1
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
The altered lipidome of hepatocellular carcinoma. Semin Cancer Biol 2022; 86:445-456. [PMID: 35131480 DOI: 10.1016/j.semcancer.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Alterations in metabolic pathways are a hallmark of cancer. A deeper understanding of the contribution of different metabolites to carcinogenesis is thus vitally important to elucidate mechanisms of tumor initiation and progression to inform therapeutic strategies. Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide and its altered metabolic landscape is beginning to unfold with the advancement of technologies. In particular, characterization of the lipidome of human HCCs has accelerated, and together with biochemical analyses, are revealing recurrent patterns of alterations in glycerophospholipid, sphingolipid, cholesterol and bile acid metabolism. These widespread alterations encompass a myriad of lipid species with numerous roles affecting multiple hallmarks of cancer, including aberrant growth signaling, metastasis, evasion of cell death and immunosuppression. In this review, we summarize the current trends and findings of the altered lipidomic landscape of HCC and discuss their potential biological significance for hepatocarcinogenesis.
Collapse
|
4
|
How Genetics and Genomics Advances Are Rewriting Pediatric Cancer Research and Clinical Care. Medicina (B Aires) 2022; 58:medicina58101386. [PMID: 36295546 PMCID: PMC9610804 DOI: 10.3390/medicina58101386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
In the last two decades, thanks to the data that have been obtained from the Human Genome Project and the development of next-generation sequencing (NGS) technologies, research in oncology has produced extremely important results in understanding the genomic landscape of pediatric cancers, which are the main cause of death during childhood. NGS has provided significant advances in medicine by detecting germline and somatic driver variants that determine the development and progression of many types of cancers, allowing a distinction between hereditary and non-hereditary cancers, characterizing resistance mechanisms that are also related to alterations of the epigenetic apparatus, and quantifying the mutational burden of tumor cells. A combined approach of next-generation technologies allows us to investigate the numerous molecular features of the cancer cell and the effects of the environment on it, discovering and following the path of personalized therapy to defeat an "ancient" disease that has had victories and defeats. In this paper, we provide an overview of the results that have been obtained in the last decade from genomic studies that were carried out on pediatric cancer and their contribution to the more accurate and faster diagnosis in the stratification of patients and the development of new precision therapies.
Collapse
|
5
|
Rare Inherited Cholestatic Disorders and Molecular Links to Hepatocarcinogenesis. Cells 2022; 11:cells11162570. [PMID: 36010647 PMCID: PMC9406938 DOI: 10.3390/cells11162570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer affecting adults and the second most common primary liver cancer affecting children. Recent years have seen a significant increase in our understanding of the molecular changes associated with HCC. However, HCC is a complex disease, and its molecular pathogenesis, which likely varies by aetiology, remains to be fully elucidated. Interestingly, some inherited cholestatic disorders that manifest in childhood are associated with early HCC development. This review will thus explore how three genes that are associated with liver disease in childhood (ABCB11, TJP2 and VPS33B) might play a role in the initiation and progression of HCC. Specifically, chronic bile-induced damage (caused by ABCB11 changes), disruption of intercellular junction formation (caused by TJP2 changes) and loss of normal apical–basal cell polarity (caused by VPS33B changes) will be discussed as possible mechanisms for HCC development.
Collapse
|
6
|
Vitale G, Mattiaccio A, Conti A, Turco L, Seri M, Piscaglia F, Morelli MC. Genetics in Familial Intrahepatic Cholestasis: Clinical Patterns and Development of Liver and Biliary Cancers: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14143421. [PMID: 35884482 PMCID: PMC9322180 DOI: 10.3390/cancers14143421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The family of inherited intrahepatic cholestasis includes autosomal recessive cholestatic rare diseases of childhood involved in bile acids secretion or bile transport defects. Specific genetic pathways potentially cause many otherwise unexplained cholestasis or hepatobiliary tumours in a healthy liver. Lately, next-generation sequencing and whole-exome sequencing have improved the diagnostic procedures of familial intrahepatic cholestasis (FIC), as well as the discovery of several genes responsible for FIC. Moreover, mutations in these genes, even in the heterozygous status, may be responsible for cryptogenic cholestasis in both young and adults. Mutations in FIC genes can influence serum and hepatic levels of bile acids. Experimental studies on the NR1H4 gene have shown that high bile acids concentrations cause excessive production of inflammatory cytokines, resistance to apoptosis, and increased cell regeneration, all risk conditions for developing hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). NR1H4 gene encodes farnesoid X-activated receptor having a pivotal role in bile salts synthesis. Moreover, HCC and CCA can emerge in patients with several FIC genes such as ABCB11, ABCB4 and TJP2. Herein, we reviewed the available data on FIC-related hepatobiliary cancers, reporting on genetics to the pathophysiology, the risk factors and the clinical presentation.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
- Correspondence:
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| |
Collapse
|
7
|
Zhu G, Liu W, Tang Z, Qu W, Fang Y, Jiang X, Song S, Wang H, Tao C, Zhou P, Huang R, Gao J, Sun H, Ding Z, Peng Y, Dai Z, Zhou J, Fan J, Shi Y. Serial circulating tumor DNA to predict early recurrence in patients with hepatocellular carcinoma: a prospective study. Mol Oncol 2022; 16:549-561. [PMID: 34543520 PMCID: PMC8763657 DOI: 10.1002/1878-0261.13105] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/25/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
We studied the value of circulating tumor DNA (ctDNA) in predicting early postoperative tumor recurrence and monitoring tumor burden in patients with hepatocellular carcinoma (HCC). Plasma-free DNA, germline DNA, and tissue DNA were isolated from 41 patients with HCC. Serial ctDNAs were analyzed by next-generation sequencing before and after operation. Whole-exome sequencing was used to detect the DNA of HCC and adjacent tissues. In total, 47 gene mutations were identified in the ctDNA of the 41 patients analyzed before surgery. ctDNA was detected in 63.4% and 46% of the patient plasma pre- and postoperation, respectively. The preoperative ctDNA positivity rate was significantly lower in the nonrecurrence group than in the recurrence group. With a median follow-up of 17.7 months, nine patients (22%) experienced tumor recurrence. ctDNA positivity at two time-points was associated with significantly shorter recurrence-free survival (RFS). Tumors with NRAS, NEF2L2, and MET mutations had significantly shorter times to recurrence than those without mutations and showed high recurrence prediction performance by machine learning. Multivariate analyses showed that the median variant allele frequency (VAF) of mutations in preoperative ctDNA was a strong independent predictor of RFS. ctDNA is a real-time monitoring indicator that can accurately reflect tumor burden. The median VAF of baseline ctDNA is a strong independent predictor of RFS in individuals with HCC.
