1
|
Xiao N, Liu H, Zhang R, Li Y, Zhao X, Chen H, Zhang C, Zhu Y, Lu H, Wang X, Liu H, Wan J. N-acetyltransferase 10 impedes EZH2/H3K27me3/GABARAP axis mediated autophagy and facilitates lung cancer tumorigenesis through enhancing SGK2 mRNA acetylation. Int J Biol Macromol 2025; 297:139823. [PMID: 39814292 DOI: 10.1016/j.ijbiomac.2025.139823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
N4-acetylcytidine (ac4C) is a critical RNA modification implicated in cancer progression. Currently, N-acetyltransferase 10 (NAT10) is recognized as the sole "writer" protein responsible for ac4C modification. However, the study of NAT10 and ac4C modification in lung cancer remains sparse. In this study, we observed a significant upregulation of NAT10 expression in lung cancer, which is strongly correlated with poor prognostic outcomes. In vitro and in vivo experiments have demonstrated that NAT10 facilitates the proliferation, migration, and invasion of non-small cell lung cancer (NSCLC) cells while inhibiting autophagy flux. Mechanistically, NAT10 may enhance mRNA stability through ac4c modification at the 3' untranslated region (UTR) of SGK2 mRNA. Furthermore, SGK2 interacts with EZH2 and phosphorylates it at threonine 367, leading to increased protein stability of EZH2 and a reduction in its ubiquitination. Additionally, NAT10 impedes autophagy flux by preventing the fusion of autophagosomes with lysosomes and suppressing GABARAP transcription, which is regulated by EZH2-mediated H3K27me3. In summary, our study elucidates the biological significance and molecular mechanisms of the NAT10/SGK2/EZH2 axis in the pathogenesis of lung cancer, potentially providing novel prognostic markers and therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruike Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangzhuan Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huanxiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongshen Lu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuanzhi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongchun Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Mu X, Wei Y, Fan X, Zhang R, Xi W, Zheng G, Yang AG. Aberrant activation of a miR-101-UBE2D1 axis contributes to the advanced progression and chemotherapy sensitivity in human hepatocellular carcinoma. Cell Death Discov 2024; 10:422. [PMID: 39353886 PMCID: PMC11445525 DOI: 10.1038/s41420-024-02193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Chemotherapeutic drugs, such as cisplatin (cis-dichlorodiamineplatinum [II], cDDP) and 5-fluorouracil (5Fu), are widely used in transarterial chemoembolization (TACE), which is a standard therapy for patients with hepatocellular carcinoma (HCC). Chemoresistance is a major cause of TACE treatment failure in HCC patients. Our previous studies have identified the expression levels of miR-101 responsive genes, such as EED, EZH2, STMN1 and JUNB, exhibit significant correlation with the occurrence and progression of HCC, while the role of miR-101 responsive gene signatures in the chemoresistance of HCC treatment remains unclear. In this study, we identified ubiquitin-coupled enzyme E2D1 (UBE2D1) as a crucial regulatory factor in the chemoresistance of HCC, which is a direct target of miR-101 and exhibits significant correlation with miR-101-responsive gene signatures. The bioinformatics analysis showed the expression of UBE2D1 was significantly increased in HCC tissues and was closely correlated with the poor prognosis. In addition, we analyzed the role of miR-101/UBE2D1 axis in regulating chemo-sensitive of HCC cells. Our results showed that miR-101 increases the DNA damage and apoptosis of HCC cells by inhibiting the expression of UBE2D1, which in turn increases the sensitivity of HCC cells to cDDP and 5Fu both in vitro and in vivo. Therefore, simultaneous assessment of miR-101 and UBE2D1 expression levels might provide an effective approach in preselecting HCC patients with survival benefit from TACE treatment. Moreover, further elucidation of the underlying molecular mechanisms of the miR-101/UBE2D1 axis could provide novel insight for targeted therapy of HCC.
Collapse
Affiliation(s)
- Xiuli Mu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuchen Wei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenjin Xi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guoxu Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - An-Gang Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Walweel N, Aydin O. Enhancing Therapeutic Efficacy in Cancer Treatment: Integrating Nanomedicine with Autophagy Inhibition Strategies. ACS OMEGA 2024; 9:27832-27852. [PMID: 38973850 PMCID: PMC11223161 DOI: 10.1021/acsomega.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
The complicated stepwise lysosomal degradation process known as autophagy is in charge of destroying and eliminating damaged organelles and defective cytoplasmic components. This mechanism promotes metabolic adaptability and nutrition recycling. Autophagy functions as a quality control mechanism in cells that support homeostasis and redox balance under normal circumstances. However, the role of autophagy in cancer is controversial because, mostly depending on the stage of the tumor, it may either suppress or support the disease. While autophagy delays the onset of tumors and slows the dissemination of cancer in the early stages of tumorigenesis, numerous studies demonstrate that autophagy promotes the development and spread of tumors as well as the evolution and development of resistance to several anticancer drugs in advanced cancer stages. In this Review, we primarily emphasize the therapeutic role of autophagy inhibition in improving the treatment of multiple cancers and give a broad overview of how its inhibition modulates cancer responses. There have been various attempts to inhibit autophagy, including the use of autophagy inhibitor drugs, gene silencing therapy (RNA interference), and nanoparticles. In this Review, all these topics are thoroughly covered and illustrated by recent studies and field investigations.
Collapse
Affiliation(s)
- Nada Walweel
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Omer Aydin
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering
Research and Implementation Center, Erciyes
University, Kayseri 38030, Turkey
| |
Collapse
|
5
|
Qin C, Zhang J, Ma L. EMCMDA: predicting miRNA-disease associations via efficient matrix completion. Sci Rep 2024; 14:12761. [PMID: 38834687 DOI: 10.1038/s41598-024-63582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Abundant researches have consistently illustrated the crucial role of microRNAs (miRNAs) in a wide array of essential biological processes. Furthermore, miRNAs have been validated as promising therapeutic targets for addressing complex diseases. Given the costly and time-consuming nature of traditional biological experimental validation methods, it is imperative to develop computational methods. In the work, we developed a novel approach named efficient matrix completion (EMCMDA) for predicting miRNA-disease associations. First, we calculated the similarities across multiple sources for miRNA/disease pairs and combined this information to create a holistic miRNA/disease similarity measure. Second, we utilized this biological information to create a heterogeneous network and established a target matrix derived from this network. Lastly, we framed the miRNA-disease association prediction issue as a low-rank matrix-complete issue that was addressed via minimizing matrix truncated schatten p-norm. Notably, we improved the conventional singular value contraction algorithm through using a weighted singular value contraction technique. This technique dynamically adjusts the degree of contraction based on the significance of each singular value, ensuring that the physical meaning of these singular values is fully considered. We evaluated the performance of EMCMDA by applying two distinct cross-validation experiments on two diverse databases, and the outcomes were statistically significant. In addition, we executed comprehensive case studies on two prevalent human diseases, namely lung cancer and breast cancer. Following prediction and multiple validations, it was evident that EMCMDA proficiently forecasts previously undisclosed disease-related miRNAs. These results underscore the robustness and efficacy of EMCMDA in miRNA-disease association prediction.
