1
|
Shimba R, Harai N, Yamazaki M, Hosokawa T, Tsuchiya K. Pseudo-Malabsorption in High Dose Levothyroxine-Resistant Hypothyroidism. JCEM CASE REPORTS 2025; 3:luaf085. [PMID: 40271000 PMCID: PMC12017338 DOI: 10.1210/jcemcr/luaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Indexed: 04/25/2025]
Abstract
A 38-year-old woman was diagnosed with hypothyroidism during pregnancy at age 35 years and started on levothyroxine (LT4). Despite increasing the dose to 400 μg/day and adding liothyronine, her thyroid function did not improve, leading to hospitalization. Upon admission, her thyroid-stimulating hormone (TSH), free triiodothyronine (T3), and free thyroxine (T4) levels were 255 μIU/mL (255 mIU/L) (reference range [RR]: 0.35---4.94 μIU/mL; 0.35---4.94 mIU/L), 3.42 pg/mL (5.27 pmol/L) (RR: 1.71-3.71 pg/mL; 2.63-5.70 pmol/L), and 0.153 ng/dL (1.97 pmol/L) (RR: 0.70-1.48 ng/dL; 9.01-19.05 pmol/L), respectively. She reported good adherence to medication and not consuming interfering food or medication. Endoscopic examination revealed no malabsorption. A 1000-μg oral LT4 loading test showed an increase in free T4 level from 0.787 (10.1 pmol/L) to 2.40 ng/dL (30.9 pmol/L), indicating pseudo-malabsorption. After presenting the loading test results, she admitted to nonadherence. A multidisciplinary team intervened, conducting individual counseling and simplifying treatment. Post-discharge, with LT4 200 μg/day, her TSH, free T3, and free T4 levels improved to 0.496 μIU/mL (0.496 mIU/L), 5.23 pg/mL (8.05 pmol/L), and 2.19 ng/dL (28.2 pmol/L), respectively. When addressing treatment-resistant hypothyroidism, it is crucial to evaluate patient history and medication schedule and to check for malabsorption. Comprehensive interventions are recommended if nonadherence is suspected.
Collapse
Affiliation(s)
- Ryo Shimba
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Chuo-shi, Yamanashi 4093898, Japan
| | - Nozomi Harai
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Chuo-shi, Yamanashi 4093898, Japan
| | - Miku Yamazaki
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Chuo-shi, Yamanashi 4093898, Japan
| | - Tadatsugu Hosokawa
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Chuo-shi, Yamanashi 4093898, Japan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Chuo-shi, Yamanashi 4093898, Japan
| |
Collapse
|
2
|
Polyzos SA, Targher G. Hepatic thyroid hormone receptor-β signalling: Mechanisms and recent advancements in the treatment of metabolic dysfunction-associated steatohepatitis. Diabetes Obes Metab 2025; 27:1635-1647. [PMID: 39658733 DOI: 10.1111/dom.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
The pharmacotherapy of metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, the metabolic dysfunction-associated steatohepatitis (MASH), remains a hot topic in research and a largely unmet need in clinical practice. As the first approval of a disease-specific drug, resmetirom, was regarded as a milestone for the management of this common liver disease, this comprehensive and updated review aimed to highlight the importance of the hepatic thyroid hormone (TH) receptor (THR)-β signalling for the treatment of MASH, with a special focus on resmetirom. First, the genomic and non-genomic actions of the liver-directed THR-β mediated mechanisms are summarized. THR-β has a key role in hepatic lipid and carbohydrate metabolism; disruption of THR-β signalling leads to dysmetabolism, thus promoting MASLD and possibly its progression to MASH and cirrhosis. In the clinical setting, this is translated into a significant association between primary hypothyroidism and MASLD, as confirmed by recent meta-analyses. An association between MASLD and subclinical intrahepatic hypothyroidism (i.e. a state of relatively low hepatic triiodothyronine concentrations, with circulating TH concentrations within the normal range) is also emerging and under investigation. In line with this, the favourable results of the phase 3 placebo-controlled MAESTRO trials led to the recent conditional approval of resmetirom by the US FDA for treating adults with MASH and moderate-to-advanced fibrosis. This conditional approval of resmetirom opened a new window to the management of this common and burdensome liver disease, thus bringing the global scientific community in front of new perspectives and challenges.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| |
Collapse
|
3
|
Sileo F, Leone A, De Amicis R, Foppiani A, Vignati L, Menichetti F, Pozzi G, Bertoli S, Battezzati A. Thyroid Stimulating Hormone Levels Are Related to Fatty Liver Indices Independently of Free Thyroxine: A Cross-Sectional Study. J Clin Med 2025; 14:2401. [PMID: 40217851 PMCID: PMC11990015 DOI: 10.3390/jcm14072401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Introduction: The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and thyroid hormones has been established, but the direct effects of TSH on the liver, potentially leading to steatosis, and insulin resistance remain unclear. Objective: To investigate the association of TSH levels with MASLD and insulin resistance. Methods: We conducted a cross-sectional study of 8825 euthyroid individuals. Subjects were volunteers or patients referred to the International Center for Nutritional Status Assessment (University of Milan, Italy) undergoing clinical examination and blood drawing for thyroid function tests and liver indices calculation. Liver outcomes were fatty liver index (FLI), hepatic steatosis index (HSI), and FIB-4. All associations were adjusted for fT4 and confounders. Results: We found a positive association of TSH levels with FLI (β = 2.76; p < 0.001) and HSI (β = 0.58, p < 0.001). This relationship remained significant when stratifying by sex and BMI category, except for HSI in normal weight individuals. No significant association was found between TSH and hepatic fibrosis or insulin resistance. Conclusions: We found a positive association between TSH levels and MASLD in euthyroid individuals independently of fT4, sex, and BMI. Insulin resistance and hepatic fibrosis appear unrelated to TSH, independent of fT4 and BMI. The specific role of TSH in MASLD warrants further investigation.
Collapse
Affiliation(s)
- Federica Sileo
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Clinical Nutrition Unit, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Clinical Nutrition Unit, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Ramona De Amicis
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Andrea Foppiani
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Clinical Nutrition Unit, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Laila Vignati
- IRCCS Istituto Auxologico Italiano, Clinical Nutrition Unit, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Francesca Menichetti
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Giorgia Pozzi
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Alberto Battezzati
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Clinical Nutrition Unit, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| |
Collapse
|
4
|
Si SA, Lu RN, Zhang GJ. Association of the thyroid hormone sensitivity index with triglycerides in adolescents: a cross-sectional study. Hormones (Athens) 2025:10.1007/s42000-025-00645-3. [PMID: 40116991 DOI: 10.1007/s42000-025-00645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Inconsistent findings have emerged from studies examining the relationship between thyroid hormone sensitivity indices and triglycerides (TGs), especially in pediatric and adolescent cohorts. The present study investigates this relationship within adolescent populations in the United States. METHODS Data spanning three periods from 2007 to 2012 were analyzed, including 1813 participants. The thyroid hormone sensitivity index was calculated and weighted multiple linear regression was used to assess the relationships between TG levels and individual thyroid hormone sensitivity indices. Subgroup analyses were conducted as needed and smooth curve fitting plots visualized the linear relationships. RESULTS The FT3/FT4 ratio was positively correlated with TG (β = 0.649, 95% CI: 0.360-0.938, P < 0.001). This correlation persisted after adjusting for all variables (β = 0.439, 95% CI: 0.154-0.725, P < 0.01). The relationship between the TFQI score and TG concentration demonstrated a significant negative correlation, which remained after controlling for all covariates (β = -0.153, 95% CI: -0.239-0.067, P < 0.01). When stratified into quartiles, the FT3/FT4 ratio and TG exhibited a positive correlation only in the Q3 and Q4 groups. Conversely, the TFQI was significantly correlated with TG exclusively in the Q4 group's positive values. Stratified analyses by sex and age showed clearer associations in female adolescents. CONCLUSIONS The study confirmed the relationship between thyroid hormone sensitivity indices and TGs. Maintaining the FT3/FT4 ratio within a specific range may reduce TG levels. The TFQI may predict TG levels when actual TSH values exceed expected values based on FT4. These findings were most pronounced in female adolescents, highlighting the importance of early monitoring of thyroid health in this group. These results point to the need for improved thyroid function testing in predicting TG levels and preventing hypertriglyceridemia.
Collapse
Affiliation(s)
- Shang-An Si
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Rui-Ning Lu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Gui-Ju Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| |
Collapse
|
5
|
El-Eshmawy MM, Barakat AA, El-Baiomy AA, El-Naga MMA, Elbasiony M. Role of serum fasting glucagon in hypothyroidism-related nonalcoholic fatty liver disease. Nutr Metab (Lond) 2025; 22:19. [PMID: 40069760 PMCID: PMC11899932 DOI: 10.1186/s12986-025-00899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/13/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND A bidirectional relationship between hypothyroidism and nonalcoholic fatty liver disease (NAFLD) has been proposed. Fasting hyperglucagonemia in patients with hypothyroidism induced NAFLD needs to be further clarified. The aim of the present study was to determine fasting serum glucagon levels in hypothyroid adults with and without NAFLD. The possible association between fasting glucagon and NAFLD in patients with hypothyroidism was also evaluated. METHODS This study was comprised 60 patients with uncontrolled hypothyroidism and 30 healthy controls matched for age and sex. Patients with hypothyroidism were divided into 2 groups: 30 patients with NAFLD and 30 patients without NAFLD. Diagnosis of NAFLD was based on the combination of hepatic steatosis index (HSI) at a cutoff value of 36 and measurements of steatosis using fibroScan. Anthropometric measurements, lipids profile, homeostasis model assessment of insulin resistance (HOMA-IR), free thyroxine (FT4), triiodothyronine (FT3), thyroid stimulating hormone (TSH) and serum fasting glucagon were assessed. RESULTS Serum fasting glucagon concentration was significantly higher in hypothyroid patients with and without NAFLD than in healthy controls; glucagon was also significantly higher in the hypothyroid patients with NAFLD than in those without NAFLD. Fasting glucagon was significantly correlated with waist circumference (WC), body mass index (BMI), TSH, HSI and fibroScan parameters in hypothyroid patients with NAFLD. Fasting glucagon predicts NAFLD in patients with hypothyroidism at a cutoff value 85 ng/L with 90% sensitivity, 100% specificity and p < 0.001. With multivariable analysis, age, BMI and TSH were significant positive predictors of NAFLD in patients with hypothyroidism. CONCLUSION Fasting glucagon concentration may play a role in the development of NAFLD in patients with hypothyroidism. However, the exact underlying mechanism needs further studies.
Collapse
Affiliation(s)
- Mervat M El-Eshmawy
- Internal Medicine Department, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, P.O. Box: 35516, Mansoura, Egypt.
| | - Amira A Barakat
- Internal Medicine Department, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, P.O. Box: 35516, Mansoura, Egypt
| | - Azza A El-Baiomy
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed M Abo El-Naga
- Internal Medicine Department, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, P.O. Box: 35516, Mansoura, Egypt
| | - Mohamed Elbasiony
- Internal Medicine Department, Mansoura Specialized Medical Hospital, Faculty of Medicine, Egyptian Liver Research Institute, Mansoura University, Sherben, Egypt
| |
Collapse
|
6
|
Feng J, MengHuan L, TingTing Y, XueJie Y, HaiNing G. Research progress on AMPK in the pathogenesis and treatment of MASLD. Front Immunol 2025; 16:1558041. [PMID: 40134423 PMCID: PMC11932893 DOI: 10.3389/fimmu.2025.1558041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as non-alcoholic fatty liver disease, NAFLD) has become one of the most prevalent chronic liver diseases worldwide, with its incidence continuously rising alongside the epidemic of metabolic disorders. AMP-activated protein kinase (AMPK), as a key regulator of cellular energy metabolism, influences multiple pathological processes associated with MASLD. This review systematically summarizes the regulatory roles of AMPK in lipid metabolism, inflammatory response, cell apoptosis, and fibrosis. Additionally, it discusses the latest developments of AMPK activators from preclinical to clinical studies, while analyzing the major challenges currently faced and potential strategies for resolution. A deeper understanding of AMPK regulatory mechanisms will contribute to the development of more effective therapeutic approaches for MASLD.