Collapse
|
8
|
Wang L, Luo Q, Zeng S, Lou Y, Li X, Hu M, Lu L, Liu Z. Disordered farnesoid X receptor signaling is associated with liver carcinogenesis in Abcb11-deficient mice. J Pathol 2021; 255:412-424. [PMID: 34410012 DOI: 10.1002/path.5780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/10/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
ABCB11 encodes the bile salt export pump (BSEP), a key regulator in maintaining bile acid (BA) homeostasis. Although inherited ABCB11 mutations have previously been linked to primary liver cancer, whether ABCB11 deficiency leads to liver cancer remains unknown. Here, we analyzed ABCB11 mRNA expression levels in liver tumor specimens [29 with hepatocellular carcinoma (HCC), one with intrahepatic cholangiocarcinoma (ICC), and one with mixed HCC/ICC] with adjacent normal specimens and published human datasets. Liver tissues obtained from Abcb11-deficient (Abcb11-/- ) mice and wild-type mice at different ages were compared by histologic, RNA-sequencing, and BA analyses. ABCB11 was significantly downregulated in human liver tumors compared with normal controls. Abcb11-/- mice demonstrated progressive intrahepatic cholestasis and liver fibrosis, and spontaneously developed HCC and ICC over 12 months of age. Abcb11 deficiency increased BAs in the liver and serum in mice, most of which are farnesoid X receptor (FXR) antagonists/non-agonists. Accordingly, the hepatic expression and transcriptional activity of FXR were downregulated in Abcb11-/- mouse livers. Administration of the FXR agonist obeticholic acid reduced liver injury and tumor incidence in Abcb11-/- mice. In conclusion, ABCB11 is aberrantly downregulated and plays a vital role in liver carcinogenesis. The cholestatic liver injury and liver tumors developed in Abcb11-/- mice are associated with increased FXR antagonist BAs and thereby decreased activation of FXR. FXR activation might be a therapeutic strategy in ABCB11 deficiency diseases. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liping Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qing Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Sijing Zeng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiaoyan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ming Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), PR China
| |
Collapse
|
9
|
Tao J, Krutsenko Y, Moghe A, Singh S, Poddar M, Bell A, Oertel M, Singhi AD, Geller D, Chen X, Lujambio A, Liu S, Monga SP. Nuclear factor erythroid 2-related factor 2 and β-Catenin Coactivation in Hepatocellular Cancer: Biological and Therapeutic Implications. Hepatology 2021; 74:741-759. [PMID: 33529367 PMCID: PMC8326305 DOI: 10.1002/hep.31730] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS HCC remains a major unmet clinical need. Although activating catenin beta-1 (CTNNB1) mutations are observed in prominent subsets of HCC cases, these by themselves are insufficient for hepatocarcinogenesis. Coexpression of mutant CTNNB1 with clinically relevant co-occurrence has yielded HCCs. Here, we identify cooperation between β-catenin and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in HCC. APPROACH AND RESULTS Public HCC data sets were assessed for concomitant presence of CTNNB1 mutations and either mutations in nuclear factor erythroid-2-related factor-2 (NFE2L2) or Kelch like-ECH-associated protein 1 (KEAP1), or Nrf2 activation by gene signature. HCC development in mice and similarity to human HCC subsets was assessed following coexpression of T41A-CTNNB1 with either wild-type (WT)-, G31A-, or T80K-NFE2L2. Based on mammalian target of rapamycin complex 1 activation in CTNNB1-mutated HCCs, response of preclinical HCC to mammalian target of rapamycin (mTOR) inhibitor was investigated. Overall, 9% of HCC cases showed concomitant CTNNB1 mutations and Nrf2 activation, subsets of which were attributable to mutations in NFE2L2/KEAP1. Coexpression of mutated CTNNB1 with mutant NFE2L2, but not WT-NFE2L2, led to HCC development and mortality by 12-14 weeks. These HCCs were positive for β-catenin targets, like glutamine synthetase and cyclin-D1, and Nrf2 targets, like NAD(P)H quinone dehydrogenase 1 and peroxiredoxin 1. RNA-sequencing and pathway analysis showed high concordance of preclinical HCC to human HCC subset showing activation of unique (iron homeostasis and glioblastoma multiforme signaling) and expected (glutamine metabolism) pathways. NFE2L2-CTNNB1 HCC mice were treated with mTOR inhibitor everolimus (5-mg/kg diet ad libitum), which led to >50% decrease in tumor burden. CONCLUSIONS Coactivation of β-catenin and Nrf2 is evident in 9% of all human HCCs. Coexpression of mutant NFE2L2 and mutant CTNNB1 led to clinically relevant HCC development in mice, which responded to mTOR inhibitors. Thus, this model has both biological and therapeutic implications.