Collapse
Affiliation(s)
- Chao Qin
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Jiancheng Zhang
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China
| | - Lingyu Ma
- School of Control Science and Engineering, Harbin Institute of Technology, Weihai, 250200, China
| |
Collapse
|
6
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
7
|
Hashemi M, Nazdari N, Gholamiyan G, Paskeh MDA, Jafari AM, Nemati F, Khodaei E, Abyari G, Behdadfar N, Raei B, Raesi R, Nabavi N, Hu P, Rashidi M, Taheriazam A, Entezari M. EZH2 as a potential therapeutic target for gastrointestinal cancers. Pathol Res Pract 2024; 253:154988. [PMID: 38118215 DOI: 10.1016/j.prp.2023.154988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
Gastrointestinal (GI) cancers continue to be a major cause of mortality and morbidity globally. Understanding the molecular pathways associated with cancer progression and severity is essential for creating effective cancer treatments. In cancer research, there is a notable emphasis on Enhancer of zeste homolog 2 (EZH2), a key player in gene expression influenced by its irregular expression and capacity to attach to promoters and alter methylation status. This review explores the impact of EZH2 signaling on various GI cancers, such as colorectal, gastric, pancreatic, hepatocellular, esophageal, and cholangiocarcinoma. The primary function of EZH2 signaling is to facilitate the accelerated progression of cancer cells. Additionally, EZH2 has the capacity to modulate the reaction of GI cancers to chemotherapy and radiotherapy. Numerous pathways, including long non-coding RNAs and microRNAs, serve as upstream regulators of EZH2 in these types of cancer. EZH2's enzymatic activity enables it to attach to target gene promoters, resulting in methylation that modifies their expression. EZH2 could be considered as an independent prognostic factor, with increased expression correlating with a worse disease prognosis. Additionally, a range of gene therapies including small interfering RNA, and anti-tumor agents are being explored to target EZH2 for cancer treatment. This comprehensive review underscores the current insights into EZH2 signaling in gastrointestinal cancers and examines the prospect of therapies targeting EZH2 to enhance patient outcomes.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naghmeh Nazdari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fateme Nemati
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Khodaei
- Department of Dermatology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Abyari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Behdadfar
- Young Researchers and Elite Club, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Sheikhnia F, Maghsoudi H, Majidinia M. The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells. Mini Rev Med Chem 2024; 24:601-617. [PMID: 37642002 DOI: 10.2174/1389557523666230825144150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Lin T, Guo X, Du Q, Liu W, Zhong X, Wang S, Cao L. MicroRNA let-7c-5p Alleviates in Hepatocellular Carcinoma by Targeting Enhancer of Zeste Homolog 2: A Study Intersecting Bioinformatic Analysis and Validated Experiments. Crit Rev Immunol 2024; 44:23-39. [PMID: 38505919 DOI: 10.1615/critrevimmunol.2024051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2)gene has a prognostic role in hepatocellular carcinoma (HCC). This study aimed to identify the role of microRNAs (miRNAs) let-7c-5p by targeting EZH2 in HCC. We downloaded gene and miRNA RNA-seq data from The Cancer Genome Atlas (TCGA) database. Differences in EZH2 expression between different groups were analyzed and the association of EZH2 expression with HCC prognosis was detected using Cox regression analysis. The miRNA-EZH2-pathway network was constructed. Dual-luciferase reporter assay was performed to detect the hsa-let-7c-5p-EZH2. Cell proliferation, migration, invasion, and apoptosis were detected by CCK-8, Wound healing, Transwell, and Flow cytometry, respectively. RT-qPCR and Western blot were used to detect the expression of let-7c-5p and EZH2. EZH2 was upregulated in HCC tumors (P < 0.0001). Cox regression analysis showed that TCGA HCC patients with high EZH2 expression levels showed a short survival time [hazard ratio (HR) = 1.677, 95% confidence interval (CI) 1.316-2.137; P < 0.0001]. Seven miRNAs were negatively correlated with EZH2 expression and were significantly downregulated in HCC tumor samples (P < 0.0001), in which hsa-let-7c-5p was associated with prognosis in HCC (HR = 0.849 95% CI 0.739-0.975; P = 0.021). We identified 14 immune cells that showed significant differences in EZH2 high- and low-expression groups. Additionally, let-7c-5p inhibited HCC cell proliferation, migration, and invasion and reversed the promoted effects of EZH2 on HCC cell malignant characteristics. hsa-let-7c-5p-EZH2 significantly suppressed HCC malignant characteristics, which can be used for HCC prognosis.
Collapse
Affiliation(s)
- Tianyu Lin
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Xinli Guo
- Department of Operating Room, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Qian Du
- Department of General Surgery, The 903rd Hospital of PLA, Hangzhou 310000, China
| | - Wei Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Xin Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Suihan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
10
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
11
|
Xu LB, Qin YF, Su L, Huang C, Xu Q, Zhang R, Shi XD, Sun R, Chen J, Song Z, Jiang X, Shang L, Xiao G, Kong X, Liu C, Wong PP. Cathepsin-facilitated invasion of BMI1-high hepatocellular carcinoma cells drives bile duct tumor thrombi formation. Nat Commun 2023; 14:7033. [PMID: 37923799 PMCID: PMC10624910 DOI: 10.1038/s41467-023-42930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Bile duct tumor thrombosis (BDTT) is a complication mostly observed in patients with advanced hepatocellular carcinoma (HCC), causing jaundice and associated with poor clinical outcome. However, its underlying molecular mechanism is unclear. Here, we develop spontaneous preclinical HCC animal models with BDTT to identify the role of BMI1 expressing tumor initiating cells (BMI1high TICs) in inducing BDTT. BMI1 overexpression transforms liver progenitor cells into BMI1high TICs, which possess strong tumorigenicity and increased trans-intrahepatic biliary epithelial migration ability by secreting lysosomal cathepsin B (CTSB). Orthotopic liver implantation of BMI1high TICs into mice generates tumors and triggers CTSB mediated bile duct invasion to form tumor thrombus, while CTSB inhibitor treatment prohibits BDTT and extends mouse survival. Clinically, the elevated serum CTSB level determines BDTT incidence in HCC patients. Mechanistically, BMI1 epigenetically up-regulates CTSB secretion in TICs by repressing miR-218-1-3p expression. These findings identify a potential diagnostic and therapeutic target for HCC patients with BDTT.
Collapse
Affiliation(s)
- Lei-Bo Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yu-Fei Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiang-De Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ruipu Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiali Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhixiao Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lihuan Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Gang Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract Cancer, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
12
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
13
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
14
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
15
|
Dong X, Wang H, Zhan L, Li Q, Li Y, Wu G, Wei H, Li Y. miR-153-3p suppresses the differentiation and proliferation of neural stem cells via targeting GPR55. Aging (Albany NY) 2023; 15:8518-8527. [PMID: 37642951 PMCID: PMC10497013 DOI: 10.18632/aging.204002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/29/2021] [Indexed: 08/31/2023]
Abstract
Alzheimer's disease is the most frequent neurodegenerative disease and is characterized by progressive cognitive impairment and decline. NSCs (neural stem cells) serve as beneficial and promising adjuncts to treat Alzheimer's disease. This study aimed to determine the role of miR-153-3p expression in NSC differentiation and proliferation. We illustrated that miR-153-3p was decreased and GPR55 was upregulated during NSC differentiation. IL-1β can induce miR-153-3p expression. Luciferase reporter analysis noted that elevated expression of miR-153-3p significantly inhibited the luciferase value of the WT reporter plasmid but did not change the luciferase value of the mut reporter plasmid. Ectopic miR-153-3p expression suppressed GPR55 expression in NSCs and identified GPR55 as a direct target gene of miR-153-3p. Ectopic expression of miR-153-3p inhibited NSC growth and differentiation into astrocytes and neurons. Elevated expression of miR-153-3p induced the release of proinflammatory cytokines, such as TNF-α, IL-1β and IL-6, in NSCs. Furthermore, miR-153-3p inhibited NSC differentiation and proliferation by targeting GPR55 expression. These data suggested that miR-153-3p may act as a clinical target for the therapeutics of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Liping Zhan
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Qingyun Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yang Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Gang Wu
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Huan Wei
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yanping Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| |
Collapse
|
16
|
Chen W, Ruan M, Zou M, Liu F, Liu H. Clinical Significance of Non-Coding RNA Regulation of Programmed Cell Death in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4187. [PMID: 37627215 PMCID: PMC10452865 DOI: 10.3390/cancers15164187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a widely prevalent and malignantly progressive tumor. Most patients are typically diagnosed with HCC at an advanced stage, posing significant challenges in the execution of curative surgical interventions. Non-coding RNAs (ncRNAs) represent a distinct category of RNA molecules not directly involved in protein synthesis. However, they possess the remarkable ability to regulate gene expression, thereby exerting significant regulatory control over cellular processes. Notably, ncRNAs have been implicated in the modulation of programmed cell death (PCD), a crucial mechanism that various therapeutic agents target in the fight against HCC. This review summarizes the clinical significance of ncRNA regulation of PCD in HCC, including patient diagnosis, prognosis, drug resistance, and side effects. The aim of this study is to provide new insights and directions for the diagnosis and drug treatment strategies of HCC.
