1
|
Ni Y, Huang M, Chen S, Wang S, Chen J. Integrins and NAFLD-associated liver diseases: clinical associations, pathophysiological mechanisms and pharmacological implications. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1573-1583. [PMID: 40384047 PMCID: PMC11659783 DOI: 10.3724/abbs.2024149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 05/20/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and poses a substantial health burden with increasing incidence globally. NAFLD encompasses a spectrum extending from hepatic steatosis to nonalcoholic steatohepatitis (NASH), with the possibility of progressing to cirrhosis or, in severe instances, hepatocellular carcinoma (HCC). NAFLD extends beyond simple metabolic disruption and involves multiple immune cell-mediated inflammatory processes. Integrins are a family of heterodimeric transmembrane cell adhesion receptors that regulate various aspects of NAFLD onset and progression, including hepatocellular steatosis, hepatic stellate cell (HSC) activation and immune cell infiltration. In this review, we comprehensively summarize the involvement of integrins in NAFLD, as well as the downstream signal transduction mediated by these receptors. Furthermore, we present the latest clinical and preclinical findings on drugs that target integrins for steatosis, inflammation, fibrosis and NAFLD-related HCC treatment.
Collapse
Affiliation(s)
- Yangyue Ni
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Mengwen Huang
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Shiyang Chen
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Shihui Wang
- Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jianfeng Chen
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| |
Collapse
|
2
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Lefebvre MN, Surette FA, Anthony SM, Vijay R, Jensen IJ, Pewe LL, Hancox LS, Van Braeckel-Budimir N, van de Wall S, Urban SL, Mix MR, Kurup SP, Badovinac VP, Butler NS, Harty JT. Expeditious recruitment of circulating memory CD8 T cells to the liver facilitates control of malaria. Cell Rep 2021; 37:109956. [PMID: 34731605 PMCID: PMC8628427 DOI: 10.1016/j.celrep.2021.109956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Fionna A Surette
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Scott M Anthony
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Isaac J Jensen
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Lecia L Pewe
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Lisa S Hancox
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | | | - Stephanie van de Wall
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Stina L Urban
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Madison R Mix
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Samarchith P Kurup
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - John T Harty
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA.
| |
Collapse
|
4
|
Abstract
The human liver is an organ with a diverse array of immunologic functions. Its unique anatomic position that leads to it receiving all the mesenteric venous blood, combined with its unique micro anatomy, allows it to serve as a sentinel for the body's immune system. Hepatocytes, biliary epithelial cells, Kupffer cells, stellate cells, and liver sinusoidal endothelial cells express key molecules that recruit and activate innate and adaptive immunity. Additionally, a diverse array of lymphoid and myeloid immune cells resides within and traffics to the liver in specific circumstances. Derangement of these trafficking mechanisms underlies the pathophysiology of autoimmune liver diseases, nonalcoholic steatohepatitis, and liver transplantation. Here, we review these pathways and interactions along with potential targets that have been identified to be exploited for therapeutic purposes.
Collapse
|
5
|
Dashtsoodol N, Bortoluzzi S, Schmidt-Supprian M. T Cell Receptor Expression Timing and Signal Strength in the Functional Differentiation of Invariant Natural Killer T Cells. Front Immunol 2019; 10:841. [PMID: 31080448 PMCID: PMC6497757 DOI: 10.3389/fimmu.2019.00841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
The CD1d-restricted Vα14 invariant NKT (iNKT) cell lineage in mice (Vα24 in humans) represents an evolutionary conserved innate-like immune cell type that recognizes glycolipid antigens. Because of their unique ability to promptly secrete copious amounts of both pro-inflammatory and anti-inflammatory cytokines, typically produced by different T helper cell types, iNKT cells are implicated in the regulation of various pathologic conditions such as infection, allergy, autoimmune disease, maintenance of transplantation tolerance, and cancer. This striking multifaceted role in immune regulation is correlated with the presence of multiple functionally distinct iNKT cell subsets that can be distinguished based on the expression of characteristic surface markers and transcription factors. However, to date it, remains largely unresolved how this puzzling diversity of iNKT cell functional subsets emerges and what factors dictate the type of effector cell differentiation during the thymic differentiation considering the mono-specific nature of their T cell receptor (TCR) and their selecting molecule CD1d. Here, we summarize recent findings focusing on the role of TCR-mediated signaling and discuss possible mechanisms that may influence the sub-lineage choice of iNKT cells.
