1
|
Mitani T. Functional expression mechanisms of food-derived components based on target proteins. Biosci Biotechnol Biochem 2025; 89:523-532. [PMID: 39805718 DOI: 10.1093/bbb/zbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Food-derived polyphenols and some alkaloids have reported bioactivities related to the prevention of systemic metabolic disorders such as obesity, glucose intolerance, and dyslipidemia. For food-derived components to exert their functions in vivo, it is essential to interact with biological factors such as proteins, lipids, and nucleic acids. However, it is still unclear whether bioactive components in foods express functions related to their target factors. In this review, I introduce the target proteins in which food-derived components express functions in cells.
Collapse
Affiliation(s)
- Takakazu Mitani
- Division of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| |
Collapse
|
2
|
Zhao W, Wu F, Hu R, Lou J, Chen G, Cai Z, Chen S. The Antioxidant Ergothioneine Alleviates Cisplatin-Induced Hearing Loss Through the Nrf2 Pathway. Antioxid Redox Signal 2025; 42:97-114. [PMID: 38770822 DOI: 10.1089/ars.2024.0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Aims: Cisplatin (CDDP) is a commonly used chemotherapeutic agent for treating head and neck tumors. However, there is high incidence of ototoxicity in patients treated with CDDP, which may be caused by the excessive reactive oxygen species (ROS) generation in the inner ear. Many studies have demonstrated the strong antioxidant effects of ergothioneine (EGT). Therefore, we assumed that EGT could also attenuate cisplatin-induced hearing loss (CIHL) as well. However, the protective effect and mechanism of EGT on CIHL have not been elucidated as so far. In this study, we investigated whether EGT could treat CIHL and the mechanism. Results: In our study, we confirmed the protective effect of EGT on preventing CDDP-induced toxicity both in vitro and in vivo. The auditory brainstem response threshold shift in the EGT + CDDP treatment mice was 30 dB less than that in the CDDP treatment mice. EGT suppressed production of ROS and proapoptotic proteins both in tissue and cells. By silencing nuclear factor erythroid 2-related factor 2 (Nrf2), we confirmed that EGT protected against CIHL via the Nrf2 pathway. We also found that SLC22A4 (OCTN1), an important molecule involved in transporting EGT, was expressed in the cochlea. Innovation: Our results revealed the role of EGT in the prevention of CIHL by activating Nrf2/HO-1/NQO-1 pathway, and broadened a new perspective therapeutic target of EGT. Conclusion: EGT decreased ROS production and promoted the expression of antioxidative enzymes to maintain redox homeostasis in sensory hair cells. Overall, our results indicated that EGT may serve as a novel treatment drug to attenuate CIHL. Antioxid. Redox Signal. 42, 97-114.
Collapse
Affiliation(s)
- Wenji Zhao
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Jintao Lou
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Dai S, Zou L, Wang Q. Toxicity of organophosphate flame retardant in marine rotifers: Evidence from the population, individual, biochemical and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177256. [PMID: 39477105 DOI: 10.1016/j.scitotenv.2024.177256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
Tris (1-chloro-2-propyl) phosphoric acid (TCPP), a widely used organophosphate flame retardant, has been detected in various aquatic environments due to its extensive industrial application. TCPP is well-known to negatively impact large aquatic organisms. However, the effects of TCPP on zooplankton remain poorly understood. This study explored the ecological risk of TCPP in low-trophic marine organisms by evaluating the marine rotifer Brachionus plicatilis at the molecular, biochemical, individual, and population levels after exposure to TCPP concentrations of 14.79, 44.37, and 73.94 μM. Results showed that exposure to TCPP inhibited body size, feeding behavior, life expectancy, generation time, net reproductive rate, reproduction rate, and population growth rate of rotifers, thus impairing their growth, survival, reproduction, and population expansion. Environmental concentrations surpassing 0.031 μM and 0.23 μM adversely impact rotifer reproduction and survival, respectively. Biochemically, TCPP induced oxidative stress, increased amylase activity, decreased lipase activity, and total protein content. Transcriptome analysis revealed that TCPP could induce abnormal mitochondrial function, impaired energy metabolism, programmed cell death by generating excessive reactive oxygen species, and affect cellular DNA replication. Results indicate that TCPP disrupts homeostasis in rotifers by inducing oxidative stress, significantly suppressing individual and population parameters. These findings provide critical insights for assessing the ecological risk posed by TCPP to zooplankton and the stability of aquatic ecosystems.
Collapse
Affiliation(s)
- Shiyu Dai
- Department of Ecology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Ligong Zou
- Department of Ecology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Qing Wang
- Department of Ecology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Wang L, Wang T, Zhuo Y, Xu S, Liu H, Jiang X, Lu Z, Wang X, Rao H, Wu D, Wang Y, Feng B, Sun M. Cascade Co 8FeS 8@Co 1-xS nano-enzymes trigger efficiently apoptosis-ferroptosis combination tumor therapy. J Colloid Interface Sci 2024; 662:962-975. [PMID: 38382379 DOI: 10.1016/j.jcis.2024.01.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
This study involved the preparation of Metal Organic Frameworks (MOF)-derived Co8FeS8@Co1-xS nanoenzymes with strong interfacial interactions. The nanoenzymes presented the peroxidase (POD)-like activity and the oxidation activity of reduced glutathione (GSH). Accordingly, the dual activities of Co8FeS8@Co1-xS provided a self-cascading platform for producing significant amounts of hydroxyl radical (•OH) and depleting reduced glutathione, thereby inducing tumor cell apoptosis and ferroptosis. More importantly, the Co8FeS8@Co1-xS inhibited the anti-apoptosis protein B-cell lymphoma-2 (Bcl-2) and activated caspase family proteins, which caused tumor cell apoptosis. Simultaneously, Co8FeS8@Co1-xS affected the iron metabolism-related genes such as Heme oxygenase-1 (Hmox-1), amplifying the Fenton response and promoting apoptosis and ferroptosis. Therefore, the nanoenzyme synergistically killed anti-apoptotic tumor cells carrying Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations. Furthermore, Co8FeS8@Co1-xS demonstrated good biocompatibility, which paved the way for constructing a synergistic catalytic nanoplatform for an efficient tumor treatment.
Collapse
Affiliation(s)
- Liling Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Tao Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
5
|
Cong T, Yang C, Cao Q, Ren J, Luo Y, Yuan P, Zheng B, Liu Y, Yang H, Kang W, Ou A, Li X. The Role of GNMT and MMP12 Expression in Determining TACE Efficacy: Validation at Transcription and Protein Levels. J Hepatocell Carcinoma 2024; 11:95-111. [PMID: 38250306 PMCID: PMC10800115 DOI: 10.2147/jhc.s441179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose Transarterial chemoembolization (TACE) represents a significant therapeutic modality for hepatocellular carcinoma (HCC). We aimed to develop a gene signature to accurately predict patient TACE response and explore the underlying mechanisms. Methods Three independent datasets were utilized, including GSE104580, GSE14520 and external validation from the Cancer Hospital Chinese Academy of Medical Sciences. GSE104580 was randomly partitioned into a training set and a validation set, whereas GSE14520 was categorized into a resection group and a TACE group. Logistic regression was used to develop a TACE effectiveness model. Immunohistochemistry is utilized to confirm the protein expression trends of the signature genes. Immune infiltration and functional enrichment analyses were conducted to investigate the potential underlying mechanisms. Results A 2-gene signature consisting of glycine N-methyltransferase (GNMT) and matrix metalloproteinase-12 (MMP12) was constructed, and based on this, all the patients were assigned TACE effectiveness scores and categorized into high effectiveness (HE) and low effectiveness (LE) groups. The HE group exhibited a better prognosis than the LE group in the various cohorts (p < 0.05). In the external validation set, immunohistochemistry confirmed the expression of the signature genes exhibiting an upregulated trend of GNMT in the HE group and MMP12 in the LE group, the LE group also exhibited a poorer prognosis [for overall survival (OS), HE group: 881 days vs LE group: 273 days (p < 0.05), and for progression-free survival (PFS), HE group: 458 days vs LE group: 136 days (p < 0.05)]. Multivariate analysis in all the datasets identified LE status as an independent risk factor for OS, disease-free survival (DFS) and PFS. The infiltration level of M0 macrophages and activated mast cells in the LE group was significantly higher than in the HE group. The hypoxia signaling pathway and glycolysis pathway were significantly enriched in the LE group. Conclusion The loss of GNMT and the overexpression of MMP12 may be critical factors influencing TACE efficacy.
Collapse
Affiliation(s)
- Tianhao Cong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chao Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qi Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jinrui Ren
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Pei Yuan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Liu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongcai Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wendi Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Aixin Ou
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Tu B, Fang R, Zhu Z, Chen G, Peng C, Ning R. Comprehensive analysis of arachidonic acid metabolism-related genes in diagnosis and synovial immune in osteoarthritis: based on bulk and single-cell RNA sequencing data. Inflamm Res 2023; 72:955-970. [PMID: 36995411 DOI: 10.1007/s00011-023-01720-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of degenerative-related arthritis, which can be aggravated by low-grade synovitis. It is known that arachidonic acid (AA) dysmetabolism brings OA synovitis. However, the impact of synovial AA metabolism pathway (AMP) related genes on OA remains uncovered. METHODS Here, we conducted a comprehensive analysis to explore the impact of AA metabolism genes in OA synovium. We obtained transcriptome expression profiles from three raw datasets related to OA synovium (GSE12021, GSE29746, GSE55235) and identified the hub genes of AA metabolism pathways (AMP) in OA synovium. An OA occurrence diagnostic model was constructed and validated based on the identified hub genes. Then, we explored the correlation between hub gene expression and the immune-related module using CIBERSORT and MCP-counter analysis. The unsupervised consensus clustering analysis and weighted correlation network analysis (WGCNA) were utilized to identify robust clusters of identified genes in each cohort. Moreover, the interaction between the hub genes of AMP and immune cells was elucidated through single-cell RNA (scRNA) analysis by scRNA sequencing data from GSE152815. RESULTS We found that the expression of AMP-related genes was up-regulated in OA synovium, and seven hub genes (LTC4S, PTGS2, PTGS1, MAPKAPK2, CBR1, PTGDS, and CYP2U1) were identified. The diagnostic model that combined the identified hub genes showed great clinical validity in diagnosing OA (AUC = 0.979). Moreover, significant associations were noticed between the hub genes' expression, immune cell infiltration, and inflammatory cytokine levels. The 30 OA patients were randomized and clustered into three groups using WGCNA analysis based on the hub genes, and diverse immune status was found in different clusters. Of interest, older patients were more likely to be classified into a cluster with higher levels of inflammatory cytokines IL-6 and less infiltration of immune cells. Based on the scRNA-sequencing data, we found that the hub genes had relatively higher expression in macrophages and B cells than other immune cells. Moreover, inflammation-related pathways were significantly enriched in macrophages. CONCLUSION These results suggest that AMP-related genes are closely involved in alterations of OA synovial inflammation. The transcriptional level of hub genes could serve as a potential diagnostic marker for OA.