Collapse
Affiliation(s)
| | | | | | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China; (W.C.); (M.R.)
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China; (W.C.); (M.R.)
| |
Collapse
|
17
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
18
|
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H, Jiang GM. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther 2023; 8:32. [PMID: 36646695 PMCID: PMC9842768 DOI: 10.1038/s41392-022-01300-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/19/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a conserved lysosomal degradation pathway where cellular components are dynamically degraded and re-processed to maintain physical homeostasis. However, the physiological effect of autophagy appears to be multifaced. On the one hand, autophagy functions as a cytoprotective mechanism, protecting against multiple diseases, especially tumor, cardiovascular disorders, and neurodegenerative and infectious disease. Conversely, autophagy may also play a detrimental role via pro-survival effects on cancer cells or cell-killing effects on normal body cells. During disorder onset and progression, the expression levels of autophagy-related regulators and proteins encoded by autophagy-related genes (ATGs) are abnormally regulated, giving rise to imbalanced autophagy flux. However, the detailed mechanisms and molecular events of this process are quite complex. Epigenetic, including DNA methylation, histone modifications and miRNAs, and post-translational modifications, including ubiquitination, phosphorylation and acetylation, precisely manipulate gene expression and protein function, and are strongly correlated with the occurrence and development of multiple diseases. There is substantial evidence that autophagy-relevant regulators and machineries are subjected to epigenetic and post-translational modulation, resulting in alterations in autophagy levels, which subsequently induces disease or affects the therapeutic effectiveness to agents. In this review, we focus on the regulatory mechanisms mediated by epigenetic and post-translational modifications in disease-related autophagy to unveil potential therapeutic targets. In addition, the effect of autophagy on the therapeutic effectiveness of epigenetic drugs or drugs targeting post-translational modification have also been discussed, providing insights into the combination with autophagy activators or inhibitors in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Feng Shu
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Han Xiao
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Qiu-Nuo Li
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Xiao-Shuai Ren
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Zhi-Gang Liu
- grid.284723.80000 0000 8877 7471Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong China
| | - Bo-Wen Hu
- grid.452859.70000 0004 6006 3273Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Hong-Sheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
19
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
The imminent role of microRNAs in salivary adenoid cystic carcinoma. Transl Oncol 2022; 27:101573. [PMID: 36335706 PMCID: PMC9646983 DOI: 10.1016/j.tranon.2022.101573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Unfortunately, despite the severe problem associated with salivary adenoid cystic carcinoma (SACC), it has not been studied in detail yet. Therefore, the time has come to understand the oncogenic cause of SACC and find the correct molecular markers for diagnosis, prognosis, and therapeutic target to tame this disease. Recently, we and others have suggested that non-coding RNAs, specifically microRNAs and long non-coding RNAs, can be ideal biomarkers for cancer(s) diagnosis and progression. Herein, we have shown that various miRNAs, like miR-155, miR‑103a‑3p, miR-21, and miR-130a increase the oncogenesis process, whereas some miRNAs such as miR-140-5p, miR-150, miR-375, miR-181a, miR-98, miR-125a-5p, miR-582-5p, miR-144-3p, miR-320a, miR-187 and miR-101-3p, miR-143-3p inhibit the salivary adenoid cystic carcinoma progression. Furthermore, we have found that miRNAs also target many vital genes and pathways like mitogen-activated protein kinases-snail family transcriptional repressor 2 (MAPK-Snai2), p38/JNK/ERK, forkhead box C1 protein (FOXC1), mammalian target of rapamycin (mTOR), integrin subunit beta 3 (ITGB3), epidermal growth factor receptor (EGFR)/NF-κB, programmed cell death protein 4 (PDCD4), signal transducer and activator of transcription 3 (STAT3), neuroblastoma RAS (N-RAS), phosphatidylinositol-3-kinase (PI3K)/Akt, MEK/ERK, ubiquitin-like modifier activating enzyme 2 (UBA2), tumor protein D52 (TPD52) which play a crucial role in the regulation of salivary adenoid cystic carcinoma. Therefore, we believe that knowledge from this manuscript will help us find the pathogenesis process in salivary adenoid cystic carcinoma and could also give us better biomarkers of diagnosis and prognosis of the disease.
Collapse
|
21
|
MicroRNA 101 Attenuated NSCLC Proliferation through IDH2/HIFα Axis Suppression in the Warburg Effect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4938811. [PMID: 36304962 PMCID: PMC9596240 DOI: 10.1155/2022/4938811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Lung cancer is the most diagnosed and deadly cancer in China. MicroRNAs are small noncoding RNA gene products that exhibit multifunctional regulation in cancer cell progressions. MiR-101 loss was illustrated in about 29% of lung cancer patients, and sophisticated mechanisms of miR-101 regulation in NSCLC are eager to be disclosed. Here, using specimens from NSCLC patients and Dural-luciferase reporter assay, we got a clue that miR-101 correlated with IDH2. MiR-101 overexpression and IDH2 deficiency both suppressed NSCLC tumor growth in mice. Moreover, in NSCLC, miR-101 suppressed IDH2 expression levels, further increased α-KG concentration, and finally inhibited the Warburg effect under hypoxic conditions through downregulating HIF1α expression by promoting HIF1α hydroxylation and degradation. In conclusion, miR-101 attenuated the Warburg effect and NSCLC proliferation through IDH2/HIF1α pathway.
Collapse
|
22
|
Low miR-10b-3p associated with sorafenib resistance in hepatocellular carcinoma. Br J Cancer 2022; 126:1806-1814. [PMID: 35236936 PMCID: PMC9174288 DOI: 10.1038/s41416-022-01759-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sorafenib is one of the standard first-line therapies for advanced hepatocellular carcinoma (HCC). Unfortunately, there are currently no appropriate biomarkers to predict the clinical efficacy of sorafenib in HCC patients. MicroRNAs (miRNAs) have been studied for their biological functions and clinical applications in human cancers. METHODS In this study, we found that miR-10b-3p expression was suppressed in sorafenib-resistant HCC cell lines through miRNA microarray analysis. RESULTS Sorafenib-induced apoptosis in HCC cells was significantly enhanced by miR-10b-3p overexpression and partially abrogated by miR-10b-3p depletion. Among 45 patients who received sorafenib for advanced HCC, those with high miR-10b-3p levels, compared to those with low levels, exhibited significantly longer overall survival (OS) (median, 13.9 vs. 3.5 months, p = 0.021), suggesting that high serum miR-10b-3p level in patients treated with sorafenib for advanced HCC serves as a biomarker for predicting sorafenib efficacy. Furthermore, we confirmed that cyclin E1, a known promoter of sorafenib resistance reported by our previous study, is the downstream target for miR-10b-3p in HCC cells. CONCLUSIONS This study not only identified the molecular target for miR-10b-3p, but also provided evidence that circulating miR-10b-3p may be used as a biomarker for predicting sorafenib sensitivity in patients with HCC.