Collapse
Affiliation(s)
- Nyambayar Dashtsoodol
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany.,Department of Microbiology and Immunology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sabrina Bortoluzzi
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany
| | - Marc Schmidt-Supprian
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany
| |
Collapse
|
6
|
Abstract
Liver sinusoid is the main functional site in liver. Multiple types of hepatic cells are well organized in a precisely-controlled biochemical and biomechanical environment, maintaining a spectrum of hepatic functions. Here, using micro-engineering techniques, four types of primary hepatic cells are integrated into two layer channels connected by porous membrane, which recreates the sinusoidal cell composition and architecture. By incorporating shear flow into this permeable system, the blood flow in sinusoids and interstitial flow in space of Disse are recapitulated. Conventional hepatocyte-based liver-specific functions are enhanced by non-parenchymal cells co-culture and shear flow. Moreover, major immune responses in liver sinusoids, i.e., neutrophil recruitment under lipopolysaccharide (LPS) stimulation, are replicated, indicating that all types of hepatic cells contribute to this process. Thus, this liver chip provides a new in vitro model to investigate the short-duration cellular interactions under a microenvironment mimicking the physiological composition and architecture of liver organ.
Collapse
Affiliation(s)
- Yu Du
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Caldeira-Dantas S, Furmanak T, Smith C, Quinn M, Teos LY, Ertel A, Kurup D, Tandon M, Alevizos I, Snyder CM. The Chemokine Receptor CXCR3 Promotes CD8 + T Cell Accumulation in Uninfected Salivary Glands but Is Not Necessary after Murine Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 200:1133-1145. [PMID: 29288198 DOI: 10.4049/jimmunol.1701272] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/17/2017] [Indexed: 01/24/2023]
Abstract
Recent work indicates that salivary glands are able to constitutively recruit CD8+ T cells and retain them as tissue-resident memory T cells, independently of local infection, inflammation, or Ag. To understand the mechanisms supporting T cell recruitment to the salivary gland, we compared T cell migration to the salivary gland in mice that were infected or not with murine CMV (MCMV), a herpesvirus that infects the salivary gland and promotes the accumulation of salivary gland tissue-resident memory T cells. We found that acute MCMV infection increased rapid T cell recruitment to the salivary gland but that equal numbers of activated CD8+ T cells eventually accumulated in infected and uninfected glands. T cell recruitment to uninfected salivary glands depended on chemokines and the integrin α4 Several chemokines were expressed in the salivary glands of infected and uninfected mice, and many of these could promote the migration of MCMV-specific T cells in vitro. MCMV infection increased the expression of chemokines that interact with the receptors CXCR3 and CCR5, but neither receptor was needed for T cell recruitment to the salivary gland during MCMV infection. Unexpectedly, however, the chemokine receptor CXCR3 was critical for T cell accumulation in uninfected salivary glands. Together, these data suggest that CXCR3 and the integrin α4 mediate T cell recruitment to uninfected salivary glands but that redundant mechanisms mediate T cell recruitment after MCMV infection.
