1
|
Pant K, Richard S, Peixoto E, Baral S, Yang R, Ren Y, Masyuk TV, LaRusso NF, Gradilone SA. Cholangiocyte ciliary defects induce sustained epidermal growth factor receptor signaling. Hepatology 2025; 81:1132-1145. [PMID: 39186465 DOI: 10.1097/hep.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS The primary cilium, an organelle that protrudes from cell surfaces, is essential for sensing extracellular signals. With disturbed cellular communication and chronic liver pathologies, this organelle's dysfunctions have been linked to disorders, including polycystic liver disease and cholangiocarcinoma. The goal of this study was to elucidate the relationship between primary cilia and the crucial regulator of cellular proliferation, the epidermal growth factor receptor (EGFR) signaling pathway, which has been associated with various clinical conditions. APPROACH AND RESULTS The study identified aberrant EGFR signaling pathways in cholangiocytes lacking functional primary cilia using liver-specific intraflagellar transport 88 knockout mice, a Pkhd1 mutant rat model, and human cell lines that did not have functional cilia. Cilia-deficient cholangiocytes showed persistent EGFR activation because of impaired receptor degradation, in contrast to their normal counterparts, where EGFR localization to the cilia promotes appropriate signaling. Using histone deacetylase 6 inhibitors to restore primary cilia accelerates EGFR degradation, thereby reducing maladaptive signaling. Importantly, experimental intervention with the histone deacetylase 6 inhibitor tubastatin A in an orthotopic rat model moved EGFR to cilia and reduced ERK phosphorylation. Concurrent administration of EGFR and histone deacetylase 6 inhibitors in cholangiocarcinoma and polycystic liver disease cells demonstrated synergistic antiproliferative effects, which were associated with the restoration of functioning primary cilia. CONCLUSIONS This study's findings shed light on ciliary function and robust EGFR signaling with slower receptor turnover. We could use therapies that restore the function of primary cilia to treat EGFR-driven diseases in polycystic liver disease and cholangiocarcinoma.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | | - Subheksha Baral
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Rendong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yanan Ren
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Yang YCSH, Tsai CC, Yang YN, Liu FC, Lee SY, Yang JC, Crawford DR, Chiu HC, Lu MC, Li ZL, Chen YC, Chu TY, Whang-Peng J, Lin HY, Wang K. Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma. Oncol Rep 2025; 53:32. [PMID: 39791224 DOI: 10.3892/or.2025.8865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/17/2024] [Indexed: 01/12/2025] Open
Abstract
Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells. It inhibits critical signal transduction pathways promoted by the EGF. In the current study, EGF‑induced signal activation and proliferative effects were investigated in cholangiocarcinoma cells and its molecular targets using qPCR and western blotting analyses. In addition, cell viability assays were performed to assess the growth effects of EGF and heteronemin. Heteronemin reversed the effects of EGF and was further enhanced by blockage of PI3K's activity. In summary, EGF stimulates cholangiocarcinoma cell growth. On the other hand, heteronemin inhibited PI3K activation and PD‑L1 expression to reverse the stimulative effects of EGF‑induced gene expression and proliferation in cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Chung-Che Tsai
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Yung-Ning Yang
- School of Medicine, College of Medicine, I‑Shou University, Kaohsiung 84001, Taiwan, R.O.C
| | - Feng-Cheng Liu
- Division of Rheumatology, Immunology and Allergy, Tri‑Service General Hospital, Taipei 11490, Taiwan, R.O.C
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Dana R Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri‑Service General Hospital, Taipei 11490, Taiwan, R.O.C
| | - Mei-Chin Lu
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan, R.O.C
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Yi-Chen Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Tin-Yi Chu
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Jacqueline Whang-Peng
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| |
Collapse
|
3
|
Łazarczyk M, Skiba D, Mickael ME, Jaskuła K, Nawrocka A, Religa P, Sacharczuk M. Opioid System and Epithelial-Mesenchymal Transition. Pharmaceuticals (Basel) 2025; 18:120. [PMID: 39861181 PMCID: PMC11768736 DOI: 10.3390/ph18010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Opioids are a challenging class of drugs due to their dual role. They alleviate pain, but also pose a risk of dependency, or trigger constipation, particularly in cancer patients, who require the more potent painkillers in more advanced stages of the disease, closely linked to pain resulting from general inflammation, bone metastases, and primary or secondary tumour outgrowth-related nerve damage. Clinicians' vigilance considering treatment with opioids is necessary, bearing in mind extensive data accumulated over decades that have reported the contribution of opioids to immunosuppression, tumour progression, or impaired tissue regeneration, either following opioid use during surgical tumour resection and post-surgical pain treatment, or as a result of other diseases like diabetes, where chronic wounds healing constitutes a challenge. During last few years, an increasing trend for seeking relationships between opioids and epithelial-mesenchymal transition (EMT) in cancer research can be observed. Transiently lasting EMT is desirable during wound healing, but in cancer, or vital organ fibrogenesis, EMT appears to be an obstacle to overcome, forcing to adjust treatment strategies that would reduce the risk for worsening of the disease outcome and patient prognosis. The same opioid may demonstrate promoting or inhibitory effect on EMT, dependently on various conditions in particular clinical cases. We have summarized current findings on this issue to uncover some rules that govern opioid-mediated EMT induction or repression; however, many aspects still remain to be elucidated.
Collapse
Affiliation(s)
- Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Dominik Skiba
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Michel-Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Kinga Jaskuła
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, 171 77 Solna, Sweden
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| |
Collapse
|
4
|
Cammarota A, Balsano R, Pressiani T, Bozzarelli S, Rimassa L, Lleo A. The Immune-Genomics of Cholangiocarcinoma: A Biological Footprint to Develop Novel Immunotherapies. Cancers (Basel) 2025; 17:272. [PMID: 39858054 PMCID: PMC11763448 DOI: 10.3390/cancers17020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Cholangiocarcinoma (CCA) represents approximately 3% of all gastrointestinal cancers and is a highly heterogeneous and aggressive malignancy originating from the epithelial cells of the biliary tree. CCA is classified by anatomical location into intrahepatic (iCCA), extrahepatic (eCCA), gallbladder cancer (GBC), and ampullary cancers. Although considered a rare tumor, CCA incidence has risen globally, particularly due to the increased diagnosis of iCCA. Genomic and immune profiling studies have revealed significant heterogeneity within CCA, leading to the identification of molecular subtypes and actionable genetic alterations in 40-60% of cases, particularly in iCCA. Among these, FGFR2 rearrangements or fusions (7-15%) and IDH1 mutations (10-20%) are common in iCCA, while HER2 amplifications/overexpression are more frequent in eCCA and GBC. The tumor-immune microenvironment (TIME) of CCAs plays an active role in the pathogenesis and progression of the disease, creating a complex and plastic environment dominated by immune-suppressive populations. Among these, cancer-associated fibroblasts (CAFs) are a key component of the TIME and are associated with worse survival due to their role in maintaining a poorly immunogenic landscape through the deposition of stiff extracellular matrix and release of pro-tumor soluble factors. Improved understanding of CCA tumor biology has driven the development of novel treatments. Combination therapies of cisplatin and gemcitabine with immune checkpoint inhibitors (ICIs) have replaced the decade-long standard doublet chemotherapy, becoming the new standard of care in patients with advanced CCA. However, the survival improvements remain modest prompting research into more effective ways to target the TIME of CCAs. As key mechanisms of immune evasion in CCA are uncovered, novel immune molecules emerge as potential therapeutic targets. Current studies are exploring strategies targeting multiple immune checkpoints, angiogenesis, and tumor-specific antigens that contribute to immune escape. Additionally, the success of ICIs in advanced CCA has led to interest in their application in earlier stages of the disease, such as in adjuvant and neoadjuvant settings. This review offers a comprehensive overview of the immune biology of CCAs and examines how this knowledge has guided clinical drug development, with a focus on both approved and emergent treatment strategies.
Collapse
Affiliation(s)
- Antonella Cammarota
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy; (R.B.); (L.R.)
| | - Rita Balsano
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy; (R.B.); (L.R.)
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (T.P.); (S.B.)
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (T.P.); (S.B.)
| | - Silvia Bozzarelli
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (T.P.); (S.B.)
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy; (R.B.); (L.R.)
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (T.P.); (S.B.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy; (R.B.); (L.R.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| |
Collapse
|
5
|
Carson MD, Nejak-Bowen K. Wnt/β-Catenin Signaling in Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2025; 20:59-86. [PMID: 39260380 DOI: 10.1146/annurev-pathmechdis-111523-023535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The liver has a critical role in regulating host metabolism, immunity, detoxification, and homeostasis. Proper liver function is essential for host health, and dysregulation of hepatic signaling pathways can lead to the onset of disease. The Wnt/β-catenin signaling pathway is an important regulator of liver homeostasis and function. Throughout life, hepatic Wnt/β-catenin signaling contributes to liver development and growth, metabolic zonation, and regeneration. Extensive research has demonstrated that aberrant Wnt/β-catenin signaling drives liver pathologies, including cancers, steatohepatitis, and cholestasis. In this review, we discuss the Wnt/β-catenin pathway as it pertains to liver function and how disruptions in this pathway contribute to the onset and progression of liver diseases. Further, we discuss ongoing research that targets the Wnt/β-catenin pathway for the treatment of liver pathologies.