Collapse
Affiliation(s)
- Jiang Feng
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Yao TingTing
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Gao HaiNing
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
7
|
Ma S, Wang Y, Fan S, Jiang W, Sun M, Jing M, Bi W, Zhou M, Wu D. TSH-stimulated hepatocyte exosomes modulate liver-adipose triglyceride accumulation via the TGF-β1/ATGL axis in mice. Lipids Health Dis 2025; 24:81. [PMID: 40050912 PMCID: PMC11884018 DOI: 10.1186/s12944-025-02509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025] Open
Abstract
Subclinical hypothyroidism (SCH) contributes to obesity, with the liver acting as a crucial metabolic regulator. Thyroid-stimulating hormone (TSH) affects systemic lipid balance, potentially linking SCH to obesity. While the direct impact of TSH on hepatic lipid metabolism has been extensively documented, its role in modulating lipid dynamics in peripheral organs through liver-mediated pathways remains insufficiently understood. This study identifies TSH-stimulated hepatocyte-derived exosomes (exosomesTSH) as key mediators in liver-adipose communication, promoting triglyceride accumulation in adipocytes via the transforming growth factor-beta 1 (TGF-β1)/adipose triglyceride lipase (ATGL) axis. ExosomesTSH enhance lipid storage in adipocytes, significantly increasing triglyceride content and lipid droplet formation while reducing lipolysis, effects that are dependent on TSH receptor (TSHR) activation in hepatocytes. In vivo, exosomesTSH induce weight gain and adipose tissue expansion, impairing glucose metabolism in both chow- and high-fat diet-fed mice. Mechanistically, exosomesTSH upregulate TGF-β1 and downregulate ATGL in adipocytes, establishing the TGF-β1/ATGL pathway as essential for exosome-mediated lipid accumulation. Further, miR-139-5p is identified as a modulator of TGF-β1 expression within this pathway, with overexpression of miR-139-5p alleviating exosomesTSH-induced lipid accumulation in adipocytes. This study elucidates a novel miR-139-5p-dependent mechanism through which TSH modulates lipid metabolism via liver-derived exosomes, highlighting the pivotal role of miR-139-5p in linking SCH to adipose lipid accumulation through the TGF-β1/ATGL signaling axis.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yayun Wang
- Department of Neurology, Qingdao Traditional Chinese Medicine Hospital Affiliated of Qingdao University, Qingdao, Shandong, 266033, China
| | - Shuteng Fan
- Department of Nursing, Taishan Vocational College of Nursing, Taian, Shandong, 271000, China
| | - Wanli Jiang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Mingliang Sun
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Mengzhe Jing
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wenkai Bi
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Meng Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Dongming Wu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| |
Collapse
|
8
|
Hao W, Chen L, Li T, Lv G. Association of free triiodothyronine and total triiodothyronine with nonalcoholic fatty liver disease: from National Health and Nutrition Examination Survey and Mendelian randomization study. Eur J Gastroenterol Hepatol 2025:00042737-990000000-00500. [PMID: 40207487 DOI: 10.1097/meg.0000000000002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors, yet the relationship between NAFLD and thyroid-related biomarkers remains unclear. This study aims to elucidate this potential linkage. METHODS Utilizing data from the US National Health and Nutrition Examination Survey (NHANES), we explored the possible associations between thyroid-related biomarkers and NAFLD through multivariable logistic regression, subgroup analysis, and interaction tests. A bidirectional Mendelian randomization (MR) approach complemented by various sensitivity analyses was then employed to ascertain these relationships' causality. RESULTS Our NHANES analysis indicated significant associations between elevated levels of free triiodothyronine (FT3) [odds ratio (OR): 2.59, 95% confidence interval (CI): 1.50-4.49] and total triiodothyronine (TT3) (OR: 2.01, 95% CI: 1.27-3.18) with the prevalence of NAFLD. MR findings reinforced the causal relationship, demonstrating that NAFLD may elevate FT3 (β: 0.05, 95% CI: 0.01-0.09) and TT3 (β: 0.08, 95% CI: 0.02-0.14) levels. Additionally, thyroid-stimulating hormone (TSH) was confirmed as an independent risk factor for NAFLD (OR: 1.10, 95% CI: 1.04-1.18), with specific MR sensitivity analyses supporting the robustness of these results. CONCLUSION This study indicates potential elevations in FT3, TT3, and thyroglobulin levels associated with NAFLD, while also identifying TSH as a risk factor for NAFLD. These findings underscore the importance of routine thyroid function monitoring both in the general population and particularly in individuals with NAFLD.
Collapse
Affiliation(s)
- Wei Hao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Jilin, China
| | | | | | | |
Collapse
|
9
|
Naz T, Zhao XY, Li S, Saeed T, Ullah S, Nazir Y, Liu Q, Mohamed H, Song Y. The interplay of transcriptional regulator SREBP1 with AMPK promotes lipid biosynthesis in Mucor circinelloides WJ11. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159592. [PMID: 39733936 DOI: 10.1016/j.bbalip.2024.159592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
SREBP1 is a transcription factor that influences lipogenesis by regulating key genes associated with lipid biosynthesis, while AMPK, modulates lipid metabolism by regulating acetyl-CoA carboxylase. The exact role of these metabolic regulators in oleaginous microbes remains unclear. This study identified and manipulated the genes encoding SREBP1 (sre1) and α1 subunit of AMPK (ampk-α1) in Mucor circinelloides WJ11. Individual overexpression of sre1 yielded 32.5 % lipids and 21 g/L biomass, while ampk-α1 deletion combined with sre1 overexpression yielded 42.5 % lipids and 25 g/L biomass in mutant strains. This increase correlated with upregulated expression of key lipogenic genes and enzyme activity, enhancing lipid production and biomass. These surges were correlated with the increased mRNA levels of key genes (acl, acc1, acc2, cme1, fas1, g6pdh1, g6pdh2 and 6pgdh2). Enzyme activity analysis further showed that upregulation of ACL, ACC, ME, FAS, G6PDH and 6PGDH might provide more precursors and NADPH for lipid biosynthesis in sre1 overexpressing strains. Conversely, the activities of these genes and enzymes were markedly downregulated in sre1 deleted mutants consistent with lower lipid production and biomass than the control. These findings open new avenues for research by exploring the coordinated role of sre1 and ampk-α1 in lipid metabolism in M. circinelloides.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Tariq Saeed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad 45750, Pakistan.
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
10
|
Bi WK, Xu H, Tian ZH, Teng W, Zheng GW, Yin QQ. Stimulated Thyrotropin (TSH) Levels Were Inversely Correlated with Age. Int J Gen Med 2024; 17:6479-6486. [PMID: 39742031 PMCID: PMC11687293 DOI: 10.2147/ijgm.s497208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/21/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Serum Thyrotropin (TSH) levels in the elderly have been reported to be inconsistent in different studies. One of the difficulties in determining the effect of aging on TSH levels is that TSH levels are influenced by various factors, including thyroid-related factors. Therefore, this study aimed to assess the effect of aging on TSH levels while controlling for thyroid factors. Patients and Methods This study included a total of 343 subjects, who underwent thyroidectomy, levothyroxine (LT4) supplementation and withdraw. All participants were divided into young(18-44year old), middle(45-59year old), and old age(>60year old) groups based on their age. The clinical data of the subjects were reviewed, and analyzed based on their age. Results With LT4 supplementation, there was no difference in free triiodothyronine (FT3), free thyroxine (FT4), and TSH levels among the three age groups. However, after approximately 4 weeks of LT4 withdrawal, the TSH levels of the three groups showed significant differences. The median stimulated TSH levels were 100, 83.1, and 64.6 mIU/L in the young, middle, and old age groups, respectively (P<0.01). Moreover, the percentages of subjects, with TSH levels higher than 100 mIU/L, were 63.2%, 33.1%, and 12.9% (P<0.01) in the young, middle, and old age groups, respectively. Spearman correlation analysis (R=-0.42, P<0.01) and partial correlation analysis (R=-0.44, P<0.01) revealed an inverse correlation between age and TSH levels after LT4 withdrawal. Conclusion Aging plays an important role in TSH regulation. Age was inversely related to the stimulated TSH levels. The effect of senescence on TSH levels, as well as the underlying regulatory mechanisms, warrant further investigation.
Collapse
Affiliation(s)
- Wen-Kai Bi
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Hua Xu
- Shizhong District Center for Disease Control and Prevention, Jinan, Shandong, People’s Republic of China
| | - Zhen-Hua Tian
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Wei Teng
- Department of Nuclear Medicine, Laizhou People’s Hospital, Yantai, Shandong, People’s Republic of China
| | - Gui-Wen Zheng
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Qing-Qing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Su C, Tian J, He X, Chang X, Wang G, Liu J. Novel Insights into Causal Effects of Lipid and Lipid-Lowering Targets with Autoimmune Thyroid Disease: A Mendelian Randomization Study. Immunotargets Ther 2024; 13:631-641. [PMID: 39606095 PMCID: PMC11600951 DOI: 10.2147/itt.s487319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Dyslipidemia has been implicated in the pathogenesis of several diseases, including thyroid dysfunction and immune disorders. However, whether circulating lipids and long-term use of lipid-lowering drugs influence the development of autoimmune thyroid disease (AITD) remains unclear. This study aims to evaluate the effects of lipid-lowering drugs on AITD and explore their potential mechanisms. Methods Two-sample and two-step Mendelian randomization (MR) studies were performed to assess the causal relationships between circulating lipids (LDL-C, TC, TG, and ApoB) and seven lipid-lowering drug targets (ApoB, CETP, HMGCR, LDLR, NPC1L1, PCSK9, and PPARα) with AITD. Mediation analyses were conducted to explore potential mediating factors. Results There was no clear causality between circulating lipids (ApoB, LDL-C, TC, and TG) and AITD (p > 0.05). ApoB inhibition is related to a reduced risk of autoimmune thyroiditis (AT) (OR = 0.462, p= 0.046), while PCSK9 inhibition is related to reduced Graves' disease (GD) risk (OR = 0. 551, p = 0.033). Moreover, PCSK9 inhibition (OR = 0.735, p = 0.003), LDLR inhibition (OR = 0.779, p = 0.027), and NPC1L1 inhibition (OR = 0.599, p = 0.016) reduced the risk of autoimmune hypothyroidism (AIH). Mediation analysis showed that NPC1L1 inhibition and PCSK9 inhibition exerted effects on AIH through IL-4 and FGF-19 levels. And the effect of PCSK9 inhibition on GD through TNF-β levels. Conclusion There was no clear causality between circulating lipids (ApoB, LDL-C, TC, and TG) and AITD. Lipid-lowering drug target gene inhibitors reduced the AITD risk by modulating inflammatory factors.
