistry, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology F-68, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
23
|
Scalais E, Francois B, Schlesser P, Stevens R, Nuttin C, Martin JJ, Van Coster R, Seneca S, Roels F, Van Goethem G, Löfgren A, De Meirleir L. Polymerase gamma deficiency (POLG): clinical course in a child with a two stage evolution from infantile myocerebrohepatopathy spectrum to an Alpers syndrome and neuropathological findings of Leigh's encephalopathy. Eur J Paediatr Neurol 2012; 16:542-8. [PMID: 22342071 DOI: 10.1016/j.ejpn.2012.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/11/2012] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
AIMS Description of the clinical course in a child compound heterozygous for POLG1 mutations, neuropathology findings and results of dietary treatment based on fasting avoidance and long chain triglycerides (LCT) restriction. RESULTS At 3(1/2) months of age the patient presented with severe hypoglycemia, hyperlactatemia, moderate ketosis and hepatic failure. Fasting hypoglycemia occurred 8 h after meals. The hypoglycemia did not respond to glucagon. She was supplemented with IV glucose and/or frequent feedings, but developed liver insufficiency which was reversed by long-chain triglyceride (LCT) restriction. Alpha-foeto-protein (AFP) levels were elevated and returned to low values after dietary treatment. Liver biopsy displayed cirrhosis, bile ductular proliferation, steatosis, isolated complex IV defect in part of the liver mitochondria, and mitochondrial DNA depletion (27% of control values). Two heterozygous mutations (p. [Ala467Thr] + p. [Gly848Ser]) were found in the POLG1 gene. At 3 years of age she progressively developed refractory mixed type seizures including a focal component and psychomotor regression which fulfilled the criteria of Alpers syndrome (AS) although the initial presentation was compatible with infantile myocerebrohepatopathy spectrum (MCHS). She died at 5 years of age of respiratory insufficiency. Neuropathologic investigation revealed lesions in the right striatal area and the inferior colliculi typical for Leigh's encephalopathy. CONCLUSION The present patient showed an evolution from infantile MCHS to AS, and dietary treatment seemed to slow the progression of liver failure. In spite of the late clinical features of AS, it extends the neuropathological spectrum of AS and polymerase gamma deficiency (POLG) to Leigh syndrome lesions.
Collapse
Affiliation(s)
- Emmanuel Scalais
- Division of Paediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
AlSaman A, Tomoum H, Invernizzi F, Zeviani M. Hepatocerebral form of mitochondrial DNA depletion syndrome due to mutation in MPV17 gene. Saudi J Gastroenterol 2012; 18:285-9. [PMID: 22824774 PMCID: PMC3409892 DOI: 10.4103/1319-3767.98439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial DNA depletion syndromes (MDSs) are autosomal recessive diseases characterized by a severe decrease in mitochondrial DNA content leading to dysfunction of the affected organ. Autosomal recessive mutations in MPV17 have been identified in the hepatocerebral form of MDS. We describe the clinical features, biochemical and molecular results of a Saudi infant with a new mutation of MPV17 and compared the features to those of previously reported cases. We stress the importance of such rare cases particularly in countries with high consanguineous marriage rate.
Collapse
Affiliation(s)
- Abdulaziz AlSaman
- Department of Pediatric Neurology, King Fahad Medical City, Riyadh, Saudi Arabia.
| | - Hoda Tomoum
- Department of Pediatric Neurology, King Fahad Medical City, Riyadh, Saudi Arabia,,Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Federica Invernizzi
- Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Milano, Italy
| |
Collapse
|
25
|
Abstract
Mitochondrial disorders are a group of diseases traditionally ascribed to defects of the respiratory chain, which is the only metabolic pathway in the cell that is under the control of the two separate genetic systems, the mitochondrial genome (mtDNA) and the nuclear genome (nDNA). Therefore the genetic classification of the primary mitochondrial diseases distinguishes disorders due to mutations in mtDNA, which are sporadic or maternal inherited, from disorders due to mutations in nDNA, which are governed by the stricter rules of mendelian genetics. Pathological alterations of mtDNA fall into two main categories: primary mutations of mitochondrial DNA (point mutations and rearrangements) and mtDNA perturbation, due to mutations in nuclear genes whose products are involved in mtDNA maintenance or replication. This article will focus on the primary mitochondrial DNA mutations and mtDNA depletion syndromes related to neonatal-infant human pathology.
