1
|
Obrzut O, Gostyńska-Stawna A, Kustrzyńska K, Stawny M, Krajka-Kuźniak V. Curcumin: A Natural Warrior Against Inflammatory Liver Diseases. Nutrients 2025; 17:1373. [PMID: 40284236 PMCID: PMC12030243 DOI: 10.3390/nu17081373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Curcumin (CUR), a bioactive compound found in turmeric, has garnered attention for its potential anti-inflammatory properties and impact on liver health. Numerous studies suggest that CUR may be crucial in mitigating liver inflammation. The compound's anti-inflammatory effects are believed to be attributed to its ability to modulate various molecular pathways involved in the inflammatory response. Research indicates that CUR may suppress the activation of inflammatory cells and the production of pro-inflammatory cytokines in the liver. Additionally, it has been observed to inhibit the activity of transcription factors that play a key role in inflammation. By targeting these molecular mechanisms, CUR may help alleviate the inflammatory burden on the liver. Moreover, CUR's antioxidant properties are thought to contribute to its protective effects on the liver. Oxidative stress is closely linked to inflammation, and CUR's ability to neutralize free radicals may further support its anti-inflammatory action. While the evidence is promising, it is essential to note that more research is needed to fully understand the precise mechanisms through which CUR influences liver inflammation. Nevertheless, these findings suggest that CUR could be a potential therapeutic agent in managing liver inflammatory conditions. In this review, we explore the potential impact of CUR on inflammation, highlighting the key mechanisms involved, as reported in the literature.
Collapse
Affiliation(s)
- Olga Obrzut
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Aleksandra Gostyńska-Stawna
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Karolina Kustrzyńska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
2
|
Abi-Aad SJ, Lovell M, Khalaf RT, Sokol RJ. Pathogenesis and Management of Intestinal Failure-Associated Liver Disease. Semin Liver Dis 2025; 45:66-80. [PMID: 40015320 PMCID: PMC12031023 DOI: 10.1055/a-2545-7370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Long-term parenteral nutrition (PN) has considerably improved the management of intestinal failure (IF) in children and adults, particularly those with short bowel syndrome; however, it carries a significant risk of hepatotoxicity, specifically, intestinal failure-associated liver disease (IFALD), also known as PN-associated liver disease. This review provides an update on the latest understanding of IFALD pathogenesis, emerging therapies, and ongoing challenges in the management of this complication. A number of factors are associated with the development of IFALD. PN lipid emulsions, phytosterol exposure, bacterial dysbiosis, an altered gut-liver axis, and episodes of sepsis disrupt bile acid homeostasis and promote liver inflammation in the active phase of IFALD, favoring the development of PN-associated cholestasis (PNAC) and the more chronic form of steatohepatitis with fibrosis. Based on the identification of pathophysiological pathways, potential therapies are being studied in preclinical and clinical trials, including lipid emulsion modifications; targeted therapies such as Farnesoid X receptor (FXR) and liver receptor homolog 1 (LRH-1) agonists, tumor necrosis factor inhibitors, glucagon-like peptide-2 analogs; microbiome modulation; and supplementation with choline and antioxidants. In conclusion, the pathogenesis of IFALD is complex, and PN dependence and liver injury remain challenging, particularly in patients with IF who cannot advance to enteral nutrition and be weaned off PN.