Collapse
Affiliation(s)
- Bizhi Tu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Run Fang
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Zheng Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Guang Chen
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Cheng Peng
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China
| | - Rende Ning
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, 390 Huaihe Road, Hefei, 230061, Anhui, China.
| |
Collapse
|
7
|
Geng SL, Li HY, Zhang XS, Wang T, Zhou SP, Xu WH. CBR1 decreases protein carbonyl levels via the ROS/Akt/CREB pathway to extend lifespan in the cotton bollworm, Helicoverpa armigera. FEBS J 2022; 290:2127-2145. [PMID: 36421037 DOI: 10.1111/febs.16691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Reactive oxygen species (ROS) are considered a major cause of ageing and ageing-related diseases through protein carbonylation. Little is known about the molecular mechanisms that confer protection against ROS. Here, we observed that, compared with nondiapause-destined pupae, high protein carbonyl levels are present in the brains of diapause-destined pupae, which is a 'non-ageing' phase in the moth Helicoverpa armigera. Protein carbonyl levels respond to ROS and decrease metabolic activity to induce diapause in order to extend lifespan. However, protein carbonylation in the brains of diapause-destined pupae still occurs at a physiological level compared to young adult brains. We find that ROS activate Akt, and Akt then phosphorylates the transcription factor CREB to facilitate its nuclear import. CREB binds to the promoter of carbonyl reductase 1 (CBR1) and regulates its expression. High CBR1 levels reduce protein carbonyl levels to maintain physiological levels. This is the first report showing that the moth brain can naturally control protein carbonyl levels through a distinct ROS-Akt-CREB-CBR1 pathway to extend lifespan.
Collapse
Affiliation(s)
- Shao-Lei Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hai-Yin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Shuai Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Pei Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Zhang J, Han H, Wang L, Wang W, Yang M, Qin Y. Overcoming the therapeutic resistance of hepatomas by targeting the tumor microenvironment. Front Oncol 2022; 12:988956. [PMID: 36457492 PMCID: PMC9705776 DOI: 10.3389/fonc.2022.988956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 06/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is the third leading cause of cancer-related mortality worldwide. Multifactorial drug resistance is regarded as the major cause of treatment failure in HCC. Accumulating evidence shows that the constituents of the tumor microenvironment (TME), including cancer-associated fibroblasts, tumor vasculature, immune cells, physical factors, cytokines, and exosomes may explain the therapeutic resistance mechanisms in HCC. In recent years, anti-angiogenic drugs and immune checkpoint inhibitors have shown satisfactory results in HCC patients. However, due to enhanced communication between the tumor and TME, the effect of heterogeneity of the microenvironment on therapeutic resistance is particularly complicated, which suggests a more challenging research direction. In addition, it has been reported that the three-dimensional (3D) organoid model derived from patient biopsies is more intuitive to fully understand the role of the TME in acquired resistance. Therefore, in this review, we have focused not only on the mechanisms and targets of therapeutic resistance related to the contents of the TME in HCC but also provide a comprehensive description of 3D models and how they contribute to the exploration of HCC therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospfigital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Sheng J, Wu J, Yin X, Sun Z, Wang X, Zhang J, Tang J, Ji Y, Song J, Wei X, Wang L, Zhao Y, Zhang H, Li T, Zhang Q, Bai X, Chen L, Chen D, Liang T. Synergetic treatment of oxygen microcapsules and lenvatinib for enhanced therapy of HCC by alleviating hypoxia condition and activating anti-tumor immunity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Li D, Liang J, Yang W, Guo W, Song W, Zhang W, Wu X, He B. A distinct lipid metabolism signature of acute myeloid leukemia with prognostic value. Front Oncol 2022; 12:876981. [PMID: 35957912 PMCID: PMC9359125 DOI: 10.3389/fonc.2022.876981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy characterized by extensive genetic abnormalities that might affect the prognosis and provide potential drug targets for treatment. Reprogramming of lipid metabolism plays important roles in tumorigenesis and progression and has been newly recognized a new hallmark of malignancy, and some related molecules in the signal pathways could be prognostic biomarkers and potential therapeutic targets for cancer treatment. However, the clinical value of lipid metabolism reprogramming in AML has not been systematically explored. In this study, we aim to explore the clinical value of lipid metabolism reprogramming and develop a prognostic risk signature for AML. Methods We implemented univariate Cox regression analysis to identify the prognosis-related lipid metabolism genes, and then performed LASSO analysis to develop the risk signature with six lipid metabolism-related genes (LDLRAP1, PNPLA6, DGKA, PLA2G4A, CBR1, and EBP). The risk scores of samples were calculated and divided into low- and high-risk groups by the median risk score. Results Survival analysis showed the high-risk group hold the significantly poorer outcomes than the low-risk group. The signature was validated in the GEO datasets and displayed a robust prognostic value in the stratification analysis. Multivariate analysis revealed the signature was an independent prognostic factor for AML patients and could serve as a potential prognostic biomarker in clinical evaluation. Furthermore, the risk signature was also found to be closely related to immune landscape and immunotherapy response in AML. Conclusions Overall, we conducted a comprehensive analysis of lipid metabolism in AML and constructed a risk signature with six genes related to lipid metabolism for the malignancy, prognosis, and immune landscape of AML, and our study might contribute to better understanding in the use of metabolites and metabolic pathways as the potential prognostic biomarkers and therapeutic targets for AML.
Collapse
Affiliation(s)
- Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jiaming Liang
- Department of Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Yang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenbin Guo
- Department of Pathology, Pingtan Comprehensive Experimental Area Hospital, Fuzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- *Correspondence: Baoxia He, ; Xuan Wu,
| | - Baoxia He
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Baoxia He, ; Xuan Wu,
| |
Collapse
|
11
|
Arora T, Kausar MA, Aboelnaga SM, Anwar S, Hussain MA, Sadaf S, Kaur S, Eisa AA, Shingatgeri VMM, Najm MZ, Aloliqi AA. miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncol Rep 2022; 48:135. [PMID: 35699111 DOI: 10.3892/or.2022.8346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is recognized as the leading cause of death worldwide. The hippo signaling pathway regulates organ size by balancing cell proliferation and cell death; hence dysregulation of the hippo pathway promotes cancer‑like conditions. miRNAs are a type of non‑coding RNA that have been shown to regulate gene expression. miRNA levels are altered in various classes of cancer. Researchers have also uncovered a crosslinking between miRNAs and the hippo pathway, which has been linked to cancer. The components of the hippo pathway regulate miRNA synthesis, and various miRNAs regulate the components of the hippo pathway both positively and negatively, which can lead to cancer‑like conditions. In the present review article, the mechanism behind the hippo signaling pathway and miRNAs biogenesis and crosslinks between miRNAs and the hippo pathway, which result in cancer, shall be discussed. Furthermore, the article will cover miRNA‑related therapeutics and provide an overview of the development of resistance to anticancer drugs. Understanding the underlying processes would improve the chances of developing effective cancer treatment therapies.
Collapse
Affiliation(s)
- Taruna Arora
- Division of Reproductive Biology, Maternal & Child Health, Department of Health Research, ICMR, MOHFW, Government of India, Ansari Nagar, New Delhi 110029, India
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA‑2240, Saudi Arabia
| | | | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA‑2240, Saudi Arabia
| | - Malik Asif Hussain
- Department of Pathology, University of Hail, Hail, KSA-2240, Saudi Arabia
| | - Sadaf Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Simran Kaur
- School of Biosciences, Apeejay Stya University, Sohna, Haryana 122103, India
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina, KSA‑344, Saudi Arabia
| | | | | | - Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
12
|
Li S, Chen S, Dong Z, Song X, Li X, Huang Z, Li H, Huang L, Zhuang G, Lan R, Guo M, Li W, Saw PE, Zhang L. Concurrent silencing of TBCE and drug delivery to overcome platinum-based resistance in liver cancer. Acta Pharm Sin B 2022; 13:967-981. [PMID: 36970197 PMCID: PMC10031151 DOI: 10.1016/j.apsb.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Platinum-based chemotherapy resistance is a key factor of poor prognosis and recurrence in hepatocellular carcinoma (HCC). Herein, RNAseq analysis revealed that elevated tubulin folding cofactor E (TBCE) expression is associated with platinum-based chemotherapy resistance. High expression of TBCE contributes to worse prognoses and earlier recurrence among liver cancer patients. Mechanistically, TBCE silencing significantly affects cytoskeleton rearrangement, which in turn increases cisplatin-induced cycle arrest and apoptosis. To develop these findings into potential therapeutic drugs, endosomal pH-responsive nanoparticles (NPs) were developed to simultaneously encapsulate TBCE siRNA and cisplatin (DDP) to reverse this phenomena. NPs (siTBCE + DDP) concurrently silenced TBCE expression, increased cell sensitivity to platinum treatment, and subsequently resulted in superior anti-tumor effects both in vitro and in vivo in orthotopic and patient-derived xenograft (PDX) models. Taken together, NP-mediated delivery and the co-treatment of siTBCE + DDP proved to be effective in reversing chemotherapy resistance of DDP in multiple tumor models.