Collapse
|
23
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Long non-coding RNA FOXP4-AS1 facilitates the biological functions of hepatocellular carcinoma cells via downregulating ZC3H12D by mediating H3K27me3 through recruitment of EZH2. Cell Biol Toxicol 2022; 38:1047-1062. [PMID: 34545456 PMCID: PMC9750913 DOI: 10.1007/s10565-021-09642-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/09/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Some studies have reported the effect of long non-coding RNA forkhead box P4 antisense RNA 1 (lncRNA FOXP4-AS1) on hepatocellular carcinoma (HCC). Here, we aimed to discuss the effects of FOXP4-AS1/enhancer of zeste homolog 2 (EZH2)/trimethylation of lysine 27 on histone H3 (H3K27me3)/zinc finger CCCH-type containing 12D (ZC3H12D) axis on HCC. METHODS The expression of FOXP4-AS1, EZH2, and ZC3H12D, and abundance of H3K27me3 in HCC tissues and cells were tested. The relationship between FOXP4-AS1 expression and prognosis of HCC patients was analyzed. The biological functions of HCC cells were detected via loss- and gain-of-function assays. The tumor weight and volume in vivo were tested. The interaction between FOXP4-AS1 and EZH2 as well as that between EZH2 and H3K27me3 was verified. RESULTS FOXP4-AS1 and EZH2 expression and H3K27me3 abundance were enhanced while ZC3H12D expression was depressed in HCC tissues and cells. Knockdown of FOXP4-AS1 suppressed biological functions of HCC cells as well as the weight and volume of HCC transplanted tumor. Depleting ZC3H12D reversed the effect of downregulated FOXP4-AS1 on HCC cells. FOXP4-AS1 suppressed ZC3H12D expression via mediating H3K27me3 by recruitment of EZH2. CONCLUSION The key findings of the present study demonstrate that FOXP4-AS1 suppresses ZC3H12D expression via mediating H3K27me3 by recruitment of EZH2, thus promoting the progression of HCC.
Collapse
|
25
|
Andrikopoulou A, Shalit A, Zografos E, Koutsoukos K, Korakiti AM, Liontos M, Dimopoulos MA, Zagouri F. MicroRNAs as Potential Predictors of Response to CDK4/6 Inhibitor Treatment. Cancers (Basel) 2021; 13:cancers13164114. [PMID: 34439268 PMCID: PMC8391635 DOI: 10.3390/cancers13164114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary MicroRNAs are endogenous non-coding 20–22 nucleotide long RNAs that play a fundamental role in the post-transcriptional control of gene expression. Consequently, microRNAs are involved in multiple biological processes of cancer and could be used as biomarkers with prognostic and predictive significance. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have become a mainstay of treatment for patients with advanced hormone receptor-positive (HR) breast cancer. Despite the initial high response rates, approximately 10% of patients demonstrate primary resistance to CDK4/6 inhibitors while acquired resistance is almost inevitable. Considering the fundamental role of miRNAs in tumorigenesis, we aimed to explore the potential involvement of microRNAs in response to CDK4/6 inhibition in solid tumors. A number of microRNAs were shown to confer resistance or sensitivity to CDK4/6 inhibitors in preclinical studies, although this remains to be proved in human studies. Abstract Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as novel treatment options in the management of advanced or metastatic breast cancer. MicroRNAs are endogenous non-coding 19–22-nucleotide-long RNAs that regulate gene expression in development and tumorigenesis. Herein, we systematically review all microRNAs associated with response to CDK4/6 inhibitors in solid tumors and hematological malignancies. Eligible articles were identified by a search of the MEDLINE and ClinicalTrials.gov databases for the period up to1 January 2021; the algorithm consisted of a predefined combination of the words “microRNAs”, “cancer” and “CDK 4/6 inhibitors”. Overall, 15 studies were retrieved. Six microRNAs (miR-126, miR-326, miR3613-3p, miR-29b-3p, miR-497 and miR-17-92) were associated with sensitivity to CDK4/6 inhibitors. Conversely, six microRNAs (miR-193b, miR-432-5p, miR-200a, miR-223, Let-7a and miR-21) conferred resistance to treatment with CDK4/6 inhibitors. An additional number of microRNAs (miR-124a, miR9, miR200b and miR-106b) were shown to mediate cellular response to CDK4/6 inhibitors without affecting sensitivity to treatment. Collectively, our review provides evidence that microRNAs could serve as predictive biomarkers for treatment with CDK4/6 inhibitors. Moreover, microRNA-targeted therapy could potentially maximize sensitivity to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Almog Shalit
- Medical School, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece;
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Anna-Maria Korakiti
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
- Correspondence: ; Tel.: +30-21-0338-1554; Fax: +30-21-3216-2511
| |
Collapse
|
26
|
Su YY, Li CC, Lin YJ, Hsu C. Adjuvant versus Neoadjuvant Immunotherapy for Hepatocellular Carcinoma: Clinical and Immunologic Perspectives. Semin Liver Dis 2021; 41:263-276. [PMID: 34130338 DOI: 10.1055/s-0041-1730949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advancement in systemic therapy, particularly immune checkpoint inhibitor (ICI)-based combination regimens, has transformed the treatment landscape for patients with advanced hepatocellular carcinoma (HCC). The advancement in systemic therapy also provides new opportunities of reducing recurrence after curative therapy through adjuvant therapy or improving resectability through neoadjuvant therapy. Improved recurrence-free survival by adjuvant or neoadjuvant ICI-based therapy has been reported in other cancer types. In this article, developments of systemic therapy in adjuvant and neoadjuvant settings for HCC were reviewed. The design of adjuvant and neoadjuvant therapy using ICI-based regimens and potential challenges of trial conduct and result analysis was discussed. Results from these trials may extend the therapeutic benefit of ICI-based systemic therapy beyond the advanced-stage disease and lead to a new era of multidisciplinary management for HCC.
Collapse
Affiliation(s)
- Yung-Yeh Su
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chen Li
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Jyh Lin
- Division of General and Transplant Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Liver Cancer Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiun Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
27
|
Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J Clin Cases 2021; 9:4890-4917. [PMID: 34307543 PMCID: PMC8283590 DOI: 10.12998/wjcc.v9.i19.4890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancer-related deaths worldwide. In recent years, uncovering the molecular mechanisms involved in the development and behavior of this tumor has led to the identification of multiple potential treatment targets. Despite the vast amount of data on this topic, HCC remains a challenging tumor to treat due to its aggressive behavior and complex molecular profile. Therefore, the number of studies aiming to elucidate the mechanisms involved in both carcinogenesis and tumor progression in HCC continues to increase. In this context, the close association of HCC with viral hepatitis has led to numerous studies focusing on the direct or indirect involvement of viruses in the mechanisms contributing to tumor development and behavior. In line with these efforts, this review was undertaken to highlight the current understanding of the molecular mechanisms by which hepatitis B virus (HBV) and hepatitis C virus (HCV) participate in oncogenesis and tumor progression in HCC and summarize new findings. Cumulative evidence indicates that HBV DNA integration promotes genomic instability, resulting in the overexpression of genes related to cancer development, metastasis, and angiogenesis or inactivation of tumor suppressor genes. In addition, genetic variations in HBV itself, especially preS2 deletions, may play a role in malignant transformation. Epigenetic dysregulation caused by both viruses might also contribute to tumor formation and metastasis by modifying the methylation of DNA and histones or altering the expression of microRNAs. Similarly, viral proteins of both HBV and HCV can affect pathways that are important anticancer targets. The effects of these two viruses on the Hippo-Yap-Taz pathway in HCC development and behavior need to be investigated. Additional, comprehensive studies are also needed to determine these viruses' interaction with integrins, farnesoid X, and the apelin system in malignant transformation and tumor progression. Although the relationship of persistent inflammation caused by HBV and HCV hepatitis with carcinogenesis is well defined, further studies are warranted to decipher the relationship among inflammasomes and viruses in carcinogenesis and elucidate the role of virus-microbiota interactions in HCC development and progression.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
28
|
Kumar V, Rahman M, Gahtori P, Al-Abbasi F, Anwar F, Kim HS. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opin Drug Deliv 2021; 18:673-694. [PMID: 33295218 DOI: 10.1080/17425247.2021.1860939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide. Conventional therapies covering either chemotherapy or combination therapy still have sub-optimal responses with significant adverse effects and toxicity. Moreover, tumor cells usually acquire resistance quickly for traditional approaches, limiting their use in HCC. Interest in nanomedicine due to minimal systemic toxicity and a high degree of target-specific drug-delivery have pulled the attention of health scientists in this area of therapeutics. AREA COVERED The review covers the incidence and epidemiology of HCC, proposed molecular drug targets, mechanistic approach and emergence of nanomedicines including nanoparticles, lipidic nanoparticles, vesicular-based nanocarrier, virus-like particles with momentous therapeutic aspects including biocompatibility, and toxicity of nanocarriers along with conclusions and future perspective, with an efficient approach to safely cross physiological barriers to reach the target site for treating liver cancer. EXPERT OPINION Remarkable outcomes have recently been observed for the therapeutic efficacy of nanocarriers with respect to a specific drug target against the treatment of HCC by existing under trial drugs.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University Dehradun 248002, Uttarakhand, India
| | - Fahad Al-Abbasi
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, 2066, Seobu-ro, Korea
| |
Collapse
|
29
|
Autophagy, an accomplice or antagonist of drug resistance in HCC? Cell Death Dis 2021; 12:266. [PMID: 33712559 PMCID: PMC7954824 DOI: 10.1038/s41419-021-03553-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignancy characterized by poor prognosis and a low 5-year survival rate. Drug treatment is proving to be effective in anti-HCC. However, only a small number of HCC patients exhibit sensitive responses, and drug resistance occurs frequently in advanced patients. Autophagy, an evolutionary process responsible for the degradation of cellular substances, is closely associated with the acquisition and maintenance of drug resistance for HCC. This review focuses on autophagic proteins and explores the intricate relationship between autophagy and cancer stem cells, tumor-derived exosomes, and noncoding RNA. Clinical trials involved in autophagy inhibition combined with anticancer drugs are also concerned.