Collapse
Affiliation(s)
- Sasha-Jane Abi-Aad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mark Lovell
- Department of Pathology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Racha T. Khalaf
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ronald J. Sokol
- Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
3
|
Tang X, Ning J, Zhao Y, Feng S, Shao L, Liu T, Miao H, Zhang Y, Wang C. Intestine-derived fibroblast growth factor 19 alleviates lipopolysaccharide-induced liver injury by regulating bile acid homeostasis and directly improving oxidative stress. JOURNAL OF INTENSIVE MEDICINE 2025; 5:79-88. [PMID: 39872844 PMCID: PMC11763227 DOI: 10.1016/j.jointm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 01/30/2025]
Abstract
Background Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear. Methods We conducted a case-control study that included 58 pediatric patients aged from 1 month to 14-years-old diagnosed with sepsis at Shanghai Children's Hospital from January to December 2018 and 30 healthy individuals. The serum FGF19 levels of these patients with sepsis were analyzed and compared with those of healthy controls. Recombinant human FGF19 was intravenously injected in mice once a day for 7 days at a dose of 0.1 mg/kg body weight before lipopolysaccharide (LPS) treatment. Liver bile acid profiles and the gene expression involved in bile acid homeostasis were investigated in the mice groups. Metabolomic data were further integrated and analyzed using Ingenuity Pathways Analysis (IPA) software. In the in vitro analysis using HepG2 cells, the influence of FGF19 pretreatment on reactive oxygen species (ROS) production and mitochondrial dysfunction was analyzed. Compound C (CC), an inhibitor of AMP-activated protein kinase (AMPK) activation, was used to confirm the roles of AMPK activation in FGF19-mediated hepatoprotective effects. Results Serum FGF19 levels were significantly lower in children with sepsis than in healthy controls (115 pg/mL vs. 79 pg/mL, P=0.03). Pre-administration of recombinant human FGF19 alleviated LPS-induced acute liver injury (ALI) and improved LPS-induced cholestasis in mice. Moreover, FGF19 directly reversed LPS-induced intracellular ROS generation and LPS-decreased mitochondrial membrane potential in vitro and in vivo, resulting in hepatoprotection against LPS-induced apoptosis. More importantly, the inhibition of AMPK activity partially blocked the protective effects of FGF19 against LPS-induced oxidative stress and mitochondrial dysfunction. Conclusions Intestine-derived FGF19 alleviates LPS-induced ALI via improving bile acid homeostasis and directly suppressing ROS production via activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Ning
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Zhao
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lujing Shao
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijie Miao
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Tabone T, Mooney P, Donnellan C. Intestinal failure-associated liver disease: Current challenges in screening, diagnosis, and parenteral nutrition considerations. Nutr Clin Pract 2024; 39:1003-1025. [PMID: 38245851 DOI: 10.1002/ncp.11116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/22/2024] Open
Abstract
Intestinal failure-associated liver disease (IFALD) is a serious life-limiting complication that can occur throughout the clinical course of intestinal failure and its management by parenteral nutrition (PN). Despite this, there is a lack of a standardized definition for IFALD, which makes this insidious condition increasingly difficult to screen and diagnose in clinical practice. Attenuating the progression of liver disease before the onset of liver failure is key to improving morbidity and mortality in these patients. This requires timely detection and promptly addressing reversible factors. Although there are various noninvasive tools available to the clinician to detect early fibrosis or cirrhosis in various chronic liver disease states, these have not been validated in the patient population with IFALD. Such tools include biochemical composite scoring systems for fibrosis, transient elastography, and dynamic liver function tests. This review article aims to highlight the existing real need for an accurate, reproducible method to detect IFALD in its early stages. In addition, we also explore the role PN plays in the pathogenesis of this complex multifactorial condition. Various aspects of PN administration have been implicated in the etiology of IFALD, including the composition of the lipid component, nutrient excess and deficiency, and infusion timing. We aim to highlight the clinical relevance of these PN-associated factors in the development of IFALD and how these can be managed to mitigate the progression of IFALD.
Collapse
Affiliation(s)
- Trevor Tabone
- Department of Gastroenterology, St James University Hospital, Leeds, United Kingdom
| | - Peter Mooney
- Department of Gastroenterology, St James University Hospital, Leeds, United Kingdom
| | - Clare Donnellan
- Department of Gastroenterology, St James University Hospital, Leeds, United Kingdom
| |
Collapse
|
5
|
Zhao Y, Wang Y, Jiang L, Cai W, Yan J. Impaired intestinal FXR signaling is involved in aberrant stem cell function leading to intestinal failure-associated liver disease in pediatric patients with short bowel syndrome. FASEB J 2024; 38:e23847. [PMID: 39096137 DOI: 10.1096/fj.202400827r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Intestinal failure-associated liver disease (IFALD) is a serious complication of long-term parenteral nutrition in patients with short bowel syndrome (SBS), and is the main cause of death in SBS patients. Prevention of IFALD is one of the major challenges in the treatment of SBS. Impairment of intestinal barrier function is a key factor in triggering IFALD, therefore promoting intestinal repair is particularly important. Intestinal repair mainly relies on the function of intestinal stem cells (ISC), which require robust mitochondrial fatty acid oxidation (FAO) for self-renewal. Herein, we report that aberrant LGR5+ ISC function in IFALD may be attributed to impaired farnesoid X receptor (FXR) signaling, a transcriptional factor activated by steroids and bile acids. In both surgical biopsies and patient-derived organoids (PDOs), SBS patients with IFALD represented lower population of LGR5+ cells and decreased FXR expression. Moreover, treatment with T-βMCA in PDOs (an antagonist for FXR) dose-dependently reduced the population of LGR5+ cells and the proliferation rate of enterocytes, concomitant with decreased key genes involved in FAO including CPT1a. Interestingly, however, treatment with Tropifexor in PDOs (an agonist for FXR) only enhanced FAO capacity, without improvement in ISC function and enterocyte proliferation. In conclusion, these findings suggested that impaired FXR may accelerate the depletion of LGR5 + ISC population through disrupted FAO processes, which may serve as a new potential target of preventive interventions against IFALD for SBS patients.
