1
|
Wang S, Jin Z, Wu B, Morris AJ, Deng P. Role of dietary and nutritional interventions in ceramide-associated diseases. J Lipid Res 2025; 66:100726. [PMID: 39667580 PMCID: PMC11754522 DOI: 10.1016/j.jlr.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Ceramides are important intermediates in sphingolipid metabolism and serve as signaling molecules with independent biological significance. Elevated cellular and circulating ceramide levels are consistently associated with pathological conditions including cardiometabolic diseases, neurological diseases, autoimmune diseases, and cancers. Although pharmacological inhibition of ceramide formation often protects against these diseases in animal models, pharmacological modulation of ceramides in humans remains impractical. Dietary interventions including the Mediterranean diet, lacto-ovo-vegetarian diet, calorie-restricted diet, restriction of dairy product consumption, and dietary supplementation with polyunsaturated fatty acids, dietary fibers, and polyphenols, all have beneficial effects on modulating ceramide levels. Mechanistic insights into these interventions are discussed. This article reviews the relationships between ceramides and disease pathogenesis, with a focus on dietary intervention as a viable strategy for lowering the concentration of circulating ceramides.
Collapse
Affiliation(s)
- Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zihui Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, Arkansas, USA
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Carli F, Della Pepa G, Sabatini S, Vidal Puig A, Gastaldelli A. Lipid metabolism in MASLD and MASH: From mechanism to the clinic. JHEP Rep 2024; 6:101185. [PMID: 39583092 PMCID: PMC11582433 DOI: 10.1016/j.jhepr.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 11/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is recognised as a metabolic disease characterised by excess intrahepatic lipid accumulation due to lipid overflow and synthesis, alongside impaired oxidation and/or export of these lipids. But where do these lipids come from? The main pathways related to hepatic lipid accumulation are de novo lipogenesis and excess fatty acid transport to the liver (due to increased lipolysis, adipose tissue insulin resistance, as well as excess dietary fatty acid intake, in particular of saturated fatty acids). Not only triglycerides but also other lipids are secreted by the liver and are associated with a worse histological profile in MASH, as shown by lipidomics. Herein, we review the role of lipid metabolism in MASLD/MASH and discuss the impact of weight loss (diet, bariatric surgery, GLP-1RAs) or other pharmacological treatments (PPAR or THRβ agonists) on hepatic lipid metabolism, lipidomics, and the resolution of MASH.
Collapse
Affiliation(s)
- Fabrizia Carli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Giuseppe Della Pepa
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Silvia Sabatini
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Antonio Vidal Puig
- Metabolic Research Laboratories, Medical Research Council Institute of Metabolic Science University of Cambridge, Cambridge CB2 0QQ UK
- Centro de Investigacion Principe Felipe Valencia 46012 Spain
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
3
|
Sabench F, Rusu EC, Clavero-Mestres H, Arredondo-Prats V, Veciana-Molins M, Muñiz-Piera S, Vives M, Aguilar C, Bartra E, París-Sans M, Alibalic A, Quintillà MTA. Metabolic-Associated Fatty Liver Disease and Weight Loss After Bariatric Surgery: A Systematic Review and Meta-Analysis. Obes Surg 2024; 34:4459-4471. [PMID: 39560894 DOI: 10.1007/s11695-024-07585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Metabolic Dysfunction-Associated Steatohepatitis (MASH) are increasingly prevalent in patients undergoing bariatric surgery (BS). Understanding their impact on weight loss outcomes after surgery and highlighting the results of surgical techniques such as Roux-en-Y Gastric Bypass (RYGB) and Sleeve Gastrectomy (SG) in relation to the presence of MASH are essential for improving patient management and predicting long-term success. METHODS A systematic review and meta-analysis were conducted. We searched the PubMed database; inclusion criteria were BS patients with liver impairment data at surgery and weight loss data at follow-up of 6 months or longer. Meta-analyses were conducted using R's meta package, assessing heterogeneity with the I2 statistic and employing subgroup analyses where necessary. RESULTS Out of 1126 eligible studies, 22 were included in the final systematic review. For the MASLD vs. Normal Liver (NL) comparison, no significant difference in BMI change was found at 12 months, but subgroup analysis indicated a possible publication bias (published data vs data collected). In the MASH vs. non-MASH comparison, high heterogeneity was noted at 12 months, and further stratification by surgical technique revealed that SG patients with MASH experienced lower weight loss, approaching statistical significance. CONCLUSIONS MASLD does not significantly affect short-term weight loss outcomes post-BS, but long-term results show variability. Standardized reporting practices and complete data dissemination are essential for future research to enhance meta-analysis reliability and generalizability.
Collapse
Affiliation(s)
- Fatima Sabench
- Hospital Universitari Sant Joan de Reus, Reus, Spain
- Rovira I Virgili University, Tarragona, Spain
| | | | - Helena Clavero-Mestres
- Rovira I Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Vicente Arredondo-Prats
- Rovira I Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Marina Veciana-Molins
- Rovira I Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Sara Muñiz-Piera
- Rovira I Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | | | - Carmen Aguilar
- Rovira I Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Elia Bartra
- Hospital Universitari Sant Joan de Reus, Reus, Spain
| | | | - Ajla Alibalic
- Hospital Universitari Joan XXIII de Tarragona, Tarragona, Spain
| | | |
Collapse
|
4
|
Baffy G, Portincasa P. Gut Microbiota and Sinusoidal Vasoregulation in MASLD: A Portal Perspective. Metabolites 2024; 14:324. [PMID: 38921459 PMCID: PMC11205793 DOI: 10.3390/metabo14060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition with heterogeneous outcomes difficult to predict at the individual level. Feared complications of advanced MASLD are linked to clinically significant portal hypertension and are initiated by functional and mechanical changes in the unique sinusoidal capillary network of the liver. Early sinusoidal vasoregulatory changes in MASLD lead to increased intrahepatic vascular resistance and represent the beginning of portal hypertension. In addition, the composition and function of gut microbiota in MASLD are distinctly different from the healthy state, and multiple lines of evidence demonstrate the association of dysbiosis with these vasoregulatory changes. The gut microbiota is involved in the biotransformation of nutrients, production of de novo metabolites, release of microbial structural components, and impairment of the intestinal barrier with impact on innate immune responses, metabolism, inflammation, fibrosis, and vasoregulation in the liver and beyond. The gut-liver axis is a conceptual framework in which portal circulation is the primary connection between gut microbiota and the liver. Accordingly, biochemical and hemodynamic attributes of portal circulation may hold the key to better understanding and predicting disease progression in MASLD. However, many specific details remain hidden due to limited access to the portal circulation, indicating a major unmet need for the development of innovative diagnostic tools to analyze portal metabolites and explore their effect on health and disease. We also need to safely and reliably monitor portal hemodynamics with the goal of providing preventive and curative interventions in all stages of MASLD. Here, we review recent advances that link portal metabolomics to altered sinusoidal vasoregulation and may allow for new insights into the development of portal hypertension in MASLD.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Piero Portincasa
- Division of Internal Medicine, Department of Precision and Regenerative Medicine, University ‘Aldo Moro’ Medical School, 70121 Bari, Italy;
| |
Collapse
|
5
|
Qi Z, LE S, Cheng R, DU X, Zhao C, Zhang Z, Zhang X, Feng L, Schumann M, Mao L, Cheng S. Responses of the Serum Lipid Profile to Exercise and Diet Interventions in Nonalcoholic Fatty Liver Disease. Med Sci Sports Exerc 2024; 56:1036-1045. [PMID: 38247038 DOI: 10.1249/mss.0000000000003388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND This study aimed to assess the response patterns of circulating lipids to exercise and diet interventions in nonalcoholic fatty liver disease (NAFLD). METHODS The 8.6-month four-arm randomized controlled study comprised 115 NAFLD patients with prediabetes who were assigned to aerobic exercise (AEx; n = 29), low-carbohydrate diet (Diet; n = 28), AEx plus low-carbohydrate diet (AED; n = 29), and nonintervention (NI, n = 29) groups. Hepatic fat content (HFC) was quantified by proton magnetic resonance spectroscopy. Serum lipidomic analytes were measured using liquid chromatography-mass spectrometry. RESULTS After intervention, the total level of phosphatidylcholine (PC) increased significantly in the AEx group ( P = 0.043), whereas phosphatidylethanolamine (PE) and triacylglycerol decreased significantly in the AED group ( P = 0.046 and P = 0.036, respectively), and phosphatidylserine decreased in the NI group ( P = 0.002). Changes of 21 lipid metabolites were significantly associated with changes of HFC, among which half belonged to PC. Most of the molecules related to insulin sensitivity belonged to sphingomyelin (40 of 79). Controlling for the change of visceral fat, the significant associations between lipid metabolites and HFC remained. In addition, baseline serum lipids could predict the response of HFC to exercise and/or diet interventions (PE15:0/18:0 for AED, area under the curve (AUC) = 0.97; PE22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0 for AEx, AUC = 0.90; and PC14:1(9Z)/19:1(9Z) for Diet, AUC = 0.92). CONCLUSIONS Changes of lipidome after exercise and/or diet interventions were associated with HFC reductions, which are independent of visceral fat reduction, particularly in metabolites belonging to PC. Importantly, baseline PE could predict the HFC response to exercise, and PC predicted the response to diet. These results indicate that a circulating metabolomics panel can be used to facilitate clinical implementation of lifestyle interventions for NAFLD management.
Collapse
Affiliation(s)
- Zhen Qi
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, CHINA
| | | | - Runtan Cheng
- Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, CHINA
| | - Xiaming DU
- Department of Orthopedic, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, CHINA
| | - Can Zhao
- School of Athletic Performance, Shanghai University of Sport, Shanghai, CHINA
| | - Zhengyun Zhang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, CHINA
| | - Xiaobo Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital of Wenzhou Medical University, Wenzhou, CHINA
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, CHINA
| | | | - Lijuan Mao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai 200438, CHINA
| | | |
Collapse
|
6
|
Šmíd V, Dvořák K, Stehnová K, Strnad H, Rubert J, Stříteský J, Staňková B, Stránská M, Hajšlová J, Brůha R, Vítek L. The Ameliorating Effects of n-3 Polyunsaturated Fatty Acids on Liver Steatosis Induced by a High-Fat Methionine Choline-Deficient Diet in Mice. Int J Mol Sci 2023; 24:17226. [PMID: 38139055 PMCID: PMC10743075 DOI: 10.3390/ijms242417226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities of liver lipid metabolism. On the contrary, a diet enriched with n-3 polyunsaturated fatty acids (n-3-PUFAs) has been reported to ameliorate the progression of NAFLD. The aim of our study was to investigate the impact of dietary n-3-PUFA enrichment on the development of NAFLD and liver lipidome. Mice were fed for 6 weeks either a high-fat methionine choline-deficient diet (MCD) or standard chow with or without n-3-PUFAs. Liver histology, serum biochemistry, detailed plasma and liver lipidomic analyses, and genome-wide transcriptome analysis were performed. Mice fed an MCD developed histopathological changes characteristic of NAFLD, and these changes were ameliorated with n-3-PUFAs. Simultaneously, n-3-PUFAs decreased serum triacylglycerol and cholesterol concentrations as well as ALT and AST activities. N-3-PUFAs decreased serum concentrations of saturated and monounsaturated free fatty acids (FAs), while increasing serum concentrations of long-chain PUFAs. Furthermore, in the liver, the MCD significantly increased the hepatic triacylglycerol content, while the administration of n-3-PUFAs eliminated this effect. Administration of n-3-PUFAs led to significant beneficial differences in gene expression within biosynthetic pathways of cholesterol, FAs, and pro-inflammatory cytokines (IL-1 and TNF-α). To conclude, n-3-PUFA supplementation appears to represent a promising nutraceutical approach for the restoration of abnormalities in liver lipid metabolism and the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Václav Šmíd
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Karel Dvořák
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Kamila Stehnová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Josep Rubert
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Jan Stříteský
- Institute of Pathology, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 00 Prague, Czech Republic;
| | - Barbora Staňková
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic
| | - Milena Stránská
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Radan Brůha
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Libor Vítek
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic
| |
Collapse
|
7
|
Denimal D, Béland-Bonenfant S, Pais-de-Barros JP, Rouland A, Bouillet B, Duvillard L, Vergès B, Petit JM. Plasma ceramides are associated with MRI-based liver fat content but not with noninvasive scores of liver fibrosis in patients with type 2 diabetes. Cardiovasc Diabetol 2023; 22:310. [PMID: 37940926 PMCID: PMC10634084 DOI: 10.1186/s12933-023-02049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND There is growing evidence that ceramides play a significant role in the onset and progression of non-alcoholic fatty liver disease (NAFLD), a highly prevalent condition in patients with type 2 diabetes associated with hepatic and cardiovascular events. However, the relationship between plasma ceramide levels and NAFLD severity in type 2 diabetes remains unclear. The main purpose of the present study was to investigate whether circulating levels of ceramides in patients with type 2 diabetes are associated with liver steatosis assessed by the highly accurate magnetic resonance imaging proton density fat fraction (MRI-PDFF). The secondary objective was to assess the relationship between plasma ceramides and noninvasive scores of liver fibrosis. METHODS In this cross-sectional single-center study, plasma concentrations of 7 ceramides were measured by liquid chromatography-mass spectrometry in 255 patients with type 2 diabetes (GEPSAD cohort). Liver fat content was assessed by MRI-PDFF, and noninvasive scores of liver fibrosis (i.e. Fibrosis-4 index, NAFLD Fibrosis Score, FibroTest® and Fibrotic NASH Index) were calculated. A validation cohort of 80 patients with type 2 diabetes was also studied (LIRA-NAFLD cohort). RESULTS Liver steatosis, defined as a liver fat content > 5.56%, was found in 62.4 and 82.5% of individuals with type 2 diabetes in the GEPSAD and LIRA-NAFLD cohorts, respectively. In GEPSAD, MRI-PDFF-measured liver fat content was positively associated with plasma levels of total ceramides (r = 0.232, p = 0.0002), and 18:0, 20:0, 22:0 and 24:0 ceramides in univariate analysis (p ≤ 0.0003 for all). In multivariate analysis, liver fat content remained significantly associated with total ceramides (p = 0.001), 18:0 (p = 0.006), 22:0 (p = 0.0009) and 24:0 ceramides (p = 0.0001) in GEPSAD, independently of age, diabetes duration, body mass index and dyslipidemia. Overall, similar relationship between plasma ceramides and liver fat content was observed in the LIRA-NAFLD validation cohort. No significant association was found between plasma ceramides and noninvasive scores of fibrosis after adjustment for age in both cohorts. CONCLUSIONS Plasma ceramide levels are associated with liver steatosis in patients with type 2 diabetes, independently of traditional risk factors for NAFLD. The independent association between plasma ceramides and liver steatosis adds new insights regarding the relationship between ceramides and NAFLD in type 2 diabetes.