Collapse
Affiliation(s)
- Chang Su
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Juan Tian
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Xueqing He
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Xiaona Chang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| |
Collapse
|
12
|
Li J, Ge Y, Chai Y, Kou C, Sun TT, Liu J, Zhang H. THSR Mediated MiR374b Targeting C/ EBP β/ FOXO1 to Accelerate Thyroid Stimulating Hormone-Induced Hepatic Steatosis. Hepat Med 2024; 16:91-104. [PMID: 39583015 PMCID: PMC11583786 DOI: 10.2147/hmer.s481687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Thyroid-stimulating hormone (TSH) has been identified as an independent risk factor for non-alcoholic fatty liver disease (NAFLD), TSH binds to the TSH receptor (TSHR) to exert its function. However, the underlying mechanisms by which TSHR influences NAFLD development remain unclear. This study investigates the role of miR374b in NAFLD progression. Methods Firstly, a rat model of non-alcoholic fatty liver was constructed and divided into a normal group and a model group. The liver tissue pathology and fat accumulation were detected by Oil Red O staining and hematoxylin-eosin staining. Western blot and Real time PCR were used to detect for the impact of TSHR/miR-374b/C/EBP β/ FoxO1 pathway in the NAFLD model, and the expression of relevant inflammatory factors in each group was detected by ELISA assay. A NAFLD cell model was constructed using HepG2 cells, TSHR overexpression and interference, combined with miR-374b inhibitor and mimics, were transfected simultaneously to demonstrate TSHR/miR-374b/C/EBP β/ The mechanism of FoxO1 adipogenesis in vitro. Results TSHR stimulates miR374b secretion in human liver cancer cells (HepG2) and promotes lipid accumulation in the liver. Deficiency of miR374b in HepG2 cells attenuated NAFLD progression. Mechanistically, TSH increases miR374b expression, which then suppresses the transcription of its target genes, CCAAT/enhancer binding protein-b (C/EBP β) and Forkhead Box Protein O1 (FOXO1). This suppression influences the expression of downstream lipid metabolism proteins, including PPARγ, SREBP2, and SREBP1c. Additionally, miR374b directly targets the 3'UTR of C/EBP β and FOXO1, establishing a negative feedback loop in lipid metabolism. Conclusion These findings suggest that TSHR-induced upregulation of miR374b accelerates NAFLD progression by modulating lipid metabolism pathways through C/EBP β and FOXO1.
Collapse
Affiliation(s)
- Juyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Geriatrics Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People’s Republic of China
| | - Yang Ge
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yuwei Chai
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
| | - Chunjia Kou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
| | - Tian Tian Sun
- Department of Infectious Diseases, Jinan People’s Hospital, Jinan, Shandong, 271100, People’s Republic of China
| | - Jia Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
13
|
Tai T, Shao YY, Zheng YQ, Jiang LP, Han HR, Yin N, Li HD, Ji JZ, Mi QY, Yang L, Feng L, Duan FY, Xie HG. Clopidogrel ameliorates high-fat diet-induced hepatic steatosis in mice through activation of the AMPK signaling pathway and beyond. Front Pharmacol 2024; 15:1496639. [PMID: 39508046 PMCID: PMC11537861 DOI: 10.3389/fphar.2024.1496639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) frequently confers an increased risk of vascular thrombosis; however, the marketed antiplatelet drugs are investigated for the prevention and treatment of MASLD in patients with these coexisting diseases. Methods To determine whether clopidogrel could ameliorate high-fat diet (HFD)-induced hepatic steatosis in mice and how it works, mice were fed on normal diet or HFD alone or in combination with or without clopidogrel for 14 weeks, and primary mouse hepatocytes were treated with palmitate/oleate alone or in combination with the compounds examined for 24 h. Body weight, liver weight, insulin resistance, triglyceride and total cholesterol content in serum and liver, histological morphology, transcriptomic analysis of mouse liver, and multiple key MASLD-associated genes and proteins were measured, respectively. Results and discussion Clopidogrel mitigated HFD-induced hepatic steatosis (as measured with oil red O staining and triglyceride kit assay) and reduced elevations in serum aminotransferases, liver weight, and the ratio of liver to body weight. Clopidogrel downregulated the expression of multiple critical lipogenic (Acaca/Acacb, Fasn, Scd1, Elovl6, Mogat1, Pparg, Cd36, and Fabp4), profibrotic (Col1a1, Col1a2, Col3a1, Col4a1, Acta2, and Mmp2), and proinflammatory (Ccl2, Cxcl2, Cxcl10, Il1a, Tlr4, and Nlrp3) genes, and enhanced phosphorylation of AMPK and ACC. However, compound C (an AMPK inhibitor) reversed enhanced phosphorylation of AMPK and ACC in clopidogrel-treated primary mouse hepatocytes and alleviated accumulation of intracellular lipids. We concluded that clopidogrel may prevent and/or reverse HFD-induced hepatic steatosis in mice, suggesting that clopidogrel could be repurposed to fight fatty liver in patients.
Collapse
Affiliation(s)
- Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Shao
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Yu-Qi Zheng
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hao-Ru Han
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Na Yin
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hao-Dong Li
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Lei Feng
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Fu-Yang Duan
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| |
Collapse
|
14
|
Zhang C, Wang H, Li Y, Wang X, Han Y, Gao X, Lai Y, Wang C, Teng W, Shan Z. Association between the triglyceride-glucose index and thyroid disorders: a cross-sectional survey and Mendelian randomization analysis. Endocrine 2024; 86:173-185. [PMID: 38782862 DOI: 10.1007/s12020-024-03858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Metabolic diseases are associated with thyroid disorders. Insulin resistance is the common pathological basis of metabolic diseases. We explored the relationship between the triglyceride-glucose (TyG) index, a simple insulin-resistance marker, and thyroid disorders. METHODS Eligible TIDE (Thyroid Diseases, Iodine Status and Diabetes Epidemiology) subjects (n = 47,710) were screened with inclusion/exclusion criteria. Thyroid disorder prevalence among different TyG index groups was stratified by sex. Logistic regression evaluated the correlation between the TyG index and thyroid disorders. Multiple linear regression evaluated the association between the TyG index and TSH. Additionally, two-sample Mendelian randomization (MR) using published genome-wide association study data evaluated causality in the association between the TyG index and TSH. RESULTS Men and women with greater TyG indices had a significantly greater prevalence of thyroid disorders than individuals with the lowest quartile (Q1) of TyG index (p < 0.05). Following adjustment for confounding factors, we observed that a greater TyG index significantly increased the risk of subclinical hypothyroidism in men and women (men: Q2: odds ratio (OR) [95% confidence interval (CI)] = 1.22 [1.07-1.38], p = 0.002; Q3: OR [95% CI] = 1.28 [1.12-1.45], p < 0.001; Q4: OR [95% CI] = 1.29 [1.12-1.50], p = 0.001; women: Q2: OR [95% CI] = 1.25 [1.12-1.39], p < 0.001; Q3: OR [95% CI] = 1.47 [1.31-1.64], p < 0.001; Q4: OR [95% CI] = 1.61 [1.43-1.82], p < 0.001). Only among women was the highest TyG index quartile associated with hypothyroidism (OR [95% CI] = 1.70 [1.15-2.50], p = 0.007). Additionally, in men, the association exists only in the more than adequate iodine intake population. In women, the relationship between the TyG index and thyroid disorders disappears after menopause. Furthermore, the TyG index exhibited a linear positive correlation with TSH levels. The MR analysis results revealed a causal relationship between a genetically determined greater TyG index and increased TSH (inverse-variance weighting (IVW): OR [95% CI] = 1.14 [1.02-1.28], p = 0.020); however, this causal relationship disappeared after adjusting for BMI in multivariable MR (MVMR) analysis (MVMR-IVW: OR 1.03, 95% CI 0.87-1.22, p = 0.739). CONCLUSIONS A greater TyG index is associated with hypothyroidism and subclinical hypothyroidism and varies by sex and menopausal status. MR analysis demonstrated that the causal relationship between a genetically determined greater TyG index and elevated TSH levels is confounded or mediated by BMI.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Haoyu Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Yongze Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Xichang Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Yutong Han
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Xiaotong Gao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Yaxin Lai
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Chuyuan Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China.
| |
Collapse
|
15
|
Untalan M, A Crimmins N, Yates KP, A Mencin A, A Xanthakos S, Thaker VV. Prevalence of subclinical hypothyroidism and longitudinal thyroid-stimulating hormone changes in youth with metabolic dysfunction-associated steatotic liver disease: An observational study. Hepatology 2024:01515467-990000000-01029. [PMID: 39292865 PMCID: PMC11955797 DOI: 10.1097/hep.0000000000001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Studies on adults have shown an association between overt or subclinical hypothyroidism and metabolic dysfunction-associated steatotic liver disease (MASLD). The goal of this study was to assess the relationship between thyroid-stimulating hormone (TSH) levels and the histological characteristics of MASLD in youth. METHODS This observational study used prospectively collected liver biopsy and clinical data from youth enrolled in 2 pediatric clinical trials in the Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN). Thyroid assays were compared between youth with MASLD and population-based controls aged ≤18 years from the National Health and Nutrition Examination Survey. Individuals with overt hypothyroidism, abnormal antithyroid antibodies, or thyroid-related medications were excluded. Subclinical hypothyroidism was defined as TSH between 4.5 and 10.0 uIU/L. Multinomial logistic regression was used to test the association between TSH and MASLD histological changes at baseline, adjusting for age, sex, race/ethnicity, and body mass index. Mixed-effect models, including treatment and time, were used for the longitudinal analysis. RESULTS Mean TSH, total thyroxine (T4), total triiodothyronine (T3), and free T4 levels were higher ( p < 0.001) in the NASH CRN cohort (n = 218; 421 observations) than in the National Health and Nutrition Examination Survey cohort (n = 2198). TSH levels were positively associated with increased steatosis over time ( p = 0.03). Subclinical hypothyroidism was associated with borderline or definite metabolic-associated steatohepatitis on histology at baseline ( p = 0.03) and with changes in fibrosis over time ( p = 0.01). CONCLUSIONS The association between TSH and steatosis severity in individuals with normal thyroid hormone concentrations suggests an independent role of TSH in MASLD.