Collapse
Affiliation(s)
- A Spinazzola
- MRC, Mitochondrial Biology Unit, Wellcome Trust, MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Mitochondrial diseases are individually uncommon, but collectively pose a significant burden on human health. Primary mitochondrial disease is caused by defects in the mitochondrial DNA-encoded genes or in nuclear genes whose products are imported into the mitochondrion. Great strides have been made in determining the cause of mitochondrial disorders, but the clinical ability to diagnose these conditions lags behind because of phenotypic overlap between distinct genetic entities and the complexity and invasiveness of standard diagnostic testing. In this review, we evaluate new findings in mitochondrial genetics, recent developments in mitochondrial disease diagnostic testing, and emerging ideas for mitochondrial disease therapies. RECENT FINDINGS Clinical cohort studies have revealed important themes in patient care relative to manifestations of mitochondrial disease. Significant strides have also been made toward creating embryos free from the risk of maternally inherited mitochondrial DNA-based disease. Several new genetic causes of both nuclear and mitochondrial DNA-based diseases have been identified in the past year. In addition, novel insights have emerged from basic studies of mitochondrial biology that hold promise for the development of targeted mitochondrial disease therapies. SUMMARY Research on mitochondrial biology and disease continues to improve the clinical capacity to diagnose the heterogeneous group of mitochondrial diseases that afflict the pediatric population. This research also provides a framework for future approaches to devise effective mitochondrial disease therapies.
Collapse
Affiliation(s)
- Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
27
|
Navarro-Sastre A, García-Silva MT, Martín-Hernández E, Lluch M, Briones P, Ribes A. Functional splicing assay supporting that c.70 + 5G > A mutation in the MPV17 gene is disease causing. J Inherit Metab Dis 2010; 33 Suppl 3:S293-6. [PMID: 20614188 DOI: 10.1007/s10545-010-9155-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/27/2010] [Accepted: 06/07/2010] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA depletion syndrome (MDS) is a group of disorders characterized by a quantitative reduction of the mitochondrial DNA copy number and inherited as autosomal recessive traits. Patients affected by this group of diseases present with a wide variety of symptoms depending on the altered gene. MPV17 is one of the genes causing combined encephalopathy and liver failure and at present there is no treatment for this devastating disease. The gene codes for an inner mitochondrial membrane protein, but its function is still unknown, and therefore, the only way to offer prenatal diagnosis relies on DNA studies. Consequently, mutations have to be well characterized. We previously described a patient homozygous for a novel intronic mutation in the MPV17 gene (c.70 + 5G > A). Here we report the use of a functional splicing assay based on the use of minigenes to support that c.70 + 5G > A mutation is disease causing. We carried out three prenatal diagnoses on three consecutive pregnancies of the previously described family. After two affected fetuses, a healthy baby was born homozygous for the wild-type allele.
Collapse
Affiliation(s)
- Aleix Navarro-Sastre
- Sección de Errores Congénitos del Metabolismo, IBC, Servicio de Bioquímica y Genética Molecular and CIBER de Enfermedades Raras, Hospital Clínic, Edificio Helios III, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Rinaldi T, Dallabona C, Ferrero I, Frontali L, Bolotin-Fukuhara M. Mitochondrial diseases and the role of the yeast models. FEMS Yeast Res 2010; 10:1006-22. [PMID: 20946356 DOI: 10.1111/j.1567-1364.2010.00685.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nowadays, mitochondrial diseases are recognized and studied with much attention and they cannot be considered anymore as 'rare diseases'. Yeast has been an instrumental organism to understand the genetic and molecular aspects of the many roles of mitochondria within the cells. Thanks to the general conservation of mitochondrial genes and pathways between human and yeast, it can also be used to model some diseases. In this review, we focus on the most recent topics, exemplifying those for which yeast models have been especially valuable.