Collapse
Affiliation(s)
- Damien Denimal
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France.
- Department of Biochemistry, CHU Dijon Bourgogne, Dijon, F-21079, France.
| | - Sarah Béland-Bonenfant
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | | | - Alexia Rouland
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Benjamin Bouillet
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Laurence Duvillard
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Biochemistry, CHU Dijon Bourgogne, Dijon, F-21079, France
| | - Bruno Vergès
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Jean-Michel Petit
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| |
Collapse
|
8
|
Eng PC, Forlano R, Tan T, Manousou P, Dhillo WS, Izzi-Engbeaya C. Non-alcoholic fatty liver disease in women - Current knowledge and emerging concepts. JHEP Rep 2023; 5:100835. [PMID: 37771547 PMCID: PMC10522907 DOI: 10.1016/j.jhepr.2023.100835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 09/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide, affecting up to 30% of adults. Progression to non-alcoholic steatohepatitis (NASH) is a key risk factor for cirrhosis, hepatocellular carcinoma and cardiovascular events. Alterations in reproductive hormones are linked to the development and/or progression of NAFLD/NASH in women. Women with polycystic ovary syndrome and those with oestrogen deficiency are at increased risk of NAFLD/NASH, with higher mortality rates in older women compared to men of similar ages. NAFLD/NASH is currently the leading indication for liver transplantation in women without hepatocellular carcinoma. Therefore, a better understanding of NAFLD in women is needed to improve outcomes. In this review, we discuss the hormonal and non-hormonal factors that contribute to NAFLD development and progression in women. Furthermore, we highlight areas of focus for clinical practice and for future research.
Collapse
Affiliation(s)
- Pei Chia Eng
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S. Dhillo
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Chioma Izzi-Engbeaya
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
9
|
Kalopitas G, Mouskeftara T, Liapikos T, Arvanitakis K, Ioannidis A, Malandris K, Theocharidou E, Chourdakis M, Sinakos E, Gika H, Germanidis G. Plasma Lipids Profile in the Prediction of Non-Alcoholic Steatohepatitis in Adults: A Case-Control Study. Int J Mol Sci 2023; 24:12717. [PMID: 37628898 PMCID: PMC10454013 DOI: 10.3390/ijms241612717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with non-alcoholic steatohepatitis (NASH) show significantly faster progress in the stages of fibrosis compared to those with non-alcoholic fatty liver (NAFL) disease. The non-invasive diagnosis of NASH remains an unmet clinical need. Preliminary data have shown that sphingolipids, especially ceramides, fatty acids, and other lipid classes may be related to the presence of NASH and the histological activity of the disease. The aim of our study was to assess the association of certain plasma lipid classes, such as fatty acids, acylcarnitines, and ceramides, with the histopathological findings in patients with NASH. The study included three groups: patients with NASH (N = 12), NAFL (N = 10), and healthy [non non-alcoholic fatty liver disease (NAFLD)] controls (N = 15). Plasma samples were collected after 12 h of fasting, and targeted analyses for fatty acids, acylcarnitines, and ceramides were performed. Baseline clinical and demographic characteristics were collected. There was no significant difference in baseline characteristics across the three groups or between NAFL and NASH patients. Patients with NASH had increased levels of several fatty acids, including, among others, fatty acid (FA) 14:0, FA 15:0, FA 18:0, FA 18:3n3, as well as Cer(d18:1/16:0), compared to NAFL patients and healthy controls. No significant difference was found between NAFL patients and healthy controls. In conclusion, patients with NASH exhibited a distinctive plasma lipid profile that can differentiate them from NAFL patients and non-NAFLD populations. More data from larger cohorts are needed to validate these findings and examine possible implications for diagnostic and management strategies of the disease.
Collapse
Affiliation(s)
- Georgios Kalopitas
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (K.A.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (H.G.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece;
| | - Theodoros Liapikos
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece;
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (K.A.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Aristeidis Ioannidis
- 1st Propedeutic Department of Surgery, AHEPA University Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Konstantinos Malandris
- 2nd Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Eleni Theocharidou
- 2nd Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Emmanouil Sinakos
- 4th Medical Department, Hippokratio Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (H.G.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (K.A.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
10
|
Anari M, Montgomery MK. Phospholipid metabolism in the liver - Implications for phosphatidylserine in non-alcoholic fatty liver disease. Biochem Pharmacol 2023; 213:115621. [PMID: 37217141 DOI: 10.1016/j.bcp.2023.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Mammalian cells contain more than a thousand different glycerophospholipid species that are essential membrane components and signalling molecules, with phosphatidylserine (PS) giving membranes their negative surface charge. Depending on the tissue, PS is important in apoptosis, blood clotting, cancer pathogenesis, as well as muscle and brain function, processes that are dependent on the asymmetrical distribution of PS on the plasma membrane and/or the capacity of PS to act as anchorage for various signalling proteins. Recent studies have implicated hepatic PS in the progression of non-alcoholic fatty liver disease (NAFLD), either as beneficial in the context of suppressing hepatic steatosis and fibrosis, or on the other hand as a potential contributor to the progression of liver cancer. This review provides an extensive overview of hepatic phospholipid metabolism, including its biosynthetic pathways, intracellular trafficking and roles in health and disease, further taking a deeper dive into PS metabolism, including associate and causative evidence of the role of PS in advanced liver disease.
Collapse
Affiliation(s)
- Marziyeh Anari
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
11
|
Mocciaro G, Allison M, Jenkins B, Azzu V, Huang-Doran I, Herrera-Marcos LV, Hall Z, Murgia A, Susan D, Frontini M, Vidal-Puig A, Koulman A, Griffin JL, Vacca M. Non-alcoholic fatty liver disease is characterised by a reduced polyunsaturated fatty acid transport via free fatty acids and high-density lipoproteins (HDL). Mol Metab 2023; 73:101728. [PMID: 37084865 PMCID: PMC10176260 DOI: 10.1016/j.molmet.2023.101728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/25/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) develops due to impaired hepatic lipid fluxes and is a risk factor for chronic liver disease and atherosclerosis. Lipidomic studies consistently reported characteristic hepatic/VLDL "lipid signatures" in NAFLD; whole plasma traits are more debated. Surprisingly, the HDL lipid composition by mass spectrometry has not been characterised across the NAFLD spectrum, despite HDL being a possible source of hepatic lipids delivered from peripheral tissues alongside free fatty acids (FFA). This study characterises the HDL lipidomic signature in NAFLD, and its correlation with metabolic and liver disease markers. METHODS We used liquid chromatography-mass spectrometry to determine the whole serum and HDL lipidomic profile in 89 biopsy-proven NAFLD patients and 20 sex and age-matched controls. RESULTS In the whole serum of NAFLD versus controls, we report a depletion in polyunsaturated (PUFA) phospholipids (PL) and FFA; with PUFA PL being also lower in HDL, and negatively correlated with BMI, insulin resistance, triglycerides, and hepatocyte ballooning. In the HDL of the NAFLD group we also describe higher saturated ceramides, which positively correlate with insulin resistance and transaminases. CONCLUSION NAFLD features lower serum lipid species containing polyunsaturated fatty acids; the most affected lipid fractions are FFA and (HDL) phospholipids; our data suggest a possible defect in the transfer of PUFA from peripheral tissues to the liver in NAFLD. Mechanistic studies are required to explore the biological implications of our findings addressing if HDL composition can influence liver metabolism and damage, thus contributing to NAFLD pathophysiology.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; Roger Williams Institute of Hepatology, Foundation for Liver Research, London, SE5 9NT, United Kingdom
| | - Michael Allison
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Benjamin Jenkins
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Vian Azzu
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom; Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Isabel Huang-Doran
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Luis Vicente Herrera-Marcos
- Department of Biochemistry and Molecular and Cellular Biology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
| | - Zoe Hall
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Antonio Murgia
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom
| | - Davies Susan
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Mattia Frontini
- Faculty of Health and Life Sciences, Clinical and Biomedical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Antonio Vidal-Puig
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Albert Koulman
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom.
| | - Julian L Griffin
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; The Rowett Institute, Foresterhill Campus, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom.
| | - Michele Vacca
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; Roger Williams Institute of Hepatology, Foundation for Liver Research, London, SE5 9NT, United Kingdom; Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom; Aldo Moro University of Bari, Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", Bari, 70124, Italy.
| |
Collapse
|
12
|
Lin K, Cheng W, Shen Q, Wang H, Wang R, Guo S, Wu X, Wu W, Chen P, Wang Y, Ye H, Zhang Q, Wang R. Lipid Profiling Reveals Lipidomic Signatures of Weight Loss Interventions. Nutrients 2023; 15:nu15071784. [PMID: 37049623 PMCID: PMC10097218 DOI: 10.3390/nu15071784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Obesity is an epidemic all around the world. Weight loss interventions that are effective differ from each other with regard to various lipidomic responses. Here, we aimed to find lipidomic biomarkers that are related to beneficial changes in weight loss. We adopted an untargeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to measure 953 lipid species for Exercise (exercise intervention cohort, N = 25), 1388 lipid species for LSG (laparoscopic sleeve gastrectomy cohort, N = 36), and 886 lipid species for Cushing (surgical removal of the ACTH-secreting pituitary adenomas cohort, N = 25). Overall, the total diacylglycerol (DG), triacylglycerol (TG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM) levels were associated with changes in BMI, glycated hemoglobin (HbA1c), triglyceride, and total cholesterol according to weight loss interventions. We found that 73 lipid species changed among the three weight loss interventions. We screened 13 lipid species with better predictive accuracy in diagnosing weight loss situations in either Exercise, LSG, or Cushing cohorts (AUROC > 0.7). More importantly, we identified three phosphatidylcholine (PC) lipid species, PC (14:0_18:3), PC (31:1), and PC (32:2) that were significantly associated with weight change in three studies. Our results highlight potential lipidomic biomarkers that, in the future, could be used in personalized approaches involving weight loss interventions.