Collapse
Affiliation(s)
- Matthew Untalan
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Nancy A Crimmins
- Division of Gastroenterology, Department of Pediatrics, Hepatology and Nutrition, Cincinnati Children's Hospital and Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine P Yates
- Department of Epidemiology, Bloomberg School of Public Health at Johns Hopkins University, Baltimore, Maryland, USA
| | - Ali A Mencin
- Divisions of Molecular Genetics and Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Stavra A Xanthakos
- Division of Gastroenterology, Department of Pediatrics, Hepatology and Nutrition, Cincinnati Children's Hospital and Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vidhu V Thaker
- Divisions of Molecular Genetics and Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
16
|
Chen J, Lu L, Nie X, Li J, Chen T, Li S. Associations of exposure to perchlorate, thiocyanate, and nitrate with metabolic dysfunction–associated steatotic liver disease: Evidence from a population-based cross-sectional study in the United States. JOURNAL OF CLEANER PRODUCTION 2024; 469:143156. [DOI: 10.1016/j.jclepro.2024.143156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Mantovani A, Csermely A, Bilson J, Borella N, Enrico S, Pecoraro B, Shtembari E, Morandin R, Polyzos SA, Valenti L, Tilg H, Byrne CD, Targher G. Association between primary hypothyroidism and metabolic dysfunction-associated steatotic liver disease: an updated meta-analysis. Gut 2024; 73:1554-1561. [PMID: 38782564 DOI: 10.1136/gutjnl-2024-332491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Epidemiological studies have reported an association between primary hypothyroidism and metabolic dysfunction-associated steatotic liver disease (MASLD). However, the magnitude of the risk and whether this risk changes with the severity of MASLD remains uncertain. We performed a meta-analysis of observational studies to quantify the magnitude of the association between primary hypothyroidism and the risk of MASLD. DESIGN We systematically searched PubMed, Scopus and Web of Science from database inception to 31 January 2024, using predefined keywords to identify observational studies in which MASLD was diagnosed by liver biopsy, imaging or International Classification of Diseases codes. A meta-analysis was performed using random-effects modelling. RESULTS We identified 24 cross-sectional and 4 longitudinal studies with aggregate data on ~76.5 million individuals. Primary hypothyroidism (defined as levothyroxine replacement treatment, subclinical hypothyroidism or overt hypothyroidism) was associated with an increased risk of prevalent MASLD (n=24 studies; random-effects OR 1.43, 95% CI 1.23 to 1.66; I2=89%). Hypothyroidism was also associated with a substantially higher risk of metabolic dysfunction-associated steatohepatitis or advanced fibrosis (n=5 studies; random-effects OR 2.84, 95% CI 2.07 to 3.90; I2=0%). Meta-analysis of data from four longitudinal studies showed that there was a marginally non-significant association between hypothyroidism and risk of developing MASLD over a median 4.5-year follow-up (random-effects HR 1.39, 95% CI 0.98 to 1.97; I2=85%). Sensitivity analyses did not modify these findings. The funnel plot did not reveal any significant publication bias. CONCLUSION This large and updated meta-analysis provides evidence that primary hypothyroidism is significantly associated with both an increased presence of and histological severity of MASLD.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Alessandro Csermely
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Josh Bilson
- Southampton General Hospital, Southampton, UK
| | - Niccolò Borella
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Scoccia Enrico
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Barbara Pecoraro
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Emigela Shtembari
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Riccardo Morandin
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki Faculty of Health Sciences, Thessaloniki, Greece
| | - Luca Valenti
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, IRCCS Cà Granda Ospedale Maggiore Policlinico, milano, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | | | - Giovanni Targher
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
- Department of Medicine, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| |
Collapse
|
18
|
Wang D, Kang X, Zhang L, Guo Y, Zhang Z, Ren H, Yuan G. TRIB2-Mediated Modulation of AMPK Promotes Hepatic Insulin Resistance. Diabetes 2024; 73:1199-1214. [PMID: 38394623 DOI: 10.2337/db23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Insulin resistance and its linked health complications are increasing in prevalence. Recent work has caused the role of Tribbles2 (TRIB2) in metabolism and cellular signaling to be increasingly appreciated, but its role in the progression of insulin resistance has not been elucidated. Here, we explore the functions of TRIB2 in modulating insulin resistance and the mechanism involved in insulin-resistant mice and palmitic acid-treated HepG2 cells. We demonstrate that whole-body knockout and hepatic-specific TRIB2 deficiency protect against diet-induced insulin resistance, inflammation, and endoplasmic reticulum stress. Accordingly, upregulation of TRIB2 in the liver aggravates these metabolic disturbances in high-fat diet-induced mice and ob/ob mice. Mechanistically, TRIB2 directly binds to the αγ-SBS domain of PRKAB through its pseudokinase domain, subsequently inhibiting the formation and activity of the AMPK complex. Moreover, the results of intervention against AMPK suggest that the effects of TRIB2 depend on AMPK. Our findings reveal that TRIB2 is a novel target for the treatment of insulin resistance and its associated metabolic complications and clarify the function of TRIB2 as a regulatory component of AMPK activity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Dan Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaonan Kang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lu Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yaoyao Guo
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ziyin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huihui Ren
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center for Metabolic Disease, Wuhan, Hubei, People's Republic of China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center for Metabolic Disease, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
19
|
Ji X, Yin H, Gu T, Xu H, Fang D, Wang K, Sun H, Tian S, Wu T, Nie Y, Zhang P, Bi Y. Excessive free fatty acid sensing in pituitary lactotrophs elicits steatotic liver disease by decreasing prolactin levels. Cell Rep 2024; 43:114465. [PMID: 38985678 DOI: 10.1016/j.celrep.2024.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The pituitary is the central endocrine gland with effects on metabolic dysfunction-associated steatotic liver disease (MASLD). However, it is not clear whether the pituitary responds to free fatty acid (FFA) toxicity, thus dysregulating hepatic lipid metabolism. Here, we demonstrate that decreased prolactin (PRL) levels are involved in the association between FFA and MASLD based on a liver biospecimen-based cohort. Moreover, overloaded FFAs decrease serum PRL levels, thus promoting liver steatosis in mice with both dynamic diet intervention and stereotactic pituitary FFA injection. Mechanistic studies show that excessive FFA sensing in pituitary lactotrophs inhibits the synthesis and secretion of PRL in a cell-autonomous manner. Notably, inhibiting excessive lipid uptake using pituitary stereotaxic virus injection or a specific drug delivery system effectively ameliorates hepatic lipid accumulation by improving PRL levels. Targeted inhibition of pituitary FFA sensing may be a potential therapeutic target for liver steatosis.
Collapse
Affiliation(s)
- Xinlu Ji
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hongli Yin
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hao Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Da Fang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Kai Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Haixiang Sun
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Sai Tian
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yuanyuan Nie
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
20
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
21
|
Peng L, Luan S, Shen X, Zhan H, Ge Y, Liang Y, Wang J, Xu Y, Wu S, Zhong X, Zhang H, Gao L, Zhao J, He Z. Thyroid hormone deprival and TSH/TSHR signaling deficiency lead to central hypothyroidism-associated intestinal dysplasia. Life Sci 2024; 345:122577. [PMID: 38521387 DOI: 10.1016/j.lfs.2024.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Central hypothyroidism (CH) is characterized by low T4 levels and reduced levels or bioactivity of circulating TSH. However, there is a lack of studies on CH-related intestinal maldevelopment. In particular, the roles of TH and TSH/TSHR signaling in CH-related intestinal maldevelopment are poorly understood. Herein, we utilized Tshr-/- mice as a congenital hypothyroidism model with TH deprival and absence of TSHR signaling. METHODS The morphological characteristics of intestines were determined by HE staining, periodic acid-shiff staining, and immunohistochemical staining. T4 was administrated into the offspring of homozygous mice from the fourth postnatal day through weaning or administrated after weaning. RT-PCR was used to evaluate the expression of markers of goblet cells and intestinal digestive enzymes. Single-cell RNA-sequencing analysis was used to explore the cell types and gene profiles of metabolic alternations in early-T4-injected Tshr-/- mice. KEY FINDINGS Tshr deletion caused significant growth retardation and intestinal maldevelopment, manifested as smaller and more slender small intestines due to reduced numbers of stem cells and differentiated epithelial cells. Thyroxin supplementation from the fourth postnatal day, but not from weaning, significantly rescued the abnormal intestinal structure and restored the decreased number of proliferating intestinal cells in crypts of Tshr-/- mice. Tshr-/- mice with early-life T4 injections had more early goblet cells and impaired metabolism compared to Tshr+/+ mice. SIGNIFICANCE TH deprival leads to major defects of CH-associated intestinal dysplasia while TSH/TSHR signaling deficiency promotes the differentiation of goblet cells and impairs nutrition metabolism.
Collapse
Affiliation(s)
- Li Peng
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Sisi Luan
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Shen
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yixiao Liang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xia Zhong
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
22
|
Li Y, Zheng M, Limbara S, Zhang S, Yu Y, Yu L, Jiao J. Effects of the Pituitary-targeted Gland Axes on Hepatic Lipid Homeostasis in Endocrine-associated Fatty Liver Disease-A Concept Worth Revisiting. J Clin Transl Hepatol 2024; 12:416-427. [PMID: 38638376 PMCID: PMC11022059 DOI: 10.14218/jcth.2023.00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatic lipid homeostasis is not only essential for maintaining normal cellular and systemic metabolic function but is also closely related to the steatosis of the liver. The controversy over the nomenclature of non-alcoholic fatty liver disease (NAFLD) in the past three years has once again sparked in-depth discussions on the pathogenesis of this disease and its impact on systemic metabolism. Pituitary-targeted gland axes (PTGA), an important hormone-regulating system, are indispensable in lipid homeostasis. This review focuses on the roles of thyroid hormones, adrenal hormones, sex hormones, and their receptors in hepatic lipid homeostasis, and summarizes recent research on pituitary target gland axes-related drugs regulating hepatic lipid metabolism. It also calls on researchers and clinicians to recognize the concept of endocrine-associated fatty liver disease (EAFLD) and to re-examine human lipid metabolism from the macroscopic perspective of homeostatic balance.
Collapse
Affiliation(s)
- Yifang Li
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Meina Zheng
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Steven Limbara
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Shanshan Zhang
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yutao Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Le Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Jian Jiao
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Zhu W, Hong Y, Tong Z, He X, Li Y, Wang H, Gao X, Song P, Zhang X, Wu X, Tan Z, Huang W, Liu Z, Bao Y, Ma J, Zheng N, Xie C, Ke X, Zhou W, Jia W, Li M, Zhong J, Sheng L, Li H. Activation of hepatic adenosine A1 receptor ameliorates MASH via inhibiting SREBPs maturation. Cell Rep Med 2024; 5:101477. [PMID: 38508143 PMCID: PMC10983109 DOI: 10.1016/j.xcrm.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.
Collapse
Affiliation(s)
- Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaowei Tong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengtao Song
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xianshan Zhang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaochang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Zhenhua Tan
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cen Xie
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xisong Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jing Zhong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
24
|
Calcaterra V, Degrassi I, Taranto S, Porro C, Bianchi A, L’assainato S, Silvestro GS, Quatrale A, Zuccotti G. Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) and Thyroid Function in Childhood Obesity: A Vicious Circle? CHILDREN (BASEL, SWITZERLAND) 2024; 11:244. [PMID: 38397356 PMCID: PMC10887660 DOI: 10.3390/children11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a multisystem disorder characterized by the presence of fatty liver degeneration associated with excess adiposity or prediabetes/type 2 diabetes or metabolic dysregulation. An intricate relationship between the liver and thyroid has been reported in both health and disease. Simultaneously, there is a strong correlation between obesity and both MAFLD and thyroid dysfunction. In this narrative review, we highlighted the relationship between MAFLD and thyroid function in children and adolescents with obesity in order to explore how thyroid hormones (THs) act as predisposing factors in the onset, progression, and sustainability of MAFLD. THs are integral to the intricate balance of metabolic activities, ensuring energy homeostasis, and are indispensable for growth and development. Regarding liver homeostasis, THs have been suggested to interact with liver lipid homeostasis through a series of processes, including stimulating the entry of free fatty acids into the liver for esterification into triglycerides and increasing mitochondrial β-oxidation of fatty acids to impact hepatic lipid accumulation. The literature supports a correlation between MAFLD and obesity, THs and obesity, and MAFLD and THs; however, results in the pediatric population are very limited. Even though the underlying pathogenic mechanism involved in the relationship between MAFLD and thyroid function remains not fully elucidated, the role of THs as predisposing factors of MAFLD could be postulated. A potential vicious circle among these three conditions cannot be excluded. Identifying novel elements that may contribute to MAFLD could offer a practical approach to assessing children at risk of developing the condition.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Irene Degrassi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Silvia Taranto
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Cecilia Porro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Alice Bianchi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Sara L’assainato
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Giustino Simone Silvestro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (I.D.); (S.T.); (C.P.); (A.B.); (S.L.); (G.S.S.); (A.Q.); (G.Z.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| |
Collapse
|
25
|
Yorke E. Co-Morbid Hypothyroidism and Liver Dysfunction: A Review. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241231533. [PMID: 38348020 PMCID: PMC10860496 DOI: 10.1177/11795514241231533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
The liver and thyroid hormones interact at multiple levels to maintain homoeostasis. The liver requires large adequate amounts of thyroid hormones to execute its metabolic functions optimally, and deficiency of thyroid hormones may lead to liver dysfunction. Hypothyroidism has been associated with abnormal lipid metabolism, non-alcoholic fatty liver disease (NAFLD), hypothyroidism-induced myopathy, hypothyroidism-associated gallstones and occasionally, interferon-induced thyroid dysfunction. NAFLD remain an important association with hypothyroidism and further studies are needed that specifically compare the natural course of NAFLD secondary to hypothyroidism and primary NAFLD. Hepatic dysfunction associated with hypothyroidism is usually reverted by normalizing thyroid status. Large scale studies geared towards finding new and effective therapies, especially for NAFLD are needed. The clinician must be aware that there exists overlapping symptomatology between liver dysfunction and severe hypothyroidism which may make delay the diagnosis and treatment of hypothyroidism; this requires a high index of suspicion.