Collapse
|
13
|
Wang J, Li Y, Zhang C, Chen X, Zhu L, Luo T. A hypoxia-linked gene signature for prognosis prediction and evaluating the immune microenvironment in patients with hepatocellular carcinoma. Transl Cancer Res 2022; 10:3979-3992. [PMID: 35116696 PMCID: PMC8798548 DOI: 10.21037/tcr-21-741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022]
Abstract
Background Previous research indicates that hypoxia critically affects the initiation and progression of hepatocellular carcinoma (HCC). Nevertheless, the molecular mechanisms responsible for HCC development are poorly understood. Herein, we purposed to build a prognostic model using hypoxia-linked genes to predict patient prognosis and investigate the relationship of hypoxia with immune status in the tumor microenvironment (TME). Methods The training cohort included transcriptome along with clinical data abstracted from The Cancer Genome Atlas (TCGA). The validation cohort was abstracted from Gene Expression Omnibus (GEO). Univariate along with multivariate Cox regression were adopted to create the prediction model. We divided all patients into low- and high-risk groups using median risk scores. The estimation power of the prediction model was determined with bioinformatic tools. Results Six hypoxia-linked genes, HMOX1, TKTL1, TPI1, ENO2, LDHA, and SLC2A1, were employed to create an estimation model. Kaplan-Meier, ROC curve, and risk plot analyses demonstrated that the estimation potential of the risk model was satisfactory. Univariate along with multivariate regression data illustrated that the risk model could independently predict the overall survival (OS). A nomogram integrating the risk signature and clinicopathological characteristics showed a good potential to estimate HCC prognosis. Gene set enrichment analysis (GSEA) revealed that genes associated with cell proliferation and metabolism cascades were abundant in high-risk group. Furthermore, the signature showed a strong ability to distinguish the two groups in terms of immune status. Conclusions A prediction model for predicting HCC prognosis using six hypoxia-linked genes was designed in this study, facilitating the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Jukun Wang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Chen
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linzhong Zhu
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Natu A, Singh A, Gupta S. Hepatocellular carcinoma: Understanding molecular mechanisms for defining potential clinical modalities. World J Hepatol 2021; 13:1568-1583. [PMID: 34904030 PMCID: PMC8637668 DOI: 10.4254/wjh.v13.i11.1568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the sixth most commonly occurring cancer and costs millions of lives per year. The diagnosis of hepatocellular carcinoma (HCC) has relied on scanning techniques and serum-based markers such as α-fetoprotein. These measures have limitations due to their detection limits and asymptomatic conditions during the early stages, resulting in late-stage cancer diagnosis where targeted chemotherapy or systemic treatment with sorafenib is offered. However, the aid of conventional therapy for patients in the advanced stage of HCC has limited outcomes. Thus, it is essential to seek a new treatment strategy and improve the diagnostic techniques to manage the disease. Researchers have used the omics profile of HCC patients for sub-classification of tissues into different groups, which has helped us with prognosis. Despite these efforts, a promising target for treatment has not been identified. The hurdle in this situation is genetic and epigenetic variations in the tumor, leading to disparities in response to treatment. Understanding reversible epigenetic changes along with clinical traits help to define new markers for patient categorization and design personalized therapy. Many clinical trials of inhibitors of epigenetic modifiers (also known as epi-drugs) are in progress. Epi-drugs like azacytidine or belinostat are already approved for other cancer treatments. Furthermore, epigenetic changes have also been observed in drug-resistant HCC tumors. In such cases, combinatorial treatment of epi-drugs with systemic therapy or trans-arterial chemoembolization might re-sensitize resistant cells.
Collapse
Affiliation(s)
- Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, Maharashtra, India
| | - Anjali Singh
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, Maharashtra, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, Maharashtra, India
| |
Collapse
|
15
|
Zhou L, Yang C, Zhong W, Wang Q, Zhang D, Zhang J, Xie S, Xu M. Chrysin induces autophagy-dependent ferroptosis to increase chemosensitivity to gemcitabine by targeting CBR1 in pancreatic cancer cells. Biochem Pharmacol 2021; 193:114813. [PMID: 34673014 DOI: 10.1016/j.bcp.2021.114813] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022]
Abstract
Recent studies have verified that inducing reactive oxygen species (ROS) is one of the gemcitabine anti-tumor mechanisms of action. Human carbonyl reductase 1 (CBR1) plays an important role in protecting cells against oxidative damage. However, it is unclear whether CBR1 is involved in pancreatic cancer (PC) progression and resistance to gemcitabine. Based on the GEPIA database, we analyzed tumor tissue samples from PC patients using immunohistochemistry (IHC) and revealed that CBR1 was highly expressed in PC tissues and that this was significantly correlated with the clinicopathological features of PC. Genetic inhibition of CBR1 suppressed PC cell proliferation by regulating ROS generation. Furthermore, gemcitabine upregulated CBR1 expression, which could limit the anti-tumor activity of gemcitabine, and attenuation of CBR1 enhanced gemcitabine sensitivity in vitro and in vivo. Additionally, we report that chrysin directly binds to CBR1, which inhibited its enzymatic activity both at the molecular and cellular levels. Inhibition of CBR1 by chrysin increased cellular ROS levels and led to ROS-dependent autophagy, which resulted in the degradation of ferritin heavy polypeptide 1 (FTH1) and an increase in the intracellular free iron level that participates in ferroptosis in PC cells. Finally, our results showed that chrysin enhanced PC sensitivity to gemcitabine by inducing ferroptotic death in vitro and in vivo. Collectively, these findings indicate that CBR1 is a potential therapeutic target for PC treatment. In addition, we elucidated a novel mechanism underlying the anti-tumor effects of chrysin.
Collapse
Affiliation(s)
- Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Chen Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Weilan Zhong
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China; The Third Peoples Hospital of Qingdao, Huangdao District, Qingdao, Shandong 266400, PR China
| | - Qiaoyun Wang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Daolai Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Jiayu Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| |
Collapse
|
16
|
Devan AR, Kumar AR, Nair B, Anto NP, Muraleedharan A, Mathew B, Kim H, Nath LR. Insights into an Immunotherapeutic Approach to Combat Multidrug Resistance in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2021; 14:656. [PMID: 34358082 PMCID: PMC8308499 DOI: 10.3390/ph14070656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most lethal cancers worldwide because of its high refractoriness and multi-drug resistance to existing chemotherapies, which leads to poor patient survival. Novel pharmacological strategies to tackle HCC are based on oral multi-kinase inhibitors like sorafenib; however, the clinical use of the drug is restricted due to the limited survival rate and significant side effects, suggesting the existence of a primary or/and acquired drug-resistance mechanism. Because of this hurdle, HCC patients are forced through incomplete therapy. Although multiple approaches have been employed in parallel to overcome multidrug resistance (MDR), the results are varying with insignificant outcomes. In the past decade, cancer immunotherapy has emerged as a breakthrough approach and has played a critical role in HCC treatment. The liver is the main immune organ of the lymphatic system. Researchers utilize immunotherapy because immune evasion is considered a major reason for rapid HCC progression. Moreover, the immune response can be augmented and sustained, thus preventing cancer relapse over the post-treatment period. In this review, we provide detailed insights into the immunotherapeutic approaches to combat MDR by focusing on HCC, together with challenges in clinical translation.
Collapse
Affiliation(s)
- Aswathy R. Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Ayana R. Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India;
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Lekshmi R. Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| |
Collapse
|
17
|
Xu X, Ding Y, Pan T, Gao F, Huang X, Sun Q. CT-Guided 125I Brachytherapy in the Treatment of Hepatocellular Carcinoma Refractory to Conventional Transarterial Chemoembolization: A Pilot Study. Cancer Manag Res 2021; 13:3317-3326. [PMID: 33883943 PMCID: PMC8055363 DOI: 10.2147/cmar.s305422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To investigate the efficacy and safety of CT-guided 125I brachytherapy in the treatment of hepatocellular carcinoma (HCC) refractory to conventional transarterial chemoembolization (TACE). METHODS Nineteen patients with TACE-refractory HCC treated with CT-guided 125I brachytherapy between June 2017 and June 2020 at Jiangyin People's Hospital were enrolled in this study. In addition, we used the modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria to evaluate the treatment response after 125I brachytherapy. RESULTS Twenty-one tumours were treated with CT-guided 125I brachytherapy in nineteen patients. Twelve tumours (57.1%) showed a complete response, and a partial response was observed in seven tumours (33.3%). The six-month objective response rate was 90.5% (19/21). The adverse effects of CT-guided 125I brachytherapy were tolerable. CONCLUSION Our preliminary clinical experience demonstrated that CT-guided 125I brachytherapy was effective and well tolerated for the treatment of TACE-refractory HCC, suggesting that CT-guided 125I brachytherapy has the potential to become an effective alternative treatment for TACE-refractory HCC.
Collapse
Affiliation(s)
- Xinjian Xu
- Department of Interventional Radiology, Jiangyin People's Hospital, Jiang Yin City, Jiangsu Province, 214400, People’s Republic of China
| | - Yiwen Ding
- Department of Interventional Radiology, Jiangyin People's Hospital, Jiang Yin City, Jiangsu Province, 214400, People’s Republic of China
| | - Tianfan Pan
- Department of Interventional Radiology, Jiangyin People's Hospital, Jiang Yin City, Jiangsu Province, 214400, People’s Republic of China
| | - Feng Gao
- Department of Interventional Radiology, Jiangyin People's Hospital, Jiang Yin City, Jiangsu Province, 214400, People’s Republic of China
| | - Xiangzhong Huang
- Department of Interventional Radiology, Jiangyin People's Hospital, Jiang Yin City, Jiangsu Province, 214400, People’s Republic of China
| | - Qiulian Sun
- Department of Radiology, Zhejiangtaizhou Hospital, Taizhou City, Zhejiang Province, 317000, People’s Republic of China
| |
Collapse
|
18
|
Zhou H, Fu LX, Li L, Chen YY, Zhu HQ, Zhou JL, Lv MX, Gan RZ, Zhang XX, Liang G. The epigallocatechin gallate derivative Y6 reduces the cardiotoxicity and enhances the efficacy of daunorubicin against human hepatocellular carcinoma by inhibiting carbonyl reductase 1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113118. [PMID: 32621953 DOI: 10.1016/j.jep.2020.113118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/04/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea is the most ancient and popular beverage worldwide and its main constituent epigallocatechin-3-gallate (EGCG) has a potential role in the management of cancer through the modulation of cell signaling pathways. However, EGCG is frangible to oxidation and exhibits low lipid solubility and bioavailability, and we synthesized a derivative of EGCG in an attempt to overcome these limitations. AIM OF THE STUDY The anthracycline antibiotic daunorubicin (DNR) is a potent anticancer agent. However, its severe cardiotoxic limits its clinical efficacy. Human carbonyl reductase 1 (CBR1) is one of the most effective human reductases for producing hydroxyl metabolites and thus may be involved in increasing the cardiotoxicity and decreasing the antineoplastic effect of anthracycline antibiotics. Accordingly, in this study, we investigated the co-therapeutic effect of Y6, a novel and potent adjuvant obtained by optimization of the structure of EGCG. MATERIAL AND METHODS The cellular concentrations of DNR and its metabolite DNRol were measured by HPLC to determine the effects of EGCG and Y6 on the inhibition of DNRol formation. The cytotoxic effects of EGCG and Y6 were tested by MTT assay in order to identify non-toxic concentrations of them. To understand their antitumor and cardioprotective mechanisms, hypoxia-inducible factor-1α (HIF-1α) and CBR1 protein expression was measured via Western blotting and immunohistochemical staining while gene expression was analyzed using RT-PCR. Moreover, PI3K/AKT and MEK/ERK signaling pathways were analyzed via Western blotting. HepG2 xenograft model was used to detect the effects of EGCG and Y6 on the antitumor activity and cardiotoxicity of DNR in vivo. Finally, to obtain further insight into the interactions of Y6 and EGCG with HIF-1α and CBR1, we performed a molecular modeling. RESULTS Y6(10 μg/ml or 55 mg/kg) decreased the expression of HIF-1α and CBR1 at both the mRNA and protein levels during combined drug therapy in vitro as well as in vivo, thereby inhibiting formation of the metabolite DNRol from DNR, with the mechanisms being related to PI3K/AKT and MEK/ERK signaling inhibition. In a human carcinoma xenograft model established with subcutaneous HepG2 cells, Y6(55 mg/kg) enhanced the antitumor effect and reduced the cardiotoxicity of DNR more effectively than EGCG(40 mg/kg). CONCLUSIONS Y6 has the ability to inhibit CBR1 expression through the coordinate inhibition of PI3K/AKT and MEK/ERK signaling, then synergistically enhances the antitumor effect and reduces the cardiotoxicity of DNR.