Collapse
Affiliation(s)
- Matthew D Carson
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Kari Nejak-Bowen
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
6
|
Xing G, Chen H, Guo Z, Cui Y, Li Y, Shen J. OTUD6B promotes cholangiocarcinoma growth by regulating STAT3 phosphorylation through deubiquitination of PTK2. Cell Biol Int 2024; 48:1766-1778. [PMID: 39192576 DOI: 10.1002/cbin.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Cholangiocarcinoma (CCA) is a hepatobiliary carcinoma with uncontrolled cell proliferation, poor prognosis, and high mortality. The ovarian tumor structural domain (OTU) containing protein 6B (OTUD6B) belongs to the OTU deubiquitin family and is vital in tumor development. However, its expression and biological function in CCA remain unknown. The expression of OTUD6B in CCA was analyzed using TIMER2.0, UALCAN, and GEO databases. MTT, clonal formation assay, immunofluorescence staining, immunohistochemistry staining, and flow cytometry examined the regulation of OTUD6B on cell proliferation, cycle, and apoptosis. The effects of OTUD6B on tumor volume and weight were assessed using the xenograft tumor model. The activities of PTK2 and STAT3 were detected by western blot and CO-IP. The biological database identified that OTUD6B was upregulated in CCA. In CCA cells, OTUD6B knockdown reduced CCA cell proliferation and promoted apoptosis. Cell cycle analysis indicated that the cycle stopped at the G0/G1 phase after OTU6B downregulation. Furthermore, OTUD6B knockdown resulted in a decrease in tumor volume and weight in xenograft tumor models. Mechanistically, OTUD6B is involved in the deubiquitination of PTK2. PTK2 further affected the phosphorylation of STAT3 thereby regulating the CCA process. Our study demonstrates that OTUD6B knockdown participates in the ubiquitination of PTK2 and phosphorylation of STAT3 to alleviate the process of CCA. These results suggest that OTUD6B may be a potential new strategy for CCA treatment.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Hekai Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhiyue Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Cui
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yongyuan Li
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jianwei Shen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
7
|
Liu L, Feng Y, Xiang X, Xu M, Tang G. Biological effect of ETV4 and the underlying mechanism of its regulatory effect on epithelial‑mesenchymal transition in intrahepatic cholangiocarcinoma cells. Oncol Lett 2024; 28:346. [PMID: 38872859 PMCID: PMC11170264 DOI: 10.3892/ol.2024.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly invasive malignant tumor. The prognosis of patients with ICC after radical surgical resection remains poor, due to local infiltration, distant metastasis, a high recurrence rate and lack of effective treatment strategies. E26 transformation-specific sequence variant 4 (ETV4) is a pro-carcinogenic factor that is upregulated in several tumors; however, the role of ETV4 in ICC is relatively unknown. The present study aimed to determine the role of ETV4 in the Hccc9810 ICC cell line and to assess how it contributes to epithelial-mesenchymal transition (EMT) in ICC. Hccc9810 cells were infected with lentiviruses to construct stable ETV4-overexpressing cells, stable ETV4 knockdown cells and corresponding control groups. The Cell Counting Kit-8 and Transwell assays were used to quantify cell proliferation, invasion and migration, and the effects on cell cycle progression and apoptosis were detected by flow cytometry. ETV4 was identified as a driver of cell growth, invasion, migration and cell cycle progression, while restraining apoptosis in Hccc9810 cells. Reverse transcription-quantitative PCR and western blotting revealed that increased ETV4 levels may drive EMT by triggering the TGF-β1/Smad signaling pathway. This cascade, in turn, may foster tumor cell proliferation, migration, invasion and cell cycle advancement, and hinder apoptosis.
Collapse
Affiliation(s)
- Li Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong Feng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xuelian Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Mengtao Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guodu Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
8
|
Cantallops Vilà P, Ravichandra A, Agirre Lizaso A, Perugorria MJ, Affò S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 2024; 79:941-958. [PMID: 37018128 DOI: 10.1097/hep.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/25/2022] [Indexed: 04/06/2023]
Abstract
Cholangiocarcinoma (CCA) comprises diverse tumors of the biliary tree and is characterized by late diagnosis, short-term survival, and chemoresistance. CCAs are mainly classified according to their anatomical location and include diverse molecular subclasses harboring inter-tumoral and intratumoral heterogeneity. Besides the tumor cell component, CCA is also characterized by a complex and dynamic tumor microenvironment where tumor cells and stromal cells crosstalk in an intricate network of interactions. Cancer-associated fibroblasts, one of the most abundant cell types in the tumor stroma of CCA, are actively involved in cholangiocarcinogenesis by participating in multiple aspects of the disease including extracellular matrix remodeling, immunomodulation, neo-angiogenesis, and metastasis. Despite their overall tumor-promoting role, recent evidence indicates the presence of transcriptional and functional heterogeneous CAF subtypes with tumor-promoting and tumor-restricting properties. To elucidate the complexity and potentials of cancer-associated fibroblasts as therapeutic targets in CCA, this review will discuss the origin of cancer-associated fibroblasts, their heterogeneity, crosstalk, and role during tumorigenesis, providing an overall picture of the present and future perspectives toward cancer-associated fibroblasts targeting CCA.
Collapse
Affiliation(s)
| | - Aashreya Ravichandra
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, Munich, Germany
| | - Aloña Agirre Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Institute of Health Carlos III, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Silvia Affò
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Zhang HX, Fan R, Chen QE, Zhang LJ, Hui Y, Xu P, Li SY, Chen GY, Chen WH, Shen DY. Trilobolide-6-O-isobutyrate exerts anti-tumor effects on cholangiocarcinoma cells through inhibiting JAK/STAT3 signaling pathway. Heliyon 2024; 10:e27217. [PMID: 38449612 PMCID: PMC10915568 DOI: 10.1016/j.heliyon.2024.e27217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Trilobolide-6-O-isobutyrate exhibits significant antitumor effects on cholangiocarcinoma (CCA) cells by effectively inhibiting the JAK/STAT3 signaling pathway. This study aims to investigate the mechanisms underlying the antitumor properties of trilobolide-6-O-isobutyrate, and to explore its potential as a therapeutic agent for CCA. This study illustrates that trilobolide-6-O-isobutyrate efficiently suppresses CCA cell proliferation in a dose- and time-dependent manner. Furthermore, trilobolide-6-O-isobutyrate stimulates the production of reactive oxygen species, leading to oxidative stress and initiation of apoptosis via the activation of the mitochondrial pathway. Data from xenograft tumor assays in nude mice confirms that TBB inhibits tumor growth, and that there are no obvious toxic effects or side effects in vivo. Mechanistically, trilobolide-6-O-isobutyrate exerts antitumor effects by inhibiting STAT3 transcriptional activation, reducing PCNA and Bcl-2 expression, and increasing P21 expression. These findings emphasizes the potential of trilobolide-6-O-isobutyrate as a promising therapeutic candidate for the treatment of CCA.
Collapse
Affiliation(s)
- Hao-Xuan Zhang
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Rui Fan
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Qian-En Chen
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Lin-Jun Zhang
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 570100, China
| | - Peng Xu
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Si-Yang Li
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 570100, China
| | - Wen-Hao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 570100, China
| | - Dong-Yan Shen
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| |
Collapse
|
10
|
Zhang N, Shu L, Liu Z, Shi A, Zhao L, Huang S, Sheng G, Yan Z, Song Y, Huang F, Tang Y, Zhang Z. The role of extracellular vesicles in cholangiocarcinoma tumor microenvironment. Front Pharmacol 2024; 14:1336685. [PMID: 38269274 PMCID: PMC10805838 DOI: 10.3389/fphar.2023.1336685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- Nuoqi Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital, Shandong University, Qingdao, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guoli Sheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhangdi Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Fan Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Ong KH, Hsieh YY, Lai HY, Sun DP, Chen TJ, Huang SKH, Tian YF, Chou CL, Shiue YL, Wu HC, Chan TC, Tsai HH, Li CF, Su PA, Kuo YH. Cartilage oligomeric matrix protein overexpression is an independent poor prognostic indicator in patients with intrahepatic cholangiocarcinoma. Sci Rep 2023; 13:17444. [PMID: 37838792 PMCID: PMC10576746 DOI: 10.1038/s41598-023-43006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023] Open
Abstract
Cartilage oligomeric matrix protein (COMP) interacts with various extracellular matrix proteins in tissues. Elevated COMP levels recently linked to worse overall survival in multiple cancer types. COMP's significance in intrahepatic cholangiocarcinoma (iCCA) remains uncertain. Here we report a retrospective study to explore COMP's impact on iCCA outcomes. We collected 182 patients' iCCA tumor tissues. COMP overexpression was associated with adverse factors like R1 resection (p = 0.008), advanced T stage (p < 0.001), large duct type (p = 0.004), and poorly differentiated histology (p = 0.002). COMP overexpression correlates with poorer DFS (HR, 3.651; p = 0.001), OS (HR, 1.827; p = 0.023), LRFS (HR, 4.077; p < 0.001), and MFS (HR, 3.718; p < 0.001). High COMP expression ties to worse overall survival (p = 0.0001), DSS (p < 0.0001), LRFS (p < 0.0001), and MFS (p < 0.0001). In conclusion, COMP overexpression links to poor prognosis and pathological features in iCCA, indicating its potential as a biomarker.
Collapse
Affiliation(s)
- Khaa Hoo Ong
- Division of Gastroenterology and General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan, ROC
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan, ROC
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan, ROC
| | - Yao-Yu Hsieh
- Division of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan, ROC
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan, ROC
| | - Ding-Ping Sun
- Division of Gastroenterology and General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan, ROC
| | - Tzu-Ju Chen
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan, ROC
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan, ROC
| | - Steven Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan, ROC
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, 711, Taiwan, ROC
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan, ROC
| | - Chia-Ling Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan, ROC
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan, ROC
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan, ROC
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan, ROC
| | - Hung-Chang Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, 71004, Taiwan, ROC
- College of Pharmacy and Science, Chia Nan University, Tainan, 71710, Taiwan, ROC
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan, ROC
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan, ROC
| | - Hsin-Hwa Tsai
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, 404, Taiwan, ROC
| | - Chien-Feng Li
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan, ROC
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan, ROC
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan, ROC
- Trans-Omic Laboratory for Precision Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan, ROC
| | - Po-An Su
- Department of Infectious Disease, Chi Mei Medical Center, No.901, Zhonghua Rd. Yongkang Dist, Tainan City, 71004, Taiwan, ROC.
| | - Yu-Hsuan Kuo
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan, ROC.
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, 71004, Taiwan, ROC.
- College of Pharmacy and Science, Chia Nan University, Tainan, 71710, Taiwan, ROC.
| |
Collapse
|
12
|
Zheng Q, Li M, Chen L, Zhang C, Zhao Y, Liu G, Yang F, Zhan J. Potential therapeutic target of EGF on bile duct ligation model and biliary atresia children. Pediatr Res 2023; 94:1297-1307. [PMID: 37138025 DOI: 10.1038/s41390-023-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND The pathogenesis of liver fibrosis in biliary atresia (BA) is unclear. Epidermal growth factor (EGF) plays a vital role in liver fibrosis. This study aims to investigate the expression of EGF and the mechanisms of its pro-fibrotic effects in BA. METHODS EGF levels in serum and liver samples of BA and non-BA children were detected. Marker proteins of EGF signaling and epithelial-mesenchymal transition (EMT) in liver sections were evaluated. Effects of EGF on intrahepatic cells and the underlying mechanisms were explored in vitro. Bile duct ligation (BDL) mice with/without EGF antibody injection were used to verify the effects of EGF on liver fibrosis. RESULTS Serum levels and liver expression of EGF elevated in BA. Phosphorylated EGF receptor (p-EGFR) and extracellular regulated kinase 1/2 (p-ERK1/2) increased. In addition, EMT and proliferation of biliary epithelial cells were present in BA liver. In vitro, EGF induced EMT and proliferation of HIBEpic cells and promoted IL-8 expression in L-02 cells by phosphorylating ERK1/2. And EGF activated LX-2 cells. Furthermore, EGF antibody injection reduced p-ERK1/2 levels and alleviated liver fibrosis in BDL mice. CONCLUSION EGF is overexpressed in BA. It aggravates liver fibrosis through EGF/EGFR-ERK1/2 pathway, which may be a therapeutic target for BA. IMPACT The exact pathogenesis of liver fibrosis in BA is unknown, severely limiting the advancement of BA treatment strategies. This study revealed that serum and liver tissue levels of EGF were increased in BA, and its expression in liver tissues was correlated with the degree of liver fibrosis. EGF may promote EMT and proliferation of biliary epithelial cells and induce IL-8 overexpression in hepatocytes through EGF/EGFR-ERK1/2 signaling pathway. EGF can also activate HSCs in vitro. The EGF/EGFR-ERK1/2 pathway may be a potential therapeutic target for BA.