Collapse
Affiliation(s)
- Junyan Tao
- Department of PathologyUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Yekaterina Krutsenko
- Department of PathologyUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Akshata Moghe
- Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Department of MedicineUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Sucha Singh
- Department of PathologyUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Minakshi Poddar
- Department of PathologyUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Aaron Bell
- Department of PathologyUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Michael Oertel
- Department of PathologyUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Aatur D Singhi
- Department of PathologyUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - David Geller
- Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Department of SurgeryUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity CaliforniaSan FranciscoCA
| | - Amaia Lujambio
- Department of Oncological SciencesTisch Cancer InstitutePrecision Immunology Institute, and Liver Cancer ProgramIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Silvia Liu
- Department of PathologyUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| | - Satdarshan P Monga
- Department of PathologyUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Pittsburgh Liver Research CenterUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA.,Department of MedicineUniversity of PittsburghSchool of Medicine and University of Pittsburgh Medical CenterPittsburghPA
| |
Collapse
|
10
|
Zhang Y, Chang X, Liu X. Inference of gene regulatory networks using pseudo-time series data. Bioinformatics 2021; 37:2423-2431. [PMID: 33576787 DOI: 10.1093/bioinformatics/btab099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific data set. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks. RESULTS Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods. AVAILABILITY The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuelei Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310012, China.,Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030, China.,School of Mathematics and Statistics, Shandong University, Weihai, Shandong, 264209, China
| | - Xiao Chang
- Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030, China
| | - Xiaoping Liu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310012, China.,School of Mathematics and Statistics, Shandong University, Weihai, Shandong, 264209, China
| |
Collapse
|
11
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Nrf1 Is Endowed with a Dominant Tumor-Repressing Effect onto the Wnt/ β-Catenin-Dependent and Wnt/ β-Catenin-Independent Signaling Networks in the Human Liver Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5138539. [PMID: 32273945 PMCID: PMC7125503 DOI: 10.1155/2020/5138539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Our previous work revealed that Nrf1α exerts a tumor-repressing effect because its genomic loss (to yield Nrf1α-/- ) results in oncogenic activation of Nrf2 and target genes. Interestingly, β-catenin is concurrently activated by loss of Nrf1α in a way similar to β-catenin-driven liver tumor. However, a presumable relationship between Nrf1 and β-catenin is not yet established. Here, we demonstrate that Nrf1 enhanced ubiquitination of β-catenin for targeting proteasomal degradation. Conversely, knockdown of Nrf1 by its short hairpin RNA (shNrf1) caused accumulation of β-catenin so as to translocate the nucleus, allowing activation of a subset of Wnt/β-catenin signaling responsive genes, which leads to the epithelial-mesenchymal transition (EMT) and related cellular processes. Such silencing of Nrf1 resulted in malgrowth of human hepatocellular carcinoma, along with malignant invasion and metastasis to the lung and liver in xenograft model mice. Further transcriptomic sequencing unraveled significant differences in the expression of both Wnt/β-catenin-dependent and Wnt/β-catenin-independent responsive genes implicated in the cell process, shape, and behavior of the shNrf1-expressing tumor. Notably, we identified that β-catenin is not a target gene of Nrf1, but this CNC-bZIP factor contributes to differential or opposing expression of other critical genes, such as CDH1, Wnt5A, Wnt11A, FZD10, LEF1, TCF4, SMAD4, MMP9, PTEN, PI3K, JUN, and p53, each of which depends on the positioning of distinct cis-regulatory sequences (e.g., ARE and/or AP-1 binding sites) in the gene promoter contexts. In addition, altered expression profiles of some Wnt/β-catenin signaling proteins were context dependent, as accompanied by decreased abundances of Nrf1 in the clinic human hepatomas with distinct differentiation. Together, these results corroborate the rationale that Nrf1 acts as a bona fide dominant tumor repressor, by its intrinsic inhibition of Wnt/β-catenin signaling and relevant independent networks in cancer development and malignant progression.