Collapse
Affiliation(s)
- Kaiqing Lin
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Cheng
- Department of Endocrinology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hui Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Shanshan Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xianmin Wu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Ru Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
13
|
Peng H, Li J, Xu H, Wang X, He L, McCauley N, Zhang KK, Xie L. Offspring NAFLD liver phospholipid profiles are differentially programmed by maternal high-fat diet and maternal one carbon supplement. J Nutr Biochem 2023; 111:109187. [PMID: 36270572 DOI: 10.1016/j.jnutbio.2022.109187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Little is known if and how maternal diet affects the liver phospholipid profiles that contribute to non-alcoholic fatty liver disease (NAFLD) development in offspring. We examined NAFLD phenotypes in male offspring mice of either maternal normal-fat diet (NF group), maternal high-fat diet (HF group), maternal methionine supplement (H1S group), or complete one-carbon supplement (H2S group) added to the maternal HF diet during gestation and lactation. HF offspring displayed worsened NAFLD phenotypes induced by post-weaning HF diet, however, maternal one-carbon supplement prevented such outcome. HF offspring also showed a distinct phospholipid profile from the offspring exposed to H1S or H2S diet. Whole genome bisulfite sequencing (WGBS) analysis further identified five pathways involved in phospholipid metabolism altered by different maternal diet interventions. Furthermore, differential methylated regions (DMRs) on Prkca, Dgkh, Plcb1 and Dgki were identified comparing between HF and NF offspring; most of these DMRs were recovered in H2S offspring. These methylation pattern changes were associated with gene expression changes: HF diet significantly reduced while H1S and H2S diet recovered their levels. Maternal HF diet disrupted offspring phospholipid profiles contributing to worsened hepatic steatosis. The maternal one-carbon supplement prevented such effects, probably through DNA methylation modification.
Collapse
Affiliation(s)
- Hui Peng
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Jiangyuan Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA; Department of Statistics, Texas A&M University, College Station, Texas, USA
| | - Huiting Xu
- Department of Pathology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xian Wang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Leya He
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Naomi McCauley
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA; Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, Texas, USA; Department of Pathology, University of North Dakota, Grand Forks, North Dakota, USA.
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
14
|
Lebrun LJ, Pallot G, Nguyen M, Tavernier A, Dusuel A, Pilot T, Deckert V, Dugail I, Le Guern N, Pais De Barros JP, Benkhaled A, Choubley H, Lagrost L, Masson D, Gautier T, Grober J. Increased Weight Gain and Insulin Resistance in HF-Fed PLTP Deficient Mice Is Related to Altered Inflammatory Response and Plasma Transport of Gut-Derived LPS. Int J Mol Sci 2022; 23:13226. [PMID: 36362012 PMCID: PMC9654699 DOI: 10.3390/ijms232113226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2023] Open
Abstract
Bacterial lipopolysaccharides (LPS, endotoxins) are found in high amounts in the gut lumen. LPS can cross the gut barrier and pass into the blood (endotoxemia), leading to low-grade inflammation, a common scheme in metabolic diseases. Phospholipid transfer protein (PLTP) can transfer circulating LPS to plasma lipoproteins, thereby promoting its detoxification. However, the impact of PLTP on the metabolic fate and biological effects of gut-derived LPS is unknown. This study aimed to investigate the influence of PLTP on low-grade inflammation, obesity and insulin resistance in relationship with LPS intestinal translocation and metabolic endotoxemia. Wild-type (WT) mice were compared with Pltp-deficient mice (Pltp-KO) after a 4-month high-fat (HF) diet or oral administration of labeled LPS. On a HF diet, Pltp-KO mice showed increased weight gain, adiposity, insulin resistance, lipid abnormalities and inflammation, together with a higher exposure to endotoxemia compared to WT mice. After oral administration of LPS, PLTP deficiency led to increased intestinal translocation and decreased association of LPS to lipoproteins, together with an altered catabolism of triglyceride-rich lipoproteins (TRL). Our results show that PLTP, by modulating the intestinal translocation of LPS and plasma processing of TRL-bound LPS, has a major impact on low-grade inflammation and the onset of diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Lorène J. Lebrun
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Gaëtan Pallot
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, 21000 Dijon, France
| | - Annabelle Tavernier
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Alois Dusuel
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Thomas Pilot
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Valérie Deckert
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Isabelle Dugail
- Faculté de Médecine Pitié-Salpêtrière, UMR1269, 75000 Paris, France
| | - Naig Le Guern
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Jean-Paul Pais De Barros
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Lipidomic Analytic Plate-Forme, UBFC, Bâtiment B3, 21000 Dijon, France
| | - Anissa Benkhaled
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Hélène Choubley
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Lipidomic Analytic Plate-Forme, UBFC, Bâtiment B3, 21000 Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - David Masson
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Laboratory of Clinical Chemistry, François Mitterrand University Hospital, 21000 Dijon, France
| | - Thomas Gautier
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
| | - Jacques Grober
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, 21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| |
Collapse
|
15
|
Maldonado SS, Grab J, Wang CW, Huddleston H, Cedars M, Sarkar M. Polycystic ovary syndrome is associated with nonalcoholic steatohepatitis in women of reproductive age. Hepatol Commun 2022; 6:2634-2639. [PMID: 35861548 PMCID: PMC9512460 DOI: 10.1002/hep4.2039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) occurs in approximately 10% of all reproductive-age women, with over 50% of these patients having imaging-confirmed nonalcoholic fatty liver disease (NAFLD). Whether PCOS increases the risk for more clinically relevant disease, such as nonalcoholic steatohepatitis (NASH), is unclear. Such findings are relevant to prognosticating risk of progressive liver disease in the growing population of young adults with NAFLD. Using weighted discharge data from the United States National Inpatient Sample from 2016 to 2018, we evaluated the association of PCOS with the presence of NASH among reproductive-age women with NAFLD. The association of PCOS with NASH was assessed by logistic regression, adjusting for demographic and comprehensive metabolic comorbidities. Other causes of hepatic steatosis and chronic liver diseases were excluded. Our analysis included 189,440 reproductive-age women with NAFLD, 9415 of whom had PCOS. Of those with PCOS, 1390 (15%) had a distinct code for NASH. Women with PCOS were younger (median age, 33 vs. 40 years; p < 0.001) and more likely to have diabetes (37.0% vs. 34.0%), obesity (83.0% vs. 58.0%), dyslipidemia (26.0% vs. 21.0%), and hypertension (38.0% vs. 35.0%) (all p ≤ 0.01). On adjusted analysis accounting for these metabolic comorbidities, PCOS remained independently associated with an increased prevalence of NASH (adjusted odds ratio, 1.22; 95% confidence interval, 1.05-1.42; p = 0.008). Conclusions: Among reproductive-age women with NAFLD, metabolic risk factors were more common in those with PCOS. Despite adjustment for these metabolic comorbidities, PCOS remained associated with a 22% higher odds of having NASH. These findings support efforts to increase NAFLD screening in young women with PCOS and highlight the potential "head start" in progressive liver disease among young women with PCOS.
Collapse
Affiliation(s)
| | - Joshua Grab
- The Liver CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Connie W. Wang
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Heather Huddleston
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Marcelle Cedars
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Monika Sarkar
- The Liver CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
16
|
Tontikidou C, Makri ES, Evripidou K, Goulis DG, Goulas A, Polyzos SA. Circulating adiponectin in patients with nonalcoholic fatty liver disease-related liver fibrosis: A systematic review and a meta-analysis. J Gastroenterol Hepatol 2022; 37:1853-1864. [PMID: 35748302 DOI: 10.1111/jgh.15926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/19/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIM There are conflicting data on adiponectin concentrations in nonalcoholic fatty liver disease (NAFLD). The main aim was to compare circulating total adiponectin concentrations in NAFLD patients with versus without liver fibrosis. METHODS A systematic search was performed in PubMed, Scopus, and Cochrane Library. Twenty-two studies comprising 1753 biopsy-proven NAFLD individuals (1290 with and 463 without fibrosis) were included in the meta-analysis. RESULTS There was no difference in adiponectin concentration between NAFLD patients with versus without fibrosis (standardized mean difference [SMD]: -0.15; 95% confidence interval [95% CI]: -0.35 to 0.05). Heterogeneity was moderate among studies (Ι2 : 60%, P < 0.001); no risk of publication bias was observed (Egger's test; P = 0.37). The sensitivity analysis, performed after the exclusion of studies with (i) children/adolescents and morbidly obese patients (n = 3) and (ii) adiponectin measurement with other methods than enzyme-linked immunosorbent assay (ELISA) (n = 9), revealed significantly lower adiponectin concentrations in NAFLD patients with fibrosis (i) SMD: -0.23, 95% CI: -0.41 to -0.04; (ii) SMD: -0.30, 95% CI: -0.55 to -0.04, respectively). Meta-regression analysis revealed no significant association of adiponectin SMD with age, alanine aminotransferase, aspartate aminotransferase, γ-glutamyl-transferase, homeostasis model assessment insulin resistance and the proportion of men. CONCLUSIONS Overall, patients with NAFLD and fibrosis had similar adiponectin concentrations with patients with NAFLD without fibrosis. However, adiponectin concentration was lower in NAFLD patients with fibrosis than those without fibrosis within the adult patients without morbid obesity and in studies in which adiponectin was measured with the same method (ELISA).
Collapse
Affiliation(s)
- Christina Tontikidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia S Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kleo Evripidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Department of Endocrinology and Reproduction, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition in children characterised by insulin resistance and altered lipid metabolism. Affected patients are at increased risk of cardiovascular disease (CVD) and children with NAFLD are likely to be at risk of premature cardiac events. Evaluation of the plasma lipid profile of children with NAFLD offers the opportunity to investigate these perturbations and understand how closely they mimic the changes seen in adults with cardiometabolic disease. METHODS We performed untargeted liquid chromatography-mass spectrometry (LC-MS) plasma lipidomics on 287 children: 19 lean controls, 146 from an obese cohort, and 122 NAFLD cases who had undergone liver biopsy. Associations between lipid species and liver histology were assessed using regression adjusted for age and sex. Results were then replicated using data from 9500 adults with metabolic phenotyping. RESULTS More severe paediatric NAFLD was associated with lower levels of long chain, polyunsaturated phosphatidylcholines (pC) and triglycerides (TG). Similar trends in pC and TG chain length and saturation were seen in adults with hepatic steatosis; however, many of the specific lipids associated with NAFLD differed between children and adults. Five lipids replicated in adults (including PC(36:4)) have been directly linked to death and cardiometabolic disease, as well as indirectly via genetic variants. CONCLUSION These findings suggest that, whilst similar pathways of lipid metabolism are perturbed in paediatric NAFLD as in cardiometabolic disease in adults, the specific lipid signature in children is different.