Collapse
Affiliation(s)
- Qipeng Zheng
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Mengdi Li
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Lingzhi Chen
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Cong Zhang
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Yilin Zhao
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Gengxin Liu
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Fang Yang
- Graduate College, Tianjin Medical University, Tianjin, 300070, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Jianghua Zhan
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, 300134, China.
| |
Collapse
|
13
|
Gu Y, Zhang Z, Camps MG, Ossendorp F, Wijdeven RH, ten Dijke P. Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadf9915. [PMID: 37450593 PMCID: PMC10348683 DOI: 10.1126/sciadv.adf9915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
The genetic circuits that allow cancer cells to evade immune killing via epithelial mesenchymal plasticity remain poorly understood. Here, we showed that mesenchymal-like (Mes) KPC3 pancreatic cancer cells were more resistant to cytotoxic T lymphocyte (CTL)-mediated killing than the parental epithelial-like (Epi) cells and used parallel genome-wide CRISPR screens to assess the molecular underpinnings of this difference. Core CTL-evasion genes (such as IFN-γ pathway components) were clearly evident in both types. Moreover, we identified and validated multiple Mes-specific regulators of cytotoxicity, such as Egfr and Mfge8. Both genes were significantly higher expressed in Mes cancer cells, and their depletion sensitized Mes cancer cells to CTL-mediated killing. Notably, Mes cancer cells secreted more Mfge8 to inhibit proliferation of CD8+ T cells and production of IFN-γ and TNFα. Clinically, increased Egfr and Mfge8 expression was correlated with a worse prognosis. Thus, Mes cancer cells use Egfr-mediated intrinsic and Mfge8-mediated extrinsic mechanisms to facilitate immune escape from CD8+ T cells.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Zhengkui Zhang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Marcel G. M. Camps
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ruud H. Wijdeven
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| |
Collapse
|
14
|
Cai X, Tacke F, Guillot A, Liu H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front Immunol 2023; 14:1192840. [PMID: 37261338 PMCID: PMC10229055 DOI: 10.3389/fimmu.2023.1192840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.
Collapse
Affiliation(s)
- Xiurong Cai
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Center of Gastrointestinal Diseases, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
15
|
Duwe L, Fouassier L, Lafuente-Barquero J, Andersen JB. Unraveling the actin cytoskeleton in the malignant transformation of cholangiocyte biology. Transl Oncol 2022; 26:101531. [PMID: 36113344 PMCID: PMC9483793 DOI: 10.1016/j.tranon.2022.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Correct actin cytoskeleton organization is vital in the liver organ homeostasis and disease control. Rearrangements of the actin cytoskeleton may play a vital role in the bile duct cells cholangiocytes. An abnormal actin network leads to aberrant cell morphology, deregulated signaling networks and ultimately triggering the development of cholangiocarcinoma (CCA) and paving the route for cancer cell dissemination (metastasis). In this review, we will outline alterations of the actin cytoskeleton and the potential role of this dynamic network in initiating CCA, as well as regulating the course of this malignancy. Actin rearrangements not only occur because of signaling pathways, but also regulate and modify cellular signaling. This emphasizes the importance of the actin cytoskeleton itself as cause for aberrant signaling and in promoting tumorigenic phenotypes. We will highlight the impact of aberrant signaling networks on the actin cytoskeleton and its rearrangement as potential cause for CCA. Often, these exact mechanisms in CCA are limited understood and still must be elucidated. Indeed, focusing future research on how actin affects and regulates other signaling pathways may provide more insights into the mechanisms of CCA development, progression, and metastasis. Moreover, manipulation of the actin cytoskeleton organization highlights the potential for a novel therapeutic area.
Collapse
Affiliation(s)
- Lea Duwe
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark.
| |
Collapse
|
16
|
Gao X, Zhang W, Jia Y, Xu H, Zhu Y, Pei X. Identification of a prognosis-related ceRNA network in cholangiocarcinoma and potentially therapeutic molecules using a bioinformatic approach and molecular docking. Sci Rep 2022; 12:16247. [PMID: 36171401 PMCID: PMC9519560 DOI: 10.1038/s41598-022-20362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly malignant disease with a poor prognosis, and mechanisms of initiation and development are not well characterized. It is long noncoding RNAs (lncRNAs) acting as miRNA decoys to regulate cancer-related RNAs in competing endogenous RNA (ceRNA) networks that suggest a possible molecular mechanism in CCA. The current study aims to find potential prognosis biomarkers and small molecule therapeutic targets based on the construction of a CCA prognosis-related ceRNA network. A transcriptome dataset for CCA was downloaded from the TCGA database. Differentially expressed lncRNAs (DElncRNAs), DEmiRNAs and DEmRNAs were identified based on the differential expression and a DEceRNA network was constructed using predicted miRNA-lncRNA and miRNA-mRNA interactions. Heat maps, PCA analysis, and Pathway enrichment analysis and GO enrichment analysis were conducted. The prognostic risk model and molecular docking were constructed based on identified key ceRNA networks. A DElncRNA-miRNA-mRNAs network consisting of 434 lncRNA-miRNA pairs and 284 miRNA-mRNA pairs with 200 lncRNAs, 21 miRNAs, and 245 mRNAs was constructed. There were three lncRNAs (AC090772.1, LINC00519, and THAP7-AS1) and their downstream mRNAs (MECOM, MBNL3, RCN2) screened out as prognostic factors in CAA. Three key networks (LINC00519/ hsa-mir-22/ MECOM, THAP7-AS1/hsa-mir-155/MBNL3, and THAP7-AS1/hsa-mir-155/RCN2) were identified based on binding sites prediction and survival analysis. A prognostic risk model was established with a good predictive ability (AUC = 0.66–0.83). Four anticancer small molecules, MECOM and 17-alpha-estradiol (−7.1 kcal/mol), RCN2 and emodin (−8.3 kcal/mol), RCN2 and alpha-tocopherol (−5.6 kcal/mol), and MBNL3 and 17-beta-estradiol (−7.1 kcal/mol) were identified. Based on the DEceRNA network and Kaplan–Meier survival analysis, we identified three important ceRNA networks associated with the poor prognosis of CCA. Four anti-cancer small molecules were screened out by computer-assisted drug screening as potential small molecules for the treatment of CCA. This study provides theoretical support for the development of ceRNA network-based drugs to improve the prognosis of CCA.
Collapse
Affiliation(s)
- Xiaoling Gao
- The Medical Laboratory Center, Hainan General Hospital, Haikou, 570311, China.
| | - Wenhao Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yanjuan Jia
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Hui Xu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yuchen Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xiong Pei
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Lu S, Ke S, Wang C, Xu Y, Li Z, Song K, Bai M, Zhou M, Yu H, Yin B, Li X, Feng Z, Hua Y, Pan S, Jiang H, Li L, Wu Y, Ma Y. NNMT promotes the progression of intrahepatic cholangiocarcinoma by regulating aerobic glycolysis via the EGFR-STAT3 axis. Oncogenesis 2022; 11:39. [PMID: 35851575 PMCID: PMC9293979 DOI: 10.1038/s41389-022-00415-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT), a member of the N-methyltransferase family, plays an important role in tumorigenesis. However, its expression and biological functions in intrahepatic cholangiocarcinoma (iCCA) remain to be established. In our study, we identified NNMT as an oncogene in iCCA and provided mechanistic insights into the roles of NNMT in iCCA progression. High NNMT expression in iCCA tissues was identified using western blotting and immunohistochemistry (IHC). We identified a significantly higher NNMT expression level in human iCCA tissues than that in adjacent normal tissues. Increased NNMT expression promoted iCCA cell proliferation and metastasis in vitro and in vivo. Mechanistically, NNMT inhibited the level of histone methylation in iCCA cells by consuming the methyl donor S-adenosyl methionine (SAM), thereby promoting the expression of epidermal growth factor receptor (EGFR). EGFR may activate the aerobic glycolysis pathway in iCCA cells by activating the STAT3 signaling pathway. In conclusion, we identified NNMT as an oncogene in iCCA and provided mechanistic insights into the roles of NNMT in iCCA progression.
Collapse
Affiliation(s)
- Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihao Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Keda Song
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of General Surgery, Linyi Central Hospital, Linyi, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Menghua Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China. .,Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Linqiang Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yaohua Wu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China. .,Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China. .,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Goya T, Horisawa K, Udono M, Ohkawa Y, Ogawa Y, Sekiya S, Suzuki A. Direct Conversion of Human Endothelial Cells Into Liver Cancer-Forming Cells Using Nonintegrative Episomal Vectors. Hepatol Commun 2022; 6:1725-1740. [PMID: 35220676 PMCID: PMC9234650 DOI: 10.1002/hep4.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Liver cancer is an aggressive cancer associated with a poor prognosis. Development of therapeutic strategies for liver cancer requires fundamental research using suitable experimental models. Recent progress in direct reprogramming technology has enabled the generation of many types of cells that are difficult to obtain and provide a cellular resource in experimental models of human diseases. In this study, we aimed to establish a simple one-step method for inducing cells that can form malignant human liver tumors directly from healthy endothelial cells using nonintegrating episomal vectors. To screen for factors capable of inducing liver cancer-forming cells (LCCs), we selected nine genes and one short hairpin RNA that suppresses tumor protein p53 (TP53) expression and introduced them into human umbilical vein endothelial cells (HUVECs), using episomal vectors. To identify the essential factors, we examined the effect of changing the amounts and withdrawing individual factors. We then analyzed the proliferation, gene and protein expression, morphologic and chromosomal abnormality, transcriptome, and tumor formation ability of the induced cells. We found that a set of six factors, forkhead box A3 (FOXA3), hepatocyte nuclear factor homeobox 1A (HNF1A), HNF1B, lin-28 homolog B (LIN28B), MYCL proto-oncogene, bHLH transcription factor (L-MYC), and Kruppel-like factor 5 (KLF5), induced direct conversion of HUVECs into LCCs. The gene expression profile of these induced LCCs (iLCCs) was similar to that of human liver cancer cells, and these cells effectively formed tumors that resembled human combined hepatocellular-cholangiocarcinoma following transplantation into immunodeficient mice. Conclusion: We succeeded in the direct induction of iLCCs from HUVECs by using nonintegrating episomal vectors. iLCCs generated from patients with cancer and healthy volunteers will be useful for further advancements in cancer research and for developing methods for the diagnosis, treatment, and prognosis of liver cancer.