Collapse
Affiliation(s)
- Teresa Rinaldi
- Department of Cell and Developmental Biology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
29
|
Pronicka E, Węglewska-Jurkiewicz A, Taybert J, Pronicki M, Szymańska-Dębińska T, Karkucińska-Więckowska A, Jakóbkiewicz-Banecka J, Kowalski P, Piekutowska-Abramczuk D, Pajdowska M, Socha P, Sykut-Cegielska J, Węgrzyn G. Post mortem identification of deoxyguanosine kinase (DGUOK) gene mutations combined with impaired glucose homeostasis and iron overload features in four infants with severe progressive liver failure. J Appl Genet 2010; 52:61-6. [PMID: 21107780 PMCID: PMC3026684 DOI: 10.1007/s13353-010-0008-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/23/2010] [Accepted: 09/06/2010] [Indexed: 12/05/2022]
Abstract
Deoxyguanosine kinase deficiency (dGK) is a frequent cause of the hepatocerebral form of mitochondrial depletion syndrome (MDS). A group of 28 infants with severe progressive liver failure of unknown cause was recruited for post mortem search for deoxyguanosine kinase (DGUOK) gene mutations. Four affected patients (14% of the studied group), two homozygotes, one compound heterozygote, and one heterozygote, with DGUOK mutation found on only one allele, were identified. Three known pathogenic mutations in the DGUOK gene were detected, c.3G>A (p.Met1Ile), c.494A>T (p.Glu165Val), and c.766_767insGATT (p.Phe256X), and one novel molecular variant of unknown pathogeneity, c.813_814insTTT (p.Asn271_Thr272insPhe). Profound mitochondrial DNA depletion was confirmed in available specimens of the liver (4%, 15%, and 10% of the normal value) and in the muscle (4%, 23%, 45%, and 6%, respectively). The patients were born with low weights for gestational age and they presented adaptation trouble during the first days of life. Subsequently, liver failure developed, leading to death at the ages of 18, 6, 5.5, and 2.25 months, respectively. Mild neurological involvement was observed in all children (hypotonia, psychomotor retardation, and ptosis). Hypoglycemia (hypoketotic) and lactic acidosis were the constant laboratory findings. Elevated transferrin saturation, high ferritin, and alpha-fetoprotein levels resembled, in two cases, a neonatal hemochromatosis. Liver histopathology showed severe hepatic damage ranging from micronodular formation and cirrhosis to the total loss of liver architecture with diffuse fibrosis and neocholangiolar proliferation. Pancreatic islet cell hyperplasia with numerous confluent giant islets was found in both autopsied infants. Analysis of the natural history of the disease in our patients and the literature data led us to the following observations: (i) islet cell hyperplasia (and hyperinsulinism) may contribute to MDS-associated hypoglycemia; (ii) iron overload may additionally damage mtDNA-depleted tissues; (iii) low birth weight, adaptation trouble, and abnormal amino acids in newborn screening are frequent in dGK-deficient neonates.
Collapse
Affiliation(s)
- Ewa Pronicka
- Department of Metabolic Diseases, Endocrinology and Diabetology, Children's Memorial Health Institute (CMHI), Aleja Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Suomalainen A, Isohanni P. Mitochondrial DNA depletion syndromes--many genes, common mechanisms. Neuromuscul Disord 2010; 20:429-37. [PMID: 20444604 DOI: 10.1016/j.nmd.2010.03.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 02/07/2023]
Abstract
Mitochondrial DNA depletion syndrome has become an important cause of inherited metabolic disorders, especially in children, but also in adults. The manifestations vary from tissue-specific mtDNA depletion to wide-spread multisystemic disorders. Nine genes are known to underlie this group of disorders, and many disease genes are still unidentified. However, the disease mechanisms seem to be intimately associated with mtDNA replication and nucleotide pool regulation. We review here the current knowledge on the clinical and molecular genetic features of mitochondrial DNA depletion syndrome.
Collapse
Affiliation(s)
- Anu Suomalainen
- Research Program of Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
31
|
El-Hattab AW, Li FY, Schmitt E, Zhang S, Craigen WJ, Wong LJC. MPV17-associated hepatocerebral mitochondrial DNA depletion syndrome: new patients and novel mutations. Mol Genet Metab 2010; 99:300-8. [PMID: 20074988 DOI: 10.1016/j.ymgme.2009.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 12/27/2022]
Abstract
Mitochondrial DNA depletion syndromes are autosomal recessive diseases characterized by a severe decrease in mitochondrial DNA content leading to dysfunction of the affected organ. They are phenotypically heterogeneous and classified as myopathic, encephalomyopathic, or hepatocerebral. The latter group has been associated with mutations in TWINKLE,POLG1, DGUOK genes and recently with mutations in the MPV17 gene. MPV17 encodes a mitochondrial inner membrane protein and plays an as yet poorly understood role in mitochondrial DNA maintenance. Mutations in the MPV17 gene have been reported in patients who came to medical attention during infancy with liver failure, hypoglycemia, failure-to-thrive and neurological symptoms. In addition, a homozygous p.R50Q mutation has been identified in patients with Navajo neurohepatopathy. To date, 13 different mutations in 21 patients have been reported. We report eight new patients with seven novel mutations, including four missense mutations (c.262A>G (p.K88E), c.280G>C (p.G94R), c.293C>T (p.P98L), and c.485C>A (p.A162D)), one in-frame deletion (c.271_273del3 (p.L91del)), one splice site substitution (c.186+2T>C), and one insertion (c.22_23insC). The p.R50Q mutation, which occurs in a CpG dinucleotide, is the most common MPV17 mutation and, to date, has only been found in the homozygous state. Clinically, patients homozygous for p.R50Q or compound heterozygous for the p.G94R and p.P98L mutations have a better prognosis, with all the other mutations associated with early death if not treated by liver transplantation. Localizing the mutations within the predicted MPV17 protein structure reveals clustering of mutations in the region of the putative protein kinase C phosphorylation site.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Treatment of mitochondrial disorders (MIDs) is a challenge since there is only symptomatic therapy available and since only few randomized and controlled studies have been carried out, which demonstrate an effect of some of the symptomatic or supportive measures available. Symptomatic treatment of MIDs is based on mainstay drugs, blood transfusions, hemodialysis, invasive measures, surgery, dietary measures, and physiotherapy. Drug treatment may be classified as specific (treatment of epilepsy, headache, dementia, dystonia, extrapyramidal symptoms, Parkinson syndrome, stroke-like episodes, or non-neurological manifestations), non-specific (antioxidants, electron donors/acceptors, alternative energy sources, cofactors), or restrictive (avoidance of drugs known to be toxic for mitochondrial functions). Drugs which more frequently than in the general population cause side effects in MID patients include steroids, propofol, statins, fibrates, neuroleptics, and anti-retroviral agents. Invasive measures include implantation of a pacemaker, biventricular pacemaker, or implantable cardioverter defibrillator, or stent therapy. Dietary measures can be offered for diabetes, hyperlipidemia, or epilepsy (ketogenic diet, anaplerotic diet). Treatment should be individualized because of the peculiarities of mitochondrial genetics. Despite limited possibilities, symptomatic treatment should be offered to MID patients, since it can have a significant impact on the course and outcome.