Collapse
|
13
|
Vilarinho S, Mistry PK. Exome Sequencing in Clinical Hepatology. Hepatology 2019; 70:2185-2192. [PMID: 31222768 PMCID: PMC6885087 DOI: 10.1002/hep.30826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
The clinical relevance of the Human Genome Project and next-generation sequencing technology was demonstrated for the first time in 2009, when whole-exome sequencing (WES) provided the definitive diagnosis of congenital chloride diarrhea in an infant with presumed renal salt-wasting disease. Over the past decade, numerous studies have shown the utility of WES for clinical diagnosis as well as for discovery of novel genetic disorders through analysis of a single or a handful of informative pedigrees. Hence, advances in improving the speed, accuracy, and computational analysis combined with exponential decrease in the cost of sequencing the human genome is transforming the practice of medicine. The impact of WES has been most noticeable in pediatric disorders and oncology, but its utility in the liver clinic is recently emerging. Here, we assess the current status of WES for clinical diagnosis and acceleration of translation research to enhance care of patients with liver disease.
Collapse
Affiliation(s)
- Sílvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale School of Medicine, New Haven, CT.,Correspondence should be address to Silvia Vilarinho, M.D., Ph.D., Departments of Internal Medicine (Digestive Diseases) and of Pathology, Yale University School of Medicine, 333 Cedar Street, LMP1080, New Haven, CT 06510, USA. Telephone: +1-203-737-6063, Fax: +1-203-737-1755,
| | - Pramod K. Mistry
- Department of Internal Medicine, Section of Digestive Diseases, of Pediatrics and of Molecular and Cellular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
14
|
Association between Itch and Cancer in 3836 Pediatric Pruritus Patients at a Tertiary Care Center. MEDICINES 2019; 6:medicines6040099. [PMID: 31590346 PMCID: PMC6963483 DOI: 10.3390/medicines6040099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
Background: Pruritus is a well-recognized paraneoplastic phenomenon. Previous studies have examined the association of itch with a variety of malignancies in adults. However, no large study has examined this association in a pediatric population. Methods: A retrospective study was conducted of patients age 18 or less seen at Johns Hopkins Health System between 2012 and 2019. Results: A pediatric hospital population of 1,042,976 patients was reviewed. Pruritus was observed in 3836 pediatric patients of whom 130 also had cancer. Pediatric patients with pruritus were significantly more likely to have concomitant malignancy compared to pediatric patients without pruritus (OR 12.84; 95% CI 10.73–15.35, p < 0.001). Malignancies most strongly associated with pruritus included neoplasms of the blood (OR 14.38; 95% CI 11.30–18.29, p < 0.001), bone (OR 29.02, 95% CI 18.28–46.06, p < 0.001) and skin (OR 22.76, 95% CI 9.14–56.72, p < 0.001. Conclusions: Pruritus is significantly associated with malignancy in the pediatric hospital population. Clinicians should also be aware of the high burden of itch in pediatric malignancies and the variation in pruritus across malignancies.
Collapse
|
15
|
Hakim A, Zhang X, DeLisle A, Oral EA, Dykas D, Drzewiecki K, Assis DN, Silveira M, Batisti J, Jain D, Bale A, Mistry PK, Vilarinho S. Clinical utility of genomic analysis in adults with idiopathic liver disease. J Hepatol 2019; 70:1214-1221. [PMID: 31000363 PMCID: PMC6526061 DOI: 10.1016/j.jhep.2019.01.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Adult patients suffering from liver disease of unknown cause represent an understudied and underserved population. The use of whole-exome sequencing (WES) for the assessment of a broader spectrum of non-oncological diseases, among adults, remains poorly studied. We assessed the utility of WES in the diagnosis and management of adults with unexplained liver disease despite comprehensive evaluation by a hepatologist and with no history of alcohol overuse. METHODS We performed WES and deep phenotyping of 19 unrelated adult patients with idiopathic liver disease recruited at a tertiary academic health care center in the US. RESULTS Analysis of the exome in 19 cases identified 4 monogenic disorders in 5 unrelated adults. Patient 1 suffered for 18 years from devastating complications of undiagnosed type 3 familial partial lipodystrophy due to a deleterious heterozygous variant in PPARG. Molecular diagnosis enabled initiation of leptin replacement therapy with subsequent normalization of liver aminotransferases, amelioration of dyslipidemia, and decreases in daily insulin requirements. Patients 2 and 3 were diagnosed with MDR3 deficiency due to recessive mutations in ABCB4. Patient 4 with a prior diagnosis of non-alcoholic steatohepatitis was found to harbor a mitochondrial disorder due to a homozygous pathogenic variant in NDUFB3; this finding enabled initiation of disease preventive measures including supplementation with antioxidants. Patient 5 is a lean patient with hepatic steatosis of unknown etiology who was found to have a damaging heterozygous variant in APOB. CONCLUSIONS Genomic analysis yielded an actionable diagnosis in a substantial number (∼25%) of selected adult patients with chronic liver disease of unknown etiology. This study supports the use of WES in the evaluation and management of adults with idiopathic liver disease in clinical practice. LAY SUMMARY We performed whole-exome sequencing in 19 adult patients with unexplained liver disease after an unrevealing conventional work-up performed by a hepatologist. In 5 cases, genomic analysis led to a diagnosis and informed treatment and management of the disease. Therefore, we suggest using whole-exome sequencing in the evaluation and management of adults with unexplained liver disease.