Collapse
Affiliation(s)
- Ernest Yorke
- Department of Medicine & Therapeutics, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
26
|
Li Z, Wu X, Chen Z, Wei X, Chen W. Association between low-normal thyroid function and advanced liver fibrosis in metabolic dysfunction-associated fatty liver disease patients: a retrospective cohort study. Gastroenterol Rep (Oxf) 2024; 12:goad076. [PMID: 38264763 PMCID: PMC10805339 DOI: 10.1093/gastro/goad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/09/2023] [Accepted: 12/10/2023] [Indexed: 01/25/2024] Open
Abstract
Background Recent studies have found that thyroid function may be associated with the occurrence and development of advanced liver fibrosis in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). However, the majority of such research has consisted of cross-sectional studies. This retrospective cohort study aimed to investigate the effect of low-normal thyroid function on advanced liver fibrosis in MAFLD patients over a 5-year period. Methods This retrospective cohort study enrolled 825 outpatients and inpatients with MAFLD who attended the Third Affiliated Hospital of Sun Yat-sen University (Guangzhou, China) between January 2011 and December 2018. Based on plasma thyroid hormone and thyroid-stimulating hormone levels, these patients were divided into two groups, namely a low-normal thyroid function group and a strict-normal thyroid function group. The fibrosis-4 score was used to assess advanced liver fibrosis. A chi-square test was conducted to compare the occurrence of advanced fibrosis between the groups. Results Among the 825 MAFLD patients, 117 and 708 were defined as having low-normal thyroid function and strict-normal thyroid function, respectively. Follow-up data were available for 767 patients (93.0%) during a 5-year period. Eight (7.5%) MAFLD patients with low-normal thyroid function and 26 (3.9%) with strict-normal thyroid function developed advanced liver fibrosis and the cumulative incidence was not significantly different (P = 0.163). Stratification analysis showed that the lean MAFLD patients (body mass index ≤ 23 kg/m2) with low-normal thyroid function had a higher risk of advanced liver fibrosis than the lean MAFLD patients with strict-normal thyroid function (P < 0.05). Conclusion Low-normal thyroid function is associated with advanced liver fibrosis among lean MAFLD patients.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zebin Chen
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiuqing Wei
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Weiqing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
27
|
Gong S, Zeng Y, Wang Z, Li Y, Wu R, Li L, Hu H, Qin P, Yu Z, Huang X, Guo P, Yang H, He Y, Zhao Z, Xiao W, Zhao X, Gao L, Cai S, Zeng Z. Intestinal deguelin drives resistance to acetaminophen-induced hepatotoxicity in female mice. Gut Microbes 2024; 16:2404138. [PMID: 39305468 PMCID: PMC11418218 DOI: 10.1080/19490976.2024.2404138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury (DILI), with gender-specific differences in susceptibility. However, the mechanism underlying this phenomenon remains unclear. Our study reveals that the gender-specific differences in susceptibility to APAP-induced hepatotoxicity are due to differences in the gut microbiota. Through microbial multi-omics and cultivation, we observed increased gut microbiota-derived deguelin content in both women and female mice. Administration of deguelin was capable of alleviating hepatotoxicity in APAP-treated male mice, and this protective effect was associated with the inhibition of hepatocyte oxidative stress. Mechanistically, deguelin reduced the expression of thyrotropin receptor (TSHR) in hepatocytes with APAP treatment through direct interaction. Pharmacologic suppression of TSHR expression using ML224 significantly increased hepatic glutathione (GSH) in APAP-treated male mice. These findings suggest that gut microbiota-derived deguelin plays a crucial role in reducing APAP-induced hepatotoxicity in female mice, offering new insights into therapeutic strategies for DILI.
Collapse
Affiliation(s)
- Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunong Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanru Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Li
- Henan Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine and Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhichao Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xintao Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peiheng Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hong Yang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhibin Zhao
- Medical Research Institute, Guangdong Provincial People’s Hospital, Southern Medical University, Guangzhou, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Ramanathan R, Patwa SA, Ali AH, Ibdah JA. Thyroid Hormone and Mitochondrial Dysfunction: Therapeutic Implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cells 2023; 12:2806. [PMID: 38132126 PMCID: PMC10741470 DOI: 10.3390/cells12242806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly termed nonalcoholic fatty liver disease (NAFLD), is a widespread global health concern that affects around 25% of the global population. Its influence is expanding, and it is anticipated to overtake alcohol as the leading cause of liver failure and liver-related death worldwide. Unfortunately, there are no approved therapies for MASLD; as such, national and international regulatory health agencies undertook strategies and action plans designed to expedite the development of drugs for treatment of MASLD. A sedentary lifestyle and an unhealthy diet intake are important risk factors. Western countries have a greater estimated prevalence of MASLD partly due to lifestyle habits. Mitochondrial dysfunction is strongly linked to the development of MASLD. Further, it has been speculated that mitophagy, a type of mitochondrial quality control, may be impaired in MASLD. Thyroid hormone (TH) coordinates signals from the nuclear and mitochondrial genomes to control mitochondrial biogenesis and function in hepatocytes. Mitochondria are known TH targets, and preclinical and clinical studies suggest that TH, thyroid receptor β (TR-β) analogs, and synthetic analogs specific to the liver could be of therapeutic benefit in treating MASLD. In this review, we highlight how mitochondrial dysfunction contributes to development of MASLD, and how understanding the role of TH in improving mitochondrial function paved the way for innovative drug development programs of TH-based therapies targeting MASLD.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Sohum A. Patwa
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
29
|
Zhu X, Cai J, Wang Y, Liu X, Chen X, Wang H, Wu Z, Bao W, Fan H, Wu S. A High-Fat Diet Increases the Characteristics of Gut Microbial Composition and the Intestinal Damage Associated with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:16733. [PMID: 38069055 PMCID: PMC10706137 DOI: 10.3390/ijms242316733] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing annually, and emerging evidence suggests that the gut microbiota plays a causative role in the development of NAFLD. However, the role of gut microbiota in the development of NAFLD remains unclear and warrants further investigation. Thus, C57BL/6J mice were fed a high-fat diet (HFD), and we found that the HFD significantly induced obesity and increased the accumulation of intrahepatic lipids, along with alterations in serum biochemical parameters. Moreover, it was observed that the HFD also impaired gut barrier integrity. It was revealed via 16S rRNA gene sequencing that the HFD increased gut microbial diversity, which enriched Colidextribacter, Lachnospiraceae-NK4A136-group, Acetatifactor, and Erysipelatoclostridium. Meanwhile, it reduced the abundance of Faecalibaculum, Muribaculaceae, and Coriobacteriaceae-UCG-002. The predicted metabolic pathways suggest that HFD enhances the chemotaxis and functional activity of gut microbiota pathways associated with flagellar assembly, while also increasing the risk of intestinal pathogen colonization and inflammation. And the phosphotransferase system, streptomycin biosynthesis, and starch/sucrose metabolism exhibited decreases. These findings reveal the composition and predictive functions of the intestinal microbiome in NAFLD, further corroborating the association between gut microbiota and NAFLD while providing novel insights into its potential application in gut microbiome research for NAFLD patients.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Jiajia Cai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Yifu Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Xinyu Liu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Xiaolei Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
30
|
Yuan X, Liu Y, Yang X, Huang Y, Shen X, Liang H, Zhou H, Wang Q, Zhang X, Li JZ. Long noncoding RNA lnc_217 regulates hepatic lipid metabolism by modulating lipogenesis and fatty acid oxidation. J Biomed Res 2023; 37:448-459. [PMID: 37899542 PMCID: PMC10687534 DOI: 10.7555/jbr.37.20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 10/31/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a major health epidemic with an estimated 32.4% worldwide prevalence. No drugs have yet been approved and therapeutic nodes remain a major unmet need. Long noncoding RNAs are emerging as an important class of novel regulators influencing multiple biological processes and the pathogenesis of NAFLD. Herein, we described a novel long noncoding RNA, lnc_217, which was liver enriched and upregulated in high-fat diet-fed mice, and a genetic animal model of NAFLD. We found that liver specific knockdown of lnc_217 was resistant to high-fat diet-induced hepatic lipid accumulation and decreased serum lipid in mice. Mechanistically, we demonstrated that knockdown of lnc_217 not only decreased de novo lipogenesis by inhibiting sterol regulatory element binding protein-1c cleavage but also increased fatty acid β-oxidation through activation of peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase-1α. Taken together, we conclude that lnc_217 may be a novel regulator of hepatic lipid metabolism and a potential therapeutic target for the treatment of hepatic steatosis and NAFLD-related metabolic disorders.