Collapse
|
18
|
Coleman MJ, Espino LM, Lebensohn H, Zimkute MV, Yaghooti N, Ling CL, Gross JM, Listwan N, Cano S, Garcia V, Lovato DM, Tigert SL, Jones DR, Gullapalli RR, Rakov NE, Torrazza Perez EG, Castillo EF. Individuals with Metabolic Syndrome Show Altered Fecal Lipidomic Profiles with No Signs of Intestinal Inflammation or Increased Intestinal Permeability. Metabolites 2022; 12:431. [PMID: 35629938 PMCID: PMC9143200 DOI: 10.3390/metabo12050431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Metabolic Syndrome (MetS) is a clinical diagnosis where patients exhibit three out of the five risk factors: hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, hyperglycemia, elevated blood pressure, or increased abdominal obesity. MetS arises due to dysregulated metabolic pathways that culminate with insulin resistance and put individuals at risk to develop various comorbidities with far-reaching medical consequences such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease. As it stands, the exact pathogenesis of MetS as well as the involvement of the gastrointestinal tract in MetS is not fully understood. Our study aimed to evaluate intestinal health in human subjects with MetS. METHODS We examined MetS risk factors in individuals through body measurements and clinical and biochemical blood analysis. To evaluate intestinal health, gut inflammation was measured by fecal calprotectin, intestinal permeability through the lactulose-mannitol test, and utilized fecal metabolomics to examine alterations in the host-microbiota gut metabolism. RESULTS No signs of intestinal inflammation or increased intestinal permeability were observed in the MetS group compared to our control group. However, we found a significant increase in 417 lipid features of the gut lipidome in our MetS cohort. An identified fecal lipid, diacyl-glycerophosphocholine, showed a strong correlation with several MetS risk factors. Although our MetS cohort showed no signs of intestinal inflammation, they presented with increased levels of serum TNFα that also correlated with increasing triglyceride and fecal diacyl-glycerophosphocholine levels and decreasing HDL cholesterol levels. CONCLUSION Taken together, our main results show that MetS subjects showed major alterations in fecal lipid profiles suggesting alterations in the intestinal host-microbiota metabolism that may arise before concrete signs of gut inflammation or intestinal permeability become apparent. Lastly, we posit that fecal metabolomics could serve as a non-invasive, accurate screening method for both MetS and NAFLD.
Collapse
Affiliation(s)
- Mia J. Coleman
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Luis M. Espino
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Hernan Lebensohn
- University of New Mexico School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.J.C.); (L.M.E.); (H.L.)
| | - Marija V. Zimkute
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Negar Yaghooti
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Christina L. Ling
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Jessica M. Gross
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Natalia Listwan
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Sandra Cano
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Vanessa Garcia
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Debbie M. Lovato
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Susan L. Tigert
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Langone Health, New York, NY 10016, USA;
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Neal E. Rakov
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Euriko G. Torrazza Perez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| | - Eliseo F. Castillo
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.V.Z.); (J.M.G.); (N.L.); (S.C.); (V.G.); (D.M.L.); (S.L.T.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (N.Y.); (C.L.L.); (N.E.R.); (E.G.T.P.)
| |
Collapse
|
19
|
Guerra S, Mocciaro G, Gastaldelli A. Adipose tissue insulin resistance and lipidome alterations as the characterizing factors of non-alcoholic steatohepatitis. Eur J Clin Invest 2022; 52:e13695. [PMID: 34695228 DOI: 10.1111/eci.13695] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prevalence of non-alcoholic fatty liver disease (NAFLD) is now 25% in the general population but increases to more than 55% in subjects with obesity and/or type 2 diabetes. Simple steatosis (NAFL) can develop into more severe forms, that is non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma leading to death. METHODS In this narrative review, we have discussed the current knowledge in the pathophysiology of fatty liver disease, including both metabolic and non-metabolic factors, insulin resistance, mitochondrial function, as well as the markers of liver damage, giving attention to the alterations in lipid metabolism and production of lipotoxic lipids. RESULTS Insulin resistance, particularly in the adipose tissue, is the main driver of NAFLD due to the excess release of fatty acids. Lipidome analyses have shown that several lipids, including DAGs and ceramides, and especially if they contain saturated lipids, act as bioactive compounds, toxic to the cells. Lipids can also affect mitochondrial function. Not only lipids, but also amino acid metabolism is impaired in NAFL/NASH, and some amino acids, as branched-chain and aromatic amino acids, glutamate, serine and glycine, have been linked to impaired metabolism, insulin resistance and severity of NAFLD and serine is a precursor of ceramides. CONCLUSIONS The measurement of lipotoxic species and adipose tissue dysfunction can help to identify individuals at risk of progression to NASH.
Collapse
Affiliation(s)
- Sara Guerra
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Gabriele Mocciaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
20
|
Saeb A, Grundmann SM, Gessner DK, Schuchardt S, Most E, Wen G, Eder K, Ringseis R. Feeding of cuticles from Tenebrio molitor larvae modulates the gut microbiota and attenuates hepatic steatosis in obese Zucker rats. Food Funct 2022; 13:1421-1436. [PMID: 35048923 DOI: 10.1039/d1fo03920b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insect biomass obtained from large-scale mass-rearing of insect larvae has gained considerable attention in recent years as an alternative and sustainable source of food and feed. A byproduct from mass-rearing of insect larvae is the shed cuticles - the most external components of insects which are a relevant source of the polysaccharide chitin. While it has been shown that chitin modulates the gut microbiota and ameliorates lipid metabolic disorders in obese rodent models, feeding studies dealing with isolated insects' cuticles are completely lacking. Thus, the present study tested the hypothesis that dietary insects' cuticles modulate the gut microbiome and improve hepatic lipid metabolism in obese Zucker rats. To test this hypothesis, three groups of obese Zucker rats were fed a nutrient-adequate, semisynthetic basal diet which was supplemented with either 0% (group O), 1.5% (group O1.5) or 3.0% (group O3.0) Tenebrio molitor cuticles at the expense of cellulose. Oil red O-stained liver sections showed a marked lipid accumulation, but lipid accumulation was clearly less in group O3.0 than in groups O and O1.5. In line with this, hepatic lipid concentrations were 30% lower in group O3.0 than in group O (p < 0.05). No differences were observed across the obese groups regarding liver concentrations of methionine, S-adenosylmethionine and homocysteine. Analysis of cecal microbial community at the family level revealed that the relative abundances of Bifidobacteriaceae, Coriobacteriaceae Erysipelotrichaceae, Lactobacillaceae, Prevotellaceae, Sutterellaceae, unknown Deltaproteobacteria and unknown Firmicutes were higher and those of Anaeroplasmataceae, Desulfovibrionaceae, Eubacteriaceae, Ruminococcaceae, Saccharibacteria and unknown Clostridiales were lower in group O3.0 compared to group O (p < 0.05). Cecal digesta concentrations of total short-chain fatty acids, acetate and butyrate were higher in group O3.0 than in group O (p < 0.05). Targeted plasma metabolomics revealed 53 metabolites differing between groups, amongst which two indole metabolites, indole-3-propionic acid and 3-indoxylsulfate, were markedly elevated in group O3.0 compared to groups O1.5 and O. Regarding that increased abundances of bacteria of the Actinobacteria phylum and Lactobacillaceae family in the gut have been reported to be associated with antisteatotic, hepatoprotective and antiinflammatory effects, the pronounced increases of Bifidobacteriaceae and Coriobacteriaceae (both Actinobacteria), and of Lactobacillaceae in group O3.0 might have contributed to the amelioration of fatty liver.
Collapse
Affiliation(s)
- Armaghan Saeb
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Sarah M Grundmann
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
21
|
Bechynska K, Kosek V, Fenclova M, Muchova L, Smid V, Suk J, Chalupsky K, Sticova E, Hurkova K, Hajslova J, Vitek L, Stranska M. The Effect of Mycotoxins and Silymarin on Liver Lipidome of Mice with Non-Alcoholic Fatty Liver Disease. Biomolecules 2021; 11:1723. [PMID: 34827721 PMCID: PMC8615755 DOI: 10.3390/biom11111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Milk thistle-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum) is often used for the treatment of liver diseases because of the presence of its active component, silymarin. However, the co-occurrence of toxic mycotoxins in these preparations is quite frequent as well. The objective of this study was to investigate the changes in composition of liver lipidome and other clinical characteristics of experimental mice fed by a high-fat methionine-choline deficient diet inducing non-alcoholic fatty liver disease. The mice were exposed to (i) silymarin, (ii) mycotoxins (trichothecenes, enniatins, beauvericin, and altertoxins) and (iii) both silymarin and mycotoxins, and results were compared to the controls. The liver tissue extracts were analyzed by ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Using tools of univariate and multivariate statistical analysis, we were able to identify 48 lipid species from the classes of diacylglycerols, triacylglycerols, free fatty acids, fatty acid esters of hydroxy fatty acids and phospholipids clearly reflecting the dysregulation of lipid metabolism upon exposure to mycotoxin and/or silymarin.
Collapse
Affiliation(s)
- Kamila Bechynska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Vit Kosek
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Marie Fenclova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Lucie Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Vaclav Smid
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Jakub Suk
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Karel Chalupsky
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Eva Sticova
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Kamila Hurkova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Jana Hajslova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Milena Stranska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| |
Collapse
|
22
|
Ooi GJ, Meikle PJ, Huynh K, Earnest A, Roberts SK, Kemp W, Parker BL, Brown W, Burton P, Watt MJ. Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis. J Hepatol 2021; 75:524-535. [PMID: 33887358 DOI: 10.1016/j.jhep.2021.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS & AIMS Obesity often leads to non-alcoholic fatty liver disease (NAFLD), which can progress from simple steatosis (non-alcoholic fatty liver (NAFL)) to non-alcoholic steatohepatitis (NASH). The accumulation of certain lipid subtypes is linked with worsening metabolic and liver disease, however, specific changes during progression from No-NAFL to NAFL then NASH are unresolved. Herein, we characterise the liver, adipose tissue and plasma lipidome of worsening NAFLD in obesity, and evaluate the utility of plasma lipids as biomarkers of NAFLD. METHODS Venous blood, liver, visceral and subcutaneous adipose tissue samples were obtained from 181 patients undergoing bariatric surgery. NAFLD severity was assessed histologically. Lipidomic analysis was performed using liquid chromatography-tandem mass spectrometry. RESULTS The liver lipidome showed substantial changes with increasing steatosis, with increased triacylglycerols, diacylglycerols and sphingolipids including ceramide, dihydroceramide, hexosyl-ceramide and GM3 ganglioside species. These lipid species were also increased in plasma with increasing hepatic steatosis and showed strong correlations with liver lipids. Adipose tissue lipidomes showed no correlation with NAFLD. There were no significant changes in liver lipids with NASH compared to NAFL. The addition of plasma lipid variables to routine markers yielded significant improvements in diagnostic accuracy for NASH (AUROC 0.667 vs. 0.785, p = 0.025). CONCLUSION Overall, these data provide a detailed description of the lipidomic changes with worsening NAFLD, showing significant changes with steatosis but no additional changes with NASH. Alterations in the liver lipidome are paralleled by similar changes in plasma. Further investigation is warranted into the potential utility of plasma lipids as non-invasive biomarkers of NAFLD in obesity. LAY SUMMARY Non-alcoholic fatty liver disease (NAFLD) is characterised by distinct changes in the liver lipidome with steatosis. The development of non-alcoholic steatohepatitis (NASH) does not result in further changes in the lipidome. Lipids within body fat do not appear to influence the lipid profile of the liver or blood. Changes in liver lipids are paralleled by changes in blood lipids. This has potential to be developed into a non-invasive biomarker for NAFLD. CLINICAL TRIAL NUMBER ACTRN12615000875505.
Collapse
Affiliation(s)
- Geraldine J Ooi
- Centre for Obesity Research and Education, Department of Surgery, Monash University, Melbourne, Victoria 3004, Australia.
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Arul Earnest
- Department of Epidemiology and Preventative Medicine, School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, The Alfred Hospital and Monash University, Melbourne, Victoria, 3181, Australia
| | - William Kemp
- Department of Gastroenterology, The Alfred Hospital and Monash University, Melbourne, Victoria, 3181, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Wendy Brown
- Centre for Obesity Research and Education, Department of Surgery, Monash University, Melbourne, Victoria 3004, Australia
| | - Paul Burton
- Centre for Obesity Research and Education, Department of Surgery, Monash University, Melbourne, Victoria 3004, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
23
|
Zhu X, Li Y, Jiang Y, Zhang J, Duan R, Liu L, Liu C, Xu X, Yu L, Wang Q, Xiong F, Ni C, Xu L, He Q. Prediction of Gut Microbial Community Structure and Function in Polycystic Ovary Syndrome With High Low-Density Lipoprotein Cholesterol. Front Cell Infect Microbiol 2021; 11:665406. [PMID: 34350129 PMCID: PMC8326754 DOI: 10.3389/fcimb.2021.665406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota has been proved to be involved in the occurrence and development of many diseases, such as type 2 diabetes, obesity, coronary heart disease, etcetera. It provides a new idea for the pathogenesis of polycystic ovary syndrome (PCOS). Our study showed that the gut microbial community of PCOS with high low-density lipoprotein cholesterol (LDLC) has a noticeable imbalance. Gut microbiota of PCOS patients was significantly changed compared with CON, and these changes were closely related to LDLC. Gut microbiota may affect the metabolic level of PCOS patients through multiple metabolic pathways, and lipid metabolism disorder may further aggravate the imbalance of gut microbiota. Actinomycetaceae, Enterobacteriaceae and Streptococcaceae had high accuracy in the diagnosis of PCOS and the differentiation of subgroups, suggesting that they may play an important role in the diagnosis and treatment of PCOS in the future. Also, the model we built showed good specificity and sensitivity for distinguishing PCOS from CON (including L_CON and L_PCOS, H_CON and H_PCOS). In conclusion, this is the first report on the gut microbiota of PCOS with high LDLC, suggesting that in the drug development or treatment of PCOS patients, the difference of gut microbiota in PCOS patients with different LDLC levels should be fully considered.