Collapse
Affiliation(s)
- Aaron Hakim
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Angela DeLisle
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Elif A Oral
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, MI, USA
| | - Daniel Dykas
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kaela Drzewiecki
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - David N Assis
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Marina Silveira
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer Batisti
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Dhanpat Jain
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Allen Bale
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Pramod K Mistry
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; Department of Pediatrics and of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Weeda VB, Aronson DC, Verheij J, Lamers WH. Is hepatocellular carcinoma the same disease in children and adults? Comparison of histology, molecular background, and treatment in pediatric and adult patients. Pediatr Blood Cancer 2019; 66:e27475. [PMID: 30259629 DOI: 10.1002/pbc.27475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/10/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
Pediatric hepatocellular carcinoma (HCC) is rare, resulting in scattered knowledge of tumor biology and molecular background. Thus far, the variant in children has been treated as a different entity from adult HCC. We weigh the hypothesis that HCC in the pediatric and adult groups may be the same entity and may benefit from the same treatment. Although certain differences between adult and pediatric HCC are obvious and certain types of HCC may ask for a customized approach, in conventional HCC, similarities predominate, warranting treatment aiming at common molecular targets in adult and pediatric HCC patients.
Collapse
Affiliation(s)
- V B Weeda
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - D C Aronson
- Department of Paediatric Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | - J Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - W H Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Wang C, Cheng Y, Zhang X, Li N, Zhang L, Wang S, Tong X, Xu Y, Chen GQ, Cheng S, Fan X, Liu J. Vacuolar Protein Sorting 33B Is a Tumor Suppressor in Hepatocarcinogenesis. Hepatology 2018; 68:2239-2253. [PMID: 29729199 DOI: 10.1002/hep.30077] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
Abstract
Polarity defects are frequently involved in liver diseases, such as chronic hepatitis and hepatocellular carcinoma (HCC). It was reported that vacuolar protein sorting 33B (Vps33b) plays critical roles in the maintenance of hepatocyte polarity; however, the functional roles and mechanisms of Vps33b in HCC occurrence and progression remain unknown. First of all, we showed that Vps33b is down-regulated in human and mouse liver cancer samples, and the low expression levels of Vps33b correlate with the poor prognosis of many HCC patients. Liver-specific Vps33b deficiency induces liver damage, progressive hepatitis, fibrosis, and HCC in male mice, indicating that Vps33b is a crucial contributory factor to hepatocarcinogenesis. Vps33b deficiency-caused liver damage was primarily due to the disorders of structural and functional hepatocyte polarity, which were reflected by the decreased protein levels of E-cadherin because of inaccurate location to lysosomes and polarity defects at both apical and lateral plasma membrane proteins. The results of a mechanism study revealed that Vps33b interacts with VPS33B-interacting protein, which is involved in polarity and apical protein restriction; vesicle-trafficking protein Sec22b; and Flotillin-1 in hepatocytes and is in charge of the normal distribution of polarity-determined proteins. Expression levels of Vps33b negatively correlated with the degree of inflammatory cell infiltration in livers from diethylnitrosamine-induced or transgenic HCC mouse models, and the inflammatory stimuli suppressed the expression of Vps33b in vitro. Conclusion: Down-regulation of Vps33b expression is a critical step for inflammation-driven HCC, and Vps33b serves as an important tumor suppressor in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Conghui Wang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqiang Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiuping Zhang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdian Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
19
|
|
20
|
Vij M, Shanmugam NP, Reddy MS, Sankaranarayanan S, Rela M. Paediatric hepatocellular carcinoma in tight junction protein 2 (TJP2) deficiency. Virchows Arch 2017; 471:679-683. [PMID: 28733884 DOI: 10.1007/s00428-017-2204-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Mukul Vij
- Department of Pathology, Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, Tamil Nadu, 600100, India.
| | - Naresh P Shanmugam
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, Tamil Nadu, 600100, India
| | - Mettu Srinivas Reddy
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, Tamil Nadu, 600100, India
| | | | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, Tamil Nadu, 600100, India
- National Foundation for Liver Research, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Exome analysis of the evolutionary path of hepatocellular adenoma-carcinoma transition, vascular invasion and brain dissemination. J Hepatol 2017; 67:186-191. [PMID: 28323122 PMCID: PMC5497691 DOI: 10.1016/j.jhep.2017.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 12/30/2022]
Abstract
Hepatocellular adenoma (HCA) is a rare benign liver tumor, predominantly seen in young women. Its major complications are malignant transformation, spontaneous hemorrhage, and rupture. We describe a case of a young female with no underlying liver disease who presented with acute abdominal pain and was found to have a 17cm heterogeneous mass in the left lobe of the liver. She underwent left hepatectomy and pathology revealed a 14cm moderately differentiated hepatocellular carcinoma (HCC) arising in a shell of a HCA. At that time, vascular invasion was already present. She rapidly developed recurrent multifocal hepatic lesions and subsequent spread to the brain, leading to her death 18months after surgery. To investigate the underlying genetic events occurring during hepatocellular adenoma-carcinoma transition and extra-hepatic dissemination, we performed whole exome sequencing of DNA isolated from peripheral blood leucocytes, HCA, HCC, tumor thrombus and brain metastasis. Our data show a step-wise addition of somatic mutations and copy number variations with disease progression, suggesting a linear tumor evolution, which is supported by clonality analysis. Specifically, using a model based clustering of somatic mutations, one single founding clone arising in the HCA, which included catenin beta 1 (CTNNB1) and IL6ST driver mutations, was identified and displayed an increasing clonality rate in HCC, tumor thrombus and brain metastasis. Our data highlight the feasibility of performing whole exome capture, sequencing and analysis using formalin-fixed paraffin-embedded (FFPE) samples, and we describe the first genomic longitudinal study of hepatocellular adenoma-carcinoma transition, vascular invasion and brain metastasis with detailed clinicopathologic annotation.