Collapse
Affiliation(s)
- Takeshi Goya
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan.,Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenichi Horisawa
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Miyako Udono
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Sayaka Sekiya
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Atsushi Suzuki
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
19
|
Huang X, Zhu L, Wang L, Huang W, Tan L, Liu H, Huo J, Su T, Zhang M, Kuang M, Li X, Dai Z, Xu L. YTHDF1 promotes intrahepatic cholangiocarcinoma progression via regulating EGFR mRNA translation. J Gastroenterol Hepatol 2022; 37:1156-1168. [PMID: 35233828 DOI: 10.1111/jgh.15816] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIM Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive disease with the underlying mechanisms poorly understood. YTHDF1, an N6 -methyladenosine (m6 A) reader protein, has important physiological functions in regulation of tumor development. However, the effect of YTHDF1 on ICC progression remains unknown yet. METHODS The expression level of YTHDF1 in human ICC tissue was examined in The Cancer Genome Atlas database and our cohort. The role of YTHDF1 was detected using two human ICC cell lines in vitro. An ICC tumorigenesis mouse model was established via hydrodynamic transfection of AKT/YAP plasmids. m6 A sequencing, RNA immunoprecipitation sequencing, and RNA sequencing were carried out to explore the mechanism of YTHDF1 modulating ICC progression. RESULTS Here, we find that YTHDF1 is upregulated in ICC and associated with shorter survival of ICC patients. Depletion of YTHDF1 inhibits cell proliferation, migration, and invasion, while overexpression of wild-type YTHDF1, but not m6 A reader domain mutant YTHDF1, significantly enhances tumor cell growth and aggressive abilities in vitro. Moreover, overexpression of YTHDF1 promotes the AKT/YAP transfection-induced orthotopic ICC tumorigenesis and progression in vivo. Mechanistically, we identify that YTHDF1 regulates the translation of epidermal growth factor receptor (EGFR) mRNA via binding m6 A sites in the 3'-UTR of EGFR transcript, thus leading to aberrant activities of downstream signal pathways that impact tumor progression. CONCLUSIONS Our data uncover the oncogenic function and m6 A reader-dependent mechanism of YTHDF1 in regulation of ICC progression. Restricting abnormal oncogenic mRNA translation by targeting YTHDF1 may be a novel and promising strategy for ICC treatment.
Collapse
Affiliation(s)
- Xiang Huang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lina Wang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjie Huang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Tan
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haining Liu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jihui Huo
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianhong Su
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengping Zhang
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zihao Dai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Hu Y, Li H, Zhang H, Tang Q, Zhang G, Li X, Xue F. The long non-coding RNA LIMT inhibits metastasis of hepatocellular carcinoma and is suppressed by EGF signaling. Mol Biol Rep 2022; 49:4749-4757. [PMID: 35526240 PMCID: PMC9262785 DOI: 10.1007/s11033-022-07325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/06/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022]
Abstract
Background The long non-coding RNA LIMT (lncRNA inhibiting metastasis) acts as a tumor suppressor factor in some cancers. However, the biological role of LIMT in hepatocellular carcinoma (HCC) has not been explored. Methods and Results Quantitative real-time PCR was performed to evaluate the expression of LIMT in HCC tissue. The effects of LIMT on tumor growth and metastasis were assessed by in vitro experiments, including colony formation and transwell assays, and in vivo in nude mouse models. Western blot analysis was used to evaluate the expression levels of proteins associated with epithelial-mesenchymal transition (EMT). LIMT expression was significantly lower in HCC than in normal liver tissue. Functionally, overexpression of LIMT repressed the proliferation, invasion, and EMT of HCC cells, while LIMT knockdown increased proliferation, invasion, and EMT of HCC cells in vitro. Furthermore, LIMT overexpression suppressed HCC growth and metastasis while silencing of LIMT had an opposite effect in vivo. Finally, LIMT overexpression reversed EGF-induced EMT. Conclusions Our results suggest that LIMT could play an anti-cancer effect in HCC and might be a potential novel therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07325-0.
Collapse
Affiliation(s)
- Yu Hu
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Hongwei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Qiang Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Guangtan Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Xiqing Li
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
21
|
Mao Y, Feng H. Vitamin D3 alleviates cigarette smoke extract‑mediated epithelial‑mesenchymal transition and fibrogenesis by upregulating CC16 expression in bronchial epithelial cells. Exp Ther Med 2022; 23:357. [PMID: 35493433 PMCID: PMC9019742 DOI: 10.3892/etm.2022.11284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Vitamin D3 supplementation has been previously reported to inhibit the occurrence and development of chronic obstructive pulmonary disease (COPD). However, the underlying mechanism remains unclear. Epithelial-mesenchymal transition (EMT) and fibrogenesis have been associated with the development of COPD. The aim of the present study was to investigate the potential effects and mechanism of vitamin D3 in an in vitro model of cigarette smoke (CS)-induced EMT and fibrosis, with specific focus on the role of club cell protein 16 (CC16). CS extract (CSE) at different concentrations (5, 10 and 20%) was used to treat 16-HBE cells to induce EMT and fibrogenesis following which they were treated with vitamin D3. Subsequently, the 20% CSE group was selected for further experiments, where 16-HBE cells were divided into the following five groups: The control group; the CSE group; the low-dose vitamin D3 group (250 nM); the medium-dose vitamin D3 group (500 nM); and the high-dose vitamin D3 group (1,000 nM). Western blot analysis was used to detect the protein expression levels of the EMT-related proteins E-cadherin, N-cadherin, Slug and α-SMA, fibrogenesis-related proteins collagen Ⅳ and fibronectin 1, proteins involved in the TGF-β1/SMAD3 signaling pathway and CC16. Immunofluorescence was used to measure the protein expression levels of E-cadherin, N-cadherin and collagen Ⅳ. Specific CC16 knockdown was performed using short hairpin RNA transfection to investigate the role of CC16. The results of the present study found that vitamin D3 could increase the protein expression level of CC16 to inhibit the activation of the TGF-β1/SMAD3 signaling pathway; thereby reducing the 20% increase in CSE-induced EMT- and fibrogenesis-related protein expression levels. Following CC16 knockdown, the inhibitory effects of vitamin D3 on EMT- and fibrogenesis-related protein expression were partially reversed. To conclude, these results suggest that vitamin D3 can inhibit the protein expression levels of EMT- and fibrogenesis-related proteins induced by CSE, at least partially through the function of CC16. These findings are expected to provide novel theoretical foundations and ideas for the pathogenesis and treatment of COPD.
Collapse
Affiliation(s)
- Yajun Mao
- Rehabilitation Medicine Department, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Hong Feng
- Respiratory Department, The Fourth Hospital of Baotou City, Baotou, Inner Mongolia Autonomous Region 014030, P.R. China
| |
Collapse
|
22
|
Yang R, Song Y, Shakoor K, Yi W, Peng C, Liu S. Insights into the role of STAT3 in intrahepatic cholangiocarcinoma (Review). Mol Med Rep 2022; 25:171. [PMID: 35302174 PMCID: PMC8971913 DOI: 10.3892/mmr.2022.12687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary malignant liver tumour whose incidence is second only to that of hepatocellular carcinoma. ICC is a highly heterogeneous disease arising from neoplastic transformation of intrahepatic biliary epithelial cells (cholangiocytes), and it is characterized by a very poor prognosis. Signal transducer and activator of transcription 3 (STAT3) is an important oncogene that is widely expressed in numerous cancers. STAT3 is a candidate target for the treatment of ICC. However, studies on STAT3 and the occurrence and development of ICC require improvements. Therefore, the present review summarized the mechanism of STAT3 in ICC and provided a theoretical basis for STAT3 to become an effective target for determining the prognosis and treatment of ICC.
Collapse
Affiliation(s)
- Ranzhiqiang Yang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Kashif Shakoor
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Weimin Yi
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
23
|
Ramírez Moreno M, Bulgakova NA. The Cross-Talk Between EGFR and E-Cadherin. Front Cell Dev Biol 2022; 9:828673. [PMID: 35127732 PMCID: PMC8811214 DOI: 10.3389/fcell.2021.828673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and adhesion protein E-cadherin are major regulators of proliferation and differentiation in epithelial cells. Consistently, defects in both EGFR and E-cadherin-mediated intercellular adhesion are linked to various malignancies. These defects in either are further exacerbated by the reciprocal interactions between the two transmembrane proteins. On the one hand, EGFR can destabilize E-cadherin adhesion by increasing E-cadherin endocytosis, modifying its interactions with cytoskeleton and decreasing its expression, thus promoting tumorigenesis. On the other hand, E-cadherin regulates EGFR localization and tunes its activity. As a result, loss and mutations of E-cadherin promote cancer cell invasion due to uncontrolled activation of EGFR, which displays enhanced surface motility and changes in endocytosis. In this minireview, we discuss the molecular and cellular mechanisms of the cross-talk between E-cadherin and EGFR, highlighting emerging evidence for the role of endocytosis in this feedback, as well as its relevance to tissue morphogenesis, homeostasis and cancer progression.
Collapse
Affiliation(s)
| | - Natalia A. Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Lobe C, Vallette M, Arbelaiz A, Gonzalez-Sanchez E, Izquierdo L, Pellat A, Guedj N, Louis C, Paradis V, Banales JM, Coulouarn C, Housset C, Vaquero J, Fouassier L. Zinc Finger E-Box Binding Homeobox 1 Promotes Cholangiocarcinoma Progression Through Tumor Dedifferentiation and Tumor-Stroma Paracrine Signaling. Hepatology 2021; 74:3194-3212. [PMID: 34297412 DOI: 10.1002/hep.32069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Zinc finger E-box binding homeobox 1 (ZEB1) is a transcription factor that promotes metastatic and stem cell features, which has been associated with poor prognosis in cholangiocarcinoma (CCA), a desmoplastic cancer enriched in cancer-associated fibroblasts (CAFs). We aimed to define ZEB1 regulatory functions in malignant and stromal compartments of CCA. APPROACH AND RESULTS Bioinformatic and immunohistochemical analyses were performed to determine correlations between ZEB1 and markers of progressiveness in human intrahepatic CCA (iCCA). Gain-of-function and loss-of-function models were generated in CCA cells and liver myofibroblasts as a model of CAFs. Conditioned media (CM) was used to unravel tumor-stroma interplay. In vivo experiments were performed using a xenograft CCA model. ZEB1 expression in tumor cells of human iCCA was associated with undifferentiated tumor and vascular invasion. In vitro, ZEB1 promoted epithelial-mesenchymal transition and stemness in tumor cells, leading to cell migration and spheroid formation. In vivo, ZEB1-overexpressing CCA cells formed larger tumors with more abundant stroma. Expression of cellular communication network factor 2 (CCN2, encoding connective tissue growth factor [CTGF]) was increased in tumor cells from ZEB1-overexpressing xenografts and correlated with ZEB1 expression in human tumors. In vitro, CM from ZEB1-overexpressing tumor cells or recombinant CTGF induced myofibroblast proliferation. ZEB1 was also expressed by CAFs in human CCA, and its expression correlated with CCN2 in myofibroblasts and CCA stroma. In mice, cotransplantation of CCA cells with ZEB1-depleted myofibroblasts reduced CCA progressiveness compared to CCA cells/ZEB1-expressing myofibroblasts. Furthermore, ZEB1 controls the expression of paracrine signals (i.e., HGF and IL6) in tumor cells and myofibroblasts. CONCLUSIONS ZEB1 plays a key role in CCA progression by regulating tumor cell-CAF crosstalk, leading to tumor dedifferentiation and CAF activation.