Collapse
|
30
|
Zhu G, Xia H, Tang Q, Bi F. An epithelial-mesenchymal transition-related 5-gene signature predicting the prognosis of hepatocellular carcinoma patients. Cancer Cell Int 2021; 21:166. [PMID: 33712026 PMCID: PMC7953549 DOI: 10.1186/s12935-021-01864-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background Tumor metastasis is one of the leading reasons of the dismal prognosis of hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) is closely associated with tumor metastasis including HCC. The purpose of this study is to construct and validate an EMT-related gene signature for predicting the prognosis of HCC patients. Methods Gene expression data of HCC patients was downloaded from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was performed to found the EMT-related gene sets which were obviously distinct between normal samples and paired HCC samples. Cox regression analysis was used to develop an EMT-related prognostic signature, and the performance of the signature was evaluated by Kaplan–Meier curves and time-dependent receiver operating characteristic (ROC) curves. A nomogram incorporating the independent predictors was established. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of the hub genes in HCC cell lines, and the role of PDCD6 in the metastasis of HCC was determined by functional experiments. Results An EMT-related 5-gene signature (PDCD6, TCOF1, TRIM28, EZH2 and FAM83D) was constructed using univariate and multivariate Cox regression analysis. Based on the signature, the HCC patients were classified into high- and low-risk groups, and patients in high-risk group had a poor prognosis. Time-dependent ROC and Cox regression analyses suggested that the signature could predict HCC prognosis exactly and independently. The predictive capacity of the signature was also validated in two external cohorts. GSEA results showed that many cancer-related signaling pathways such as PI3K/Akt/mTOR pathway and TGF-β/SMAD pathway were enriched in high-risk group. The result of qRT-PCR revealed that PDCD6, TCOF1 and FAM83D were highly expressed in HCC cancer cells. Among them, PDCD6 were found to promote cell migration and invasion. Conclusion The EMT-related 5-gene signature can serve as a promising prognostic biomarker for HCC patients and may provide a novel mechanism of HCC metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01864-5.
Collapse
Affiliation(s)
- Gongmin Zhu
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, No.37 guoxue lane, Chengdu, 610041, Sichuan Province, China
| | - Hongwei Xia
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, No.37 guoxue lane, Chengdu, 610041, Sichuan Province, China
| | - Qiulin Tang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, No.37 guoxue lane, Chengdu, 610041, Sichuan Province, China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, No.37 guoxue lane, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
31
|
Upregulation of miR-138 Increases Sensitivity to Cisplatin in Hepatocellular Carcinoma by Regulating EZH2. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6665918. [PMID: 33748276 PMCID: PMC7960019 DOI: 10.1155/2021/6665918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022]
Abstract
Chemotherapeutic insensitivity is a major obstacle for effective treatment of hepatocellular carcinoma (HCC). Recently, new evidence showed that microRNAs (miRNAs) are closely related to drug sensitivity. This study aimed to investigate the relationship between miR-138 expression and cisplatin sensitivity of HCC cells by regulation of EZH2. CCK-8, EdU, and western blotting are determining the cell viability, proliferation, EZH2, and EMT-related protein expression. It was found that compared with normal samples, miR-138 expression was lower in cancer tissue; it was also downregulated in HCC cells. Transfected with miR-138 mimic increased sensitivity of HCC cells to cisplatin. Mechanistically, Luciferase Reporter analysis verified the interaction between miR-138 and target gene EZH2. Inhibition of EZH2 enhanced cisplatin sensitivity and transfection with EZH2 mimic mirrored the function of miR-138 in cisplatin sensitivity. Furthermore, the role of miR-138 on reversed cisplatin-induced epithelial–mesenchymal transition (EMT) was attenuated when combined with EZH2 plasmid. In conclusion, all data from this study illustrate that miR-138 may as a tumor suppressor provides a potential treatment method to treating HCC.
Collapse
|
32
|
Luo Y, Niu G, Yi H, Li Q, Wu Z, Wang J, Yang J, Li B, Peng Y, Liang Y, Wang W, Peng Z, Shuai X, Guo Y. Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo. Redox Biol 2021; 42:101908. [PMID: 33674250 PMCID: PMC8113035 DOI: 10.1016/j.redox.2021.101908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
miR-101–3p may play a therapeutic role in various tumours. However, its anti-tumour mechanism remains unclear, and a definitive strategy to treat tumour cells in vivo is lacking. The objective of this study was to investigate the inhibitory mechanism of miR-101–3p on tumour cells and to develop relevant nanomedicines for in vivo therapy. The expression levels of miR-101–3p and its target protein TBLR1 in tumour tissues and cells were detected, and their relationship with ferroptosis was clarified. Furthermore, the efficacy of nanocarriers in achieving in vivo therapeutic gene delivery was evaluated. Nanomedicine was further developed, with the anti-proliferative in vivo therapeutic effect validated using a subcutaneous xenograft cancer model. The expression level of miR-101–3p negatively correlated with clinical tumour size and TNM stage. miR-101–3p restores ferroptosis in tumour cells by directly targeting TBLR1, which in turn promotes apoptosis and inhibits proliferation. We developed nanomedicine that can deliver miR-101–3p to tumour cells in vivo to achieve ferroptosis recovery, as well as to inhibit in vivo tumour proliferation. The miR-101–3p/TBLR1 axis plays an important role in tumour ferroptosis. Nanopharmaceuticals that increase miR-101–3p levels may be effective therapies to inhibit tumour proliferation.