Collapse
|
22
|
Beyond the Milan criteria for liver transplantation in children with hepatic tumours. Lancet Gastroenterol Hepatol 2017; 2:456-462. [DOI: 10.1016/s2468-1253(17)30084-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
|
23
|
Hanley J, Dhar DK, Mazzacuva F, Fiadeiro R, Burden JJ, Lyne AM, Smith H, Straatman-Iwanowska A, Banushi B, Virasami A, Mills K, Lemaigre FP, Knisely AS, Howe S, Sebire N, Waddington SN, Paulusma CC, Clayton P, Gissen P. Vps33b is crucial for structural and functional hepatocyte polarity. J Hepatol 2017; 66:1001-1011. [PMID: 28082148 PMCID: PMC5387182 DOI: 10.1016/j.jhep.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS In the normal liver, hepatocytes form a uniquely polarised cell layer that enables movement of solutes from sinusoidal blood to canalicular bile. Whilst several cholestatic liver diseases with defects of hepatocyte polarity have been identified, the molecular mechanisms of pathogenesis are not well defined. One example is arthrogryposis, renal dysfunction and cholestasis syndrome, which in most patients is caused by VPS33B mutations. VPS33B is a protein involved in membrane trafficking that interacts with RAB11A at recycling endosomes. To understand the pathways that regulate hepatocyte polarity better, we investigated VPS33B deficiency using a novel mouse model with a liver-specific Vps33b deletion. METHODS To assess functional polarity, plasma and bile samples were collected from Vps33b liver knockout (Vps33bfl/fl-AlfpCre) and control (Vps33bfl/fl) mice; bile components or injected substrates were quantitated by mass spectrometry or fluorometry. For structural analysis, livers underwent light and transmission electron microscopy. Apical membrane and tight junction protein localisation was assessed by immunostaining. Adeno-associated virus vectors were used for in vivo gene rescue experiments. RESULTS Like patients, Vps33bfl/fl-AlfpCre mice showed mislocalisation of ATP-binding cassette proteins that are specifically trafficked to the apical membrane via Rab11a-positive recycling endosomes. This was associated with retention of bile components in blood. Loss of functional tight junction integrity and depletion of apical microvilli were seen in knockout animals. Gene transfer partially rescued these defects. CONCLUSIONS Vps33b has a key role in establishing structural and functional aspects of hepatocyte polarity and may be a target for gene replacement therapy. LAY SUMMARY Hepatocytes are liver cells with tops and bottoms; that is, they are polarised. At their bottoms they absorb substances from blood. They then, at their tops, secrete these substances and their metabolites into bile. When polarity is lost, this directional flow of substances from blood to bile is disrupted and liver disease follows. In this study, using a new mouse model with a liver-specific mutation of Vps33b, the mouse version of a gene that is mutated in most patients with arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, we investigated how the Vps33b gene product contributes to establishing hepatocyte polarity. We identified in these mice abnormalities similar to those in children with ARC syndrome. Gene transfer could partly reverse the mouse abnormalities. Our work contributes to the understanding of VPS33B disease and hepatocyte polarity in general, and may point towards gene transfer mediated treatment of ARC liver disease.
Collapse
Affiliation(s)
- Joanna Hanley
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dipok Kumar Dhar
- Organ Transplantation Centre and Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Francesca Mazzacuva
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Rebeca Fiadeiro
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Anne-Marie Lyne
- UCL Department of Statistical Science, University College London, London WC1E 6BT, UK
| | - Holly Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alex Virasami
- Histopathology Department, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Kevin Mills
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, 8036 Graz, Austria
| | - Steven Howe
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Neil Sebire
- Histopathology Department, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Simon N Waddington
- UCL Institute for Women's Health, University College London, London WC1E 6AU, UK; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg 2193, South Africa
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, 1105 BK Amsterdam, Netherlands
| | - Peter Clayton
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- UCL Institute of Child Health, University College London, London WC1N 1EH, UK; MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Inherited Metabolic Disease Unit, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK.
| |
Collapse
|
24
|
Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, Debatin KM, Deubzer H, Dirksen U, Eckert C, Eggert A, Erlacher M, Fleischhack G, Frühwald MC, Gnekow A, Goehring G, Graf N, Hanenberg H, Hauer J, Hero B, Hettmer S, von Hoff K, Horstmann M, Hoyer J, Illig T, Kaatsch P, Kappler R, Kerl K, Klingebiel T, Kontny U, Kordes U, Körholz D, Koscielniak E, Kramm CM, Kuhlen M, Kulozik AE, Lamottke B, Leuschner I, Lohmann DR, Meinhardt A, Metzler M, Meyer LH, Moser O, Nathrath M, Niemeyer CM, Nustede R, Pajtler KW, Paret C, Rasche M, Reinhardt D, Rieß O, Russo A, Rutkowski S, Schlegelberger B, Schneider D, Schneppenheim R, Schrappe M, Schroeder C, von Schweinitz D, Simon T, Sparber-Sauer M, Spix C, Stanulla M, Steinemann D, Strahm B, Temming P, Thomay K, von Bueren AO, Vorwerk P, Witt O, Wlodarski M, Wössmann W, Zenker M, Zimmermann S, Pfister SM, Kratz CP. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 2017; 173:1017-1037. [PMID: 28168833 DOI: 10.1002/ajmg.a.38142] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022]
Abstract
Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.