Collapse
Affiliation(s)
- Yuling Zhao
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lu Jiang
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
6
|
Micic D, Robinson I, Kidd T, Terreri B, Raphael BP. Teduglutide improves liver chemistries in short bowel syndrome-associated intestinal failure: Post hoc analysis. Nutr Clin Pract 2024; 39:634-640. [PMID: 38491966 DOI: 10.1002/ncp.11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Chronic hepatic complications are common in patients with short bowel syndrome-associated intestinal failure (SBS-IF). Teduglutide, a glucagon-like peptide-2 analogue, demonstrated efficacy in reducing parenteral nutrition and/or intravenous fluid dependence among patients with SBS-IF in phase 3 clinical studies. METHODS This was a post hoc analysis of pooled data from two separate randomized, double-blind, placebo-controlled, multinational phase 3 clinical studies. Adult patients with SBS-IF with parenteral nutrition and/or intravenous fluid dependence without liver disease at baseline were randomized to treatment with the glucagon-like peptide-2 analogue teduglutide (0.05 or 0.10 mg/kg/day) or placebo subcutaneously once daily for 24 weeks. Mixed-effects models assessed the baseline predictors of change in liver chemistries. RESULTS Between baseline and week 24, teduglutide treatment (n = 109) was associated with least squares mean reductions in aspartate aminotransferase (-7.51 IU/L; P = 0.014), alanine aminotransferase (-12.15 IU/L; P = 0.002), and bilirubin (-5.03 µmol/L [-0.057 mg/dl]; P < 0.001) compared with that of the placebo (n = 59). These values were independent of reductions in parenteral nutrition and/or intravenous fluid dependence. CONCLUSION Teduglutide treatment was associated with reductions in liver chemistries by week 24, which is beneficial for patients with SBS-IF beyond improvements in parenteral nutrition and/or intravenous fluid dependence. Future studies should examine how long-term teduglutide might mitigate the risk of liver disease in patients with SBS-IF.
Collapse
Affiliation(s)
- Dejan Micic
- Department of Internal Medicine, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medicine, Chicago, Illinois, USA
| | - Ian Robinson
- Takeda Pharmaceuticals, USA, Inc, Lexington, Massachusetts, USA
| | - Tanya Kidd
- Takeda Pharmaceuticals, USA, Inc, Lexington, Massachusetts, USA
| | - Brian Terreri
- Takeda Pharmaceuticals, USA, Inc, Lexington, Massachusetts, USA
| | - Bram P Raphael
- Takeda Pharmaceuticals, USA, Inc, Lexington, Massachusetts, USA
| |
Collapse
|
7
|
Sevela S, Meisnerova E, Vecka M, Vavrova L, Rychlikova J, Lenicek M, Vitek L, Novakova O, Novak F. High Dose Fish Oil Added to Various Lipid Emulsions Normalizes Superoxide Dismutase 1 Activity in Home Parenteral Nutrition Patients. Nutrients 2024; 16:485. [PMID: 38398809 PMCID: PMC10891535 DOI: 10.3390/nu16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Objectives: Intestinal failure in home parenteral nutrition patients (HPNPs) results in oxidative stress and liver damage. This study investigated how a high dose of fish oil (FO) added to various lipid emulsions influences antioxidant status and liver function markers in HPNPs. (2) Methods: Twelve HPNPs receiving Smoflipid for at least 3 months were given FO (Omegaven) for a further 4 weeks. Then, the patients were randomized to subsequently receive Lipoplus and ClinOleic for 6 weeks or vice versa plus 4 weeks of Omegaven after each cycle in a crossover design. Twelve age- and sex-matched healthy controls (HCs) were included. (3) Results: Superoxide dismutase (SOD1) activity and oxidized-low-density lipoprotein concentration were higher in all baseline HPN regimens compared to HCs. The Omegaven lowered SOD1 compared to baseline regimens and thus normalized it toward HCs. Lower paraoxonase 1 activity and fibroblast growth factor 19 (FGF19) concentration and, on the converse, higher alkaline phosphatase activity and cholesten concentration were observed in all baseline regimens compared to HCs. A close correlation was observed between FGF19 and SOD1 in baseline regimens. (4) Conclusions: An escalated dose of FO normalized SOD1 activity in HPNPs toward that of HCs. Bile acid metabolism was altered in HPNPs without signs of significant cholestasis and not affected by Omegaven.