Collapse
Affiliation(s)
- Sofia Caldeira-Dantas
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,Life and Health Sciences Research Institute (ICVS)/3B's Associate Laboratory, 4710-057 Braga, Portugal
| | - Thomas Furmanak
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Corinne Smith
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Michael Quinn
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Leyla Y Teos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; and
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Drishya Kurup
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Mayank Tandon
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; and
| | - Ilias Alevizos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; and
| | - Christopher M Snyder
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
9
|
Dashtsoodol N, Shigeura T, Aihara M, Ozawa R, Kojo S, Harada M, Endo TA, Watanabe T, Ohara O, Taniguchi M. Alternative pathway for the development of Vα14+ NKT cells directly from CD4–CD8– thymocytes that bypasses the CD4+CD8+ stage. Nat Immunol 2017; 18:274-282. [DOI: 10.1038/ni.3668] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
|
10
|
Fasbender F, Widera A, Hengstler JG, Watzl C. Natural Killer Cells and Liver Fibrosis. Front Immunol 2016; 7:19. [PMID: 26858722 PMCID: PMC4731511 DOI: 10.3389/fimmu.2016.00019] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/15/2016] [Indexed: 12/16/2022] Open
Abstract
In the 40 years since the discovery of natural killer (NK) cells, it has been well established that these innate lymphocytes are important for early and effective immune responses against transformed cells and infections with different pathogens. In addition to these classical functions of NK cells, we now know that they are part of a larger family of innate lymphoid cells and that they can even mediate memory-like responses. Additionally, tissue-resident NK cells with distinct phenotypical and functional characteristics have been identified. Here, we focus on the phenotype of different NK cell subpopulations that can be found in the liver and summarize the current knowledge about the functional role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can contribute to liver damage in different forms of liver disease. However, NK cells can limit liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to balance these beneficial and pathological effects.
Collapse
Affiliation(s)
- Frank Fasbender
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technische Universität Dortmund , Dortmund , Germany
| | - Agata Widera
- Department for Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technische Universität Dortmund , Dortmund , Germany
| | - Jan G Hengstler
- Department for Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technische Universität Dortmund , Dortmund , Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technische Universität Dortmund , Dortmund , Germany
| |
Collapse
|
11
|
Zeng XQ, Li N, Pan DY, Miao Q, Ma GF, Liu YM, Tseng YJ, Li F, Xu LL, Chen SY. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway. Biochem Biophys Res Commun 2015. [PMID: 26212440 DOI: 10.1016/j.bbrc.2015.07.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiao-Qing Zeng
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Na Li
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Du-Yi Pan
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qing Miao
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Gui-Fen Ma
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yi-Mei Liu
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yu-Jen Tseng
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Feng Li
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li-Li Xu
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Shi-Yao Chen
- Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Parent R, Durantel D, Lahlali T, Sallé A, Plissonnier ML, DaCosta D, Lesca G, Zoulim F, Marion MJ, Bartosch B. An immortalized human liver endothelial sinusoidal cell line for the study of the pathobiology of the liver endothelium. Biochem Biophys Res Commun 2014; 450:7-12. [PMID: 24853805 DOI: 10.1016/j.bbrc.2014.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The endothelium lines blood and lymph vessels and protects underlying tissues against external agents such as viruses, bacteria and parasites. Yet, microbes and particularly viruses have developed sophisticated ways to bypass the endothelium in order to gain access to inner organs. De novo infection of the liver parenchyma by many viruses and notably hepatitis viruses, is thought to occur through recruitment of virions on the sinusoidal endothelial surface and subsequent transfer to the epithelium. Furthermore, the liver endothelium undergoes profound changes with age and in inflammation or infection. However, primary human liver sinusoidal endothelial cells (LSECs) are difficult to obtain due to scarcity of liver resections. Relevant derived cell lines are needed in order to analyze in a standardized fashion the transfer of pathogens across the liver endothelium. By lentiviral transduction with hTERT only, we have immortalized human LSECs isolated from a hereditary hemorrhagic telangiectasia (HHT) patient and established the non-transformed cell line TRP3. TRP3 express mesenchymal, endothelial and liver sinusoidal markers. Functional assessment of TRP3 cells demonstrated a high capacity of endocytosis, tube formation and reactivity to immune stimulation. However, TRP3 displayed few fenestrae and expressed C-type lectins intracellularly. All these findings were confirmed in the original primary LSECs from which TRP3 were derived suggesting that these features were already present in the liver donor. We consider TRP3 as a model to investigate the functionality of the liver endothelium in hepatic inflammation in infection.