Collapse
Affiliation(s)
- Cindy Lobe
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Marie Vallette
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Ander Arbelaiz
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Ester Gonzalez-Sanchez
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Izquierdo
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country, San Sebastián, Spain
| | - Anna Pellat
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Nathalie Guedj
- Service d'Anatomie Pathologique Hôpital Beaujon, Clichy, France
| | - Corentin Louis
- INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Valérie Paradis
- Service d'Anatomie Pathologique Hôpital Beaujon, Clichy, France
- INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Chantal Housset
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
- Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, ERN Rare-Liver, Paris, France
| | - Javier Vaquero
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- LPP, Sorbonne Université, CNRS, Ecole Polytechnique, Université Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, Paris, France
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
25
|
Li L, Hu Y, Chen D, Zhu J, Bao W, Xu X, Chen H, Chen W, Feng R. CMTM5 inhibits the development of prostate cancer via the EGFR/PI3K/AKT signaling pathway. Mol Med Rep 2021; 25:17. [PMID: 34791506 PMCID: PMC8628290 DOI: 10.3892/mmr.2021.12533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
Prostate cancer (PCa) endangers the life and health of older men. Most PCa cases develop into castration-resistant PCa (CRPC) within 2 years. At present, the molecular mechanisms of the occurrence and development of PCa and its transformation to CRPC remain unknown. The present study aimed to investigate the role of CKLF-like Marvel transmembrane domain containing family member 5 (CMTM5) in PCa and its molecular mechanism in vitro. PCa tissues and paired adjacent normal prostate tissues from 70 patients were collected to examine the expression levels of CMTM5 and EGFR via immunohistochemistry, reverse transcription-quantitative PCR and western blotting. Then, CMTM5-overexpressing DU145 cells were constructed, and CMTM5 expression in these transfected cells and vector control cells was examined via western blotting. Cell Counting Kit-8 and plate clone formation assays were used to evaluate the proliferation and colony number of CMTM5-overexpressing cells and vector control cells. Then, cell migration and invasion were assessed using wound healing assay, Transwell assay and immunofluorescence analysis with DAPI staining. The effect of CMTM5 on apoptosis and its underlying molecular mechanism were examined using western blotting and flow cytometry. The results demonstrated that CMTM5 expression in PCa tissues and cell lines was significantly downregulated, while EFGR expression was significantly upregulated. The proportion of high CMTM5 expression in PCa tissues was significantly lower compared with that in normal prostate tissues. By contrast, the proportion of high EGFR expression in PCa tissues was significantly increased compared with that in normal prostate tissues. Moreover, CMTM5 overexpression significantly inhibited cell proliferation, migration and invasion, and promoted cell apoptosis compared with vector control cells in vitro. Furthermore, the regulation of PCa by CMTM5 was associated with the downregulation of PI3K/AKT and its downstream Bcl-2 expression, as well as the upregulation of Bax expression. In conclusion, CMTM5 may be an effective tumor suppressor gene for PCa, especially for castration-resistant PCa, by downregulating EGFR and PI3K/AKT signaling pathway components.
Collapse
Affiliation(s)
- Linjin Li
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Yiren Hu
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Dake Chen
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianlong Zhu
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenshuo Bao
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaomin Xu
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Heyi Chen
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Wu Chen
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Rui Feng
- Department of Urology, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu 212002, P.R. China
| |
Collapse
|
26
|
Xu L, Wang P, Zhang W, Li W, Liu T, Che X. Dual-Specificity Phosphatase 11 Is a Prognostic Biomarker of Intrahepatic Cholangiocarcinoma. Front Oncol 2021; 11:757498. [PMID: 34660327 PMCID: PMC8513537 DOI: 10.3389/fonc.2021.757498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Background Cholangiocarcinoma (CCA), including intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCA, is a highly aggressive malignancy originating from bile duct. The prognosis of CCA is very poor, and the biomarker study is unsatisfactory compared with other common cancers. Materials and methods In our study, we investigated the expression of dual-specificity phosphatase 11(DUSP11) in eight pairs of iCCAs, pCCAs, and dCCAs, and their corresponding tumor-adjacent tissues, as well as their tumor-adjacent tissues with qPCR. Moreover, we investigated the expression of DUSP11 in 174 cases of CCAs with immunohistochemistry, including 74 iCCAs, 64 pCCAs, and 36 dCCAs. We classified these patients into subsets with low and high expressions of DUSP11, and evaluated the correlations between the DUSP11 subsets and clinicopathological factors. With univariate and multivariate analyses, we assessed the correlation between DUSP11 and the overall survival (OS) rates in these CCA patients. Results In all the CCA subtypes, DUSP11 was elevated in CCAs compared with their paired adjacent tissues. In iCCA, pCCA, and dCCA, the percentages of DUSP11 high expression were 44.59%, 53.85%, and 55.56%, respectively. In iCCA, high DUSP11 expression was significantly associated with an advanced T stage and a poor prognosis. However, the prognostic value of DUSP11 in pCCA and dCCA was not significant. To decrease the statistical error caused by the small sample size of the dCCA cohort, we merged pCCA and dCCA into extracellular CCA (eCCA). In the 101 cases of eCCA, DUSP11 expression was also not significantly associated with the prognosis. Conclusions DUSP11 expression was associated with tumor infiltration and the OS rate in iCCA, but not in pCCA and dCCA. DUSP11 was an independent biomarker of iCCA indicating a poor prognosis. Our results suggested that a high expression of DUSP11 was a post-operational risk factor, and detecting DUSP11 could guide the individual treatment for patients with CCA.
Collapse
Affiliation(s)
- Lin Xu
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Peng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiran Li
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Tao Liu
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Xu Che
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Gentilini A, Lori G, Caligiuri A, Raggi C, Di Maira G, Pastore M, Piombanti B, Lottini T, Arcangeli A, Madiai S, Navari N, Banales JM, Di Matteo S, Alvaro D, Duwe L, Andersen JB, Tubita A, Tusa I, Di Tommaso L, Campani C, Rovida E, Marra F. Extracellular Signal-Regulated Kinase 5 Regulates the Malignant Phenotype of Cholangiocarcinoma Cells. Hepatology 2021; 74:2007-2020. [PMID: 33959996 PMCID: PMC8518067 DOI: 10.1002/hep.31888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is characterized by high resistance to chemotherapy and poor prognosis. Several oncogenic pathways converge on activation of extracellular signal-regulated kinase 5 (ERK5), whose role in CCA has not been explored. The aim of this study was to investigate the role of ERK5 in the biology of CCA. APPROACH AND RESULTS ERK5 expression was detected in two established (HuCCT-1 and CCLP-1) and two primary human intrahepatic CCA cell lines (iCCA58 and iCCA60). ERK5 phosphorylation was increased in CCA cells exposed to soluble mediators. In both HuCCT-1 and CCLP-1 cells, ERK5 was localized in the nucleus, and exposure to fetal bovine serum (FBS) further increased the amount of nuclear ERK5. In human CCA specimens, ERK5 mRNA expression was increased in tumor cells and positively correlated with portal invasion. ERK5 protein levels were significantly associated with tumor grade. Growth, migration, and invasion of CCA cells were decreased when ERK5 was silenced using specific short hairpin RNA (shRNA). The inhibitory effects on CCA cell proliferation, migration and invasion were recapitulated by treatment with small molecule inhibitors targeting ERK5. In addition, expression of the angiogenic factors VEGF and angiopoietin 1 was reduced after ERK5 silencing. Conditioned medium from ERK5-silenced cells had a lower ability to induce tube formation by human umbilical vein endothelial cells and to induce migration of myofibroblasts and monocytes/macrophages. In mice, subcutaneous injection of CCLP-1 cells silenced for ERK5 resulted in less frequent tumor development and smaller size of xenografts compared with cells transfected with nontargeting shRNA. CONCLUSIONS ERK5 is a key mediator of growth and migration of CCA cells and supports a protumorigenic crosstalk between the tumor and the microenvironment.
Collapse
Affiliation(s)
- Alessandra Gentilini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giulia Lori
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Alessandra Caligiuri
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Chiara Raggi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giovanni Di Maira
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Mirella Pastore
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Benedetta Piombanti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Tiziano Lottini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Annarosa Arcangeli
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Stefania Madiai
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Nadia Navari
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteCIBERehdIkerbasqueSan SebastianSpain
| | - Sabina Di Matteo
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| | - Domenico Alvaro
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| | - Lea Duwe
- Biotech Research and Innovation Centre (BRIC)Dept. of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre (BRIC)Dept. of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Luca Di Tommaso
- Pathology UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Claudia Campani
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Fabio Marra
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
28
|
Li X, Yang ZS, Cai WW, Deng Y, Chen L, Tan SL. Dihydromyricetin Inhibits Tumor Growth and Epithelial-Mesenchymal Transition through regulating miR-455-3p in Cholangiocarcinoma. J Cancer 2021; 12:6058-6070. [PMID: 34539879 PMCID: PMC8425191 DOI: 10.7150/jca.61311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
Cholangiocarcinoma (CCA) leads to poor prognosis due to high aggressiveness and common chemoresistance. Dihydromyricetin (DMY), the main bioactive compound isolated from Ampelopsis grossedentata, exhibits broad anti-tumor effects. This study aimed to investigate the inhibitory effect of DMY on CCA tumor growth and epithelial-mesenchymal transition (EMT) and its underlying mechanism in CCA. DMY treatment significantly inhibited cell proliferation and EMT in CCA cell lines. The expression of ZEB1 and vimentin were down-regulated, while the level of E-cadherin was increased after DMY treatment. By analyzing the TCGA dataset, we found that miR-455 expression was significantly downregulated, while the level of ZEB1 was up-regulated in human CCA tumor tissues compared to normal samples. Mechanistic studies showed that ZEB1 was a direct target of miR-455-3p in CCA. Moreover, DMY treatment potently increased miR-455-3p expression and inhibited ZEB1 expression. Inhibition of miR-455-3p expression abolished DMY's inhibitory effects on tumor growth and EMT in both CCA cells and cell-engrafted nude mice. Finally, DMY significantly suppressed the expressions of p-PI3K and p-AKT, while silencing miR-455-3p remarkably abrogated the inhibitory effect. In conclusion, DMY suppresses tumor growth and EMT through regulating miR-455-3p in human cholangiocarcinoma, suggesting a potential option for CCA treatment.