Collapse
MESH Headings
- Alcohol Oxidoreductases/antagonists & inhibitors
- Alcohol Oxidoreductases/genetics
- Alcohol Oxidoreductases/metabolism
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/toxicity
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/toxicity
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cardiotoxicity
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Cell Proliferation/drug effects
- Daunorubicin/pharmacology
- Daunorubicin/toxicity
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Heart Rate/drug effects
- Hep G2 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Huan Zhou
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China; Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Li-Xiang Fu
- Department of Pharmacy, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Li Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yan-Yan Chen
- Department of Pharmacy, The Second People's Hospital of Qinzhou, Qinzhou, China
| | - Hong-Qing Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jin-Ling Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Mei-Xian Lv
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ri-Zhi Gan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuan-Xuan Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Gang Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| |
Collapse
|
19
|
Juengpanich S, Topatana W, Lu C, Staiculescu D, Li S, Cao J, Lin J, Hu J, Chen M, Chen J, Cai X. Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era. Int J Cancer 2020; 147:1778-1792. [PMID: 32162677 DOI: 10.1002/ijc.32970] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as one of the major causes of cancer-related mortality, despite the recent development of new therapeutic options. Regorafenib, an oral multikinase inhibitor, is the first systemic therapy that has a survival benefit for patients with advanced HCC that have a poor response to sorafenib. Even though regorafenib has been approved by the FDA, the clinical trial for regorafenib treatment does not show significant improvement in overall survival. The impaired efficacy of regorafenib caused by various resistance mechanisms, including epithelial-mesenchymal transitions, inflammation, angiogenesis, hypoxia, oxidative stress, fibrosis and autophagy, still needs to be resolved. In this review, we provide insight on regorafenib microenvironmental, molecular and cellular mechanisms and interactions in HCC treatment. The aim of this review is to help physicians select patients that would obtain the maximal benefits from regorafenib in HCC therapy.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiacheng Lin
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Méndez-Blanco C, Fondevila F, Fernández-Palanca P, García-Palomo A, van Pelt J, Verslype C, González-Gallego J, Mauriz JL. Stabilization of Hypoxia-Inducible Factors and BNIP3 Promoter Methylation Contribute to Acquired Sorafenib Resistance in Human Hepatocarcinoma Cells. Cancers (Basel) 2019; 11:E1984. [PMID: 31835431 PMCID: PMC6966438 DOI: 10.3390/cancers11121984] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 01/19/2023] Open
Abstract
Despite sorafenib effectiveness against advanced hepatocarcinoma (HCC), long-term exposure to antiangiogenic drugs leads to hypoxic microenvironment, a key contributor to chemoresistance acquisition. We aimed to study the role of hypoxia in the development of sorafenib resistance in a human HCC in vitro model employing the HCC line HepG2 and two variants with acquired sorafenib resistance, HepG2S1 and HepG2S3, and CoCl2 as hypoximimetic. Resistant cells exhibited a faster proliferative rate and hypoxia adaptive mechanisms, linked to the increased protein levels and nuclear translocation of hypoxia-inducible factors (HIFs). HIF-1α and HIF-2α overexpression was detected even under normoxia through a deregulation of its degradation mechanisms. Proapoptotic markers expression and subG1 population decreased significantly in HepG2S1 and HepG2S3, suggesting evasion of sorafenib-mediated cell death. HIF-1α and HIF-2α knockdown diminished resistant cells viability, relating HIFs overexpression with its prosurvival ability. Additionally, epigenetic silencing of Bcl-2 interacting protein 3 (BNIP3) was observed in sorafenib resistant cells under hypoxia. Demethylation of BNIP3 promoter, but not histone acetylation, restored BNIP3 expression, driving resistant cells' death. Altogether, our results highlight the involvement of HIFs overexpression and BNIP3 methylation-dependent knockdown in the development of sorafenib resistance in HCC. Targeting both prosurvival mechanisms could overcome chemoresistance and improve future therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Flavia Fondevila
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Paula Fernández-Palanca
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Andrés García-Palomo
- Service of Oncology, Complejo Asistencial Universitario de León, Calle Altos de Nava, s/n, 24001 León, Spain;
| | - Jos van Pelt
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven and University Hospitals Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (J.v.P.)
| | - Chris Verslype
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven and University Hospitals Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium; (J.v.P.)
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 León, Spain; (C.M.-B.); (F.F.); (P.F.-P.); (J.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| |
Collapse
|
21
|
Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9:15876. [PMID: 31685918 PMCID: PMC6828748 DOI: 10.1038/s41598-019-52456-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.
Collapse
Affiliation(s)
- Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.
| | - Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
22
|
Kwon JH, Lee J, Kim J, Jo YH, Kirchner VA, Kim N, Kwak BJ, Hwang S, Song GW, Lee SG, Yoon YI, Park GC, Tak E. HIF-1α regulates A2B adenosine receptor expression in liver cancer cells. Exp Ther Med 2019; 18:4231-4240. [PMID: 31772626 PMCID: PMC6862085 DOI: 10.3892/etm.2019.8081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer exhibits the fourth most common cause of cancer-associated mortality worldwide. Due to the rapid growth, solid tumors undergo severe hypoxia and produce high levels of extracellular adenosine to maintain homeostasis. A previous study indicated that the hypoxic condition in liver cancer increased hepatic adenosine, which is known to facilitate cancer survival and proliferation. Extracellular adenosine has been revealed to regulate pathological and physiological processes in cells and tissues. However, its pathophysiological role in liver cancer remains undetermined. Emerging evidence has indicated that the adenosine A2B receptor promotes the progression of liver cancer. Therefore, it was hypothesized that HIF-1α is a transcriptional regulator of A2B in human liver cancer. The current study determined A2B expression of a number of liver cancer cell lines and performed functional studies of HIF-1α as a master transcriptional regulator of hepatic A2B signaling during hypoxic conditions. The current study aimed to identify the promoter region of A2B, which has a hypoxia response element, by performing luciferase assays. The present study demonstrated that reduced HIF-1α expression is associated with low expression of A2B, and HIF-1α overexpression is associated with A2B induction. Furthermore, the siRNA-mediated downregulation of A2B inhibited the growth and proliferation of HepG2, which is a liver cancer cell line. The relationship between HIF-1α and A2B expression was also identified in human liver cancer specimens. In conclusion, the current study indicated that A2B is induced by the HIF-1α transcriptional regulator during hypoxia, and it may be a potential pharmacologic and therapeutic target for the treatment of patients with liver cancer.
Collapse
Affiliation(s)
- Jae Hyun Kwon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jooyoung Lee
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jiye Kim
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Varvara A Kirchner
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Division of Transplantation, Department of Surgery and Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nayoung Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Bong Jun Kwak
- Division of Hepatobiliary-Pancreas Surgery and Liver Transplantation, Department of Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Young-In Yoon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Gil-Chun Park
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eunyoung Tak
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.,Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
23
|
Zhan M, Wang H, Xu SW, Yang LH, Chen W, Zhao SX, Shen H, Liu Q, Yang RM, Wang J. Variants in oxidative stress-related genes affect the chemosensitivity through Nrf2-mediated signaling pathway in biliary tract cancer. EBioMedicine 2019; 48:143-160. [PMID: 31590928 PMCID: PMC6838379 DOI: 10.1016/j.ebiom.2019.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oxidative stress and their effectors play critical roles in carcinogenesis and chemoresistance. However, the role of oxidative stress-related genes variants in biliary tract cancer (BTC) chemoresistance remains unknown. In this work, we aim to investigate oxidative stress-dependent molecular mechanisms underlying chemoresistance, and find potential biomarkers to predict chemotherapy response for BTC. METHODS Sixty-six SNPs in 21 oxidative stress-related genes were genotyped and analyzed in 367 BTC patients. Immunoblot, immunohistochemical, immunofluorescent, quantitative PCR, chromatin immunoprecipitation analysis and study of animal xenograft models were performed to discover oxidative stress-related susceptibility genes underlying chemoresistance mechanism of BTC. FINDINGS We found that 3 functional polymorphisms (CAT_rs769217, GPX4_rs4807542, and GSR_rs3779647), which were shown to affect their respective gene expression levels, modified the effect of chemotherapy on overall survival (OS). We then demonstrated that knockdown of GPX4, CAT, or GSR induced chemoresistance through elevation of ROS level and activation of Nrf2-ABCG2 pathway in BTC cell lines. Moreover, the association between Nrf2 expression and BTC prognosis is only found in patients who received chemotherapy. Knockdown of Nrf2 enhanced chemosensitivity or even eliminated postoperative recurrence in BTC xenograft mouse models. Importantly, upon chemotherapy treatment patients harboring high oxidative stress-related score received higher survival benefit from adjuvant chemotherapy compared with patients with low oxidative stress-related score. INTERPRETATION The result of our study suggests, for the first time, that the oxidative stress-related score calculated by combining variations in CAT, GPX4, and GSR or Nrf2 expression could be used for predicting the chemosensitivity of BTC patients. FUND: This work was supported by the National Science Foundation of China, Foundation of Shanghai Shen Kang Hospital Development Center, and Shanghai Outstanding Academic Leaders Plan.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sun-Wang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin-Hua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Hui Shen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui-Meng Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China.