Collapse
Affiliation(s)
- Yifeng Luo
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang Niu
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Yi
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingling Li
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhiqiang Wu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jing Wang
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Juan Yang
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo Li
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuan Peng
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ying Liang
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Department of Internal Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Weiwei Wang
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenwei Peng
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xintao Shuai
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yu Guo
- Department of General Surgery, Geriatrics, Obstetrics and Gynecology, Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
33
|
Qian F, Wang J, Wang Y, Gao Q, Yan W, Lin Y, Shen L, Xie Y, Jiang X, Shen B. MiR-378a-3p as a putative biomarker for hepatocellular carcinoma diagnosis and prognosis: Computational screening with experimental validation. Clin Transl Med 2021; 11:e307. [PMID: 33634974 PMCID: PMC7882078 DOI: 10.1002/ctm2.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant disease with high morbidity and mortality, and the molecular mechanism for the genesis and progression is complex and heterogeneous. Biomarker discovery is crucial for the personalized and precision treatment of HCC. The accumulation of reported microRNA biomarkers makes it possible to combine computational identification with experimental validation to accelerate the discovery of novel biomarker. RESULTS In the present work, we applied a rational computer-aided biomarker discovery model to screen for the HCC diagnosis biomarker. Two HCC-associated networks were constructed based on the microRNA and mRNA expression profiles, and the potential microRNA biomarkers were identified based on their unique regulatory and influential power in the network. These putative biomarkers were then experimentally validated. One prominent example among these identified biomarkers is MiR-378a-3p: It was shown to independently regulate several important transcription factors such as PLAGL2 and β-catenin, affecting the β-catenin signaling. Such mechanism may indicate a potential tumor suppressor role of MiR-378a-3p and the impact of its abnormal expression on the cell growth and invasion of HCC. CONCLUSIONS A bioinformatics model with network topological and functional characterization was successfully applied to the identification of HCC biomarkers. The predicted microRNA biomarkers were than validated with experiments using human HCC cell lines, model animal, and clinical specimens. The results confirmed the prediction by our proposed model that miR-378a-3p was a putative biomarker for diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Fuliang Qian
- Center for Systems BiologySoochow UniversitySuzhouChina
| | - Jinghan Wang
- Department of the First Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery HospitalNavy Military Medical UniversityShanghaiChina
| | - Ying Wang
- Department of the First Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery HospitalNavy Military Medical UniversityShanghaiChina
| | - Qian Gao
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenying Yan
- Center for Systems BiologySoochow UniversitySuzhouChina
| | - Yuxin Lin
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Yufeng Xie
- Center for Systems BiologySoochow UniversitySuzhouChina
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaoqing Jiang
- Department of the First Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery HospitalNavy Military Medical UniversityShanghaiChina
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
34
|
Tian S, Liu J, Sun K, Liu Y, Yu J, Ma S, Zhang M, Jia G, Zhou X, Shang Y, Han Y. Systematic Construction and Validation of an RNA-Binding Protein-Associated Model for Prognosis Prediction in Hepatocellular Carcinoma. Front Oncol 2021; 10:597996. [PMID: 33575212 PMCID: PMC7870868 DOI: 10.3389/fonc.2020.597996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Evidence from prevailing studies show that hepatocellular carcinoma (HCC) is among the top cancers with high mortality globally. Gene regulation at post-transcriptional level orchestrated by RNA-binding proteins (RBPs) is an important mechanism that modifies various biological behaviors of HCC. Currently, it is not fully understood how RBPs affects the prognosis of HCC. In this study, we aimed to construct and validate an RBP-related model to predict the prognosis of HCC patients. METHODS Differently expressed RBPs were identified in HCC patients based on the GSE54236 dataset from the Gene Expression Omnibus (GEO) database. Integrative bioinformatics analyses were performed to select hub genes. Gene expression patterns were validated in The Cancer Genome Atlas (TCGA) database, after which univariate and multivariate Cox regression analyses, as well as Kaplan-Meier analysis were performed to develop a prognostic model. Then, the performance of the prognostic model was assessed using receiver operating characteristic (ROC) curves and clinicopathological correlation analysis. Moreover, data from the International Cancer Genome Consortium (ICGC) database were used for external validation. Finally, a nomogram combining clinicopathological parameters and prognostic model was established for the individual prediction of survival probability. RESULTS The prognostic risk model was finally constructed based on two RBPs (BOP1 and EZH2), facilitating risk-stratification of HCC patients. Survival was markedly higher in the low-risk group relative to the high-risk group. Moreover, higher risk score was associated with advanced pathological grade and late clinical stage. Besides, the risk score was found to be an independent prognosis factor based on multivariate analysis. Nomogram including the risk score and clinical stage proved to perform better in predicting patient prognosis. CONCLUSIONS The RBP-related prognostic model established in this study may function as a prognostic indicator for HCC, which could provide evidence for clinical decision making.
Collapse
Affiliation(s)
- Siyuan Tian
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Keshuai Sun
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yansheng Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jiahao Yu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Shuoyi Ma
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Gui Jia
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Ying Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
35
|
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). There are approximately 250 million people in the world that are chronically infected by this virus, resulting in nearly 1 million deaths every year. Many of these patients die from severe liver diseases, including HCC. HBV may induce HCC through the induction of chronic liver inflammation, which can cause oxidative stress and DNA damage. However, many studies also indicated that HBV could induce HCC via the alteration of hepatocellular physiology that may involve genetic and epigenetic changes of the host DNA, the alteration of cellular signaling pathways, and the inhibition of DNA repair mechanisms. This alteration of cellular physiology can lead to the accumulation of DNA damages and the promotion of cell cycles and predispose hepatocytes to oncogenic transformation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA.
| |
Collapse
|
36
|
Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, Li P, Wang K. The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021; 17:134-150. [PMID: 33390839 PMCID: PMC7757044 DOI: 10.7150/ijbs.50773] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved catabolic process involving the degradation and recycling of damaged biomacromolecules or organelles through lysosomal-dependent pathways and plays a crucial role in maintaining cell homeostasis. Consequently, abnormal autophagy is associated with multiple diseases, such as infectious diseases, neurodegenerative diseases and cancer. Currently, autophagy is considered to be a dual regulator in cancer, functioning as a suppressor in the early stage while supporting the growth and metastasis of cancer cells in the later stage and may also produce therapeutic resistance. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by silencing targeted mRNA. MiRNAs have great regulatory potential for several fundamental biological processes, including autophagy. In recent years, an increasing number of studies have linked miRNA dysfunction to the growth, metabolism, migration, metastasis, and responses of cancer cells to therapy. Therefore, the study of autophagy-related miRNAs in cancer will provide insights into cancer biology and lead to the development of novel anti-cancer strategies. In the present review, we summarise the current knowledge of miRNA dysregulation during autophagy in cancer, focusing on the relationship between autophagy and miRNAs, and discuss their involvement in cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hongjing Cai
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiaodan Hao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yinfeng Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhixia Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinmin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
37
|
Hepigenetics: A Review of Epigenetic Modulators and Potential Therapies in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9593254. [PMID: 33299889 PMCID: PMC7707949 DOI: 10.1155/2020/9593254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma is the fifth most common cancer worldwide and the second most lethal, following lung cancer. Currently applied therapeutic practices rely on surgical resection, chemotherapy and radiotherapy, or a combination thereof. These treatment options are associated with extreme adversities, and risk/benefit ratios do not always work in patients' favor. Anomalies of the epigenome lie at the epicenter of aberrant molecular mechanisms by which the disease develops and progresses. Modulation of these anomalous events poses a promising prospect for alternative treatment options, with an abundance of felicitous results reported in recent years. Herein, the most recent epigenetic modulators in hepatocellular carcinoma are recapitulated on.
Collapse
|
38
|
ZHENG F, WANG Z. miRNA-1180 suppresses HCC cell activities via TRAF1/NF-κB signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.26219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng ZHENG
- Qilu Hospital of Shandong University, China
| | - Zheng WANG
- Qilu Hospital of Shandong University, China
| |
Collapse
|
39
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv Cancer Res 2020; 149:1-61. [PMID: 33579421 PMCID: PMC8796122 DOI: 10.1016/bs.acr.2020.10.001] [Citation(s) in RCA: 527] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the primary malignancy of hepatocytes, is a diagnosis with bleak outcome. According to National Cancer Institute's SEER database, the average five-year survival rate of HCC patients in the US is 19.6% but can be as low as 2.5% for advanced, metastatic disease. When diagnosed at early stages, it is treatable with locoregional treatments including surgical resection, Radio-Frequency Ablation, Trans-Arterial Chemoembolization or liver transplantation. However, HCC is usually diagnosed at advanced stages when the tumor is unresectable, making these treatments ineffective. In such instances, systemic therapy with tyrosine kinase inhibitors (TKIs) becomes the only viable option, even though it benefits only 30% of patients, provides only a modest (~3months) increase in overall survival and causes drug resistance within 6months. HCC, like many other cancers, is highly heterogeneous making a one-size fits all option problematic. The selection of liver transplantation, locoregional treatment, TKIs or immune checkpoint inhibitors as a treatment strategy depends on the disease stage and underlying condition(s). Additionally, patients with similar disease phenotype can have different molecular etiology making treatment responses different. Stratification of patients at the molecular level would facilitate development of the most effective treatment option. With the increase in efficiency and affordability of "omics"-level analysis, considerable effort has been expended in classifying HCC at the molecular, metabolic and immunologic levels. This review examines the results of these efforts and the ways they can be leveraged to develop targeted treatment options for HCC.