Collapse
Affiliation(s)
- Romain Parent
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France; DevWeCan Laboratories of Excellence Network (Labex), France
| | - David Durantel
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France; DevWeCan Laboratories of Excellence Network (Labex), France
| | - Thomas Lahlali
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France
| | - Aurélie Sallé
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France
| | - Marie-Laure Plissonnier
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France
| | - Daniel DaCosta
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France
| | - Gaëtan Lesca
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France; Service de Genetique Moleculaire et Clinique, CHRU Lyon, Hopital Edouard Herriot, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France; DevWeCan Laboratories of Excellence Network (Labex), France; Hospices Civils de Lyon (HCL), Lyon, France
| | - Marie-Jeanne Marion
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France
| | - Birke Bartosch
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, F-69000 Lyon, France; DevWeCan Laboratories of Excellence Network (Labex), France.
| |
Collapse
|
13
|
The role of chemokines in hepatitis C virus-mediated liver disease. Int J Mol Sci 2014; 15:4747-79. [PMID: 24646914 PMCID: PMC3975423 DOI: 10.3390/ijms15034747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022] Open
Abstract
The hepatitis C virus (HCV) is a global health problem affecting more than 170 million people. A chronic HCV infection is associated with liver fibrosis, liver cirrhosis and hepatocellular carcinoma. To enable viral persistence, HCV has developed mechanisms to modulate both innate and adaptive immunity. The recruitment of antiviral immune cells in the liver is mainly dependent on the release of specific chemokines. Thus, the modulation of their expression could represent an efficient viral escape mechanism to hamper specific immune cell migration to the liver during the acute phase of the infection. HCV-mediated changes in hepatic immune cell chemotaxis during the chronic phase of the infection are significantly affecting antiviral immunity and tissue damage and thus influence survival of both the host and the virus. This review summarizes our current understanding of the HCV-mediated modulation of chemokine expression and of its impact on the development of liver disease. A profound knowledge of the strategies used by HCV to interfere with the host's immune response and the pro-fibrotic and pro-carcinogenic activities of HCV is essential to be able to design effective immunotherapies against HCV and HCV-mediated liver diseases.
Collapse
|
14
|
Bodeman CE, Dzierlenga AL, Tally CM, Mulligan RM, Lake AD, Cherrington NJ, McKarns SC. Differential regulation of hepatic organic cation transporter 1, organic anion-transporting polypeptide 1a4, bile-salt export pump, and multidrug resistance-associated protein 2 transporter expression in lymphocyte-deficient mice associates with interleukin-6 production. J Pharmacol Exp Ther 2013; 347:136-44. [PMID: 23929842 PMCID: PMC3781416 DOI: 10.1124/jpet.113.205369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022] Open
Abstract
Cholestasis results from interrupted bile flow and is associated with immune-mediated liver diseases. It is unclear how inflammation contributes to cholestasis. The aim of this study was to determine whether T and B cells contribute to hepatic transporter expression under basal and inflammatory conditions. C57BL/6J wild-type mice or strains lacking T, B, or both T and B cells were exposed to lipopolysaccharide (LPS) or saline, and livers were collected 16 hours later. Branched DNA signal amplification was used to assess mRNA levels of organic anion-transporting polypeptides (Oatp) 1a1, 1a4, and 1b2; organic cation transporter (Oct) 1; canalicular bile-salt export pump (Bsep); multidrug resistance-associated proteins (Mrp) 2 and 3; and sodium-taurocholate cotransporting polypeptide (Ntcp). Real-time polymerase chain reaction analysis was used to correlate changes of transporter expression with interleukin-1b (IL-1b), IL-6, IL-17A, IL-17F, tumor necrosis factor-α (TNF-α), and interferon-γ expression in the liver. LPS treatment inhibited Bsep and Oct1 mRNA expression, and this was abrogated with a loss of T cells, but not B cells. In addition, the absence of T cells increased Mrp2 mRNA expression, whereas B cell deficiency attenuated Oatp1a4 mRNA in LPS-treated mice. Oatp1a1, Oatp1b2, Ntcp, and Mrp3 were largely unaffected by T or B cell deficiency. Lymphocyte deficiency altered basal and inflammatory IL-6, but not TNF-α or IL-1b, mRNA expression. Taken together, these data implicate lymphocytes as regulators of basal and inflammatory hepatic transporter expression and suggest that IL-6 signaling may play a critical role.