Collapse
Affiliation(s)
- Xin Li
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China, 410011.,The Institute of Vascular Diseases, Central South University, Changsha, Hunan, China, 410011
| | - Zhou-Sheng Yang
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China, 530021
| | - Wen-Wu Cai
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China, 410011
| | - Yang Deng
- Department of pharmacy, The Third Hospital of Changsha, Changsha, China, 410015
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China, 410011.,Institute of Clinical Pharmacy, Central South University, Changsha, China, 410011
| | - Sheng-Lan Tan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China, 410011.,Institute of Clinical Pharmacy, Central South University, Changsha, China, 410011
| |
Collapse
|
29
|
Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, Teh BT, Wongkham S, Gores GJ. Cholangiocarcinoma. Nat Rev Dis Primers 2021; 7:65. [PMID: 34504109 PMCID: PMC9246479 DOI: 10.1038/s41572-021-00300-2] [Citation(s) in RCA: 429] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Cholangiocarcinoma (CCA) is a highly lethal adenocarcinoma of the hepatobiliary system, which can be classified as intrahepatic, perihilar and distal. Each anatomic subtype has distinct genetic aberrations, clinical presentations and therapeutic approaches. In endemic regions, liver fluke infection is associated with CCA, owing to the oncogenic effect of the associated chronic biliary tract inflammation. In other regions, CCA can be associated with chronic biliary tract inflammation owing to choledocholithiasis, cholelithiasis, or primary sclerosing cholangitis, but most CCAs have no identifiable cause. Administration of the anthelmintic drug praziquantel decreases the risk of CCA from liver flukes, but reinfection is common and future vaccination strategies may be more effective. Some patients with CCA are eligible for potentially curative surgical options, such as resection or liver transplantation. Genetic studies have provided new insights into the pathogenesis of CCA, and two aberrations that drive the pathogenesis of non-fluke-associated intrahepatic CCA, fibroblast growth factor receptor 2 fusions and isocitrate dehydrogenase gain-of-function mutations, can be therapeutically targeted. CCA is a highly desmoplastic cancer and targeting the tumour immune microenvironment might be a promising therapeutic approach. CCA remains a highly lethal disease and further scientific and clinical insights are needed to improve patient outcomes.
Collapse
Affiliation(s)
- Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | | | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Shahid A. Khan
- Liver Unit, Division of Digestive Diseases, Imperial College London, London, UK
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alphonse E. Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, Singapore, Singapore
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA,
| |
Collapse
|
30
|
Boonsri B, Choowongkomon K, Kuaprasert B, Thitiphatphuvanon T, Supradit K, Sayinta A, Duangdara J, Rudtanatip T, Wongprasert K. Probing the Anti-Cancer Potency of Sulfated Galactans on Cholangiocarcinoma Cells Using Synchrotron FTIR Microspectroscopy, Molecular Docking, and In Vitro Studies. Mar Drugs 2021; 19:md19050258. [PMID: 33946151 PMCID: PMC8145517 DOI: 10.3390/md19050258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Sulfated galactans (SG) isolated from red alga Gracilaria fisheri have been reported to inhibit the growth of cholangiocarcinoma (CCA) cells, which was similar to the epidermal growth factor receptor (EGFR)-targeted drug, cetuximab. Herein, we studied the anti-cancer potency of SG compared to cetuximab. Biological studies demonstrated SG and cetuximab had similar inhibition mechanisms in CCA cells by down-regulating EGFR/ERK pathway, and the combined treatment induced a greater inhibition effect. The molecular docking study revealed that SG binds to the dimerization domain of EGFR, and this was confirmed by dimerization assay, which showed that SG inhibited ligand-induced EGFR dimer formation. Synchrotron FTIR microspectroscopy was employed to examine alterations in cellular macromolecules after drug treatment. The SR-FTIR-MS elicited similar spectral signatures of SG and cetuximab, pointing towards the bands of RNA/DNA, lipids, and amide I vibrations, which were inconsistent with the changes of signaling proteins in CCA cells after drug treatment. Thus, this study demonstrates the underlined anti-cancer mechanism of SG by interfering with EGFR dimerization. In addition, we reveal that FTIR signature spectra offer a useful tool for screening anti-cancer drugs’ effect.
Collapse
Affiliation(s)
- Boonyakorn Boonsri
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (B.B.); (K.S.); (A.S.); (J.D.)
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Buabarn Kuaprasert
- Research and Facility Division, Synchrotron Light Research Institute (Public Organization), Nakhorn Ratchasima 30000, Thailand;
| | | | - Kittiya Supradit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (B.B.); (K.S.); (A.S.); (J.D.)
| | - Apinya Sayinta
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (B.B.); (K.S.); (A.S.); (J.D.)
| | - Jinchutha Duangdara
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (B.B.); (K.S.); (A.S.); (J.D.)
| | - Tawut Rudtanatip
- Department of Anatomy, Faculty of Medicine, Khon Kean University, Khon Kean 40002, Thailand;
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (B.B.); (K.S.); (A.S.); (J.D.)
- Correspondence: ; Tel.: +66-2201-5412
| |
Collapse
|
31
|
Gudi RR, Janakiraman H, Howe PH, Palanisamy V, Vasu C. Loss of CPAP causes sustained EGFR signaling and epithelial-mesenchymal transition in oral cancer. Oncotarget 2021; 12:807-822. [PMID: 33889303 PMCID: PMC8057274 DOI: 10.18632/oncotarget.27932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
Higher epidermal growth factor receptor (EGFR) signaling can contribute to tumor metastasis and resistance to therapies in oral squamous cell carcinoma (OSCC). EGFR signaling can promote epithelial-mesenchymal transition (EMT) in OSCC. EMT is a process by which epithelial cells acquire invasive properties and it can contribute to tumor metastasis. Not only do the abnormal functions of microtubule and microtubule-organizing centers (MTOC) such as centrosomes lead to cancers, but also the malignant tissues are characterized by aberrant centriolar features and amplified centrosomes. Microtubule inhibition therapies increase the sensitivity to EGFR targeting drugs in various cancers. In this study, we show that the loss of expression of a microtubule/tubulin binding protein, centrosomal protein 4.1-associated protein (CPAP), which is critical for centriole biogenesis and normal functioning of the centrosome, caused an increase in the EGFR levels and its signaling and, enhanced the EMT features and invasiveness of OSCC cells. Further, depletion of CPAP enhanced the tumorigenicity of these cells in a xeno-transplant model. Importantly, CPAP loss-associated EMT features and invasiveness of multiple OSCC cells were attenuated upon depletion of EGFR in them. On the other hand, we found that CPAP protein levels were higher in EGF treated OSCC cells as well as in oral cancer tissues, suggesting that the frequently reported aberrant centriolar features of tumors are potentially a consequence, but not the cause, of tumor progression. Overall, our novel observations show that, in addition to its known indispensable role in centrosome biogenesis, CPAP also plays a vital role in suppressing tumorigenesis in OSCC by facilitating EGFR homeostasis.
Collapse
Affiliation(s)
- Radhika R Gudi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Philip H Howe
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
32
|
Lin YC, Chen TH, Huang YM, Wei PL, Lin JC. Involvement of microRNA in Solid Cancer: Role and Regulatory Mechanisms. Biomedicines 2021; 9:biomedicines9040343. [PMID: 33805515 PMCID: PMC8065716 DOI: 10.3390/biomedicines9040343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) function as the post-transcriptional factor that finetunes the gene expression by targeting to the specific candidate. Mis-regulated expression of miRNAs consequently disturbs gene expression profile, which serves as the pivotal mechanism involved in initiation or progression of human malignancy. Cancer-relevant miRNA is potentially considered the therapeutic target or biomarker toward the precise treatment of cancer. Nevertheless, the regulatory mechanism underlying the altered expression of miRNA in cancer is largely uncovered. Detailed knowledge regarding the influence of miRNAs on solid cancer is critical for exploring its potential of clinical application. Herein, we elucidate the regulatory mechanism regarding how miRNA expression is manipulated and its impact on the pathogenesis of distinct solid cancer.
Collapse
Affiliation(s)
- Ying-Chin Lin
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tso-Hsiao Chen
- Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Yu-Min Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastrointestinal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (P.-L.W.); (J.-C.L.); Tel.: +886-2-2736-1661 (ext. 3330) (J.-C.L.)
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (P.-L.W.); (J.-C.L.); Tel.: +886-2-2736-1661 (ext. 3330) (J.-C.L.)
| |
Collapse
|
33
|
Wnt/β-catenin signaling as an emerging potential key pharmacological target in cholangiocarcinoma. Biosci Rep 2021; 40:222119. [PMID: 32140709 PMCID: PMC7953494 DOI: 10.1042/bsr20193353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a fatal malignant tumor of biliary epithelial cells involving intra- or extra-hepatic bile ducts. The prognosis of CCA is generally poor due to its diagnosis at the late stages. The currently employed chemotherapeutic agents do not increase the survival rate in patients with unresectable CCA. Accordingly, there is a need to identify new therapeutic agents for the effective management of intra- and extra-hepatic CCA. Clinical as well as preclinical studies have suggested the key role of the activation of Wnt/β-catenin signaling pathway in the induction and progression of CCA. There is an up-regulation of different Wnt ligands including Wnt2, Wnt3, Wnt5, Wnt7 and Wnt10 along with redistribution of β-catenin (more expression in the nucleus and lesser on the cell surface due to nuclear translocation of β-catenin) in different types of malignant biliary tumors. Apart from the role of this pathway in the induction and progression of CCA, this pathway is also involved in inducing multidrug resistance by inducing the expression of P-glycoprotein efflux pump on the cancer cells. These deleterious effects of Wnt/β-catenin signaling are mediated in association with other signaling pathways involving microRNAs (miRNAs), PI3K/AKT/PTEN/GSK-3β, retinoic acid receptors (RARs), dickkopf-1 (DKK1), protein kinase A regulatory subunit 1 α (PRKAR1A/PKAI), (SLAP), liver kinase B1 (LKB1) and CXCR4. The selective inhibitors of Wnt/β-catenin signaling may be potentially employed to overcome multidrug-resistant, fatal CCA. The present review discusses the role of Wnt/β-catenin along with its relation with other signaling pathways in the induction and progression of CCA.
Collapse
|
34
|
Cadamuro M, Lasagni A, Lamarca A, Fouassier L, Guido M, Sarcognato S, Gringeri E, Cillo U, Strazzabosco M, Marin JJ, Banales JM, Fabris L. Targeted therapies for extrahepatic cholangiocarcinoma: preclinical and clinical development and prospects for the clinic. Expert Opin Investig Drugs 2021; 30:377-388. [PMID: 33622120 DOI: 10.1080/13543784.2021.1880564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Until recently, cholangiocarcinoma (CCA) was a largely overlooked disease, and among CCAs, extrahepatic CCA (eCCA) was even more neglected. Despite the growing impact of molecularly targeted therapies and immunotherapy, prognosis of eCCA is dismal. Therefore, unraveling the complex molecular landscape of eCCA has become an urgent need. Deep phenotyping studies have revealed that eCCA is a heterogeneous tumor, harboring specific alterations categorizable into four classes, 'Mesenchymal', 'Proliferation', 'Immune', 'Metabolic'. Molecular alterations convey the activation of several pro-oncogenic pathways, where either actionable drivers or outcome predictors can be identified.Areas covered: We offer insights on perturbed pathways, molecular profiling, and actionable targets in eCCA and present a perspective on the potential stepping-stones to future progress. A systematic literature search in PubMed/ClinicalTrials.gov websites was performed by authors from different disciplines according to their specific topic knowledge to identify the newest and most relevant advances in precision medicine of eCCA.Expert opinion: eCCA is a distinct entity with unique features in terms of molecular classes, oncogenic drivers, and tumor microenvironment. Since more prevalent mutations are currently undruggable, and immunotherapy can be offered only to a minority of patients, international collaborations are instrumental to improve the understanding of the molecular underpins of this disease.