Collapse
Affiliation(s)
- Xuping Zhu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Yanyu Li
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Yanmin Jiang
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Jisheng Zhang
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ru Duan
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Lin Liu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Chao Liu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Xiang Xu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Lu Yu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Qian Wang
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Fan Xiong
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Chengming Ni
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Lan Xu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Qing He
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
24
|
Di Sessa A, Riccio S, Pirozzi E, Verde M, Passaro AP, Umano GR, Guarino S, Miraglia del Giudice E, Marzuillo P. Advances in paediatric nonalcoholic fatty liver disease: Role of lipidomics. World J Gastroenterol 2021; 27:3815-3824. [PMID: 34321846 PMCID: PMC8291022 DOI: 10.3748/wjg.v27.i25.3815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Due its close relationship with obesity, nonalcoholic fatty liver disease (NAFLD) has become a major worldwide health issue even in childhood. The most accepted pathophysiological hypothesis is represented by the "multiple hits" theory, in which both hepatic intracellular lipid accumulation and insulin resistance mainly contribute to liver injury through several factors. Among these, lipotoxicity has gained particular attention. In this view, the pathogenic role of different lipid classes in NAFLD (e.g., sphingolipids, fatty acids, ceramides, etc.) has been highlighted in recent lipidomics studies. Although there is some contrast between plasma and liver findings, lipidomic profile in the NAFLD context provides novel insights by expanding knowledge in the intricate field of NAFLD pathophysiology as well as by suggesting innovative therapeutic approaches in order to improve both NAFLD prevention and treatment strategies. Selective changes of distinct lipid species might be an attractive therapeutic target for treating NAFLD. Herein the most recent evidence in this attractive field has been summarized to provide a comprehensive overview of the lipidomic scenario in paediatric NAFLD.
Collapse
Affiliation(s)
- Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Simona Riccio
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emilia Pirozzi
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Martina Verde
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Antonio Paride Passaro
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Giuseppina Rosaria Umano
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
25
|
Sarkar MA, Suzuki A, Abdelmalek MF, Yates KP, Wilson LA, Bass NM, Gill R, Cedars M, Terrault N. Testosterone is Associated With Nonalcoholic Steatohepatitis and Fibrosis in Premenopausal Women With NAFLD. Clin Gastroenterol Hepatol 2021; 19:1267-1274.e1. [PMID: 33010412 PMCID: PMC8175071 DOI: 10.1016/j.cgh.2020.09.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Higher testosterone contributes to imaging-confirmed nonalcoholic fatty liver disease (NAFLD) in women, but whether testosterone influences their disease severity is unknown. METHODS The association of free testosterone (free T) with nonalcoholic steatohepatitis (NASH) was determined in pre-menopausal women with biopsy-confirmed NAFLD (n = 207). Interaction testing was performed for age and free T given decline in testosterone with age, and association of aging with NASH. Regression models adjusted for abdominal adiposity, diabetes, and dyslipidemia. RESULTS Median age was 35 yrs (interquartile range, 29-41); 73% were white, 25% Hispanic; 32% had diabetes, 93% abdominal adiposity, and 95% dyslipidemia. 69% had NASH, 67% any fibrosis, and 15% advanced fibrosis. Higher free T levels were associated with NAFLD severity in younger women (interaction P value <.02). In the youngest age quartile, free T was independently associated with NASH (odds ratio [OR], 2.3; 95% CI, 1.2-4.4), NASH fibrosis (OR, 2.1; 95% CI, 1.1-3.8), and higher fibrosis stage (OR, 1.9; 95% CI, 1.1-3.4), P value .02. In these women, the proportion with NASH steadily rose from 27% to 88%, and with NASH fibrosis rose from 27% to 81%, with higher free T quartiles (P < .01). Free T was additionally associated with abdominal adiposity among all pre-menopausal women (OR, 2.2; 95% CI, 1.2-4.1: P = .02). CONCLUSIONS In young women with NAFLD, higher testosterone levels conferred a 2-fold higher risk of NASH and NASH fibrosis, and increased risk of abdominal adiposity, supporting a potential mechanistic link of abdominal fat on testosterone-associated liver injury. Testosterone may represent an early risk factor for NASH progression in young women, prior to their onset of more dominant, age-related metabolic risk factors.
Collapse
Affiliation(s)
- Monika A Sarkar
- Division of Gastroenterology and Hepatology, University of California, San Francisco, San Francisco, California.
| | - Ayako Suzuki
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina
| | - Katherine P Yates
- Department of Epidemiology and Biostatistics, Johns Hopkins University, Baltimore, Maryland
| | - Laura A Wilson
- Department of Epidemiology and Biostatistics, Johns Hopkins University, Baltimore, Maryland
| | - Nathan M Bass
- Division of Gastroenterology and Hepatology, University of California, San Francisco, San Francisco, California
| | - Ryan Gill
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Marcelle Cedars
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, California
| | - Norah Terrault
- Division of Gastroenterology and Hepatology, University of Southern California, Los Angeles, California
| |
Collapse
|
26
|
Rosso N, Stephenson AM, Giraudi PJ, Tiribelli C. Diagnostic management of nonalcoholic fatty liver disease: a transformational period in the development of diagnostic and predictive tools-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:727. [PMID: 33987425 PMCID: PMC8106012 DOI: 10.21037/atm-20-4723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NAFLD is an emerging healthcare epidemic that is causing predictable adverse consequences for healthcare systems, societies and individuals. Whilst NAFLD is recognized as a multi-system disease with compound pathways that are both benign and pernicious in their unfolding; NASH is generally understood as a deleterious follow-on condition with path-specific tendencies that progress to cirrhosis, HCC and liver transplantation. Recent evidence is beginning to challenge this interpretation demanding more attention to the personalized nature of the disease and its pathogenesis across multiple different cohorts. This means that we need better diagnostic and prognostic tools not only to capture those 'at risk' disease phenotypes; but for better stratification and monitoring of patients according to their treatment strategies. With the advent of pipeline therapies for NASH underway, the medical profession looks to adopt more accurate non-invasive diagnostic tools that can help to delineate and eliminate NASH histology. This review looks at the search for the killer application revealing this particular moment in time as a transformational period; one that is pushing the boundaries of technology to integrate diverse panels of species through sensitive profiling and multi-omics approaches that cast wide, yet powerful diagnostic nets that have the potential to elucidate pathway specific biomarkers that are personalized and predictable.
Collapse
Affiliation(s)
- Natalia Rosso
- Fondazione Italiana Fegato, ONLUS Area Science Park Basovizza, Trieste, Italy
| | - Adam M Stephenson
- Helena Biosciences, Queensway South, Team Valley Trading Estate, Gateshead, UK
| | - Pablo J Giraudi
- Fondazione Italiana Fegato, ONLUS Area Science Park Basovizza, Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, ONLUS Area Science Park Basovizza, Trieste, Italy
| |
Collapse
|
27
|
Coupling Machine Learning and Lipidomics as a Tool to Investigate Metabolic Dysfunction-Associated Fatty Liver Disease. A General Overview. Biomolecules 2021; 11:biom11030473. [PMID: 33810079 PMCID: PMC8004861 DOI: 10.3390/biom11030473] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatic biopsy is the gold standard for staging nonalcoholic fatty liver disease (NAFLD). Unfortunately, accessing the liver is invasive, requires a multidisciplinary team and is too expensive to be conducted on large segments of the population. NAFLD starts quietly and can progress until liver damage is irreversible. Given this complex situation, the search for noninvasive alternatives is clinically important. A hallmark of NAFLD progression is the dysregulation in lipid metabolism. In this context, recent advances in the area of machine learning have increased the interest in evaluating whether multi-omics data analysis performed on peripheral blood can enhance human interpretation. In the present review, we show how the use of machine learning can identify sets of lipids as predictive biomarkers of NAFLD progression. This approach could potentially help clinicians to improve the diagnosis accuracy and predict the future risk of the disease. While NAFLD has no effective treatment yet, the key to slowing the progression of the disease may lie in predictive robust biomarkers. Hence, to detect this disease as soon as possible, the use of computational science can help us to make a more accurate and reliable diagnosis. We aimed to provide a general overview for all readers interested in implementing these methods.
Collapse
|
28
|
Gariani K, Jornayvaz FR. Pathophysiology of NASH in endocrine diseases. Endocr Connect 2021; 10:R52-R65. [PMID: 33449917 PMCID: PMC7983516 DOI: 10.1530/ec-20-0490] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.
Collapse
Affiliation(s)
- Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Correspondence should be addressed to F R Jornayvaz:
| |
Collapse
|
29
|
Mann JP, Pietzner M, Wittemans LB, Rolfe EDL, Kerrison ND, Imamura F, Forouhi NG, Fauman E, Allison ME, Griffin JL, Koulman A, Wareham NJ, Langenberg C. Insights into genetic variants associated with NASH-fibrosis from metabolite profiling. Hum Mol Genet 2020; 29:3451-3463. [PMID: 32720691 PMCID: PMC7116726 DOI: 10.1093/hmg/ddaa162] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Several genetic discoveries robustly implicate five single-nucleotide variants in the progression of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and fibrosis (NASH-fibrosis), including a recently identified variant in MTARC1. To better understand these variants as potential therapeutic targets, we aimed to characterize their impact on metabolism using comprehensive metabolomics data from two population-based studies. A total of 9135 participants from the Fenland study and 9902 participants from the EPIC-Norfolk cohort were included in the study. We identified individuals with risk alleles associated with NASH-fibrosis: rs738409C>G in PNPLA3, rs58542926C>T in TM6SF2, rs641738C>T near MBOAT7, rs72613567TA>T in HSD17B13 and rs2642438A>G in MTARC1. Circulating levels of 1449 metabolites were measured using targeted and untargeted metabolomics. Associations between NASH-fibrosis variants and metabolites were assessed using linear regression. The specificity of variant-metabolite associations were compared to metabolite associations with ultrasound-defined steatosis, gene variants linked to liver fat (in GCKR, PPP1R3B and LYPLAL1) and gene variants linked to cirrhosis (in HFE and SERPINA1). Each NASH-fibrosis variant demonstrated a specific metabolite profile with little overlap (8/97 metabolites) comprising diverse aspects of lipid metabolism. Risk alleles in PNPLA3 and HSD17B13 were both associated with higher 3-methylglutarylcarnitine and three variants were associated with lower lysophosphatidylcholine C14:0. The risk allele in MTARC1 was associated with higher levels of sphingomyelins. There was no overlap with metabolites that associated with HFE or SERPINA1 variants. Our results suggest a link between the NASH-protective variant in MTARC1 to the metabolism of sphingomyelins and identify distinct molecular patterns associated with each of the NASH-fibrosis variants under investigation.