Collapse
Affiliation(s)
- Stanislav Sevela
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Eva Meisnerova
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Marek Vecka
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Lucie Vavrova
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Jana Rychlikova
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| | - Martin Lenicek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic;
| | - Libor Vitek
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic;
| | - Olga Novakova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic;
- Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Frantisek Novak
- 4th Department of Internal Medicine, 1st Faculty of Medicine and General University Hospital, Charles University, 128 08 Prague, Czech Republic (E.M.); (M.V.); (L.V.); (J.R.); (L.V.)
| |
Collapse
|
8
|
Mutanen A, Pakarinen MP. Featuring molecular regulation of bile acid homeostasis in pediatric short bowel syndrome. Clin Res Hepatol Gastroenterol 2023; 47:102220. [PMID: 37769812 DOI: 10.1016/j.clinre.2023.102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Disturbed bile acid homeostasis may foster development of short bowel syndrome (SBS) associated liver disease during and after weaning off parenteral nutrition (PN). Our aim was to study hepatic molecular regulation of bile acid homeostasis in relation to serum and fecal bile acid profiles in pediatric SBS. METHODS Liver histopathology and mRNA expression of genes regulating synthesis, uptake and export of bile acids, and cellular receptors involved in bile acid signaling were measured in SBS patients (n = 33, median age 3.2 years). Simultaneously, serum (n = 24) and fecal (n = 10) bile acid profiles were assessed. Sixteen patients were currently on PN. Results of patients were compared to healthy control subjects. RESULTS Nine of ten (90 %) patients with histological cholestasis received current PN, while portal inflammation was present in 60 % (6/10) of patients with cholestasis compared to 13 % (3/23) without cholestasis (P = 0.01). In all SBS patients, hepatic synthesis and uptake of bile acids was increased. Patients on current PN showed widespread repression of hepatic FXR target genes, including downregulated canalicular (BSEP, MDR3) and basolateral (MRP3) bile acid exporters. Serum and fecal primary bile acids were increased both during and after weaning off PN. CONCLUSIONS Bile acid homeostasis in SBS is characterized by interrupted enterohepatic circulation promoting increased hepatic synthesis and conservation of bile acids. In PN dependent SBS patients with hepatic cholestasis and inflammation, the molecular fingerprint of downregulated hepatocyte canalicular and basolateral bile acid export with simultaneously increased synthesis and uptake of bile acids could favor their accumulation in hepatocytes and predispose to liver disease.
Collapse
Affiliation(s)
- Annika Mutanen
- Department of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, The New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko P Pakarinen
- Department of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, The New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
9
|
Jiang L, Xu J, Cheng SY, Wang Y, Cai W. The gut microbiome and intestinal failure-associated liver disease. Hepatobiliary Pancreat Dis Int 2023; 22:452-457. [PMID: 37453856 DOI: 10.1016/j.hbpd.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Intestinal failure-associated liver disease (IFALD) is a common hepatobiliary complication resulting from long-term parenteral nutrition (PN) in patients with intestinal failure. The spectrum of IFALD ranges from cholestasis, steatosis, portal fibrosis, to cirrhosis. Development of IFALD is a multifactorial process, in which gut dysbiosis plays a critical role in its initiation and progression in conjunction with increased intestinal permeability, activation of hepatic immune responses, and administration of lipid emulsion. Gut microbiota manipulation including pre/probiotics, fecal microbiota transplantation, and antibiotics has been studied in IFALD with varying success. In this review, we summarize current knowledge on the taxonomic and functional changes of gut microbiota in preclinical and clinical studies of IFALD. We also review the function of microbial metabolites and associated signalings in the context of IFALD. By providing microbiota-targeted interventions aiming to optimize PN-induced liver injury, our review provides perspectives for future basic and translational investigations in the field.