Collapse
|
33
|
Dallabona C, Marsano RM, Arzuffi P, Ghezzi D, Mancini P, Zeviani M, Ferrero I, Donnini C. Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. Hum Mol Genet 2009; 19:1098-107. [DOI: 10.1093/hmg/ddp581] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Abstract
Mitochondrial disorders (MIDs) are an increasingly recognized condition. The second most frequently affected organ in MIDs is the central nervous system. One of the most prevalent clinical CNS manifestations of MIDs is ataxia. Ataxia may be even the dominant manifestation of a MID. This is why certain MIDs should be included in the classification of heredoataxias or at least considered as differentials of classical heredoataxias. MIDs due to mutations of the mitochondrial DNA, which develop ataxia include the MERRF, NARP, MILS, or KSS syndrome. More rarely, ataxia may be a feature of MELAS, LHON, PS, MIDD, or MSL. MIDs due to mutations of the nuclear DNA, which develop ataxia include LS, SANDO, SCAE, AHS, XSLA/A, IOSCA, MIRAS, MEMSA, or LBSL syndrome. More rarely ataxia can be found in AD-CPEO, AR-CPEO, MNGIE, DIDMOAD, CoQ-deficiency, ADOAD, DCMA, or PDC-deficiency. MIDs most frequently associated with ataxia are the non-syndromic MIDs. Syndromic and non-syndromic MIDs with ataxia should be delineated from classical heredoataxias to initiate appropriate symptomatic or supportive treatment.
Collapse
|
35
|
Kaji S, Murayama K, Nagata I, Nagasaka H, Takayanagi M, Ohtake A, Iwasa H, Nishiyama M, Okazaki Y, Harashima H, Eitoku T, Yamamoto M, Matsushita H, Kitamoto K, Sakata S, Katayama T, Sugimoto S, Fujimoto Y, Murakami J, Kanzaki S, Shiraki K. Fluctuating liver functions in siblings with MPV17 mutations and possible improvement associated with dietary and pharmaceutical treatments targeting respiratory chain complex II. Mol Genet Metab 2009; 97:292-6. [PMID: 19520594 DOI: 10.1016/j.ymgme.2009.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS To describe the clinical and biological findings of two Japanese siblings with novel MPV17 gene mutations (c.451insC/c.509C > T) manifesting hepatic mitochondrial DNA depletion syndrome. METHODS We observed these brothers and sought to determine the efficacy of treatment targeting respiratory chain complex II for the younger brother. RESULTS A 3-month-old boy had presented with profound liver dysfunction, failure to thrive, and watery diarrhea. Although he was then placed on a carbohydrate-rich diet, his liver function thereafter fluctuated greatly in association with viral infections, and rapidly deteriorated to liver failure. He underwent liver transplantation at 17 months of age but died at 22 months of age. The younger brother, aged 47 months at the time of this writing, presented with liver dysfunction from 8 months of age. His transaminase levels also fluctuated considerably fluctuations in association with viral infections. At 31 months of age, treatment with succinate and ubiquinone was initiated together with a lipid-rich diet using ketone milk. Thereafter, his transaminase levels normalized and never fluctuated, and the liver histology improved. CONCLUSIONS These cases suggested that the clinical courses of patients with MPV17 mutations are greatly influenced by viral infections and that dietary and pharmaceutical treatments targeting the mitochondrial respiratory chain complex II may be beneficial in the clinical management of MPV17 mutant patients.
Collapse
Affiliation(s)
- Shunsaku Kaji
- Department of Pediatrics, Tsuyama Central Hospital, Tsuyama-shi, Okayama 708-0841, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|