Collapse
Affiliation(s)
- Jake P Mann
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Laura B Wittemans
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Emmanuela De Lucia Rolfe
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Nicola D Kerrison
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Fumiaki Imamura
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Nita G Forouhi
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Eric Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02142, USA
| | - Michael E Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jules L Griffin
- MRC Human Nutrition Research, University of Cambridge, Cambridge CB1 9NL, UK
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Albert Koulman
- MRC Human Nutrition Research, University of Cambridge, Cambridge CB1 9NL, UK
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| |
Collapse
|
30
|
Kartsoli S, Kostara CE, Tsimihodimos V, Bairaktari ET, Christodoulou DK. Lipidomics in non-alcoholic fatty liver disease. World J Hepatol 2020; 12:436-450. [PMID: 32952872 PMCID: PMC7475773 DOI: 10.4254/wjh.v12.i8.436] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/03/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disorder in Western countries, comprises steatosis to nonalcoholic steatohepatitis (NASH), with the latter having the potential to progress to cirrhosis. The transition from isolated steatosis to NASH is still poorly understood, but lipidomics approach revealed that the hepatic lipidome is extensively altered in the setting of steatosis and steatohepatitis and these alterations correlate with disease progression. Recent data suggest that both quantity and quality of the accumulated lipids are involved in pathogenesis of NAFLD. Changes in glycerophospholipid, sphingolipid, and fatty acid composition have been described in both liver biopsies and plasma of patients with NAFLD, implicating that specific lipid species are involved in oxidative stress, inflammation, and cell death. In this article, we summarize the findings of main human lipidomics studies in NAFLD and delineate the currently available information on the pathogenetic role of each lipid class in lipotoxicity and disease progression.
Collapse
Affiliation(s)
- Sofia Kartsoli
- Department of Gastroenterology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Christina E Kostara
- Laboratory of Clinical Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Eleni T Bairaktari
- Laboratory of Clinical Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios K Christodoulou
- Department of Gastroenterology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
31
|
Chen P, Zhang Q, Zhang H, Gao Y, Zhou Y, Chen Y, Guan L, Jiao T, Zhao Y, Huang M, Bi H. Carnitine palmitoyltransferase 1C reverses cellular senescence of MRC-5 fibroblasts via regulating lipid accumulation and mitochondrial function. J Cell Physiol 2020; 236:958-970. [PMID: 32632982 DOI: 10.1002/jcp.29906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Cellular senescence, a state of growth arrest, is involved in various age-related diseases. We previously found that carnitine palmitoyltransferase 1C (CPT1C) is a key regulator of cancer cell proliferation and senescence, but it is unclear whether CPT1C plays a similar role in normal cells. Therefore, this study aimed to investigate the role of CPT1C in cellular proliferation and senescence of human embryonic lung MRC-5 fibroblasts and the involved mechanisms. The results showed that CPT1C could reverse the cellular senescence of MRC-5 fibroblasts, as evidenced by reduced senescence-associated β-galactosidase activity, downregulated messenger RNA (mRNA) expression of senescence-associated secretory phenotype factors, and enhanced bromodeoxyuridine incorporation. Lipidomics analysis further revealed that CPT1C gain-of-function reduced lipid accumulation and reversed abnormal metabolic reprogramming of lipids in late MRC-5 cells. Oil Red O staining and Nile red fluorescence also indicated significant reduction of lipid accumulation after CPT1C gain-of-function. Consequently, CPT1C gain-of-function significantly reversed mitochondrial dysfunction, as evaluated by increased adenosine triphosphate synthesis and mitochondrial transmembrane potential, decreased radical oxygen species, upregulated respiratory capacity and mRNA expression of genes related to mitochondrial function. In summary, CPT1C plays a vital role in MRC-5 cellular proliferation and can reverse MRC-5 cellular senescence through the regulation of lipid metabolism and mitochondrial function, which supports the role of CPT1C as a novel target for intervention into cellular proliferation and senescence and suggests CPT1C as a new strategy for antiaging.
Collapse
Affiliation(s)
- Panpan Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qianbin Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yixin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihuan Guan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tingying Jiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingyuan Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Li CY, Niu M, Liu YL, Tang JF, Chen W, Qian G, Zhang MY, Shi YF, Lin JZ, Li XJ, Li RS, Xiao XH, Li GH, Wang JB. Screening for Susceptibility-Related Factors and Biomarkers of Xianling Gubao Capsule-Induced Liver Injury. Front Pharmacol 2020; 11:810. [PMID: 32547402 PMCID: PMC7274038 DOI: 10.3389/fphar.2020.00810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Although increasing reports from the literature on herbal-related hepatotoxicity, the identification of susceptibility-related factors and biomarkers remains challenging due to idiosyncratic drug-induced liver injury (IDILI). As a well-known Chinese medicine prescription, Xianling Gubao Capsule (XLGB) has attracted great attention due to reports of potential liver toxicity. But the mechanism behind it is difficult to determine. In this paper, we found that XLGB-induced liver injury belongs to IDILI through the analysis of clinical liver injury cases. In toxicological experiment assessment, co-exposure to XLGB and non-toxic dose of lipopolysaccharide (LPS) could cause evident liver injury as manifested by significantly increased plasma alanine aminotransferase activity and obvious liver histological damage. However, it failed to induce observable liver injury in normal rats, suggesting that mild immune stress may be a susceptibility factor for XLGB-induced idiosyncratic liver injury. Furthermore, plasma cytokines were determined and 15 cytokines (such as IL-1β, IFN-γ, and MIP-2α etc) were acquired by receiver operating characteristic (ROC) curves analysis. The expression of these 15 cytokines in LPS group was significantly up-regulated in contrast to the normal group. Meanwhile, the metabolomics profile showed that mild immune stress caused metabolic reprogramming, including sphingolipid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. 8 potential biomarkers (such as sphinganine, glycerophosphoethanolamine, and phenylalanine etc.) were identified by correlation analysis. Therefore, these results suggested that intracellular metabolism and immune changes induced by mild immune stress may be important susceptibility mechanisms for XLGB IDILI.
Collapse
Affiliation(s)
- Chun-Yu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ya-Lei Liu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Fa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Qian
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Yu Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Fei Shi
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Zhi Lin
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing-Jie Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guo-Hui Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Struzik ZJ, Weerts AN, Storch J, Thompson DH. Stereospecific synthesis of phosphatidylglycerol using a cyanoethyl phosphoramidite precursor. Chem Phys Lipids 2020; 231:104933. [PMID: 32533981 DOI: 10.1016/j.chemphyslip.2020.104933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Phosphatidylglycerols (PG) are a family of naturally occurring phospholipids that are responsible for critical operations within cells. PG are characterized by an (R) configuration in the diacyl glycerol backbone and an (S) configuration in the phosphoglycerol head group. Herein, we report a synthetic route to provide control over the PG stereocenters as well as control of the acyl chain identity.
Collapse
Affiliation(s)
- Zachary J Struzik
- Department of Chemistry, Purdue University, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, United States
| | - Ashley N Weerts
- Department of Chemistry, Purdue University, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, United States
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - David H Thompson
- Department of Chemistry, Purdue University, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
34
|
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity? Gastroenterology 2020; 158:1881-1898. [PMID: 32044317 DOI: 10.1053/j.gastro.2020.01.049] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Gut microbiota plays a role in the pathophysiology of metabolic diseases, which include nonalcoholic fatty liver diseases, through the gut-liver axis. To date, clinical guidelines recommend a weight loss goal of 7%-10% to improve features of nonalcoholic fatty liver diseases. Because this target is not easily achieved by all patients, alternative therapeutic options are currently being evaluated. This review focuses on therapeutics that aim to modulate the gut microbiota and the gut-liver axis. We discuss how probiotics, prebiotics, synbiotic, fecal microbiota transfer, polyphenols, specific diets, and exercise interventions have been found to modify gut microbiota signatures; improve nonalcoholic fatty liver disease outcomes; and detail, when available, the different mechanisms by which these beneficial outcomes might occur. Apart from probiotics that have already been tested in human randomized controlled trials, most of these potential therapeutics have been studied in animals. Their efficacy still warrants confirmation in humans using appropriate design.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, UMRS U1269, Nutriomics Research Unit, Paris, France; Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centre de Recherche en Nutrition Humaine d'Ile de France, Paris, France; Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands.
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, University of Amsterdam Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, University of Amsterdam Medical Center, Free University, Amsterdam, The Netherlands
| | - Karine Clément
- Sorbonne Université, INSERM, UMRS U1269, Nutriomics Research Unit, Paris, France; Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centre de Recherche en Nutrition Humaine d'Ile de France, Paris, France.
| |
Collapse
|
35
|
A Pilot Study of Serum Sphingomyelin Dynamics in Subjects with Severe Obesity and Non-alcoholic Steatohepatitis after Sleeve Gastrectomy. Obes Surg 2020; 29:983-989. [PMID: 30488259 DOI: 10.1007/s11695-018-3612-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is present in a high percentage of obese patients undergoing bariatric surgery. A significant proportion of patients still present NASH even after considerable weight loss and metabolic improvements after surgery. OBJECTIVE To determine whether the changes in the serum lipidome after sleeve gastrectomy could be used to discriminate obese patients with NASH patients to those with non-alcoholic fatty liver (NAFL). METHODS This study involved 24 patients with grade 3 obesity diagnosed with either NAFL (n = 8) or NASH (n = 16) using the non-invasive OWLiver assay. All patients suffering from NASH were re-evaluated 6 months after bariatric surgery using the OWLiver test to confirm NASH resolution. Serum lipid extracts were assessed at baseline and 6 months post surgery and were analyzed in an ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-TOF-MS)-based platform. RESULTS Lipidomic analysis revealed a differential sphingomyelin profile in patients with NASH resolution after sleeve gastrectomy. Certain serum sphingomyelin species were significantly higher at baseline in NASH patients in comparison to those with NAFL. Sphingomyelin profile of subjects with NASH resolution was similar to that for obese subjects with NAFL before bariatric surgery. CONCLUSION Our study indicates that the serum sphingomyelin levels could be related to the status of non-alcoholic fatty liver disease and that certain sphingomyelin species may be used for the follow-up of obese patients with NASH after sleeve gastrectomy.
Collapse
|
36
|
High-density lipoproteins from egg yolk's effect on hyperlipidemia in a high-fat-diet obese mouse using lipidomic analysis. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Natural History of Simple Steatosis or Nonalcoholic Fatty Liver. J Clin Exp Hepatol 2020; 10:255-262. [PMID: 32405182 PMCID: PMC7212297 DOI: 10.1016/j.jceh.2019.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023] Open
Abstract
The histological spectrum of nonalcoholic fatty liver disease (NAFLD) ranges from simple steatosis or nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis and hepatocellular carcinoma. Ballooning degeneration of hepatocytes with or without fibrosis is the key feature that differentiates NASH from NAFL. Liver biopsy is the only reliable method for diagnosing NAFL and differentiating it from NASH. Although the epidemiology of NAFLD is well described, the need for invasive biopsy limits our knowledge of the community prevalence of NAFL. Recent data suggest that the biochemical composition of hepatic steatosis may have a bearing on the disease. Triglycerides, the most commonly accumulated lipid, have a cytoprotective role because of their inert nature. Several paired liver biopsy studies and longitudinal follow-up studies have shown that NAFL is not completely benign as previously envisaged. NAFL can indeed progress to NASH and severe fibrosis, with progression being influenced by presence of baseline or worsening metabolic risk factors. Overall, NAFL carries a low risk of liver-related and overall mortality although the risk of cardiovascular mortality is similar to that of NASH. Current concepts suggest the presence of a dynamic bidirectional cycling between NAFL and NASH with slow progression of fibrosis in majority of the patients. The fact that ultimately it is the onset of progressive fibrosis that dictates clinical outcomes brings into question the relevance of distinguishing NAFL from NASH.
Collapse
|
38
|
Kempegowda P, Melson E, Manolopoulos KN, Arlt W, O’Reilly MW. Implicating androgen excess in propagating metabolic disease in polycystic ovary syndrome. Ther Adv Endocrinol Metab 2020; 11:2042018820934319. [PMID: 32637065 PMCID: PMC7315669 DOI: 10.1177/2042018820934319] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) has been traditionally perceived as a reproductive disorder due to its most common presentation with menstrual dysfunction and infertility. However, it is now clear that women with PCOS are at increased risk of metabolic dysfunction, from impaired glucose tolerance and type 2 diabetes mellitus to nonalcoholic fatty liver disease and cardiovascular disease. PCOS is characterised by androgen excess, with cross-sectional data showing that hyperandrogenism is directly complicit in the development of metabolic complications. Recent studies have also shown that C11-oxy C19 androgens are emerging to be clinically and biochemically significant in PCOS, thus emphasising the importance of understanding the impact of both classic and C11-oxy C19 androgens on women's health. Here we discuss androgen metabolism in the context of PCOS, and dissect the role played by androgens in the development of metabolic disease through their effects on metabolic target tissues in women.