Collapse
Affiliation(s)
- Massimiliano Cadamuro
- Department of Molecular Medicine (DMM), University of Padua, Padua. Italy.,International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy
| | - Alberto Lasagni
- Division of General Medicine, Padua University-Hospital, Padua, Italy
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation, Manchester, United Kingdom.,Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.,Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.,Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation, Padua University-Hospital, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation, Padua University-Hospital, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Mario Strazzabosco
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy.,Digestive Disease Section, Liver Center, Yale University, New Haven, CT, US
| | - Jose Jg Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, CIBERehd, University of Salamanca, Salamanca, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua. Italy.,International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy.,Division of General Medicine, Padua University-Hospital, Padua, Italy.,Digestive Disease Section, Liver Center, Yale University, New Haven, CT, US
| |
Collapse
|
35
|
Role of microRNAs in Lung Carcinogenesis Induced by Asbestos. J Pers Med 2021; 11:jpm11020097. [PMID: 33546236 PMCID: PMC7913345 DOI: 10.3390/jpm11020097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are a class of small noncoding endogenous RNAs 19–25 nucleotides long, which play an important role in the post-transcriptional regulation of gene expression by targeting mRNA targets with subsequent repression of translation. MicroRNAs are involved in the pathogenesis of numerous diseases, including cancer. Lung cancer is the leading cause of cancer death in the world. Lung cancer is usually associated with tobacco smoking. However, about 25% of lung cancer cases occur in people who have never smoked. According to the International Agency for Research on Cancer, asbestos has been classified as one of the cancerogenic factors for lung cancer. The mechanism of malignant transformation under the influence of asbestos is associated with the genotoxic effect of reactive oxygen species, which initiate the processes of DNA damage in the cell. However, epigenetic mechanisms such as changes in the microRNA expression profile may also be implicated in the pathogenesis of asbestos-induced lung cancer. Numerous studies have shown that microRNAs can serve as a biomarker of the effects of various adverse environmental factors on the human body. This review examines the role of microRNAs, the expression profile of which changes upon exposure to asbestos, in key processes of carcinogenesis, such as proliferation, cell survival, metastasis, neo-angiogenesis, and immune response avoidance.
Collapse
|
36
|
Liu C, Xuan LQ, Li K, Feng Z, Lv C, Li XJ, Ji XD, Wan R, Shen J. Shikonin Inhibits Cholangiocarcinoma Cell Line QBC939 by Regulating Apoptosis, Proliferation, and Invasion. Cell Transplant 2021; 30:963689720979162. [PMID: 33508949 PMCID: PMC7863558 DOI: 10.1177/0963689720979162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study was designed to clarify whether Shikonin causes proliferation, apoptosis, and invasion in cholangiocarcinoma cells and to investigate the mechanism of action. QBC939 cells were cultured with different doses of Shikonin, and then 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium assay was used to detect cell viability. Apoptosis of cells was detected using flow cytometry with Annexin V/propidium iodide (PI) assay after being stained with Hoechst 33242. The role of Shikonin on the invasive and metastasis ability was detected using Transwell invasion assay. Real-time polymerase chain reaction and Western blotting were used to detect the expression of caspase-3, caspase-8, epidermal growth factor receptor (EGFR), and matrix metalloproteinase (MMP)-9. Shikonin inhibited proliferation and invasive ability of QBC939 cells in a dose-dependent manner; at the same time, apoptosis of cells was also observed in a concentration-dependent fashion. Moreover, Annexin V/PI assay and Transwell invasion assay results indicated that Shikonin induced apoptosis and invasion inhibitory probably due to upregulation of caspase-3 and caspase-8 expression and downregulation of MMP-9 and EGFR expression in a concentration-dependent fashion. Shikonin could enhance apoptosis and inhibit proliferation and invasion of QBC939 cells; such biological behaviors mainly occurred via upregulating the expression of caspase-3 and caspase-8 and downregulating the expression of MMP-9 and EGFR.
Collapse
Affiliation(s)
- Chang Liu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Li-Qian Xuan
- Department of Digestive Endoscopy Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zhuo Feng
- Department of Digestive Endoscopy Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Chan Lv
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xing-Jia Li
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiao-Dan Ji
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jie Shen
- Department of Digestive Endoscopy Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
37
|
Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111385. [DOI: 10.1016/j.msec.2020.111385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
|
38
|
Sahin IH, Tan E, Kim R. Regorafenib, an investigational agent for the treatment of cholangiocarcinoma. Expert Opin Investig Drugs 2020; 30:333-341. [PMID: 33378249 DOI: 10.1080/13543784.2021.1867537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cholangiocarcinoma is a prevalent gastrointestinal cancer with a high mortality rate. A limited number of cholangiocarcinoma patients are diagnosed with early-stage disease but unfortunately, most patients present with an advanced-stage disease which is not amenable to curative surgical resection. AREAS COVERED We discuss regorafenib, a multi-kinase inhibitor, which has been investigated as a therapeutic agent in advanced stage biliary tract cancer patients in phase II trials. We examined the efficacy and toxicity of this agent and its potential in this patient population in the future. We also provide further insights on novel approaches to optimize the efficacy of regorafenib in cholangiocarcinoma patients. EXPERT OPINION The recent phase II trials of single-agent regorafenib in advanced stage biliary tumors revealed a modest activity in non enriched patient population and is currently part of the national comprehensive cancer network (NCCN) guidelines (Level 2B) in the refractory setting. However, more opportunities for this agent exist in combination approaches with other therapeutics such as immune checkpoint inhibitors. It is also important to recognize that the paradigm has significantly shifted for targeted therapy to more specific and more potent tyrosine kinase inhibitors targeting specific actionable genes.
Collapse
Affiliation(s)
- Ibrahim Halil Sahin
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, USA
| | - Elaine Tan
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, USA
| | - Richard Kim
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, USA
| |
Collapse
|
39
|
SRY-related high-mobility-group box 4: Crucial regulators of the EMT in cancer. Semin Cancer Biol 2020; 67:114-121. [DOI: 10.1016/j.semcancer.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022]
|
40
|
Comprehensive Evaluation of Immune-Checkpoint DNA Cancer Vaccines in a Rat Cholangiocarcinoma Model. Vaccines (Basel) 2020; 8:vaccines8040703. [PMID: 33255375 PMCID: PMC7712087 DOI: 10.3390/vaccines8040703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor with aggressive biological behavior. Immune checkpoints such as cytotoxic T-lymphocyte antigen 4 (CTLA4) and antiprogrammed death 1 (PD-1) are critical immune-checkpoint molecules that repress T-cell activation. The DNA vaccine potential against CTLA4 and PD-1 in CCA is unknown. We used a thioacetamide (TAA)-induced intrahepatic cholangiocarcinoma (iCCA) rat model to investigate the DNA vaccine potential against CTLA4, PD-1, and PD-L1. We detected PD-L1 expression in CCA and CD8+ T-cell infiltration during CCA progression in rats. We validated antibody production, carcinogenesis, and CD8+ T-cell infiltration in rats receiving DNA vaccination against PD-1, PD-L1, or CTLA4. In our TAA-induced iCCA rat model, the expression of PD-L1 and the infiltration of CD8+ T cells increased as in rat CCA tumorigenesis. PD-1 antibodies in rats were not increased after receiving PD-1 DNA vaccination, and CCA tumor growth was not suppressed. However, in rats receiving PD-L1–CTLA4 DNA vaccination, CCA tumor growth was inhibited, and the antibodies of PD-L1 and CTLA4 were produced. Furthermore, the number of CD8+ T cells was enhanced after PD-L1–CTLA4 DNA vaccination. DNA vaccination targeting CTLA4–PD-L1 triggered the production of specific antibodies and suppressed tumor growth in TAA-induced iCCA rats.
Collapse
|
41
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|
42
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1459] [Impact Index Per Article: 291.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
43
|
ErBb Family Proteins in Cholangiocarcinoma and Clinical Implications. J Clin Med 2020; 9:jcm9072255. [PMID: 32708604 PMCID: PMC7408920 DOI: 10.3390/jcm9072255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The erythroblastic leukemia viral oncogene homolog (ErBb) family consists of the receptor tyrosine kinases (RTK) epidermal growth factor receptor (EGFR; also called ERBB1), ERBB2, ERBB3, and ERBB4. This family is closely associated with the progression of cholangiocarcinoma (CC) through the regulation of cellular networks, which are enhanced during tumorigenesis, metastasis, and chemoresistance. Additionally, the constitutive activation of cellular signaling by the overexpression and somatic mutation-mediated alterations conferred by the ErBb family on cholangiocarcinoma and other cancers enhances tumor aggressiveness and chemoresistance by contributing to the tumor microenvironment. This review summarizes the recent findings on the molecular functions of the ErBb family and their mutations during the progression of cholangiocarcinoma. It also discusses the developments and applications of various devising strategies for targeting the ErBb family through different inhibitors in various stages of clinical trials, which are essential for improving targeted clinical therapies.
Collapse
|
44
|
Wang Y, Dong B, Xue W, Feng Y, Yang C, Liu P, Cao J, Zhu C. Anticancer Effect of Radix Astragali on Cholangiocarcinoma In Vitro and Its Mechanism via Network Pharmacology. Med Sci Monit 2020; 26:e921162. [PMID: 32246704 PMCID: PMC7154565 DOI: 10.12659/msm.921162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background This study used network pharmacology method and cell model to assess the effects of Radix Astragali (RA) on cholangiocarcinoma (CCA) and to predict core targets and molecular mechanisms. Material/Methods We performed an in vitro study to assess the effect of RA on CCA using CCK8 assay, the Live-Cell Analysis System, and trypan blue staining. The components and targets of RA were analyzed using the Traditional Chinese Medicine Systems Pharmacology database, and genes associated with CCA were retrieved from the GeneCards and OMIM platforms. Protein–protein interactions were analyzed with the STRING platform. The components–targets–disease network was built by Cytoscape. The TIMER database revealed the expression of core targets with diverse immune infiltration levels. GO and KEGG analyses were performed to identify molecular-biology processes and signaling pathways. The predictions were verified by Western blotting. Results Concentration-dependent antitumor activity was confirmed in the cholangiocarcinoma QBC939 cell line treated with RA. RA contained 16 active compounds, with quercetin and kaempferol as the core compounds. The most important biotargets for RA in CCA were caspase 3, MAPK8, MYC, EGFR, and PARP. The TIMER database revealed that the expression of caspase3 and MYC was related with diverse immune infiltration levels of CCA. The results of Western blotting showed RA significantly influenced the expression of the 5 targets that network pharmacology predicted. Conclusions RA is an active medicinal material that can be developed into a safe and effective multi-targeted anticancer treatment for CCA.