Collapse
Affiliation(s)
- Saranya Chidambaranathan-Reghupaty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
41
|
Yu Y, Liao H, Xie R, Zhang Y, Zheng R, Chen J, Zhang B. Overexpression of miRNA-3613-3p Enhances the Sensitivity of Triple Negative Breast Cancer to CDK4/6 Inhibitor Palbociclib. Front Oncol 2020; 10:590813. [PMID: 33330073 PMCID: PMC7729088 DOI: 10.3389/fonc.2020.590813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by lack of expression of the estrogen and progesterone receptors and HER2, which are common therapeutic targets. CDK4/6 inhibitor Palbociclib has been approved as an anti-cancer agent for breast cancer. However, identifying biomarkers that predict the response to Palbociclib has always been a challenge for molecular targeted therapy. In this study, we identify microRNA as a hallmark in TNBC patients and explore if miR-3613-3p might serve as a tumor suppressor biomarker for triple negative breast cancer patients and if overexpression of miR-3613-3p could enhance the sensitivity of TNBC cells to Palbociclib. We show that the expression of miR3613-3p was down-regulated in TNBC tumors and cells, and the overexpression of miR-3613-3p in patients’ tumor tissues was clinically and pathologically correlated with favorable prognosis, such as smaller tumor size and the lower Ki-67. In vitro, overexpression of miR-3613-3p inhibited cell proliferation, induced G1 cell-cycle arrest, and enhanced the sensitivity of TNBC cells to Palbociclib treatment. In vivo study revealed that overexpression of miR-3613-3p inhibited TNBC tumorigenesis and exerted a significant inhibitory effect of Palbociclib on MDA-MB-231 cells. Mechanically, SMAD2 and EZH2 were found to be two direct targets of miR-3613-3p and mediate the proliferation of TNBC cells and the sensitivity of the cells to Palbociclib through inducing cellular senescence. Our findings suggested that miR-3613-3p acts as a cancer-suppressor miRNA in TNBC. Moreover, our study showed that miR-3613-3p might be used as a predictive biomarker for the response of TNBC to Palbociclib.
Collapse
Affiliation(s)
- Yuanhang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Liao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Xie
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjing Zheng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianying Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, Hashemipour M, Nejati M, Abbasi-Kolli M, Sahebkar A, Mirzaei H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res 2020; 161:105133. [DOI: 10.1016/j.phrs.2020.105133] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
|
43
|
Fan J, Shi Y, Peng Y. Autophagy and Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:497-528. [PMID: 32671772 DOI: 10.1007/978-981-15-4272-5_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy plays an important role in the physiology and pathology of the liver. It is involved in the development of many liver diseases such as α-1-antitrypsin deficiency, chronic hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, and liver cancer. Autophagy has thus become a new target for the treatment of liver diseases. How to treat liver diseases by regulating autophagy has been a hot topic.
Collapse
Affiliation(s)
- Jia Fan
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China.
| | - Yinghong Shi
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| | - Yuanfei Peng
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| |
Collapse
|
44
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
45
|
Xu J, An P, Winkler CA, Yu Y. Dysregulated microRNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Potential as Biomarkers and Therapeutic Targets. Front Oncol 2020; 10:1271. [PMID: 32850386 PMCID: PMC7399632 DOI: 10.3389/fonc.2020.01271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that can function as gene regulators and are involved in tumorigenesis. We review the commonly dysregulated miRNAs in liver tumor tissues and plasma/serum of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. The frequently reported up-regulated miRNAs in liver tumor tissues include miR-18a, miR-21, miR-221, miR-222, and miR-224, whereas down-regulated miRNAs include miR-26a, miR-101, miR-122, miR-125b, miR-145, miR-199a, miR-199b, miR-200a, and miR-223. For a subset of these miRNAs (up-regulated miR-222 and miR-224, down-regulated miR-26a and miR-125b), the pattern of dysregulated circulating miRNAs in plasma/serum is mirrored in tumor tissue based on multiple independent studies. Dysregulated miRNAs target oncogenes or tumor suppressor genes involved in hepatocarcinogenesis. Normalization of dysregulated miRNAs by up- or down-regulation has been shown to inhibit HCC cell proliferation or sensitize liver cancer cells to chemotherapeutic treatment. miRNAs hold as yet unrealized potential as biomarkers for early detection of HCC and as precision therapeutic targets, but further studies in diverse populations and across all stages of HCC are needed.
Collapse
Affiliation(s)
- Jinghang Xu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ping An
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Cheryl A. Winkler
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Yanyan Yu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
46
|
Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, Mirzaei HR, Razavi ZS, Sahebkar A, Hosseini N, Mirzaei H, Hamblin MR. Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 2020; 18:88. [PMID: 32517694 PMCID: PMC7285723 DOI: 10.1186/s12964-020-00587-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy has a crucial role in many cancers, including brain tumors. Several types of endogenous molecules (e.g. microRNAs, AKT, PTEN, p53, EGFR, and NF1) can modulate the process of autophagy. Recently miRNAs (small non-coding RNAs) have been found to play a vital role in the regulation of different cellular and molecular processes, such as autophagy. Deregulation of these molecules is associated with the development and progression of different pathological conditions, including brain tumors. It was found that miRNAs are epigenetic regulators, which influence the level of proteins coded by the targeted mRNAs with any modification of the genetic sequences. It has been revealed that various miRNAs (e.g., miR-7-1-3p, miR-340, miR-17, miR-30a, miR-224-3p, and miR-93), as epigenetic regulators, can modulate autophagy pathways within brain tumors. A deeper understanding of the underlying molecular targets of miRNAs, and their function in autophagy pathways could contribute to the development of new treatment methods for patients with brain tumors. In this review, we summarize the various miRNAs, which are involved in regulating autophagy in brain tumors. Moreover, we highlight the role of miRNAs in autophagy-related pathways in different cancers. Video abstract
Collapse
Affiliation(s)
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehsadat Hosseini
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
47
|
Boubaker G, Strempel S, Hemphill A, Müller N, Wang J, Gottstein B, Spiliotis M. Regulation of hepatic microRNAs in response to early stage Echinococcus multilocularis egg infection in C57BL/6 mice. PLoS Negl Trop Dis 2020; 14:e0007640. [PMID: 32442168 PMCID: PMC7244097 DOI: 10.1371/journal.pntd.0007640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
We present a comprehensive analysis of the hepatic miRNA transcriptome at one month post-infection of experimental primary alveolar echinococcosis (AE), a parasitic infection caused upon ingestion of E. multilocularis eggs. Liver tissues were collected from infected and non-infected C57BL/6 mice, then small RNA libraries were prepared for next-generation sequencing (NGS). We conducted a Stem-loop RT-qPCR for validation of most dysregulated miRNAs. In infected mice, the expression levels of 28 miRNAs were significantly altered. Of these, 9 were up-regulated (fold change (FC) ≥ 1.5) and 19 were down-regulated (FC ≤ 0.66) as compared to the non-infected controls. In infected livers, mmu-miR-148a-3p and mmu-miR-101b-3p were 8- and 6-fold down-regulated, respectively, and the expression of mmu-miR-22-3p was reduced by 50%, compared to non-infected liver tissue. Conversely, significantly higher hepatic levels were noted for Mus musculus (mmu)-miR-21a-5p (FC = 2.3) and mmu-miR-122-5p (FC = 1.8). In addition, the relative mRNA expression levels of five genes (vegfa, mtor, hif1-α, fasn and acsl1) that were identified as targets of down-regulated miRNAs were significantly enhanced. All the five genes exhibited a higher expression level in livers of E. multilocularis infected mice compared to non-infected mice. Finally, we studied the issue related to functionally mature arm selection preference (5p and/or 3p) from the miRNA precursor and showed that 9 pre-miRNAs exhibited different arm selection preferences in normal versus infected liver tissues. In conclusion, this study provides first evidence that miRNAs are regulated early in primary murine AE. Our findings raise intriguing questions such as (i) how E. multilocularis affects hepatic miRNA expression;(ii) what are the alterations in miRNA expression patterns in more advanced AE-stages; and (iii) which hepatic cellular, metabolic and/or immunologic processes are modulated through altered miRNAs in AE. Thus, further research on the regulation of miRNAs during AE is needed, since miRNAs constitute an attractive potential option for development of novel therapeutic approaches against AE. Various infectious diseases in humans have been associated with altered expression patterns of microRNAs (miRNAs), a class of small non-coding RNAs involved in negative regulation of gene expression. Herein, we revealed that significant alteration of miRNAs expression occurred in murine liver subsequently to experimental infection with E. multilocularis eggs when compared to non-infected controls. At the early stage of murine AE, hepatic miRNAs were mainly down-regulated. Respective target genes of the most extensively down-regulated miRNAs were involved in angiogenesis and fatty acid synthesis. Furthermore, we found higher mRNA levels of three angiogenic and two lipogenic genes in E. multilocularis infected livers compared to non-infected controls. Angiogenesis and fatty acid biosynthesis may be beneficial for development of the E. multilocularis metacestodes. In fact the formation of new blood vessels in the periparasitic area may ensure that parasites are supplied with oxygen and nutrients and get rid of waste products. Additionally, E. multilocularis is not able to undertake de novo fatty acid synthesis, thus lipids must be scavenged from its host. More research on the regulation of the hepatic miRNA transcriptome at more advanced stages of AE is needed.