Collapse
Affiliation(s)
- Punith Kempegowda
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Eka Melson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Konstantinos N. Manolopoulos
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | |
Collapse
|
39
|
The effect of ω-3 polyunsaturated fatty acids on the liver lipidome, proteome and bile acid profile: parenteral versus enteral administration. Sci Rep 2019; 9:19097. [PMID: 31836843 PMCID: PMC6910966 DOI: 10.1038/s41598-019-54225-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022] Open
Abstract
Parenteral nutrition (PN) is often associated with the deterioration of liver functions (PNALD). Omega-3 polyunsaturated fatty acids (PUFA) were reported to alleviate PNALD but the underlying mechanisms have not been fully unraveled yet. Using omics´ approach, we determined serum and liver lipidome, liver proteome, and liver bile acid profile as well as markers of inflammation and oxidative stress in rats administered either ω-6 PUFA based lipid emulsion (Intralipid) or ω-6/ω-3 PUFA blend (Intralipid/Omegaven) via the enteral or parenteral route. In general, we found that enteral administration of both lipid emulsions has less impact on the liver than the parenteral route. Compared with parenterally administered Intralipid, PN administration of ω-3 PUFA was associated with 1. increased content of eicosapentaenoic (EPA)- and docosahexaenoic (DHA) acids-containing lipid species; 2. higher abundance of CYP4A isoenzymes capable of bioactive lipid synthesis and the increased content of their potential products (oxidized EPA and DHA); 3. downregulation of enzymes involved CYP450 drug metabolism what may represent an adaptive mechanism counteracting the potential negative effects (enhanced ROS production) of PUFA metabolism; 4. normalized anti-oxidative capacity and 5. physiological BAs spectrum. All these findings may contribute to the explanation of ω-3 PUFA protective effects in the context of PN.
Collapse
|
40
|
Multi-technique comparison of atherogenic and MCD NASH models highlights changes in sphingolipid metabolism. Sci Rep 2019; 9:16810. [PMID: 31728041 PMCID: PMC6856196 DOI: 10.1038/s41598-019-53346-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Lipotoxicity is a key player in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive subtype of nonalcoholic fatty liver disease (NAFLD). In the present study, we combine histological, transcriptional and lipidomic approaches to dissociate common and specific alterations induced by two classical dietary NASH models (atherogenic (ATH) and methionine/choline deficient (MCD) diet) in C57BL/6J male mice. Despite a similar degree of steatosis, MCD-fed mice showed more pronounced liver damage and a worsened pro-inflammatory and pro-fibrogenic environment than ATH-fed mice. Regarding lipid metabolism, the ATH diet triggered hepatic counter regulatory mechanisms, while the MCD diet worsened liver lipid accumulation by a concomitant increase in lipid import and reduction in lipid export. Liver lipidomics revealed sphingolipid enrichment in both NASH models that was accompanied by an upregulation of the ceramide biosynthesis pathway and a significant rise in dihydroceramide levels. In contrast, the phospholipid composition was not substantially altered by the ATH diet, whereas the livers of MCD-fed mice presented a reduced phosphatidylcholine to phosphatidylethanolamine (PC/PE) ratio and a strong depletion in phospholipids containing the sum of 34-36 carbons in their fatty acid chains. Therefore, the assessment of liver damage at the histological and transcriptional level combined with a lipidomic analysis reveals sphingolipids as shared mediators in liver lipotoxicity and pathogenesis of NASH.
Collapse
|
41
|
Li K, Yuan M, He Z, Wu Q, Zhang C, Lei Z, Rong X, Huang Z, Turnbull JE, Guo J. Omics Insights into Metabolic Stress and Resilience of Rats in Response to Short‐term Fructose Overfeeding. Mol Nutr Food Res 2019; 63:e1900773. [DOI: 10.1002/mnfr.201900773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Kun‐Ping Li
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Min Yuan
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhuo‐Ru He
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Qi Wu
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Chu‐Mei Zhang
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhi‐Li Lei
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Xiang‐Lu Rong
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Zebo Huang
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510006 China
| | - Jeremy E. Turnbull
- Centre for Glycobiology, Department of BiochemistryInstitute of Integrative BiologyUniversity of Liverpool Liverpool L69 7ZB UK
| | - Jiao Guo
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| |
Collapse
|
42
|
Collin de l'Hortet A, Takeishi K, Guzman-Lepe J, Morita K, Achreja A, Popovic B, Wang Y, Handa K, Mittal A, Meurs N, Zhu Z, Weinberg F, Salomon M, Fox IJ, Deng CX, Nagrath D, Soto-Gutierrez A. Generation of Human Fatty Livers Using Custom-Engineered Induced Pluripotent Stem Cells with Modifiable SIRT1 Metabolism. Cell Metab 2019; 30:385-401.e9. [PMID: 31390551 PMCID: PMC6691905 DOI: 10.1016/j.cmet.2019.06.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
The mechanisms by which steatosis of the liver progresses to non-alcoholic steatohepatitis and end-stage liver disease remain elusive. Metabolic derangements in hepatocytes controlled by SIRT1 play a role in the development of fatty liver in inbred animals. The ability to perform similar studies using human tissue has been limited by the genetic variability in man. We generated human induced pluripotent stem cells (iPSCs) with controllable expression of SIRT1. By differentiating edited iPSCs into hepatocytes and knocking down SIRT1, we found increased fatty acid biosynthesis that exacerbates fat accumulation. To model human fatty livers, we repopulated decellularized rat livers with human mesenchymal cells, fibroblasts, macrophages, and human SIRT1 knockdown iPSC-derived hepatocytes and found that the human iPSC-derived liver tissue developed macrosteatosis, acquired proinflammatory phenotype, and shared a similar lipid and metabolic profiling to human fatty livers. Biofabrication of genetically edited human liver tissue may become an important tool for investigating human liver biology and disease.
Collapse
Affiliation(s)
| | - Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jorge Guzman-Lepe
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Branimir Popovic
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Kan Handa
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anjali Mittal
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ziwen Zhu
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Frank Weinberg
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
43
|
Lupberger J, Croonenborghs T, Roca Suarez AA, Van Renne N, Jühling F, Oudot MA, Virzì A, Bandiera S, Jamey C, Meszaros G, Brumaru D, Mukherji A, Durand SC, Heydmann L, Verrier ER, El Saghire H, Hamdane N, Bartenschlager R, Fereshetian S, Ramberger E, Sinha R, Nabian M, Everaert C, Jovanovic M, Mertins P, Carr SA, Chayama K, Dali-Youcef N, Ricci R, Bardeesy NM, Fujiwara N, Gevaert O, Zeisel MB, Hoshida Y, Pochet N, Baumert TF. Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology 2019; 157:537-551.e9. [PMID: 30978357 PMCID: PMC8318381 DOI: 10.1053/j.gastro.2019.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The mechanisms of hepatitis C virus (HCV) infection, liver disease progression, and hepatocarcinogenesis are only partially understood. We performed genomic, proteomic, and metabolomic analyses of HCV-infected cells and chimeric mice to learn more about these processes. METHODS Huh7.5.1dif (hepatocyte-like cells) were infected with culture-derived HCV and used in RNA sequencing, proteomic, metabolomic, and integrative genomic analyses. uPA/SCID (urokinase-type plasminogen activator/severe combined immunodeficiency) mice were injected with serum from HCV-infected patients; 8 weeks later, liver tissues were collected and analyzed by RNA sequencing and proteomics. Using differential expression, gene set enrichment analyses, and protein interaction mapping, we identified pathways that changed in response to HCV infection. We validated our findings in studies of liver tissues from 216 patients with HCV infection and early-stage cirrhosis and paired biopsy specimens from 99 patients with hepatocellular carcinoma, including 17 patients with histologic features of steatohepatitis. Cirrhotic liver tissues from patients with HCV infection were classified into 2 groups based on relative peroxisome function; outcomes assessed included Child-Pugh class, development of hepatocellular carcinoma, survival, and steatohepatitis. Hepatocellular carcinomas were classified according to steatohepatitis; the outcome was relative peroxisomal function. RESULTS We quantified 21,950 messenger RNAs (mRNAs) and 8297 proteins in HCV-infected cells. Upon HCV infection of hepatocyte-like cells and chimeric mice, we observed significant changes in levels of mRNAs and proteins involved in metabolism and hepatocarcinogenesis. HCV infection of hepatocyte-like cells significantly increased levels of the mRNAs, but not proteins, that regulate the innate immune response; we believe this was due to the inhibition of translation in these cells. HCV infection of hepatocyte-like cells increased glucose consumption and metabolism and the STAT3 signaling pathway and reduced peroxisome function. Peroxisomes mediate β-oxidation of very long-chain fatty acids; we found intracellular accumulation of very long-chain fatty acids in HCV-infected cells, which is also observed in patients with fatty liver disease. Cells in livers from HCV-infected mice had significant reductions in levels of the mRNAs and proteins associated with peroxisome function, indicating perturbation of peroxisomes. We found that defects in peroxisome function were associated with outcomes and features of HCV-associated cirrhosis, fatty liver disease, and hepatocellular carcinoma in patients. CONCLUSIONS We performed combined transcriptome, proteome, and metabolome analyses of liver tissues from HCV-infected hepatocyte-like cells and HCV-infected mice. We found that HCV infection increases glucose metabolism and the STAT3 signaling pathway and thereby reduces peroxisome function; alterations in the expression levels of peroxisome genes were associated with outcomes of patients with liver diseases. These findings provide insights into liver disease pathogenesis and might be used to identify new therapeutic targets.
Collapse
Affiliation(s)
- Joachim Lupberger
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France.
| | - Tom Croonenborghs
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Armando Andres Roca Suarez
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Nicolaas Van Renne
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Frank Jühling
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Marine A Oudot
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Alessia Virzì
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Carole Jamey
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gergö Meszaros
- Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Daniel Brumaru
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Atish Mukherji
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Sarah C Durand
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Eloi R Verrier
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Hussein El Saghire
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Nourdine Hamdane
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shaunt Fereshetian
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Evelyn Ramberger
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Rileen Sinha
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mohsen Nabian
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Celine Everaert
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Marko Jovanovic
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Department of Biological Sciences, Columbia University, New York, New York
| | - Philipp Mertins
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Steven A Carr
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nassim Dali-Youcef
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Romeo Ricci
- Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | | | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olivier Gevaert
- Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, California
| | - Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nathalie Pochet
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Thomas F Baumert
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France; Pôle Hépato-digestif, Institut Hopitalo-Universitaire, Strasbourg, France.
| |
Collapse
|
44
|
Ilan Y. β-Glycosphingolipids as Mediators of Both Inflammation and Immune Tolerance: A Manifestation of Randomness in Biological Systems. Front Immunol 2019; 10:1143. [PMID: 31178868 PMCID: PMC6538797 DOI: 10.3389/fimmu.2019.01143] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 05/07/2019] [Indexed: 12/27/2022] Open
Abstract
Plasticity in biological systems is attributed to the combination of multiple parameters which determine function. These include genotypic, phenotypic, and environmental factors. While biological processes can be viewed as ordered and sequential, biological randomness was suggested to underline part of them. The present review looks into the concept of randomness in biological systems by exploring the glycosphingolipids-NKT cells example. NKT cells are a unique subset of regulatory lymphocytes which play a role in both inflammation and tolerance. Glycosphingolipids promote an immune balance by changing different arms of the immune system in opposing environments. Traditional immunology looks at skewing the immune system into different directions by different types of activation of the same cell stimulation of different cells subsets, use of different ligands, or different the effect of different immune environments. While these may explain some of the effects, the lack of consistency and opposing results under similar settings may involve randomness which may also be part of real life effects of immunomodulatory agents. It means that several of the biological processes, cannot be explained by simple linear models, and may involve more complex concepts. The application for these concepts for improving therapies to patients with Gaucher disease are discussed. SUMMARY The use of different ligands that target a variety of cell subsets in different immune environments may underlie differences in the functionality of NKT cells and their variability in response to NKT-based therapies. The novel concept of randomness in biology means that several biological processes cannot be solely explained by simple linear models and may instead involve much more complicated schemes of random disorder. These may have implications on future design of therapeutic regimens for improving the response to current treatments.