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
24
|
Kwon JH, Lee J, Kim J, Kirchner VA, Jo YH, Miura T, Kim N, Song GW, Hwang S, Lee SG, Yoon YI, Tak E. Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/ Reperfusion Injury during Liver Transplantation. Mol Cells 2019; 42:672-685. [PMID: 31486328 PMCID: PMC6776159 DOI: 10.14348/molcells.2019.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 01/13/2023] Open
Abstract
Currently, liver transplantation is the only available remedy for patients with end-stage liver disease. Conservation of transplanted liver graft is the most important issue as it directly related to patient survival. Carbonyl reductase 1 (CBR1) protects cells against oxidative stress and cell death by inactivating cellular membrane-derived lipid aldehydes. Ischemia-reperfusion (I/R) injury during living-donor liver transplantation is known to form reactive oxygen species. Thus, the objective of this study was to investigate whether CBR1 transcription might be increased during liver I/R injury and whether such increase might protect liver against I/R injury. Our results revealed that transcription factor Nrf2 could induce CBR1 transcription in liver of mice during I/R. Pre-treatment with sulforaphane, an activator of Nrf2, increased CBR1 expression, decreased liver enzymes such as aspartate aminotransferase and alanine transaminase, and reduced I/R-related pathological changes. Using oxygenglucose deprivation and recovery model of human normal liver cell line, it was found that oxidative stress markers and lipid peroxidation products were significantly lowered in cells overexpressing CBR1. Conversely, CBR1 knockdown cells expressed elevated levels of oxidative stress proteins compared to the parental cell line. We also observed that Nrf2 and CBR1 were overexpressed during liver transplantation in clinical samples. These results suggest that CBR1 expression during liver I/R injury is regulated by transcription factor Nrf2. In addition, CBR1 can reduce free radicals and prevent lipid peroxidation. Taken together, CBR1 induction might be a therapeutic strategy for relieving liver I/R injury during liver transplantation.
Collapse
Affiliation(s)
- Jae Hyun Kwon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Jooyoung Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology; and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Jiye Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology; and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Varvara A. Kirchner
- Division of Transplantation, Department of Surgery and Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455,
USA
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| | - Takeshi Miura
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540,
Japan
| | - Nayoung Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology; and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Young-In Yoon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology; and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
- Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| |
Collapse
|
25
|
Li L, Liu Y, Li H, Guo X, He X, Geng S, Zhao H, Peng X, Shi D, Xiong B, Zhou G, Zhao Y, Zheng C, Yang X. Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization. Theranostics 2018; 8:6291-6306. [PMID: 30613298 PMCID: PMC6299701 DOI: 10.7150/thno.28845] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
Transcatheter arterial embolization (TAE) plays an important role in clinical tumor therapy by accomplishing vessel-casting embolization of tumor arteries at all levels and suppressing tumor collateral circulation and vascular re-canalization. In this study, we describe smart blood-vessel-embolic nanogels for improving the anti-tumor efficacy of TAE therapy on hepatocellular carcinoma (HCC). Methods: In this study, an in vitro model composed of two microfluidic chips was used for simulating the tumor capillary network and analyzing artery-embolization properties. Also, blood-vessel-casting embolization of renal arteries was evaluated in normal rabbits. Using a VX2 tumor-bearing rabbit model, the therapeutic efficacy of TAE on HCC was investigated for tumor growth, necrosis, and proliferation. Neovascularization and collateral circulation were evaluated by immunofluorescent detection of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and CD31 following the TAE therapy of VX2 tumor-bearing rabbits. Results: Sufficient embolization of all eight levels of micro-channels was achieved in a tumor-vessel-mimetic model with two microfluidic chips using PIBI-2240, and was further confirmed in renal arteries of normal rabbit. Effective inhibition of tumor collateral circulation and vascular re-canalization was observed in VX2 tumor-bearing rabbits due to the reduced expression levels of HIF-1α, VEGF, and CD31. Conclusions: The exceptional anti-tumor effect of PIBI-2240 observed in this study suggested that it is an excellent blood-vessel-embolic material for tumor TAE therapy.
Collapse
Affiliation(s)
- Ling Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Yiming Liu
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Han Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Xiaopeng Guo
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojun He
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shinan Geng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Xiaole Peng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
| | - Bin Xiong
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guofeng Zhou
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
- Shenzhen Institute of Huazhong University of Science and Technology, 518057, Shenzhen, P. R. China
| | - Chuansheng Zheng
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, P. R. China
| |
Collapse
|
26
|
Yun M, Choi AJ, Lee YC, Kong M, Sung JY, Kim SS, Eun YG. Carbonyl reductase 1 is a new target to improve the effect of radiotherapy on head and neck squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:264. [PMID: 30376862 PMCID: PMC6208116 DOI: 10.1186/s13046-018-0942-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
Background Human carbonyl reductase 1 (CBR1) plays major roles in protecting cells against cellular damage resulting from oxidative stress. Although CBR1-mediated detoxification of oxidative materials increased by stressful conditions including hypoxia, neuronal degenerative disorders, and other circumstances generating reactive oxide is well documented, the role of CBR1 under ionising radiation (IR) is still unclear. Methods The formalin-fixed and paraffin-embedded tissues of 85 patients with head and neck squamous cell carcinoma (HNSCC) were used to determine if CBR1 expression effects on survival of patients with treatment of radiotherapy. Subsequently colony formation assays and xenograft tumor mouse model was used to verify the relationship between CBR1 expression and radiosensitivity in HNSCC cells. Publicly-available data from The Cancer Genome Atlas (TCGA) was analysed to determine if CBR1 expression affects the survival of patients with HNSCC. To verify CBR1-mediated molecular signalling pathways, cell survival, DNA damage/repair, reactive oxygen species (ROS), cell cycle distribution and mitotic catastrophe in HNSCC cells with modulated CBR1 expression by knockdown or overexpression were measured using by colony formation assays, flow cytometry, qRT-PCR and western blot analysis. Results HNSCC patients with low CBR1 had a significantly higher survival rate than the high CBR1 expression (84.2% vs. 57.8%, p = 0.0167). Furthermore, HNSCC patients with low CBR1 expression showed a good prognosis for IR compared to patients with highly expressed CBR1. Also, we found that IR upregulated CBR1 mRNA via Nrf2 activation in HNSCC cells and patients. In vitro analysis, we found that CBR1-specific siRNA or inhibitor significantly enhanced radiosensitivity after IR, while CBR1 overexpression decreased. CBR1 inhibition by siRNA or inhibitor treatment accumulated cellular ROS leading to aberrant DNA damage repair and an increase of mitotic catastrophe. Moreover, the combination of CBR1 depletion with IR dramatically inhibited primary tumour growth in a xenograft tumor mouse model. Conclusion Our findings indicate that CBR1 has a key role in DNA damage response through regulation of IR-mediated ROS generation. Consistently, CBR1 expression is highly correlated with patient survival after and susceptibility to radiation therapy. Therefore, CBR1 inhibition with IR might be a potent therapeutic strategy for HNSCC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-0942-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miyong Yun
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Ae Jin Choi
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemun-gu, Seoul, 02774, Republic of Korea
| | - Young Chan Lee
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemun-gu, Seoul, 02774, Republic of Korea
| | - Munkyoo Kong
- Department of Radiation Oncology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Youn Sung
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Gyu Eun
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Kyung Hee University, #1, Hoegi-dong, Dongdaemun-gu, Seoul, 02774, Republic of Korea.
| |
Collapse
|
27
|
Méndez-Blanco C, Fondevila F, García-Palomo A, González-Gallego J, Mauriz JL. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med 2018; 50:1-9. [PMID: 30315182 PMCID: PMC6185986 DOI: 10.1038/s12276-018-0159-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Sorafenib, a multikinase inhibitor with antiproliferative, antiangiogenic, and proapoptotic properties, constitutes the only effective first-line drug approved for the treatment of advanced hepatocellular carcinoma (HCC). Despite its capacity to increase survival in HCC patients, its success is quite low in the long term owing to the development of resistant cells through several mechanisms. Among these mechanisms, the antiangiogenic effects of sustained sorafenib treatment induce a reduction of microvessel density, promoting intratumoral hypoxia and hypoxia-inducible factors (HIFs)-mediated cellular responses that favor the selection of resistant cells adapted to the hypoxic microenvironment. Clinical data have demonstrated that overexpressed HIF-1α and HIF-2α in HCC patients are reliable markers of a poor prognosis. Thus, the combination of current sorafenib treatment with gene therapy or inhibitors against HIFs have been documented as promising approaches to overcome sorafenib resistance both in vitro and in vivo. Because the depletion of one HIF-α subunit elevates the expression of the other HIF-α isoform through a compensatory loop, targeting both HIF-1α and HIF-2α would be a more interesting strategy than therapies that discriminate among HIF-α isoforms. In conclusion, there is a marked correlation between the hypoxic microenvironment and sorafenib resistance, suggesting that targeting HIFs is a promising way to increase the efficiency of treatment. Targeting hypoxia-inducible factors (HIFs), regulatory proteins induced by low oxygen levels, could increase the effectiveness of sorafenib, the only systemic therapy approved for advanced liver cancer. Long-term treatment with sorafenib starves tumors of oxygen, which can lead to the proliferation of cancer cells that are able to survive low oxygen levels. HIFs regulate genes involved in this adaptation and HIF levels are increased in sorafenib-resistant cells. José Mauriz at the University of León, Spain, and colleagues review recent studies on the effects of HIF inhibition on sorafenib efficacy. They conclude that HIF-1α and HIF-2α are predictive markers of sorafenib resistance and that using inhibitors of both these factors as an add-on therapy could improve patient survival. This strategy may be applicable to other types of cancer in which reduced oxygen conditions lead to drug resistance.
Collapse
Affiliation(s)
- Carolina Méndez-Blanco
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Flavia Fondevila
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Andrés García-Palomo
- Institute of Biomedicine, University of León, León, Spain.,Service of Oncology, Complejo Asistencial Universitario de León, León, Spain
| | - Javier González-Gallego
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - José L Mauriz
- Institute of Biomedicine, University of León, León, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| |
Collapse
|
28
|
Chen C, Lou T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget 2018; 8:46691-46703. [PMID: 28493839 PMCID: PMC5542303 DOI: 10.18632/oncotarget.17358] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is one of the most prevalent and lethal cancers with limited therapeutic options. Pathogenesis of this disease involves tumor hypoxia and the activation of hypoxia inducible factors. In this review, we describe the current understanding of hypoxia signaling pathway and summarize the expression, function and target genes of hypoxia inducible factors in hepatocellular carcinoma. We also highlight the recent progress in hypoxia-targeted therapeutic strategies in hepatocellular carcinoma and discuss further the future efforts for the study of hypoxia and/or hypoxia inducible factors in this deadly disease.