Collapse
Affiliation(s)
- Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stefan S Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Arndt Borkhardt
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Ines B Brecht
- General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Gabriele Calaminus
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hedwig Deubzer
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Uta Dirksen
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Michael C Frühwald
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Astrid Gnekow
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Gudrun Goehring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Helmut Hanenberg
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany.,Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Hauer
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Barbara Hero
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Simone Hettmer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Horstmann
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hoyer
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kornelius Kerl
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Thomas Klingebiel
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Körholz
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Ewa Koscielniak
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Michaela Kuhlen
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Britta Lamottke
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University of Kiel, Kiel, Germany
| | - Dietmar R Lohmann
- Institute of Human Genetics, University Hospital Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Andrea Meinhardt
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Olga Moser
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Michaela Nathrath
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany.,Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich, Neuherberg, Germany.,Pediatric Oncology Center, Technical University Munich, Munich, Germany
| | - Charlotte M Niemeyer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Nustede
- Department of Surgery, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Kristian W Pajtler
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Mareike Rasche
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Dirk Reinhardt
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Thorsten Simon
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Monika Sparber-Sauer
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Claudia Spix
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Brigitte Strahm
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Petra Temming
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Andre O von Bueren
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Peter Vorwerk
- Pediatric Oncology, Otto von Guericke University Children's Hospital, Magdeburg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcin Wlodarski
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Willy Wössmann
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Zimmermann
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Stefan M Pfister
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Niu ZS, Niu XJ, Wang WH. Genetic alterations in hepatocellular carcinoma: An update. World J Gastroenterol 2016; 22:9069-9095. [PMID: 27895396 PMCID: PMC5107590 DOI: 10.3748/wjg.v22.i41.9069] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genomic Instability
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Molecular Diagnostic Techniques
- Molecular Targeted Therapy
- Mutation
- Patient Selection
- Phenotype
- Polymorphism, Single Nucleotide
- Precision Medicine
- Predictive Value of Tests
- Signal Transduction
Collapse
|
26
|
ACOX2 deficiency: A disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. Proc Natl Acad Sci U S A 2016; 113:11289-11293. [PMID: 27647924 DOI: 10.1073/pnas.1613228113] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acyl CoA Oxidase 2 (ACOX2) encodes branched-chain acyl-CoA oxidase, a peroxisomal enzyme believed to be involved in the metabolism of branched-chain fatty acids and bile acid intermediates. Deficiency of this enzyme has not been described previously. We report an 8-y-old male with intermittently elevated transaminase levels, liver fibrosis, mild ataxia, and cognitive impairment. Exome sequencing revealed a previously unidentified homozygous premature termination mutation (p.Y69*) in ACOX2 Immunohistochemistry confirmed the absence of ACOX2 expression in the patient's liver, and biochemical analysis showed marked elevation of intermediate bile acids upstream of ACOX2. These findings define a potentially treatable inborn error of bile acid biosynthesis caused by ACOX2 deficiency.
Collapse
|
27
|
Chouhan S, Singh S, Athavale D, Ramteke P, Pandey V, Joseph J, Mohan R, Shetty PK, Bhat MK. Glucose induced activation of canonical Wnt signaling pathway in hepatocellular carcinoma is regulated by DKK4. Sci Rep 2016; 6:27558. [PMID: 27272409 PMCID: PMC4897783 DOI: 10.1038/srep27558] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023] Open
Abstract
Elevated glycemic index, an important feature of diabetes is implicated in an increased risk of hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of this association are relatively less explored. Present study investigates the effect of hyperglycemia over HCC proliferation. We observed that high glucose culture condition (HG) specifically activates canonical Wnt signaling in HCC cells, which is mediated by suppression of DKK4 (a Wnt antagonist) expression and enhanced β-catenin level. Functional assays demonstrated that a normoglycemic culture condition (NG) maintains constitutive expression of DKK4, which controls HCC proliferation rate by suppressing canonical Wnt signaling pathway. HG diminishes DKK4 expression leading to loss of check at G0/G1/S phases of the cell cycle thereby enhancing HCC proliferation, in a β-catenin dependent manner. Interestingly, in NOD/SCID mice supplemented with high glucose, HepG2 xenografted tumors grew rapidly in which elevated levels of β-catenin, c-Myc and decreased levels of DKK4 were detected. Knockdown of DKK4 by shRNA promotes proliferation of HCC cells in NG, which is suppressed by treating cells exogenously with recombinant DKK4 protein. Our in vitro and in vivo results indicate an important functional role of DKK4 in glucose facilitated HCC proliferation.