Collapse
Affiliation(s)
- Xiaoqing Yuan
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yawei Liu
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xule Yang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yun Huang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuan Shen
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hui Liang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hongwen Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qian Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, the Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
31
|
Yao Z, Gong Y, Chen W, Shao S, Song Y, Guo H, Li Q, Liu S, Wang X, Zhang Z, Wang Q, Xu Y, Wu Y, Wan Q, Zhao X, Xuan Q, Wang D, Lin X, Xu J, Liu J, Proud CG, Wang X, Yang R, Fu L, Niu S, Kong J, Gao L, Bo T, Zhao J. Upregulation of WDR6 drives hepatic de novo lipogenesis in insulin resistance in mice. Nat Metab 2023; 5:1706-1725. [PMID: 37735236 PMCID: PMC10590755 DOI: 10.1038/s42255-023-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Under normal conditions, insulin promotes hepatic de novo lipogenesis (DNL). However, during insulin resistance (IR), when insulin signalling is blunted and accompanied by hyperinsulinaemia, the promotion of hepatic DNL continues unabated and hepatic steatosis increases. Here, we show that WD40 repeat-containing protein 6 (WDR6) promotes hepatic DNL during IR. Mechanistically, WDR6 interacts with the beta-type catalytic subunit of serine/threonine-protein phosphatase 1 (PPP1CB) to facilitate PPP1CB dephosphorylation at Thr316, which subsequently enhances fatty acid synthases transcription through DNA-dependent protein kinase and upstream stimulatory factor 1. Using molecular dynamics simulation analysis, we find a small natural compound, XLIX, that inhibits the interaction of WDR6 with PPP1CB, thus reducing DNL in IR states. Together, these results reveal WDR6 as a promising target for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Zhenyu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Ying Gong
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Wenbin Chen
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shanshan Shao
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Honglin Guo
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunyun Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wan
- Center of Cell Metabolism and Disease, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuhui Xuan
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Dawei Wang
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Rui Yang
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lili Fu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Shaona Niu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Junjie Kong
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
| | - Tao Bo
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China.
| |
Collapse
|
32
|
Wan H, Yu G, Xu S, Chen X, Jiang Y, Duan H, Lin X, Ma Q, Wang D, Liang Y, Liu L, Shen J. Central Sensitivity to Free Triiodothyronine With MAFLD and Its Progression to Liver Fibrosis in Euthyroid Adults. J Clin Endocrinol Metab 2023; 108:e687-e697. [PMID: 36999544 DOI: 10.1210/clinem/dgad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
CONTEXT Impaired sensitivity to thyroid hormones has been demonstrated to be positively associated with the prevalence of metabolic disorders. However, the relationship between sensitivity to thyroid hormones and metabolic dysfunction-associated fatty liver disease (MAFLD) and liver fibrosis remained unclear. OBJECTIVE We aimed to determine the associations of thyroid hormone sensitivity indices with MAFLD and its progression to liver fibrosis in Chinese euthyroid adults. METHODS This community-based study included 7906 euthyroid adults. We calculated the thyroid sensitivity indices, including free triiodothyronine to free thyroxine (FT3/FT4) ratio, Thyroid Feedback Quantile-based Index by FT4 (TFQIFT4), and Thyroid Feedback Quantile-based Index by FT3 (TFQIFT3), indicating peripheral and central thyroid hormone sensitivity respectively. Liver steatosis and fibrosis were diagnosed by vibration-controlled transient elastography (VCTE). Multivariable logistic/linear regression and restricted cubic spline (RCS) analysis were conducted. RESULTS Compared with participants in the first quartile (Q1), the prevalence of MAFLD was increased by 62% in the fourth quartile (Q4) of FT3/FT4 ratio (OR 1.62; 95% CI [1.38, 1.91]) and by 40% in Q4 of TFQIFT3 (OR 1.40; 95% CI [1.18, 1.65]) (both P < .05). No associations between TFQIFT4 and the prevalence of MAFLD were found. In addition, compared with participants in Q1, the prevalence of liver fibrosis was increased by 45% in Q4 of TFQIFT3 (OR 1.45; 95% CI [1.03, 2.06]) (P < .05) in participants with MAFLD. CONCLUSION Impaired central sensitivity to FT3 was associated with MAFLD and its progression to liver fibrosis. More prospective and mechanism studies are warranted to confirm these conclusions.
Collapse
Affiliation(s)
- Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Sirong Xu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Xingying Chen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Yuqi Jiang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Hualin Duan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Qintao Ma
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Dongmei Wang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Yongqian Liang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Lan Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| |
Collapse
|
33
|
Janota B, Szczepańska E, Adamek B, Janczewska E. Hypothyroidism and non-alcoholic fatty liver disease: A coincidence or a causal relationship? World J Hepatol 2023; 15:641-648. [PMID: 37305371 PMCID: PMC10251274 DOI: 10.4254/wjh.v15.i5.641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global problem. It may be caused by metabolic and hormonal disorders, including hypothyroidism. However, non-thyroid causes of NAFLD in people with hypothyroidism, including improper eating behavior and low physical activity, should be acknowledged. This study aimed to present the current literature on whether the development of NAFLD is related to hypothyroidism or a typical consequence of an unhealthy lifestyle in people with hypothyroidism. The results of previous studies do not allow for an unequivocal determination of the pathogenetic relationship between hypothyroidism and NAFLD. Important non-thyroid-initiating factors include providing too many calories in relation to requirements, consuming excessive amounts of monosaccharides and saturated fats, being overweight, and maintaining low physical activity levels. The recommended nutritional model for both hypothyroidism and NAFLD may be the Mediterranean diet, which is rich in fruits and vegetables, polyunsaturated fatty acids, and vitamin E.
Collapse
Affiliation(s)
- Barbara Janota
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom 41-902, Poland
| | - Elżbieta Szczepańska
- Department of Human Nutrition, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Zabrze 41-808, Poland
| | - Brygida Adamek
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom 41-902, Poland
| | - Ewa Janczewska
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom 41-902, Poland
| |
Collapse
|
34
|
Wang WG, Li MY, Diao L, Zhang C, Tao LM, Zhou WX, Xu WP, Zhang Y. The health risk of acetochlor metabolite CMEPA is associated with lipid accumulation induced liver injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121857. [PMID: 37245791 DOI: 10.1016/j.envpol.2023.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Liver injury may cause many diseases, such as non-alcoholic fatty liver disease (NAFLD). Acetochlor is one of the representative chloroacetamide herbicides, and its metabolite 2-chloro-N-(2-ethyl-6-methyl phenyl) acetamide (CMEPA) is the main form of exposure in the environment. It has been shown that acetochlor can cause mitochondrial damage of HepG2 cells and induce apoptosis by activating Bcl/Bax pathway (Wang et al., 2021). But there has been less research on CMEPA. we explored the possibility of CMEPA and liver injury through biological experiments. In vivo, CMEPA (0-16 mg/L) induced liver damage in zebrafish larvae, including increased lipid droplets, changes in liver morphology (>1.3-fold) and increased TC/TG content (>2.5-fold). In vitro, we selected L02 (human normal liver cells) as the model, and explored its molecular mechanism. We found that CMEPA (0-160 mg/L) induced apoptosis (similar to 40%), mitochondrial damage and oxidative stress in L02 cells. CMEPA induced intracellular lipid accumulation by inhibiting AMPK/ACC/CPT-1A signaling pathway and activating SREBP-1c/FAS signaling pathway. Our study provides evidence of a link between CMEPA and liver injury. This raises concerns regarding the health risks of pesticide metabolites to liver health.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Mu-Yao Li
- Research Center for Econophysics, School of Business, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Diao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Xing Zhou
- Research Center for Econophysics, School of Business, East China University of Science and Technology, Shanghai, 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
35
|
Lai S, Ma Y, Hao L, Ding Q, Chang K, Zhuge H, Qiu J, Xu T, Dou X, Li S. 1-Methylnicotinamide promotes hepatic steatosis in mice: A potential mechanism in chronic alcohol-induced fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159286. [PMID: 36690322 DOI: 10.1016/j.bbalip.2023.159286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Alcohol abuse and its related diseases are the major risk factors for human health. Alcohol-related liver disease (ALD) is a leading cause of morbidity and mortality worldwide. Although the mechanism of ALD has been widely investigated, liver metabolites associated with long-term alcohol intake-induced hepatic steatosis have not been well explored. In this study, we aimed to investigate the role and mechanisms of 1-methylnicotinamide (1-MNA), a metabolite during nicotinamide adenine dinucleotide (NAD+) metabolism, in the pathogenesis of ALD. C57BL/6 wild-type mice were subjected to chronic alcohol feeding with or without 1-MNA (50 mg/kg/day). Our data showed that 1-MNA administration significantly enhanced chronic alcohol consumption-induced hepatic steatosis. Mechanistic studies revealed that alcohol-increased hepatic protein levels of sterol regulatory element-binding transcription factor (SREBP-1c), a key enzyme that regulates lipid lipogenesis, were enhanced in mice administered with 1-MNA, regardless of alcohol feeding. Consistently, alcohol-increased mRNA and protein levels of hepatic diacylglycerol o-acyltransferase 2 (DGAT2) and very low-density lipoprotein receptor (VLDLR) were also exacerbated by 1-MNA administration. Alcohol-induced hepatic endoplasmic reticulum (ER) stress was enhanced by 1-MNA administration, which was evidenced by increased protein levels of binding immunoglobulin protein (BIP), phosphorylated- protein kinase r-like ER kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP-homologous protein (CHOP) in the mouse liver. Overall, this study demonstrated that 1-MNA serves as a pathogenic factor in the development of ALD. Targeting liver 1-MNA levels may serve as a promising therapeutic approach for improving hepatic steatosis in ALD.
Collapse
Affiliation(s)
- Shanglei Lai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yue Ma
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, PR China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
36
|
Liu Y, Ma M, Li L, Liu F, Li Z, Yu L, Yang T, Wang Y, Gao S, Gao S, Yang R, Yu C. Association between sensitivity to thyroid hormones and dyslipidemia in patients with coronary heart disease. Endocrine 2023; 79:459-468. [PMID: 36434323 DOI: 10.1007/s12020-022-03254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Thyroid hormones affect lipid metabolism via central and peripheral regulation. However, there have been few studies on the association between thyroid hormone sensitivity and dyslipidemia. We aimed to investigate the association between thyroid hormone sensitivity and dyslipidemia in patients with coronary heart disease (CHD). METHODS A total of 31,678 patients with CHD were included in this large multicenter retrospective study. Central thyroid hormone sensitivity was evaluated using the thyroid feedback quantile-based index (TFQI), parametric thyroid feedback quantile-based index (PTFQI), thyroid-stimulating hormone index (TSHI), and thyrotropin thyroxine resistance index (TT4RI); peripheral thyroid hormone sensitivity was assessed by the ratio of free triiodothyronine (FT3)/free thyroxine (FT4). Logistic regression analysis was used to analyze the association between thyroid hormone sensitivity and dyslipidemia. RESULTS Among 31,678 participants, 21,648 (68.34%) had dyslipidemia. In the multi-adjusted models, the risk of dyslipidemia was positively correlated with TFQI (odds ratio [OR]: 1.04; 95% confidence interval [CI]: 1.03-1.05), PTFQI (OR: 1.09; 95% CI: 1.06-1.12), TSHI (OR: 1.08; 95% CI: 1.06-1.11), and TT4RI (OR: 1.08; 95% CI: 1.05-1.11). Conversely, the risk of dyslipidemia was negatively correlated with FT3/FT4 (OR: 0.94; 95% CI: 0.92-0.97). In stratified analyses, the association between thyroid hormone sensitivity and dyslipidemia was statistically significant for different sexes, glucose levels, and blood pressure states. CONCLUSION There is a significant association between sensitivity to thyroid hormones and dyslipidemia, regardless of sex, glucose level, or blood pressure. Graphical abstract.
Collapse
Affiliation(s)
- Yijia Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mei Ma
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fanfan Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lu Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tong Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sheng Gao
- Nankai Hospital: Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, 300199, China.
| | - Rongrong Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
37
|
Du T, Xiang L, Zhang J, Yang C, Zhao W, Li J, Zhou Y, Ma L. Vitamin D improves hepatic steatosis in NAFLD via regulation of fatty acid uptake and β-oxidation. Front Endocrinol (Lausanne) 2023; 14:1138078. [PMID: 37033263 PMCID: PMC10074590 DOI: 10.3389/fendo.2023.1138078] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION The study aimed to explore the association of serum 25(OH)D3 and hepatic steatosis in non-alcoholic fatty liver disease (NAFLD) patients and to determine whether the effect of vitamin D (VD) is mediated by activation of the peroxisome proliferator-activated receptor α (PPARα) pathway. METHODS The study contained a case-control study, in vivo and in vitro experiments. A case-control study was conducted to compare serum parameters between NAFLD patients and controls and to evaluate the association of 25(OH)D3 and NAFLD. In vivo study, male Wistar rats were randomly divided into control and model groups, fed a standard chow diet and a high-fat diet (HFD), respectively, for 7 weeks to generate an NAFLD model. Then, the rats were treated with VD and a PPARα antagonist (MK886) for 7 weeks. Tissue and serum were collected and assessed by biochemical assays, morphological analysis, histological analysis, and western blot analysis. In vitro, HepG2 cells were incubated with oleic acid (OA) to induce steatosis, which was evaluated by staining. HepG2 cells were pretreated with MK886 followed by calcitriol treatment, and differences in lipid metabolism-related proteins were detected by western blot. RESULTS NAFLD patients were characterized by impaired liver function, dyslipidemia, and insulin resistance. Serum 25(OH)D3 was negatively associated with alanine aminotransferase (ALT) in NAFLD. VD deficiency was a risk factor for patients with no advanced fibrosis. Adequate VD status (25(OH)D3 >20 ng/mL) had a protective effect in patients after adjustment for confounding variables. NAFLD rats showed hyperlipidemia with severe hepatic steatosis, systematic inflammation, and lower serum 25(OH)D3. VD treatment ameliorated hepatic steatosis both in NAFLD rats and OA-induced HepG2 cells. Further, MK886 inhibited the anti-steatosis effect of VD. CONCLUSION The study revealed that an adequate VD level may act as a protective factor in NAFLD and that VD may alleviate hepatic steatosis via the PPARα signaling pathway.