Collapse
Affiliation(s)
- Connor E Bodeman
- Center for Cellular and Molecular Immunology, Department of Surgery (C.E.B., C.M.T., R.M.M., S.C.M.) and Department of Microbiology and Immunology (S.C.M.), University of Missouri School of Medicine, Columbia, Missouri; and Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (A.L.D., A.D.L., N.J.C.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Billerbeck E, Horwitz JA, Labitt RN, Donovan BM, Vega K, Budell WC, Koo GC, Rice CM, Ploss A. Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:1753-64. [PMID: 23833235 DOI: 10.4049/jimmunol.1201518] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Humanized mice have emerged as a promising model to study human immunity in vivo. Although they are susceptible to many pathogens exhibiting an almost exclusive human tropism, human immune responses to infection remain functionally impaired. It has recently been demonstrated that the expression of HLA molecules improves human immunity to lymphotropic virus infections in humanized mice. However, little is known about the extent of functional human immune responses in nonlymphoid tissues, such as in the liver, and the role of HLA expression in this context. Therefore, we analyzed human antiviral immunity in humanized mice during a hepatotropic adenovirus infection. We compared immune responses of conventional humanized NOD SCID IL-2Rγ-deficient (NSG) mice to those of a novel NOD SCID IL-2Rγ-deficient strain transgenic for both HLA-A*0201 and a chimeric HLA-DR*0101 molecule. Using a firefly luciferase-expressing adenovirus and in vivo bioluminescence imaging, we demonstrate a human T cell-dependent partial clearance of adenovirus-infected cells from the liver of HLA-transgenic humanized mice. This correlated with liver infiltration and activation of T cells, as well as the detection of Ag-specific humoral and cellular immune responses. When infected with a hepatitis C virus NS3-expressing adenovirus, HLA-transgenic humanized mice mounted an HLA-A*0201-restricted hepatitis C virus NS3-specific CD8(+) T cell response. In conclusion, our study provides evidence for the generation of partial functional antiviral immune responses against a hepatotropic pathogen in humanized HLA-transgenic mice. The adenovirus reporter system used in our study may serve as simple in vivo method to evaluate future strategies for improving human intrahepatic immune responses in humanized mice.
Collapse
Affiliation(s)
- Eva Billerbeck
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guidotti LG, Iannacone M. Effector CD8 T cell trafficking within the liver. Mol Immunol 2012; 55:94-9. [PMID: 23149103 DOI: 10.1016/j.molimm.2012.10.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 01/06/2023]
Abstract
CD8 T cells play a critical role in several pathological conditions affecting the liver, most notably viral hepatitis. Accordingly, understanding the mechanisms that modulate the intrahepatic recruitment of CD8 T cells is of paramount importance. Some of the rules governing the behavior of these cells in the liver have been characterized at the population level, or have been inferred by studying the intrahepatic behavior of other leukocyte subpopulations. In contrast to most microvascular beds where leukocyte adhesion is restricted to the endothelium of post-capillary venules, it is now becoming clear that in the liver leukocytes, including CD8 T cells, can efficiently interact with the endothelium of hepatic capillaries (i.e. the sinusoids). While physical trapping has been proposed to play an important role in leukocyte adhesion to hepatic sinusoids, there is mounting evidence that T cell recruitment to the liver is highly regulated and depends on recruitment signals that are either constitutive or induced by inflammation. We review here several specific adhesive mechanisms that have been shown to regulate CD8 T cell trafficking within the liver, as well as highlight recent data that establish platelets as key cellular regulators of intrahepatic CD8 T cell accumulation.
Collapse
Affiliation(s)
- Luca G Guidotti
- Division of Immunology, Infectious Diseases and Transplantation, San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|