Collapse
Affiliation(s)
- Chu Chen
- Department of Internal Medicine, Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Tao Lou
- Department of Internal Medicine, Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, 322000, Zhejiang, China
| |
Collapse
|
29
|
Hamiditabar M, Ali M, Bolek L, Vahdati G, Tworowska I, Delpassand ES. Safety and Effectiveness of 177Lu-DOTATATE Peptide Receptor Radionuclide Therapy After Regional Hepatic Embolization in Patients With Somatostatin-Expressing Neuroendocrine Tumors. Clin Nucl Med 2018; 42:822-828. [PMID: 28832377 DOI: 10.1097/rlu.0000000000001818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Peptide receptor radionuclide therapy (PRRT) with Lu-DOTATATE is shown to be an effective therapeutic option for somatostatin-expressing neuroendocrine neoplasms. Some concerns are raised over safety of this modality in patients with a history of regional chemoembolization and radionuclide hepatic embolization (CRHE) and is cause of reluctance among some physicians for suggesting Lu-DOTATATE in this patient population. METHODS We retrospectively reviewed 143 patients with somatostatin-expressing neuroendocrine tumors who underwent Lu-DOTATATE PRRT. Statistical analysis was performed on effect of Lu-DOTATATE in patients with and without prior CRHE using resampling procedures and correlation coefficient (r). RESULTS Proportion of toxicity in patients with and without CRHE was comparable (P = 0.246). No statistically significant correlation (r) found between any toxicity and prior CRHE (r = -0.3 to -0.03) or time elapsed between embolization and the first cycle of PRRT (r = -0.59 to 0.17). Following PRRT, 76.5% of patients with CRHE experienced benefit (partial response + stable disease), whereas 23.4% experienced progressive disease. Patients with CRHE showed more stable disease (P = 0.048) and less progressive disease (P = 0.046) following PRRT compared with no CRHE. The CRHE and no-CRHE status shared same probability for developing partial response/complete response following PRRT (P = 0.50). CONCLUSIONS Treatment with Lu-DOTATATE did not show clinically or statistically significant toxicity in CRHE patients regardless of frequency of embolization or time interval between embolization and first PRRT. Results suggested a statistically significant higher response rate in patients with a history of CRHE. A prior history of CRHE is not a contraindication to subsequent PRRT.
Collapse
|
30
|
Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int 2018; 18:44. [PMID: 29568237 PMCID: PMC5859782 DOI: 10.1186/s12935-018-0538-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, accounting for almost 90% of total liver cancer burden. Surgical resection followed by adjuvant and systemic chemotherapy are the most meticulously followed treatment procedures but the complex etiology and high metastatic potential of the disease renders surgical treatment futile in majority of the cases. Another hindrance to the scenario is the acquired resistance to drugs resulting in relapse of the disease. Hence, to provide insights into development of novel therapeutic targets and diagnostic biomarkers, this review focuses on the various molecular mechanisms underlying chemoresistance in HCC. We have provided a comprehensive summary of the various strategies adopted by HCC cells, extending from apoptosis evasion, autophagy activation, drug expulsion to epigenetic transformation as modes of therapy resistance. The role of stem cells in imparting chemoresistance is also discussed. Furthermore, the review also focuses on how this knowledge might be exploited for the development of an effective, prospective therapy against HCC.
Collapse
Affiliation(s)
- K Lohitesh
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Rajdeep Chowdhury
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Sudeshna Mukherjee
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| |
Collapse
|
31
|
Guo Y, Shen Y, Xia Y, Gu J. Association between CBR1 polymorphisms and NSCLC in the Chinese population. Oncol Lett 2017; 14:6291-6297. [PMID: 29113280 DOI: 10.3892/ol.2017.6926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/12/2017] [Indexed: 11/05/2022] Open
Abstract
Carbonyl reductase 1 (CBR1) is theorized to participate in various cellular processes, such as signal transduction, apoptosis, carcinogenesis and drug resistance, and is highly expressed in certain malignancies, including lung tumors. Several studies have provided evidence that gene polymorphisms may affect susceptibility to non-small cell lung cancer (NSCLC). The present study aimed to investigate the association between the CBR1 single-nucleotide polymorphisms (SNPs) rs3787728 and rs2835267, and NSCLC in a Chinese population. The data indicated that the allele frequency in CBR1 rs3787728 was significantly different between patients with NSCLC and the controls [odds ratio (OR)=1.209; 95% confidence interval (CI)=1.013-1.442; P=0.0349], and was significantly different between male patients with NSCLC and the corresponding controls (OR=1.278; 95% CI=1.016-1.607; P=0.0358). The CBR1 rs3787728 thymine (T)/T allele homozygote was associated with an increased risk of NSCLC in all patients (OR=1.382; 95% CI=1.019-1.875; P=0.037), and patients possessing the rs3787728 T/T major allele homozygote exhibited a 1.537-fold greater risk with respect to developing lung squamous-cell carcinoma (SCC) in all patients (95% CI=1.019-2.318; P=0.0395). The CBR1 rs3787728 cytosine (C)/C allele homozygote was associated with a decreased risk of adenocarcinoma (ADC) in male patients (OR=0.633; 95% CI=0.413-0.969; P=0.0348); however, no significant association was observed in CBR1 rs2835267 between SNPs and SCC or ADC-type NSCLC. In conclusion, the results revealed that genetic polymorphisms of CBR1 rs3787728 were associated with susceptibility to NSCLC. Additional studies are required to identify the functional impact of CBR1 expression and activity in NSCLC.
Collapse
Affiliation(s)
- Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yongming Xia
- Department of Oncology, Yuyao People's Hospital of Zhejiang, Yuyao, Zhejiang 315400, P.R. China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
32
|
Shi SM, Di L. The role of carbonyl reductase 1 in drug discovery and development. Expert Opin Drug Metab Toxicol 2017; 13:859-870. [DOI: 10.1080/17425255.2017.1356820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Li Di
- Pfizer Inc., Groton, CT, USA
| |
Collapse
|
33
|
Zhu YJ, Zheng B, Wang HY, Chen L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 2017; 38:614-622. [PMID: 28344323 PMCID: PMC5457690 DOI: 10.1038/aps.2017.5] [Citation(s) in RCA: 507] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
Sorafenib is an oral multikinase inhibitor that suppresses tumor cell proliferation and angiogenesis and promotes tumor cell apoptosis. It was approved by the FDA for the treatment of advanced renal cell carcinoma in 2006, and as a unique target drug for advanced hepatocellular carcinoma (HCC) in 2007. Sorafenib can significantly extend the median survival time of patients but only by 3-5 months. Moreover, it is associated with serious adverse side effects, and drug resistance often develops. Therefore, it is of great importance to explore the mechanisms underlying sorafenib resistance and to develop individualized therapeutic strategies for coping with these problems. Recent studies have revealed that in addition to the primary resistance, several mechanisms are underlying the acquired resistance to sorafenib, such as crosstalk involving PI3K/Akt and JAK-STAT pathways, the activation of hypoxia-inducible pathways, and epithelial-mesenchymal transition. Here, we briefly describe the function of sorafenib, its clinical application, and the molecular mechanisms for drug resistance, especially for HCC patients.
Collapse
Affiliation(s)
- Yan-Jing Zhu
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
| | - Bo Zheng
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
| | - Hong-Yang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 201805, China
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 201805, China
| |
Collapse
|
34
|
Jo A, Choi TG, Jo YH, Jyothi KR, Nguyen MN, Kim JH, Lim S, Shahid M, Akter S, Lee S, Lee KH, Kim W, Cho H, Lee J, Shokat KM, Yoon KS, Kang I, Ha J, Kim SS. Inhibition of Carbonyl Reductase 1 Safely Improves the Efficacy of Doxorubicin in Breast Cancer Treatment. Antioxid Redox Signal 2017; 26:70-83. [PMID: 27357096 DOI: 10.1089/ars.2015.6457] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AIMS Doxorubicin (DOX) is a chemotherapeutic drug that is used to treat many cancers, but its use is limited by cardiotoxic side effect. Carbonyl reductase 1 (CBR1) is an NADPH-dependent oxidoreductase that reduces DOX to doxorubicinol (DOXOL), a less potent derivative that is responsible for DOX cardiotoxicity. Thus, we aimed to demonstrate that inhibition of CBR1 enhances the chemotherapeutic efficacy of DOX and attenuates cardiotoxicity. RESULTS Pharmacological or genetic inhibition of CBR1 improved the anticancer effects of DOX in preclinical models of breast cancer. RNA interference or chemical inhibition of CBR1 improved the anticancer effect of DOX in breast cancer. Moreover, CBR1 overexpression enabled breast cancer cells to obtain chemotherapeutic resistance to DOX treatment. Intriguingly, inhibition of CBR1 decreased DOX-induced cardiotoxicity in animal model. Innovation and Conclusions: Inhibition of CBR1 increases chemotherapeutic efficacy of DOX and reduces cardiotoxicity by blocking DOX reduction to DOXOL. Therefore, we offer preclinical proof-of-concept for a combination strategy to safely leverage the efficacy of doxorubicin by blunting its cardiotoxic effects that limit use of this cytotoxic agent used widely in the oncology clinic. Antioxid. Redox Signal. 26, 70-83.
Collapse
Affiliation(s)
- Ara Jo
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Tae Gyu Choi
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Yong Hwa Jo
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - K R Jyothi
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Minh Nam Nguyen
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Jin-Hwan Kim
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Sangbin Lim
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Muhammad Shahid
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Salima Akter
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Seonmin Lee
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Kyung Hye Lee
- 2 Division of Cardiology, Department of Internal Medicine, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Weon Kim
- 2 Division of Cardiology, Department of Internal Medicine, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Hyuck Cho
- 3 Department of Pathology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Juhie Lee
- 3 Department of Pathology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Kevan M Shokat
- 4 Department of Cellular and Molecular Pharmacology, University of California , San Francisco, California
| | - Kyung-Sik Yoon
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Insug Kang
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Joohun Ha
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Sung Soo Kim
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
35
|
Tak E, Jung DH, Kim SH, Park GC, Jun DY, Lee J, Jung BH, Kirchner VA, Hwang S, Song GW, Lee SG. Protective role of hypoxia-inducible factor-1α-dependent CD39 and CD73 in fulminant acute liver failure. Toxicol Appl Pharmacol 2016; 314:72-81. [PMID: 27899277 DOI: 10.1016/j.taap.2016.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Acute liver failure (ALF) is a severe life-threatening disease which usually arises in patients with-irreversible liver illnesses. Although human ectonucleotide triphosphate diphosphohydrolase-1, E-NTPDase1 (CD39) and ecto-5'-nucleotidase, Ecto5'NTase (CD73) are known to protect tissues from ALF, the expression and function of CD39 and CD73 during ALF are currently not fully investigated. We tested whether CD39 and CD73 are upregulated by hypoxia inducible factor (HIF)-1α, and improve ischemic tolerance to ALF. To test our hypothesis, liver biopsies were obtained and we found that CD39 and CD73 mRNA and proteins from human specimens were dramatically elevated in ALF. We investigated that induction of CD39 and CD73 in ALF-related with wild type mice. In contrast, deletion of cd39 and cd73 mice has severe ALF. In this study, we concluded that CD39 and CD73 are molecular targets for the development of drugs for ALF patients care.