Collapse
Affiliation(s)
- Surbhi Chouhan
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Snahlata Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Dipti Athavale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Vimal Pandey
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India.,Laboratory of Neuroscience, Department of Biotechnology and Bioinformatics, Hyderabad Central University, Hyderabad-500 046, India
| | - Jomon Joseph
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| | - Rajashekar Mohan
- Sri Dharmasthala Manjunatheshwara Medical Sciences and Hospital, Dharwad-580009, Karnataka, India
| | - Praveen Kumar Shetty
- Sri Dharmasthala Manjunatheshwara Medical Sciences and Hospital, Dharwad-580009, Karnataka, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune-411 007, India
| |
Collapse
|
28
|
Zhou S, Hertel PM, Finegold MJ, Wang L, Kerkar N, Wang J, Wong LJC, Plon SE, Sambrotta M, Foskett P, Niu Z, Thompson RJ, Knisely A. Hepatocellular carcinoma associated with tight-junction protein 2 deficiency. Hepatology 2015; 62:1914-1916. [PMID: 25921221 PMCID: PMC4626433 DOI: 10.1002/hep.27872] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles
- Keck School of Medicine of University of Southern California
| | - Paula M. Hertel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine
| | | | - Larry Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles
- Keck School of Medicine of University of Southern California
| | - Nanda Kerkar
- Keck School of Medicine of University of Southern California
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Los Angeles
| | - Jing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Lee-Jun C. Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Sharon E. Plon
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine
| | | | - Pierre Foskett
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Zhiyv Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | | | - A.S. Knisely
- Institute of Liver Studies, King's College Hospital, London, UK
| |
Collapse
|
29
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
30
|
Sokolenko AP, Suspitsin EN, Kuligina ES, Bizin IV, Frishman D, Imyanitov EN. Identification of novel hereditary cancer genes by whole exome sequencing. Cancer Lett 2015; 369:274-88. [PMID: 26427841 DOI: 10.1016/j.canlet.2015.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 02/09/2023]
Abstract
Whole exome sequencing (WES) provides a powerful tool for medical genetic research. Several dozens of WES studies involving patients with hereditary cancer syndromes have already been reported. WES led to breakthrough in understanding of the genetic basis of some exceptionally rare syndromes; for example, identification of germ-line SMARCA4 mutations in patients with ovarian hypercalcemic small cell carcinomas indeed explains a noticeable share of familial aggregation of this disease. However, studies on common cancer types turned out to be more difficult. In particular, there is almost a dozen of reports describing WES analysis of breast cancer patients, but none of them yet succeeded to reveal a gene responsible for the significant share of missing heritability. Virtually all components of WES studies require substantial improvement, e.g. technical performance of WES, interpretation of WES results, mode of patient selection, etc. Most of contemporary investigations focus on genes with autosomal dominant mechanism of inheritance; however, recessive and oligogenic models of transmission of cancer susceptibility also need to be considered. It is expected that the list of medically relevant tumor-predisposing genes will be rapidly expanding in the next few years.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Evgeny N Suspitsin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Ekatherina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | - Ilya V Bizin
- Laboratory of Bioinformatics, RASA Research Center, St.-Petersburg State Polytechnical University, St.-Petersburg 195251, Russia
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, TU Muenchen, Freising 85354, Germany; Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Institute of Bioinformatics and Systems Biology, Neuherberg 85764, Germany
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg 191015, Russia; Department of Oncology, St.-Petersburg State University, St.-Petersburg 199034, Russia.
| |
Collapse
|
31
|
Abstract
Liver tumors are relatively rare in childhood, but may be associated with a range of diagnostic, genetic, therapeutic, and surgical challenges sufficient to tax even the most experienced clinician. This article outlines the epidemiology, etiology, pathologic condition, initial workup, and management of hepatocellular carcinoma in children and adolescents.
Collapse
Affiliation(s)
- Deirdre Kelly
- The Liver Unit, Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Khalid Sharif
- The Liver Unit, Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Rachel M Brown
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2WB, UK
| | - Bruce Morland
- Oncology Department, Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| |
Collapse
|
32
|
Zhang MY, Wang JP, He K, Li B, Xia XM. BSEP expression in liver tissue of hyperlipidemia rats. Shijie Huaren Xiaohua Zazhi 2015; 23:1615-1620. [DOI: 10.11569/wcjd.v23.i10.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of bile salt export pump (BSEP) in hepatic tissue in a rat model of hyperlipidemia.
METHODS: Sixty wistar rats were randomly divided into two groups (n = 30 for each): a control group that was fed an ordinary diet, and an experimental group fed a high fat diet. Cholesterol and bile acid levels were regularly monitored. Liver tissue samples were taken for detecting the gene expression of BSEP by reverse transcription polymerase chain reaction (RT-PCR) and the protein expression of BSEP by immunohistochemistry.
RESULTS: The levels of cholesterol and bile acid were significantly higher in the experimental group than in the control group. RT-PCR analysis showed that the expression of BSEP mRNA was significantly higher in the experimental group than in the control group. Immunohistochemistry analysis showed that in the experimental group, the positive expression rate of BSEP was 76.7%, significantly higher than that in the control group (12.5%).
CONCLUSION: The expression of Bsep increases significantly in rat hyperlipidemia, which suggests that we can develop drugs acting on BSEP to find new treatment methods and means for hyperlipidemia and related diseases.
Collapse
|