Collapse
Affiliation(s)
- Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
45
|
Mika A, Sledzinski T, Stepnowski P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr Med Chem 2019; 26:60-103. [PMID: 28971757 DOI: 10.2174/0929867324666171003121127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity, insulin resistance, diabetes, and metabolic syndrome are associated with lipid alterations, and they affect the risk of long-term cardiovascular disease. A reliable analytical instrument to detect changes in the composition or structures of lipids and the tools allowing to connect changes in a specific group of lipids with a specific disease and its progress, is constantly lacking. Lipidomics is a new field of medicine based on the research and identification of lipids and lipid metabolites present in human organism. The primary aim of lipidomics is to search for new biomarkers of different diseases, mainly civilization diseases. OBJECTIVE We aimed to review studies reporting the application of mass spectrometry for lipid analysis in metabolic diseases. METHOD Following an extensive search of peer-reviewed articles on the mass spectrometry analysis of lipids the literature has been discussed in this review article. RESULTS The lipid group contains around 1.7 million species; they are totally different, in terms of the length of aliphatic chain, amount of rings, additional functional groups. Some of them are so complex that their complex analyses are a challenge for analysts. Their qualitative and quantitative analysis of is based mainly on mass spectrometry. CONCLUSION Mass spectrometry techniques are excellent tools for lipid profiling in complex biological samples and the combination with multivariate statistical analysis enables the identification of potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
46
|
Kayser BD, Lhomme M, Prifti E, Cunha CD, Marquet F, Chain F, Naas I, Pelloux V, Dao M, Kontush A, Rizkalla SW, Aron‐Wisnewsky J, Bermúdez‐Humarán LG, Oakley F, Langella P, Clément K, Dugail I. Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB J 2019; 33:4741-4754. [PMID: 30608881 PMCID: PMC8793811 DOI: 10.1096/fj.201801897r] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/03/2018] [Indexed: 01/26/2023]
Abstract
Lipidomic techniques can improve our understanding of complex lipid interactions that regulate metabolic diseases. Here, a serum phospholipidomics analysis identified associations between phosphatidylglycerols (PGs) and gut microbiota dysbiosis. Compared with the other phospholipids, serum PGs were the most elevated in patients with low microbiota gene richness, which were normalized after a dietary intervention that restored gut microbial diversity. Serum PG levels were positively correlated with metagenomic functional capacities for bacterial LPS synthesis and host markers of low-grade inflammation; transcriptome databases identified PG synthase, the first committed enzyme in PG synthesis, as a potential mediator. Experiments in mice and cultured human-derived macrophages demonstrated that LPS induces PG release. Acute PG treatment in mice altered adipose tissue gene expression toward remodeling and inhibited ex vivo lipolysis in adipose tissue, suggesting that PGs favor lipid storage. Indeed, several PG species were associated with the severity of obesity in mice and humans. Finally, despite enrichment in PGs in bacterial membranes, experiments employing gnotobiotic mice colonized with recombinant PG overproducing Lactococcus lactis showed limited direct contribution of microbial PGs to the host. In summary, PGs are inflammation-responsive lipids indirectly regulated by the gut microbiota via endotoxins and regulate adipose tissue homeostasis in obesity.-Kayser, B. D., Lhomme, M., Prifti, E., Da Cunha, C., Marquet, F., Chain, F., Naas, I., Pelloux, V., Dao, M.-C., Kontush, A., Rizkalla, S. W., Aron-Wisnewsky, J., Bermúdez-Humarán, L. G., Oakley, F., Langella, P., Clément, K., Dugail, I. Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity.
Collapse
Affiliation(s)
| | - Marie Lhomme
- ICANalytics TeamInstitute of Cardiometabolism and Nutrition (ICAN)ParisFrance
- Integromics TeamInstitute of Cardiometabolism and Nutrition (ICAN)ParisFrance
| | - Edi Prifti
- Nutriomics TeamUnité 1166—Sorbonne UniversitéParisFrance
- ICANalytics TeamInstitute of Cardiometabolism and Nutrition (ICAN)ParisFrance
- Integromics TeamInstitute of Cardiometabolism and Nutrition (ICAN)ParisFrance
| | - Carla Da Cunha
- Nutriomics TeamUnité 1166—Sorbonne UniversitéParisFrance
| | | | - Florian Chain
- Micalis InstituteInstitut National de la Recherche Aagronomique (INRA)—AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Isabelle Naas
- Micalis InstituteInstitut National de la Recherche Aagronomique (INRA)—AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | | | | | - Anatol Kontush
- Integrative Biology of Atherosclerosis TeamINSERMUnité 1166—Sorbonne UniversitéParisFrance
| | | | - Judith Aron‐Wisnewsky
- Nutriomics TeamUnité 1166—Sorbonne UniversitéParisFrance
- Nutrition DepartmentCentre de Recherche en Nutrition Humaine (CRNH)—Ile de FrancePitié‐Salpêtrière HospitalAssistance Publique—Hôpitaux de Paris (AP—HP)ParisFrance
| | - Luis G. Bermúdez‐Humarán
- Micalis InstituteInstitut National de la Recherche Aagronomique (INRA)—AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Fiona Oakley
- Newcastle Fibrosis Research GroupInstitute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Philippe Langella
- Micalis InstituteInstitut National de la Recherche Aagronomique (INRA)—AgroParisTechUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Karine Clément
- Nutriomics TeamUnité 1166—Sorbonne UniversitéParisFrance
- Nutrition DepartmentCentre de Recherche en Nutrition Humaine (CRNH)—Ile de FrancePitié‐Salpêtrière HospitalAssistance Publique—Hôpitaux de Paris (AP—HP)ParisFrance
| | | |
Collapse
|
47
|
Liver DNA methylation of FADS2 associates with FADS2 genotype. Clin Epigenetics 2019; 11:10. [PMID: 30654845 PMCID: PMC6337806 DOI: 10.1186/s13148-019-0609-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/04/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease has been associated with increased mRNA expression of FADS2 in the liver and estimated activity of delta-6 desaturase in serum, encoded by the FADS2 gene. Since DNA methylation in the FADS1/2/3 gene cluster has been previously linked with genetic variants and desaturase activities, we now aimed to discover factors regulating DNA methylation of the CpG sites annotated to FADS1/2 genes. METHODS DNA methylation levels in the CpG sites annotated to FADS2 and FADS1 were analyzed from liver samples of 95 obese participants of the Kuopio Obesity Surgery Study (34 men and 61 women, age 49.5 ± 7.7 years, BMI 43.0 ± 5.7 kg/m2) using the Infinium HumanMethylation450 BeadChip (Illumina). Associations between DNA methylation levels and estimated delta-6 and delta-5 desaturase enzyme activities, liver histology, hepatic mRNA expression, FADS1/2 genotypes, and erythrocyte folate levels were analyzed. RESULTS We found a negative correlation between DNA methylation levels of cg06781209 and cg07999042 and hepatic FADS2 mRNA expression (both p < 0.05), and with estimated delta-6 desaturase activity based on both liver and serum fatty acids (all p < 0.05). Interestingly, the methylation level of cg07999042 (p = 0.001) but not of cg06781209 (p = 0.874) was associated with FADS2 variant rs174616. CONCLUSIONS Genetic variants of FADS2 may contribute to the pathogenesis of non-alcoholic fatty liver disease by modifying DNA methylation.
Collapse
|
48
|
Alcoriza-Balaguer MI, García-Cañaveras JC, López A, Conde I, Juan O, Carretero J, Lahoz A. LipidMS: An R Package for Lipid Annotation in Untargeted Liquid Chromatography-Data Independent Acquisition-Mass Spectrometry Lipidomics. Anal Chem 2018; 91:836-845. [PMID: 30500173 DOI: 10.1021/acs.analchem.8b03409] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High resolution LC-MS untargeted lipidomics using data independent acquisition (DIA) has the potential to increase lipidome coverage, as it enables the continuous and unbiased acquisition of all eluting ions. However, the loss of the link between the precursor and the product ions combined with the high dimensionality of DIA data sets hinder accurate feature annotation. Here, we present LipidMS, an R package aimed to confidently identify lipid species in untargeted LC-DIA-MS. To this end, LipidMS combines a coelution score, which links precursor and fragment ions with fragmentation and intensity rules. Depending on the MS evidence reached by the identification function survey, LipidMS provides three levels of structural annotations: (i) "subclass level", e.g., PG(34:1); (ii) "fatty acyl level", e.g., PG(16:0_18:1); and (iii) "fatty acyl position level", e.g., PG(16:0/18:1). The comparison of LipidMS with freely available data dependent acquisition (DDA) and DIA identification tools showed that LipidMS provides significantly more accurate and structural informative lipid identifications. Finally, to exemplify the utility of LipidMS, we investigated the lipidomic serum profile of patients diagnosed with nonalcoholic steatohepatitis (NASH), which is the progressive form of nonalcoholic fatty liver disease, a disorder underlying a strong lipid dysregulation. As previously published, a significant decrease in lysophosphatidylcholines, phosphatidylcholines and cholesterol esters and an increase in phosphatidylethanolamines were observed in NASH patients. Remarkably, LipidMS allowed the identification of a new set of lipids that may be used for NASH diagnosis. Altogether, LipidMS has been validated as a tool to assist lipid identification in the LC-DIA-MS untargeted analysis of complex biological samples.
Collapse
Affiliation(s)
- María Isabel Alcoriza-Balaguer
- Biomarkers and Precision Medicine Unit and Analytical Unit , Instituto de Investigación Sanitaria Fundación Hospital La Fe , Valencia 46026 , Spain
| | - Juan Carlos García-Cañaveras
- Biomarkers and Precision Medicine Unit and Analytical Unit , Instituto de Investigación Sanitaria Fundación Hospital La Fe , Valencia 46026 , Spain
| | - Adrián López
- Biomarkers and Precision Medicine Unit and Analytical Unit , Instituto de Investigación Sanitaria Fundación Hospital La Fe , Valencia 46026 , Spain
| | | | - Oscar Juan
- Biomarkers and Precision Medicine Unit and Analytical Unit , Instituto de Investigación Sanitaria Fundación Hospital La Fe , Valencia 46026 , Spain
| | - Julián Carretero
- Department of Physiology , University of Valencia , Burjassot 4100 , Spain
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit and Analytical Unit , Instituto de Investigación Sanitaria Fundación Hospital La Fe , Valencia 46026 , Spain
| |
Collapse
|
49
|
Ghanemi A, Yoshioka M, St-Amand J. Broken Energy Homeostasis and Obesity Pathogenesis: The Surrounding Concepts. J Clin Med 2018; 7:E453. [PMID: 30463389 PMCID: PMC6262529 DOI: 10.3390/jcm7110453] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Obesity represents an abnormal fat accumulation resulting from energy imbalances. It represents a disease with heavy consequences on population health and society economy due to its related morbidities and epidemic proportion. Defining and classifying obesity and its related parameters of evaluation is the first challenge toward understanding this multifactorial health problem. Therefore, within this review we report selected illustrative examples of the underlying mechanisms beyond the obesity pathogenesis which is systemic rather than limited to fat accumulation. We also discuss the gut-brain axis and hormones as the controllers of energy homeostasis and report selected impacts of obesity on the key metabolic tissues. The concepts of "broken energy balance" is detailed as the obesity starting key step. Sleep shortage and psychological factors are also reported with influences on obesity development. Importantly, describing such mechanistic pathways would allow clinicians, biologists and researchers to develop and optimize approaches and methods in terms of diagnosis, classification, clinical evaluation, treatment and prognosis of obesity.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec G1V 0A6, Canada.
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada.
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada.
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec G1V 0A6, Canada.
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada.
| |
Collapse
|
50
|
Koh A, Molinaro A, Ståhlman M, Khan MT, Schmidt C, Mannerås-Holm L, Wu H, Carreras A, Jeong H, Olofsson LE, Bergh PO, Gerdes V, Hartstra A, de Brauw M, Perkins R, Nieuwdorp M, Bergström G, Bäckhed F. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018; 175:947-961.e17. [DOI: 10.1016/j.cell.2018.09.055] [Citation(s) in RCA: 510] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
|