Collapse
Affiliation(s)
- Eunyoung Tak
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hwan Jung
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seok-Hwan Kim
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil-Chun Park
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Young Jun
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooyoung Lee
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bo-Hyun Jung
- Department of Surgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Varvara A Kirchner
- Division of Transplantation, Department of Surgery and Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Tak E, Jun DY, Kim SH, Park GC, Lee J, Hwang S, Song GW, Lee SG. Upregulation of P2Y2 nucleotide receptor in human hepatocellular carcinoma cells. J Int Med Res 2016; 44:1234-1247. [PMID: 27807254 PMCID: PMC5536769 DOI: 10.1177/0300060516662135] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective To examine if hypoxia inducible factor-1α (HIF-1α) can induce the upregulation of the purinergic receptor P2Y2 (P2Y2) and thereby promote the viability of human hepatocellular carcinoma (HCC) cells under hypoxic conditions. Methods Archival HCC tumour specimens and corresponding non-cancerous tissues were examined immunohistochemically for P2Y2 protein. A series of in vitro experiments were undertaken using HCC cell lines to determine the effect of hypoxia on HIF-1α and P2Y2 levels, the effect of HIF-1α upregulation on P2Y2 levels, and the effect of P2Y2 upregulation on cell viability under hypoxic conditions. Results Human HCC specimens were positive for P2Y2. Hypoxia and upregulated HIF-1α both upregulated the P2Y2 levels in HCC cell lines. P2Y2 upregulation using plasmid transfection resulted in enhanced cell viability under hypoxia. Treatment of HepG2 cells with the selective P2Y2 antagonist MRS2312 downregulated P2Y2 and reduced cell viability in five HCC cell lines. P2Y2 knockdown reduced HepG2 cell viability under hypoxia. Conclusions These present results suggest that HCC cells upregulate P2Y2 levels during hypoxia, which in turn promotes their growth. P2Y2 could be a potential therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Eunyoung Tak
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Young Jun
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seok-Hwan Kim
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil-Chun Park
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooyoung Lee
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shin Hwang
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi-Won Song
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Gyu Lee
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Zhou S, Cao H, Zhao Y, Li X, Zhang J, Hou C, Ma Y, Wang Q. RACK1 promotes hepatocellular carcinoma cell survival via CBR1 by suppressing TNF-α-induced ROS generation. Oncol Lett 2016; 12:5303-5308. [PMID: 28105239 DOI: 10.3892/ol.2016.5339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/09/2016] [Indexed: 12/23/2022] Open
Abstract
It has been reported that intracellular accumulation of reactive oxygen species (ROS) has a significant role in tumor necrosis factor (TNF)-α-induced cell apoptosis and necrosis; however, the key molecules regulating ROS generation remain to be elucidated. The present study reports that knockdown of endogenous receptor for activated C kinase 1 (RACK1) increases the intracellular ROS level following TNF-α or H2O2 stimulation in human hepatocellular carcinoma (HCC) cells, leading to promotion of cell death. Carbonyl reductase 1 (CBR1), a ubiquitous nicotinamide adenine dinucleotide phosphate-dependent enzyme, is reported to protect cells from ROS-induced cell damage. The present study reports that RACK1 is a regulator of CBR1 that interacts with and sustains the protein stability of CBR1. Overexpression of CBR1 reverses the enhanced cell death due to RACK1 knockdown. Taken together, the results of the present study suggest that RACK1 protects HCC cells from TNF-α-induced cell death by suppressing ROS generation through interacting with and regulating CBR1.
Collapse
Affiliation(s)
- Silei Zhou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China; Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Huanling Cao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China; Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yawei Zhao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China; Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xinying Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Chunmei Hou
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| |
Collapse
|
38
|
Varatharajan S, Panetta JC, Abraham A, Karathedath S, Mohanan E, Lakshmi KM, Arthur N, Srivastava VM, Nemani S, George B, Srivastava A, Mathews V, Balasubramanian P. Population pharmacokinetics of Daunorubicin in adult patients with acute myeloid leukemia. Cancer Chemother Pharmacol 2016; 78:1051-1058. [PMID: 27738808 DOI: 10.1007/s00280-016-3166-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Chemotherapy drug resistance and relapse of the disease have been the major factors limiting the success of acute myeloid leukemia (AML) therapy. Several factors, including the pharmacokinetics (PK) of Cytarabine (Ara-C) and Daunorubicin (Dnr), could contribute to difference in treatment outcome in AML. METHODS In the present study, we evaluated the plasma PK of Dnr, the influence of genetic polymorphisms of genes involved in transport and metabolism of Dnr on the PK, and also the influence of these factors on clinical outcome. Plasma levels of Dnr and its major metabolite, Daunorubicinol (DOL), were available in 70 adult de novo AML patients. PK parameters (Area under curve (AUC) and clearance (CL)) of Dnr and DOL were calculated using nonlinear mixed-effects modeling analysis performed with Monolix. Genetic variants in ABCB1, ABCG2, CBR1, and CBR3 genes as well as RNA expression of CBR1, ABCB1, and ABCG2 were compared with Dnr PK parameters. RESULTS The AUC and CL of Dnr and DOL showed wide inter-individual variation. Patients with an exon1 variant of rs25678 in CBR1 had significantly higher plasma Dnr AUC [p = 0.05] compared to patients with wild type. Patients who achieved complete remission (CR) had significantly lower plasma Dnr AUC, Cmax, and higher CL compared to patients who did not achieve CR. CONCLUSION Further validation of these findings in a larger cohort of AML patients is warranted before establishing a therapeutic window for plasma Dnr levels and targeted dose adjustment.
Collapse
Affiliation(s)
- Savitha Varatharajan
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - John C Panetta
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ajay Abraham
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Sreeja Karathedath
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Ezhilpavai Mohanan
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Kavitha M Lakshmi
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Nancy Arthur
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Vivi M Srivastava
- Cytogenetics Unit, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Sandeep Nemani
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, Tamilnadu, 632004, India
| | | |
Collapse
|
39
|
Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature. Tumour Biol 2016; 37:14851-14861. [PMID: 27644243 DOI: 10.1007/s13277-016-5331-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) has crucial role in adapting cells to hypoxia through expression regulation of many genes. Identification of HIF-1α target genes (HIF-1α-TGs) is important for understanding the adapting mechanism. The aim of the present study was to collect known HIF-1α-TGs and identify their associated pathways. Targets and associated genomics data were retrieved using PubMed, WoS ( http://apps.webofknowledge.com/ ), HGNC ( http://www.genenames.org/ ), NCBI ( http://www.ncbi.nlm.nih.gov/ ), Ensemblv.84 ( http://www.ensembl.org/index.html ), DAVID Bioinformatics Resources ( https://david.ncifcrf.gov /), and Disease Ontology database ( http://disease-ontology.org/ ). From 51 papers, we collected 98 HIF-1α TGs found to be associated with 20 pathways, including metabolism of carbohydrates and pathways in cancer. Reanalysis of genomic coordinates of published HREs (hypoxia response elements) revealed six polymorphisms within HRE sites (HRE-SNPs): ABCG2, ACE, CA9, and CP. Due to large heterogeneity of results presentation in scientific literature, we also propose a first step towards reporting standardization of HIF-1α-target interactions consisting of ten relevant data types. Suggested minimal checklist for reporting will enable faster development of a complete catalog of HIF-1α-TGs, data sharing, bioinformatics analyses, and setting novel more targeted hypotheses. The proposed format for data standardization is not yet complete but presents a baseline for further optimization of the protocol with additional details, for example, regarding the experimental validation.
Collapse
|
40
|
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48:541-567. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemoresistance is a disturbing barrier in cancer therapy, which always results in limited therapeutic options and unfavorable prognosis. Nuclear factor E2-related factor 2 (NRF2) controls the expression of genes encoding cytoprotective enzymes and transporters that protect against oxidative stress and electrophilic injury to maintain intrinsic redox homeostasis. However, recent studies have demonstrated that aberrant activation of NRF2 due to genetic and/or epigenetic mutations in tumor contributes to the high expression of phase I and phase II drug-metabolizing enzymes, phase III transporters, and other cytoprotective proteins, which leads to the decreased therapeutic efficacy of anticancer drugs through biotransformation or extrusion during chemotherapy. Therefore, a better understanding of the role of NRF2 in regulation of these enzymes and transporters in tumors is necessary to find new strategies that improve chemotherapeutic efficacy. In this review, we summarized the recent findings about the chemoresistance-promoting role of NRF2, NRF2-regulated phase I and phase II drug-metabolizing enzymes, phase III drug efflux transporters, and other cytoprotective genes. Most importantly, the potential of NRF2 was proposed to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Xupeng Bai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Yibei Chen
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Xiangyu Hou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Min Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Jing Jin
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
41
|
Cortezon-Tamarit F, Sarpaki S, Calatayud DG, Mirabello V, Pascu SI. Applications of "Hot" and "Cold" Bis(thiosemicarbazonato) Metal Complexes in Multimodal Imaging. CHEM REC 2016; 16:1380-97. [PMID: 27149900 DOI: 10.1002/tcr.201500292] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The applications of coordination chemistry to molecular imaging has become a matter of intense research over the past 10 years. In particular, the applications of bis(thiosemicarbazonato) metal complexes in molecular imaging have mainly been focused on compounds with aliphatic backbones due to the in vivo imaging success of hypoxic tumors with PET (positron emission tomography) using (64) CuATSM [copper (diacetyl-bis(N4-methylthiosemicarbazone))]. This compound entered clinical trials in the US and the UK during the first decade of the 21(st) century for imaging hypoxia in head and neck tumors. The replacement of the ligand backbone to aromatic groups, coupled with the exocyclic N's functionalization during the synthesis of bis(thiosemicarbazones) opens the possibility to use the corresponding metal complexes as multimodal imaging agents of use, both in vitro for optical detection, and in vivo when radiolabeled with several different metallic species. The greater kinetic stability of acenaphthenequinone bis(thiosemicarbazonato) metal complexes, with respect to that of the corresponding aliphatic ATSM complexes, allows the stabilization of a number of imaging probes, with special interest in "cold" and "hot" Cu(II) and Ga(III) derivatives for PET applications and (111) In(III) derivatives for SPECT (single-photon emission computed tomography) applications, whilst Zn(II) derivatives display optical imaging properties in cells, with enhanced fluorescence emission and lifetime with respect to the free ligands. Preliminary studies have shown that gallium-based acenaphthenequinone bis(thiosemicarbazonato) complexes are also hypoxia selective in vitro, thus increasing the interest in them as new generation imaging agents for in vitro and in vivo applications.