Collapse
Affiliation(s)
- Tingwan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Lian Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jingjing Zhang
- Department of Clinical Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunmei Yang
- Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenxin Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jialu Li
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Southwest Medical University, Luzhou, China
- *Correspondence: Yong Zhou, ; Ling Ma,
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
- *Correspondence: Yong Zhou, ; Ling Ma,
| |
Collapse
|
38
|
Li P, Liu L, Niu B, Mi Y, Liu Y, Feng J, Zhang P, Wu X, Chu W. Clinical value of thyroid related hormones combined with neutrophil to lymphocyte ratio in patients with nonalcoholic fatty liver disease. Medicine (Baltimore) 2022; 101:e31978. [PMID: 36595785 PMCID: PMC9794251 DOI: 10.1097/md.0000000000031978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In sufferers with nonalcoholic fatty liver disease (NAFLD), the differences of thyroid associated hormones and neutrophil to lymphocyte ratio (NLR) in different liver pathological groups have been compared. METHODS Patients with NAFLD diagnosed by liver biopsy in our hospital from July 2012 to February 2019 were selected. All subjects were divided into nonalcoholic steatohepatitis (NASH) team and non-NASH group, no/mild fibrosis group (F0-1) and significant fibrosis group (F2-4). The differences of thyroid related hormones and NLR in these groups were in contrast, respectively. For the TSH, we conducted further evaluation based on gender. RESULTS The TSH and NLR in NASH patients were significantly higher than non-NASH patients, but there was no considerable difference in free triiodothyronine (FT3) and free thyroxine (FT4) between the 2 groups. In the gender-based subgroup analysis, the variations of TSH between the 2 groups were nonetheless statistically significant (P < .05). The TSH and NLR in the significant fibrosis group were higher than these in the non/mild liver fibrosis group, and the differences were statistically significant (P < .05), but there was no large difference in FT3 and FT4 between the 2 groups (P > .05). In addition, in the gender-based subgroup analysis and further multivariable analysis, the variations of TSH between the 2 groups were still statistically significant (P < .05). CONCLUSIONS In this study, we found that serum thyroid stimulating hormone (TSH) and neutrophil to lymphocyte ratio (NLR) were closely associated to the severity of NAFLD, suggesting that this simple available laboratory index may additionally be incorporated into the future noninvasive diagnostic scoring model to predict the incidence of NASH and the degree of fibrosis.
Collapse
Affiliation(s)
- Ping Li
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
- * Correspondence: Ping Li, Department of Hepatology, Tianjin Second People’s Hospital, Tianjin 300000, China (e-mail: )
| | - Liang Liu
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
- First Hospital Affiliated to Nanchang University, Nanchang, China
| | - Bin Niu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
- School of Graduates, Tianjin Medical University, Tianjin, China
| | - YuQiang Mi
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - YongGang Liu
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Jing Feng
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
- School of Graduates, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
- School of Graduates, Tianjin Medical University, Tianjin, China
| | - Xue Wu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
- School of Graduates, Tianjin Medical University, Tianjin, China
| | - WeiKe Chu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
- School of Graduates, Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
4-PBA Attenuates Fat Accumulation in Cultured Spotted Seabass Fed High-Fat-Diet via Regulating Endoplasmic Reticulum Stress. Metabolites 2022; 12:metabo12121197. [PMID: 36557235 PMCID: PMC9784988 DOI: 10.3390/metabo12121197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Excessive fat accumulation is a common phenomenon in cultured fish, which can cause metabolic disease such as fatty liver. However, the relative regulatory approach remains to be explored. Based on this, two feeding trials were conducted. Firstly, fish were fed either a normal-fat diet (NFD) or a high-fat diet (HFD) for eight weeks and sampled at the 2nd, 4th, 6th, and 8th week after feeding (Experiment I). In the first four weeks, fish fed an HFD grew faster than those fed an NFD. Conversely, the body weight and weight gain were higher in the NFD group at the 6th and 8th weeks. Under light and transmission electron microscopes, fat accumulation of the liver was accompanied by an obvious endoplasmic reticulum (ER) swell. Accordingly, the expressions of atf-6, ire-1, perk, eif-2α, atf-4, grp78, and chop showed that ER stress was activated at the 6th and 8th weeks. In Experiment II, 50 mg/kg 4-PBA (an ERs inhibitor) was supplemented to an HFD; this was named the 4-PBA group. Then, fish was fed with an NFD, an HFD, and a 4-PBA diet for eight weeks. As the result, the excessive fat deposition caused by an HFD was reversed by 4-PBA. The expression of ER stress-related proteins CHOP and GRP78 was down-regulated by 4-PBA, and the transmission electron microscope images also showed that 4-PBA alleviated ER stress induced by the feeding of an HFD. Furthermore, 4-PBA administration down-regulated SREBP-1C/ACC/FAS, the critical pathways of fat synthesis. In conclusion, the results confirmed that ER stress plays a contributor role in the fat deposition by activating the SREBP-1C/ACC/FAS pathway. 4-PBA as an ER stress inhibitor could reduce fat deposition caused by an HFD via regulating ER stress.
Collapse
|
40
|
Su X, Chen X, Wang B. Relationship between the development of hyperlipidemia in hypothyroidism patients. Mol Biol Rep 2022; 49:11025-11035. [PMID: 36097119 DOI: 10.1007/s11033-022-07423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
As shown in the previous studies, hypothyroidism (HT) is identified to be closely associated with the elevated plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and with the decreased plasma levels of high density lipoprotein cholesterol (HDL-C). On the other hand, the thyroid hormone (TH), which has been considered as a vital hormone produced and released by the thyroid gland, are well-established to regulate the metabolism of plasma TC; whereas other evidence proposed that the thyroid-stimulating hormone (TSH) also regulated the plasma cholesterol metabolism independently of the TH, which further promotes the progression of hyperlipidemia. Nevertheless, the potential mechanism is still not illustrated. It is worth noting that several studies has found that the progression of HT-induced hyperlipidemia might be associated with the down-regulated plasma levels of TH and the up-regulated plasma levels of TSH, revealing that HT could promote hyperlipidemia and its related cardio-metabolic disorders. Otherwise, multiple novel identified plasma proteins, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein (ANGPTLs), and fibroblast growth factors (FGFs), have also been demonstrated to embrace a vital function in modulating the progression of hyperlipidemia induced by HT. In the present comprehensive review, the recent findings which elucidated the association of HT and the progression of hyperlipidemia were summarized. Furthermore, other results which illustrated the underlying mechanisms by which HT facilitates the progression of hyperlipidemia and its cardio-metabolic disorders are also listed in the current review.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, 361000, Xiamen, Fujian, China.
| |
Collapse
|
41
|
Huang B, Wen W, Ye S. TSH-SPP1/TRβ-TSH positive feedback loop mediates fat deposition of hepatocyte: Crosstalk between thyroid and liver. Front Immunol 2022; 13:1009912. [PMID: 36300106 PMCID: PMC9589424 DOI: 10.3389/fimmu.2022.1009912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
AIMS We conducted this study with two aims: (1) whether TRβ could be damaged by NAFLD, thereby represent thyroid hormone resistance-like manifestation and (2) to analyze the potential role of SPP1 in TH signaling pathway on the process of NAFLD. This study is expected to provide a new perspective on the therapeutic mechanism in the pathological course of NAFLD. METHODS A total of 166 patients diagnosed with type 2 diabetes mellitus (T2DM) were enrolled in this study. All patients had a BMI above 24 kg/m2 and were stratified into two groups: NAFLD and Non-NAFLD groups. Ages, gender, BMI, duration of diabetes and biochemical markers were obtained from participants' records. We downloaded the dataset GSE48452 from GEO. The Pathview library was used to make the thyroid hormone signaling pathway visualization. The CIBERSORT algorithm was applied to calculate the infiltrated immune cells in obese NAFLD patients. C57BL/6 mice were randomly selected to constitute the normal control (NC) group and were fed a normal chow diet; the rest of the mice were fed a high-fat diet (HFD). After 12 weeks HFD feeding, the mice were sacrificed by cervical dislocation, and blood samples were collected. Mouse livers were also collected; one part of each liver was fixed in 10% formalin for histological analysis, and the other part was snap-frozen for subsequent molecular analyses. To explore the relationship between SPP1, TRβ and lipid deposition in hepatocytes, HepG2 cells were treated with 50 μ M concentration of PA and/or 20 ng/ml concentration of rh-SPP1 for 48h. In addition, the PC3.1-TRβ plasmid was constructed for further validation in HepG2 cells. We used THP-1 cells to construct an M1 macrophage model in vitro. We then analyzed THP-1 cells treated with various concentrations of PA or TSH. RESULTS (1) After adjusting for all factors that appeared P value less than 0.1 in the univariate analysis, BMI, TSH, and FT3 were significant independent risk factors of NAFLD (ORs were 1.218, 1.694, and 2.259, respectively); (2) A further analysis with BMI stratification indiacted that both FT3 and TSH had a significant change between individuals with NAFLD and Non-NAFLD in obesity subgroup; however, there was no statistic difference in over-weight group; (3) Bioinformatics analysis of GSE48452 had shown that several key molecular (including TRβ) of thyroid hormone pathway affected by NAFLD induced transcriptomic changes and the expression levels of SPP1, FABP4 and RPS4Y1 were significantly higher, while the expression levels of PZP and VIL1 were significantly decreased in NAFLD patients(adjusted p < 0.05, |logFC| > 1.0). The CIBERSORT algorithm showed increased M0 and M1, decreased M2 macrophage infiltration in NAFLD with comparison to healthy obese group; (4) After 12 weeks of HFD-feeding, the obesity mice had significantly higher serum TSH and In IHC-stained liver sections of obesity group, the intensity of SPP1 had a significantly increased, while TRβ reduced; (5) In vitro studies have shown SPP1 aggravated lipid deposition in hepatic cells dependent on down-regulating the expression of TRβ and TSH acts to promote secretion of SPP1 in M1 macrophage cells. CONCLUSIONS SPP1 secretion induced by M1 macrophage polarization, which may down-regulates TRβ in hepatocytes via paracrine manner, on the one hand, the lipid deposition aggravating in liver, on the other hand, a compensatory increase of TSH in serum. The increased TSH can further lead to the following SPP1 secretion of M1 macrophage. The positive feedback crosstalk between thyroid and liver, may be plays an important role in maintaining and amplifying pathological process of NAFLD.