Collapse
Affiliation(s)
- Ghalia Boubaker
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- Department of Clinical Biology B, Laboratory of Parasitology and Mycology, University of Monastir, Monastir, Tunisia
- * E-mail: (GB); (BG)
| | | | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Norbert Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Junhua Wang
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Bruno Gottstein
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- Institute of Infectious Diseases, Faculty of Medicine, University of Berne, Berne, Switzerland
- * E-mail: (GB); (BG)
| | - Markus Spiliotis
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| |
Collapse
|
48
|
The Underlying Mechanisms of Noncoding RNAs in the Chemoresistance of Hepatocellular Carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:13-27. [PMID: 32505000 PMCID: PMC7270498 DOI: 10.1016/j.omtn.2020.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human malignancies. Chemotherapeutic agents, such as sorafenib and lenvatinib, can improve the outcomes of HCC patients. Nevertheless, chemoresistance has become a major hurdle in the effective treatment of HCC. Noncoding RNAs (ncRNAs), including mircoRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), have been demonstrated to participate in the onset and progression of HCC. Moreover, multiple lines of evidence have indicated that ncRNAs also play a pivotal role in HCC drug resistance. ncRNAs can regulate drug efflux and metabolism, glucose metabolism, cellular death pathways, and malignant characteristics in HCC. A deeper understanding of the molecular mechanisms responsible for ncRNA-mediated drug resistance in HCC will provide new opportunities for improving the treatment of HCC. In this review, we summarize recent findings on the molecular mechanisms by which ncRNAs regulate HCC chemoresistance, as well as their potential clinical implications in overcoming HCC chemoresistance.
Collapse
|
49
|
Wu H, Liu C, Yang Q, Xin C, Du J, Sun F, Zhou L. MIR145-3p promotes autophagy and enhances bortezomib sensitivity in multiple myeloma by targeting HDAC4. Autophagy 2020; 16:683-697. [PMID: 31242129 PMCID: PMC7138223 DOI: 10.1080/15548627.2019.1635380] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy with poor survival. Autophagy, a stress-responsive catabolic process mediated by lysosomal activity, plays a crucial role in the pathophysiology of MM. Growing evidence has indicated that dysregulated microRNAs (miRNAs) are associated with the aberrant autophagy in various human cancers. However, to date, few miRNAs have been reported to directly modulate autophagy in the pathobiology of MM. In this study, we investigated the role of MIR145-3p (microRNA 145-3p) in MM, with focus on cellular processes autophagy and cell death. Our results provided evidence that downregulation of MIR145-3p expression was associated with disease progression in human MM. MIR145-3p triggered autophagic flux through direct targeting of HDAC4 (histone deacetylase 4) in MM cells, leading to enhanced apoptosis. Silencing HDAC4 recapitulated the effects of MIR145-3p, whereas enforced expression of HDAC4 abrogated the effects of MIR145-3p. Furthermore, we showed that suppression of HDAC4 by MIR145-3p resulted in upregulation of the pro-apoptotic protein BCL2L11 and caused MTORC1 inactivation, which in turn led to enhanced autophagy and cell death. Importantly, we demonstrated that MIR145-3p mimic could potentiate the anti-MM activity of bortezomib in both in vitro and in vivo experiments. Overall, our findings indicate that MIR145-3p exerted a tumor suppression function in MM by inducing autophagic cell death and suggest that MIR145-3p-based targeted therapy would represent a novel strategy for MM treatment.Abbreviations: 3-MA: 3-methyladenine; 3'-UTR: 3'-untranslated region; 7-AAD: 7-aminoactinomycin D; ACTB: actin beta; ANXA5: annexin A5; ATG5: autophagy related 5; ATG7: autophagy related 7; B2M: beta-2-microglobulin; BAF: bafilomycin A1; BCL2L11: BCL2 like 11; Bort: bortezomib; CASP3: caspase 3; CCK-8: Cell Counting Kit-8; CQ: chloroquine; Ct: threshold cycle; ctrl: control; DAPI: 4',6-diamidino-2-phenylindole; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HDAC4: histone deacetylase 4; ISS: International Staging System; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNAs: microRNAs; MIR145-3p: microRNA 145-3p; MM: multiple myeloma; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; PCs: plasma cells; PFS: progression-free survival; qRT-PCR: quantitative reverse transcription PCR; RPS6KB1: ribosomal protein S6 kinase B1; SD: standard deviation; siRNA: small interfering RNA; SQSTM1: sequestosome 1; STV: starvation; TUBB: tubulin beta class I.
Collapse
Affiliation(s)
- Hongkun Wu
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Chang Liu
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Qingyuan Yang
- Department of Clinical Laboratory Medicine, Tenth People’s Hospital of Tongji University, Shanghai, P.R. China
| | - Chengde Xin
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Juan Du
- Department of Hematology, The Myeloma & Lymphoma Center, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Tenth People’s Hospital of Tongji University, Shanghai, P.R. China
| | - Lin Zhou
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
50
|
Huang P, Xu Q, Yan Y, Lu Y, Hu Z, Ou B, Zhang H, Mao K, Zhang J, Wang J, Xiao Z. HBx/ERα complex-mediated LINC01352 downregulation promotes HBV-related hepatocellular carcinoma via the miR-135b-APC axis. Oncogene 2020; 39:3774-3789. [PMID: 32157216 DOI: 10.1038/s41388-020-1254-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection plays an important role in hepatocarcinogenesis, especially in hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) have emerged as crucial biomarkers and regulators in many cancers. Novel lncRNAs involved in the initiation and progression of HBV-related hepatocellular carcinoma (HCC) need to be investigated. Here, we report that the long non-coding RNA LINC01352 is markedly downregulated by HBV/HBx (HBV X protein) in HCC cells and clinical samples. The LINC01352 expression level in HCC is an independent prognostic factor for survival. We found that HBx suppresses LINC01352 promoter activity by forming a complex with the estrogen receptor (ERα). Furthermore, using a combination of in vitro and in vivo studies, we confirmed that HBx promotes HCC cell growth and metastasis by inhibiting LINC01352 expression. Further investigation revealed that the downregulation of LINC01352, which acts as an endogenous sponge, increases the expression of miR-135b, leading to the reduced production of adenomatous polyposis coli (APC), consequently activating Wnt/β-catenin signalling to facilitate tumour progression. These findings strongly suggest that the LINC01352-miR-135b-APC axis regulated by the HBx/ERα complex acts as an important pathogenic factor for tumour progression, which may help provide a theoretical basis for the identification of new therapeutic targets for HBV-related HCC.
Collapse
Affiliation(s)
- Pinbo Huang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiaodong Xu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yingjuan Lu
- Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhigang Hu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Bing Ou
- Department of Ultrasonography, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Heyun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|