Collapse
Affiliation(s)
| | - Sophia Sarpaki
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David G Calatayud
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
42
|
Ebert B, Kisiela M, Maser E. Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) – an in silico approach. Drug Metab Rev 2016; 48:183-217. [DOI: 10.3109/03602532.2016.1167902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
43
|
Cinci L, Luceri C, Bigagli E, Carboni I, Paccosi S, Parenti A, Guasti D, Coronnello M. Development and characterization of an in vitro model of colorectal adenocarcinoma with MDR phenotype. Cancer Med 2016; 5:1279-91. [PMID: 27016279 PMCID: PMC4924386 DOI: 10.1002/cam4.694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023] Open
Abstract
The major cause of failure in cancer chemotherapy is the development of multidrug resistance (MDR), and the characterization of biological factors involved in this response to therapy is particularly needed. A doxorubicin-resistant HCT-8/R clone was selected from sensitive parental cells and characterized analyzing several parameters (cell cycle phase distribution, apoptotic activity, expression, distribution and functionality of the P-gp efflux pump, the response to other chemotherapy agents, its ultrastructural features, invasiveness, and transcriptomic profile). HCT-8/R cells showed a peculiar S phase distribution, characterized by a single pulse of proliferation, resistance to drug-mediated apoptosis, increased expression and functionality of P-gp and overexpression of stem cell markers (CD44 and aldehyde dehydrogenase 1A2). At the ultrastructural level, HCT-8/R presented a greater cell volume and several intracytoplasmic vesicles respect to HCT-8. Moreover, the resistant clone was characterized by cross resistance to other cytotoxic drugs and a greater capacity for migration and invasion, compared to parental cells. Our data reinforce the concept that the MDR phenotype in HCT-8/R cells is multifactorial and involves multiple mechanisms, representing an interesting tool to understand the biological basis of MDR and to test strategies that overcome resistance to chemotherapy.
Collapse
Affiliation(s)
- Lorenzo Cinci
- Departments of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Cristina Luceri
- Departments of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Elisabetta Bigagli
- Departments of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Ilaria Carboni
- Diagnostic Genetics Unit, Azienda Ospedaliero Universitaria "Careggi", Largo Brambilla 5, Florence, Italy
| | - Sara Paccosi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 5, Florence, Italy
| | - Marcella Coronnello
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Viale G. Pieraccini 6, Florence, Italy
| |
Collapse
|
44
|
Detoxification of Carbonyl Compounds by Carbonyl Reductase in Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2016; 12:355-65. [DOI: 10.1007/978-3-319-28383-8_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Boušová I, Skálová L, Souček P, Matoušková P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metab Rev 2015; 47:520-33. [DOI: 10.3109/03602532.2015.1089885] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Mitani T, Ito Y, Harada N, Nakano Y, Inui H, Ashida H, Yamaji R. Resveratrol reduces the hypoxia-induced resistance to doxorubicin in breast cancer cells. J Nutr Sci Vitaminol (Tokyo) 2015; 60:122-8. [PMID: 24975222 DOI: 10.3177/jnsv.60.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is known to enhance the cytotoxicity of the anticancer drug doxorubicin. On the other hand, breast cancer MCF-7 cells acquire resistance to doxorubicin under hypoxic conditions. In this study, we investigated the effect of resveratrol on hypoxia-induced resistance to doxorubicin in MCF-7 cells. Resveratrol and its derivative 3,5-dihydroxy-4'-methoxy-trans-stilbene, but not 3,5-dimethoxy-4'-hydroxy-trans-stilbene, cancelled hypoxia-induced resistance to doxorubicin at a concentration of 10 μM. Carbonyl reductase 1 (CBR1) catalyzes the conversion of doxorubicin to its metabolite doxorubicinol, which is much less effective than doxorubicin. Hypoxia increased the expression of CBR1 at both mRNA and protein levels, and knockdown of CBR1 inhibited hypoxia-induced resistance to doxorubicin in MCF-7 cells. Knockdown of hypoxia-inducible factor (HIF)-1α repressed the hypoxia-induced expression of CBR1. Resveratrol repressed the expression of HIF-1α protein, but not HIF-1α mRNA, and decreased hypoxia-activated HIF-1 activity. Resveratrol repressed the hypoxia-induced expression of CBR1 at both mRNA and protein levels. Likewise, 3,5-dihydroxy-4'-methoxy-trans-stilbene decreased the hypoxia-induced expression of CBR1 protein, but not 3,5-dimethoxy-4'-hydroxy-trans-stilbene. Furthermore, resveratrol decreased the expression of HIF-1α protein even in the presence of the proteasome inhibitor MG132 in hypoxia. Theses results indicate that in MCF-7 cells, HIF-1α-increased CBR1 expression plays an important role in hypoxia-induced resistance to doxorubicin and that resveratrol and 3,5-dihydroxy-4'-methoxy-trans-stilbene decrease CBR1 expression by decreasing HIF-1α protein expression, perhaps through a proteasome-independent pathway, and consequently repress hypoxia-induced resistance to doxorubicin.
Collapse
Affiliation(s)
- Takakazu Mitani
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | | | | | | | | | | | | |
Collapse
|
47
|
Matsunaga T, Kezuka C, Morikawa Y, Suzuki A, Endo S, Iguchi K, Miura T, Nishinaka T, Terada T, El-Kabbani O, Hara A, Ikari A. Up-Regulation of Carbonyl Reductase 1 Renders Development of Doxorubicin Resistance in Human Gastrointestinal Cancers. Biol Pharm Bull 2015; 38:1309-19. [DOI: 10.1248/bpb.b15-00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Chihiro Kezuka
- Laboratory of Biochemistry, Gifu Pharmaceutical University
| | | | - Ayaka Suzuki
- Laboratory of Biochemistry, Gifu Pharmaceutical University
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University
| | - Takeshi Miura
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | | | | | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University
| |
Collapse
|
48
|
MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α. PLoS One 2014; 9:e115565. [PMID: 25531114 PMCID: PMC4274118 DOI: 10.1371/journal.pone.0115565] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/25/2014] [Indexed: 01/30/2023] Open
Abstract
Hypoxia is a common feature of solid tumors and an important contributor to anti-tumor drug resistance. Hypoxia inducible factor-1 (HIF-1) is one of the key mediators of the hypoxia signaling pathway, and was recently proven to be required for sorafenib resistance in hepatocarcinoma (HCC). MicroRNAs have emerged as important posttranslational regulators in HCC. It was reported that miR-338-3p levels are associated with clinical aggressiveness of HCC. However, the roles of miR-338-3p in HCC disease and resistance to its therapeutic drugs are unknown. In this study, we found that miR-338-3p was frequently down-regulated in 14 HCC clinical samples and five cell lines. Overexpression of miR-338-3p inhibited HIF-1α 3'-UTR luciferase activity and HIF-1α protein levels in HepG2, SMMC-7721, and Huh7 cells. miR-338-3p significantly reduced cell viability and induced cell apoptosis of HCC cells. Additionally, HIF-1α overexpression rescued and HIF-1α knock-down abrogated the anti-HCC activity of miR-338-3p. Furthermore, miR-338-3p sensitized HCC cells to sorafenib in vitro and in a HCC subcutaneous nude mice tumor model by inhibiting HIF-1α. Collectively, miR-338-3p inhibits HCC tumor growth and sensitizes HCC cells to sorafenib by down-regulating HIF-1α. Our data indicate that miR-338-3p could be a potential candidate for HCC therapeutics.
Collapse
|
49
|
Cheng J, Gao F, Chen X, Wu J, Xing C, Lv Z, Xu W, Xie Q, Wu L, Ye S, Xie H, Zheng S, Zhou L. Prohibitin-2 promotes hepatocellular carcinoma malignancy progression in hypoxia based on a label-free quantitative proteomics strategy. Mol Carcinog 2014; 53:820-832. [PMID: 23661548 DOI: 10.1002/mc.22040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 02/05/2023]
Abstract
The rapid growth of hepatocellular carcinoma (HCC) leading to tumor hypoxia is a common pathological phenomenon. Meanwhile, tumor hypoxia can promote a change in the biological properties of tumor cells. It may enhance the survival of tumor cells under stress conditions, resulting in resistance to apoptosis and angiogenesis. The moleculars that could modulate the malignant phenotypes of HCC cells remain largely unknown. Based on label-free quantitative proteomic data, we found a significant upregulation of prohibitin-2 (PHB2) in HCC tissues. Treatment of hepatoma cells with small interfering RNAs against PHB2 suppressed cell growth and colony formation, led to G1 phase arrest and sensitized HCC cells to apoptosis. Moreover, inhibition of PHB2 expression dramatically repressed the ability of HCC cells to adapt to hypoxic microenvironments and resist chemotherapy-induced apoptosis. Thus, PHB2 in HCC supports the development and progression of hepatocellular malignancy to hypoxia, and implicates the potential antagonist function of PHB2 in transarterial chemoembolization treatment.
Collapse
Affiliation(s)
- Jun Cheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R., China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang University, Hangzhou, P.R., China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xie ZB, Ma L, Wang XB, Bai T, Ye JZ, Zhong JH, Li LQ. Transarterial embolization with or without chemotherapy for advanced hepatocellular carcinoma: a systematic review. Tumour Biol 2014; 35:8451-8459. [PMID: 25038916 DOI: 10.1007/s13277-014-2340-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/10/2014] [Indexed: 01/27/2023] Open
Abstract
Transarterial chemoembolization (TACE) and transarterial embolization (TAE) are commonly used as first-line treatment for patients with advanced hepatocellular carcinoma (HCC) and have been shown to improve overall survival (OS). However, there remain concerns regarding whether the benefit of the prolonged survival achieved with TACE is superior to the maximum cytotoxic effect of the associated chemotherapeutics. This systematic review aims to compare the efficiency of TACE and TAE based on randomized controlled trials (RCTs). MEDLINE, EMBASE, the Cochrane library, the Science Citation Index, and the Chinese National Knowledge Infrastructure databases were systematically searched through the end of April 2014. Risk ratios (RRs) and 95 % confidence intervals (CIs) were calculated. Meta-analysis of the RCTs was conducted to estimate the mortality and survival rate between the TACE and TAE groups. The analysis included five RCTs involving 582 patients. For all-cause mortality, TACE did not result in a statistically significant reduced incidence of adverse events than TAE with a pooled RR of 1.21 (95 % CI = 0.74-1.98, P = 0.16). In addition, 6-, 9-, 12-, 24-, and 36-month OS of the TACE group were not significantly higher than that of the TAE group (all P > 0.05). Interestingly, TACE resulted in a significantly higher rate of advanced events. The efficacy of TACE is not superior to TAE in advanced HCC patients. Moreover, TACE was associated with an increased rate of adverse events than TAE. Improved strategies are needed to reduce the risk of post-TACE complications.
Collapse
Affiliation(s)
- Zhi-Bo Xie
- Hepatobiliary Surgery Department, Affiliated Tumor Hospital of Guangxi Medical University, He Di Rd. #71, Nanning, 530021, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|