Collapse
Affiliation(s)
- Yixiu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Bingzi Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Weijie Xue
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yujie Feng
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Chenyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Peng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Jingyu Cao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland).,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
45
|
Pei YF, Liu J, Cheng J, Wu WD, Liu XQ. Silencing of LAMC2 Reverses Epithelial-Mesenchymal Transition and Inhibits Angiogenesis in Cholangiocarcinoma via Inactivation of the Epidermal Growth Factor Receptor Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 189:1637-1653. [PMID: 31345467 DOI: 10.1016/j.ajpath.2019.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant cancer that is associated with high mortality rates. The relationship between laminin γ 2 chain gene (LAMC2) and epidermal growth factor receptor (EGFR) has been previously documented in gastric cancer and oral squamous cell carcinoma. This study investigates the role of LAMC2 in epithelial-mesenchymal transition (EMT) and angiogenesis in CCA and explores the underlying mechanism(s). Differentially expressed genes related to CCA were initially screened using a microarray analysis, and the interaction between LAMC2 and the EGFR signaling pathway was identified. To determine the regulatory effects of LAMC2 on CCA progression, LAMC2 was silenced or overexpressed and the EGFR signaling pathway was activated or blocked. Subsequently, the regulation effects of LAMC2 were evaluated on the expression of EMT markers, invasion and migration of CCA cells, as well as microvessel density in nude mice. Microarray analysis demonstrated that highly expressed LAMC2 is linked to CCA development, which involves the EGFR signaling pathway. When LAMC2 expression was increased, the EGFR signaling pathway and EMT were activated in CCA tissues. Silencing of LAMC2 as well as EGFR signaling pathway inhibition led to suppression of EMT, cell invasion, and migration abilities in vitro, as well as angiogenesis in vivo. This study demonstrates that LAMC2 silencing suppresses the activity of the EGFR signaling pathway, thus functioning as a tumor suppressor in CCA.
Collapse
Affiliation(s)
- Yao-Fei Pei
- Department of Hepatopancreatobiliary Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Jie Liu
- Department of Hepatopancreatobiliary Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Jian Cheng
- Department of Hepatopancreatobiliary Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Wei-Ding Wu
- Department of Hepatopancreatobiliary Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China.
| | - Xi-Qiang Liu
- Department of Hepatopancreatobiliary Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China.
| |
Collapse
|
46
|
Indramanee S, Sawanyawisuth K, Silsirivanit A, Dana P, Phoomak C, Kariya R, Klinhom-On N, Sorin S, Wongkham C, Okada S, Wongkham S. Terminal fucose mediates progression of human cholangiocarcinoma through EGF/EGFR activation and the Akt/Erk signaling pathway. Sci Rep 2019; 9:17266. [PMID: 31754244 PMCID: PMC6872661 DOI: 10.1038/s41598-019-53601-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrant glycosylation is recognized as a cancer hallmark that is associated with cancer development and progression. In this study, the clinical relevance and significance of terminal fucose (TFG), by fucosyltransferase-1 (FUT1) in carcinogenesis and progression of cholangiocarcinoma (CCA) were demonstrated. TFG expression in human and hamster CCA tissues were determined using Ulex europaeus agglutinin-I (UEA-I) histochemistry. Normal bile ducts rarely expressed TFG while 47% of CCA human tissues had high TFG expression and was correlated with shorter survival of patients. In the CCA-hamster model, TFG was elevated in hyperproliferative bile ducts and gradually increased until CCA was developed. This evidence indicates the involvement of TFG in carcinogenesis and progression of CCA. The mechanistic insight was performed in 2 CCA cell lines. Suppression of TFG expression using siFUT1 or neutralizing the surface TFG with UEA-I significantly reduced migration, invasion and adhesion of CCA cells in correlation with the reduction of Akt/Erk signaling and epithelial-mesenchymal transition. A short pulse of EGF could stimulate Akt/Erk signaling via activation of EGF-EGFR cascade, however, decreasing TFG using siFUT1 or UEA-I treatment reduced the EGF-EGFR activation and Akt/Erk signaling. This evidence provides important insight into the relevant role and molecular mechanism of TFG in progression of CCA.
Collapse
Grants
- -Cholangiocarcinoma Research Institute, Khon Kaen University, (05/2556) -JASSO program for short training in Kumamoto University, Japan. -Faculty of Medicine, Khon Kaen University, Thailand (IN58234)
- The Mekong Health Science Research Institute (MeHSRI), Khon Kaen University.
- -Khon Kaen University, Thailand (601801) -Faculty of Medicine, Khon Kaen University, Thailand (IN58234),
Collapse
Affiliation(s)
- Somsiri Indramanee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Paweena Dana
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chatchai Phoomak
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Nathakan Klinhom-On
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supannika Sorin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
47
|
Lin Y, Li B, Yang X, Cai Q, Liu W, Tian M, Luo H, Yin W, Song Y, Shi Y, He R. Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia 2019; 21:1133-1142. [PMID: 31759251 PMCID: PMC6880109 DOI: 10.1016/j.neo.2019.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Desmoplasia is a hallmark of intrahepatic cholangiocarcinoma (ICC), which constitutes a barrier to infiltration of lymphocyte, but not myeloid cells. Given that dense desmoplastic stroma has been reported to be a barrier to infiltration of lymphocyte, but not myeloid cells. We here investigated whether fibroblastic FAP influenced ICC progression via non-T cell-related immune mechanisms. We demonstrated fibroblastic FAP expression was critical for STAT3 activation and CCL2 production, and ICC-CAFs were the primary source of CCL2 in human ICC microenvironment by using ICC-Fbs from six ICC patients. Fibroblastic knockdown of FAP significantly impaired the ability of ICC-CAFs to promote ICC growth, MDSCs infiltration and angiogenesis, which was restored by adding exogenous CCL2. Furthermore, interestingly, the tumor-promoting effect of fibroblastic FAP is dependent on MDSCs via secretion of CCL2, as depletion of Gr-1+ cells reversed the restoring effects of exogenous CCL2 on tumor growth and angiogenesis. In vitro migration assay confirmed that exogenous CCL2 could rescue the impaired ability of ICC-Fbs to attract Gr-1+ cells caused by fibroblastic FAP knockdown. In contrast, fibroblastic FAP knockdown had no effect on ICC cell proliferation and apoptotic resistance. Depletion MDSCs by anti-Gr-1 monoclonal antibody in subcutaneous transplanted tumor model abrogated tumor promotion by ICC-CAFs suggested that the pro-tumor function of Fibroblastic FAP relied on MDSCs. Mechanical, flow cytometry and chamber migration assay were conducted to find Fibroblastic FAP was required by the ability of ICC-CAFs to promote MDSC migration directly. Moreover, fibroblastic FAP knockdown had no effect on cell proliferation and apoptotic resistance. Here, we revealed the T-cell independent mechanisms underlying the ICC-promoting effect of fibroblastic FAP by attracting MDSCs via CCL2, which was mainly attributed to the ability of FAP to attract MDSCs and suggests that specific targeting fibroblastic FAP may represent a promising therapeutic strategy against ICC.
Collapse
Affiliation(s)
- Yuli Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Integrative Medicine, Fudan University, China
| | - Bingji Li
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuguang Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Cai
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Weiren Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, 20032, China
| | - Mengxin Tian
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, 20032, China
| | - Haoyang Luo
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Yin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Song
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yinghong Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, 20032, China.
| | - Rui He
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
48
|
Szeder B, Tárnoki-Zách J, Lakatos D, Vas V, Kudlik G, Merő B, Koprivanacz K, Bányai L, Hámori L, Róna G, Czirók A, Füredi A, Buday AL. Absence of the Tks4 Scaffold Protein Induces Epithelial-Mesenchymal Transition-Like Changes in Human Colon Cancer Cells. Cells 2019; 8:cells8111343. [PMID: 31671862 PMCID: PMC6912613 DOI: 10.3390/cells8111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 01/09/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a multipurpose process involved in wound healing, development, and certain pathological processes, such as metastasis formation. The Tks4 scaffold protein has been implicated in cancer progression; however, its role in oncogenesis is not well defined. In this study, the function of Tks4 was investigated in HCT116 colon cancer cells by knocking the protein out using the CRISPR/Cas9 system. Surprisingly, the absence of Tks4 induced significant changes in cell morphology, motility, adhesion and expression, and localization of E-cadherin, which are all considered as hallmarks of EMT. In agreement with these findings, the marked appearance of fibronectin, a marker of the mesenchymal phenotype, was also observed in Tks4-KO cells. Analysis of the expression of well-known EMT transcription factors revealed that Snail2 was strongly overexpressed in cells lacking Tks4. Tks4-KO cells showed increased motility and decreased cell–cell attachment. Collagen matrix invasion assays demonstrated the abundance of invasive solitary cells. Finally, the reintroduction of Tks4 protein in the Tks4-KO cells restored the expression levels of relevant key transcription factors, suggesting that the Tks4 scaffold protein has a specific and novel role in EMT regulation and cancer progression.
Collapse
Affiliation(s)
- Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Júlia Tárnoki-Zách
- Department of Biological Physics, Eötvös University, 1117 Budapest, Hungary.
| | - Dóra Lakatos
- Department of Biological Physics, Eötvös University, 1117 Budapest, Hungary.
| | - Virág Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Balázs Merő
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Kitti Koprivanacz
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - László Bányai
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Lilla Hámori
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Gergely Róna
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| | - András Czirók
- Department of Biological Physics, Eötvös University, 1117 Budapest, Hungary.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- University of Kansas Cancer Centre, Kansas City, KS 66160, USA.
| | - András Füredi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - And László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
- Department of Medical Chemistry, Semmelweis University Medical School, 1094 Budapest, Hungary.
| |
Collapse
|
49
|
Cao ZQ, Wang Z, Leng P. Aberrant N-cadherin expression in cancer. Biomed Pharmacother 2019; 118:109320. [DOI: 10.1016/j.biopha.2019.109320] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
|
50
|
Papoutsoglou P, Louis C, Coulouarn C. Transforming Growth Factor-Beta (TGFβ) Signaling Pathway in Cholangiocarcinoma. Cells 2019; 8:960. [PMID: 31450767 PMCID: PMC6770250 DOI: 10.3390/cells8090960] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a deadly cancer worldwide, associated with a poor prognosis and limited therapeutic options. Although cholangiocarcinoma accounts for less than 15% of liver primary cancer, its silent nature restricts early diagnosis and prevents efficient treatment. Therefore, it is of clinical relevance to better understand the molecular basis of cholangiocarcinoma, including the signaling pathways that contribute to tumor onset and progression. In this review, we discuss the genetic, molecular, and environmental factors that promote cholangiocarcinoma, emphasizing the role of the transforming growth factor β (TGFβ) signaling pathway in the progression of this cancer. We provide an overview of the physiological functions of TGFβ signaling in preserving liver homeostasis and describe how advanced cholangiocarcinoma benefits from the tumor-promoting effects of TGFβ. Moreover, we report the importance of noncoding RNAs as effector molecules downstream of TGFβ during cholangiocarcinoma progression, and conclude by highlighting the need for identifying novel and clinically relevant biomarkers for a better management of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Panagiotis Papoutsoglou
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France
| | - Corentin Louis
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France.
| |
Collapse
|