Collapse
Affiliation(s)
- Bin Huang
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjie Wen
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Division of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
42
|
Jiang JL, Qian JF, Xiao DH, Liu X, Zhu F, Wang J, Xing ZX, Xu DL, Xue Y, He YH. Relationship of familial cytochrome P450 4V2 gene mutation with liver cirrhosis: A case report and review of the literature. World J Clin Cases 2022; 10:10346-10357. [PMID: 36246827 PMCID: PMC9561572 DOI: 10.12998/wjcc.v10.i28.10346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Many genetic and metabolic diseases affect the liver, but diagnosis can be difficult because these diseases may have complex clinical manifestations and diverse clinical patterns. There is also incomplete clinical knowledge of these many different diseases and limitations of current testing methods. CASE SUMMARY We report a 53-year-old female from a rural area in China who was hospitalized for lower limb edema, abdominal distension, cirrhosis, and hypothyroidism. We excluded the common causes of liver disease (drinking alcohol, using traditional Chinese medicines, hepatitis virus infection, autoimmunity, and hepatolenticular degeneration). When she was 23-years-old, she developed night-blindness that worsened to complete blindness, with no obvious cause. Her parents were first cousins, and both were alive. Analysis of the patient's family history indicated that all 5 siblings had night blindness and impaired vision; one sister was completely blind; and another sister had night-blindness complicated with cirrhosis and subclinical hypothyroidism. Entire exome sequencing showed that the patient, parents, and siblings all had mutations in the cytochrome P450 4V2 gene (CYP4V2). The CYP4V2 mutations of the parents and two sisters were heterozygous, and the others were homozygous. Two siblings also had heterozygous dual oxidase activator 2 (DUOXA2) mutations. CONCLUSION Mutations in the CYP4V2 gene may affect lipid metabolism and lead to chronic liver injury, fibrosis, and cirrhosis.
Collapse
Affiliation(s)
- Jin-Lian Jiang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Jiang-Fu Qian
- Department of Digestion, Dafang County People’s Hospital, Bijie 551600, Guizhou Province, China
| | - De-Hui Xiao
- Department of Digestion, Dafang County People’s Hospital, Bijie 551600, Guizhou Province, China
| | - Xia Liu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Fang Zhu
- Department of Digestion, Dafang County People’s Hospital, Bijie 551600, Guizhou Province, China
| | - Jie Wang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Zhou-Xiong Xing
- Department of Intensive Care, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - De-Lin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Yuan Xue
- Department of Liver Diseases, the Third People’s Hospital of Changzhou, Changzhou 213000, Jiangsu Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| |
Collapse
|
43
|
Roeb E, Canbay A, Bantel H, Bojunga J, de Laffolie J, Demir M, Denzer UW, Geier A, Hofmann WP, Hudert C, Karlas T, Krawczyk M, Longerich T, Luedde T, Roden M, Schattenberg J, Sterneck M, Tannapfel A, Lorenz P, Tacke F. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:1346-1421. [PMID: 36100202 DOI: 10.1055/a-1880-2283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- E Roeb
- Gastroenterologie, Medizinische Klinik II, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - A Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - H Bantel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - J Bojunga
- Medizinische Klinik I Gastroent., Hepat., Pneum., Endokrin., Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - J de Laffolie
- Allgemeinpädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - M Demir
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| | - U W Denzer
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Marburg, Deutschland
| | - A Geier
- Medizinische Klinik und Poliklinik II, Schwerpunkt Hepatologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - W P Hofmann
- Gastroenterologie am Bayerischen Platz - Medizinisches Versorgungszentrum, Berlin, Deutschland
| | - C Hudert
- Klinik für Pädiatrie m. S. Gastroenterologie, Nephrologie und Stoffwechselmedizin, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Berlin, Deutschland
| | - T Karlas
- Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie, Pneumologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - M Krawczyk
- Klinik für Innere Medizin II, Gastroent., Hepat., Endokrin., Diabet., Ern.med., Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - T Longerich
- Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - T Luedde
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - M Roden
- Klinik für Endokrinologie und Diabetologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - J Schattenberg
- I. Medizinische Klinik und Poliklinik, Universitätsmedizin Mainz, Mainz, Deutschland
| | - M Sterneck
- Klinik für Hepatobiliäre Chirurgie und Transplantationschirurgie, Universitätsklinikum Hamburg, Hamburg, Deutschland
| | - A Tannapfel
- Institut für Pathologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - P Lorenz
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Berlin, Deutschland
| | - F Tacke
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| |
Collapse
|
44
|
Authors, Collaborators:. Updated S2k Clinical Practice Guideline on Non-alcoholic Fatty Liver Disease (NAFLD) issued by the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS) - April 2022 - AWMF Registration No.: 021-025. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e733-e801. [PMID: 36100201 DOI: 10.1055/a-1880-2388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
45
|
Cao X, Lu M, Xie RR, Song LN, Yang WL, Xin Z, Yang GR, Yang JK. A high TSH level is associated with diabetic macular edema: a cross-sectional study of patients with type 2 diabetes mellitus. Endocr Connect 2022; 11:EC-22-0122. [PMID: 35686715 PMCID: PMC9254322 DOI: 10.1530/ec-22-0122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
AIMS In this study, we determined the association between thyroid-stimulating hormone (TSH) and diabetic macular edema (DME) by assessing the prevalence and risk factors for DME in type 2 diabetes mellitus (T2DM) patients with different thyroid dysfunctions. METHODS This was a retrospective cross-sectional study including 1003 euthyroid and 92 subclinical hypothyroidism (SCH) T2DM patients. DME status was detected by optical coherence tomography (OCT). The association between TSH and DME and the impact of TSH on DME were analyzed. RESULTS The DME prevalence was 28.3% in the SCH patients and 14.0% in the euthyroid population. The serum FT4 (P = 0.001) and FT3 (P < 0.001) levels were significantly higher in the non-DME group than in the DME group, and the TSH level (P < 0.001) was significantly lower. Four subgroups (G1-G4) were divided by TSH level, and the chi-square test indicated that even in the normal range, the TSH level was positively related to DME prevalence (P = 0.001). Subgroup data indicated that the association between TSH and DME detected by OCT (P = 0.001) was stronger than the correlation between TSH and diabetic retinopathy detected by digital retinal photographs (P = 0.027). The logistic regression model confirmed that elevated TSH was an independent risk factor for DME. The odds ratio was 1.53 (P = 0.02). CONCLUSIONS A high TSH level was an independent risk factor for DME. More attention should be given to the TSH level in T2DM patients due to its relationship with diabetic complications.
Collapse
Affiliation(s)
- Xi Cao
- Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ming Lu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rong-Rong Xie
- Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li-Ni Song
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei-Li Yang
- Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to J-K Yang:
| | - Zhong Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guang-Ran Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to J-K Yang:
| | - Jin-Kui Yang
- Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to J-K Yang:
| |
Collapse
|
46
|
Liu T, Yu J, Ge C, Zhao F, Chen J, Miao C, Jin W, Zhou Q, Geng Q, Lin H, Tian H, Chen T, Xie H, Cui Y, Yao M, Xiao X, Li J, Li H. Sperm associated antigen 4 promotes SREBP1-mediated de novo lipogenesis via interaction with lamin A/C and contributes to tumor progression in hepatocellular carcinoma. Cancer Lett 2022; 536:215642. [PMID: 35307486 DOI: 10.1016/j.canlet.2022.215642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor and its progression is associated with altered lipid metabolism in precancerous lesions, such as non-alcoholic fatty liver disease. Here, we identified sperm associated antigen 4 (SPAG4), and explored its oncogenic role in HCC progression. Database analysis and immunohistochemistry indicated increased level of SPAG4 in HCC tissues which was of prognostic value. Gain/loss-of-function experiments showed that SPAG4 exerted oncogenic roles in HCC growth both in vitro and in vivo. RNA sequencing revealed activation of a lipogenic state and SREBP1-mediated pathway following SPAG4 overexpression. Mechanistically, the N-terminal region of SPAG4 bound to lamin A/C, which increased SREBP1 expression, nuclear translocation, and transcriptional activity. Treatment with orlistat, a lipid synthesis inhibitor, reversed SPAG4-mediated oncogenic effects, and its efficacy varied with SPAG4 level. The effect of orlistat was further amplified when combined with sorafenib in tumor xenograft mouse models. Our study provides evidence that SPAG4 mediates HCC progression by affecting lipid metabolism. Administration of orlistat combined with sorafenib reverses SPAG4-mediated oncogenesis in HCC cells and ectopic xenograft tumors in mice, suggesting that this pathway represents a potential target for HCC treatment.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China; Department of Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junming Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chunxiao Miao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Wenjiao Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Qingqing Zhou
- Department of Oncology, Rui jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200020, China
| | - Qin Geng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Hechun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong, 226200, China
| | - Haiyang Xie
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning, 530027, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiuying Xiao
- Department of Oncology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
47
|
Bashir A, Duseja A, De A, Mehta M, Tiwari P. Non-alcoholic fatty liver disease development: A multifactorial pathogenic phenomena. LIVER RESEARCH 2022; 6:72-83. [PMID: 39958625 PMCID: PMC11791825 DOI: 10.1016/j.livres.2022.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by the accumulation of excessive intrahepatic fat, is a leading metabolic disorder also considered as the hepatic manifestation of metabolic syndrome (MS). Though more commonly observed in obese individuals and those with metabolic risk factors, it also develops in a considerable number of non-obese individuals as well as participants without having any component of MS. The basic mechanism involved in the development of fatty liver is the imbalance between lipid uptake, synthesis, and metabolism in the liver, normally controlled by several mechanisms to maintain lipid homeostasis. As a complex progressive liver disorder, the NAFLD pathogenesis is multifactorial, and several new pathogenic phenomena were discovered over time. The available literature suggests the role of both genetic and environmental factors and associated metabolic factors; however, the mechanism of progression is not completely understood. In this review, we discuss different pathogenic mechanisms and their interplay to provide an elaborate idea regarding NAFLD development and progression. Better understanding of pathogenic mechanisms will be useful in finding new treatment for patients with NAFLD.
Collapse
Affiliation(s)
- Aamir Bashir
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manu Mehta
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramil Tiwari
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
48
|
Liu H, Peng D. Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism. Endocr Connect 2022; 11:e210002. [PMID: 35015703 PMCID: PMC8859969 DOI: 10.1530/ec-21-0002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Hypothyroidism is often associated with elevated serum levels of total cholesterol, LDL-C and triglycerides. Thyroid hormone (TH) affects the production, clearance and transformation of cholesterol, but current research shows that thyroid-stimulating hormone (TSH) also participates in lipid metabolism independently of TH. Therefore, the mechanism of hypothyroidism-related dyslipidemia is associated with the decrease of TH and the increase of TSH levels. Some newly identified regulatory factors, such as proprotein convertase subtilisin/kexin type 9, angiogenin-like proteins and fibroblast growth factors are the underlying causes of dyslipidemia in hypothyroidism. HDL serum concentration changes were not consistent, and its function was reportedly impaired. The current review focuses on the updated understanding of the mechanism of hypothyroidism-related dyslipidemia.
Collapse
Affiliation(s)
- Huixing Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Correspondence should be addressed to D Peng:
| |
Collapse
|
49
|
Effects of dietary phosphorus level on growth, body composition, liver histology and lipid metabolism of spotted seabass (Lateolabrax maculatus) reared in freshwater. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Hyperlipidemia and hypothyroidism. Clin Chim Acta 2022; 527:61-70. [DOI: 10.1016/j.cca.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
|