Collapse
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Juan Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Si-Yang Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China; Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
10
|
Chan AP, Rostas S, Rogers S, Martin CR, Calkins KL. Parenteral Nutrition in the Neonatal Intensive Care Unit: Intravenous Lipid Emulsions. Clin Perinatol 2023; 50:575-589. [PMID: 37536765 DOI: 10.1016/j.clp.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Intravenous lipid emulsions (ILEs) are a source of nonprotein calories and fatty acids and help promote growth in preterm infants and infants with intestinal failure. An ILE dose and oil source determines its fatty acid, phytosterol, and vitamin E delivery. These factors play a role in the infant's risk for essential fatty acid deficiency and cholestasis, and help modulate inflammation, immunity, and organ development. This article reviews different ILEs and their constituents and their relationship with neonatal health.
Collapse
Affiliation(s)
- Alvin P Chan
- Division of Gastroenterology, Department of Pediatrics, David Geffen School of Medicine UCLA, 10833 Le Conte Avenue, MDCC 12-383, Los Angeles, CA 90095, USA
| | - Sara Rostas
- New York-Presbyterian Department of Pharmacy, New York-Presbyterian Hospital/Komansky Children's Hospital, 1283 York Avenue, FL15, New York, NY 10065, USA
| | - Samantha Rogers
- New York-Presbyterian Food & Nutrition Services, New York-Presbyterian Hospital/Weill Cornell Medical Center, 1283 York Avenue, FL15, New York, NY 10065, USA
| | - Camilia R Martin
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, 1283 York Avenue, FL15, New York, NY 10065, USA
| | - Kara L Calkins
- Division of Neonatology & Developmental Biology, Department of Pediatrics, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 1088 Le Conte Avenue, Room B2-375 MDCC, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Zafirovska M, Zafirovski A, Rotovnik Kozjek N. Current Insights Regarding Intestinal Failure-Associated Liver Disease (IFALD): A Narrative Review. Nutrients 2023; 15:3169. [PMID: 37513587 PMCID: PMC10385050 DOI: 10.3390/nu15143169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Intestinal failure-associated liver disease (IFALD) is a spectrum of liver disease including cholestasis, biliary cirrhosis, steatohepatitis, and gallbladder disease in patients with intestinal failure (IF). The prevalence of IFALD varies considerably, with ranges of 40-60% in the pediatric population, up to 85% in neonates, and between 15-40% in the adult population. IFALD has a complex and multifactorial etiology; the risk factors can be parenteral nutrition-related or patient-related. Because of this, the approach to managing IFALD is multidisciplinary and tailored to each patient based on the etiology. This review summarizes the current knowledge on the etiology and pathophysiology of IFALD and examines the latest evidence regarding preventative measures, diagnostic approaches, and treatment strategies for IFALD and its associated complications.
Collapse
Affiliation(s)
- Marija Zafirovska
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Association of General Practice/Family Medicine of South-East Europe (AGP/FM SEE), St. Vladimir Komarov No. 40/6, 1000 Skopje, North Macedonia
| | - Aleksandar Zafirovski
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- General Hospital Jesenice, Cesta Maršala Tita 112, 4270 Jesenice, Slovenia
- Clinical Institute of Radiology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
| | - Nada Rotovnik Kozjek
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Department for Clinical Nutrition, Institute of Oncology Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Vonderohe C, Guthrie G, Burrin DG. Fibroblast growth factor 19 secretion and function in perinatal development. Am J Physiol Gastrointest Liver Physiol 2023; 324:G190-G195. [PMID: 36648144 PMCID: PMC9942882 DOI: 10.1152/ajpgi.00208.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Limited work has focused on fibroblast growth factor-19 (FGF19) secretion and function in the perinatal period. FGF19 is a potent growth factor that coordinates development of the brain, eye, inner ear, and skeletal system in the embryo, but after birth, FGF19 transitions to be an endocrine regulator of the classic pathway of hepatic bile acid synthesis. FGF19 has emerged as a mediator of metabolism and bile acid synthesis in aged animals and adults in the context of liver disease and metabolic dysfunction. FGF19 has also been shown to have systemic insulin-sensitizing and skeletal muscle hypertrophic effects when induced or supplemented at supraphysiological levels in adult rodent models. These effects could be beneficial to improve growth and nutritional outcomes in preterm infants, which are metabolically resistant to the anabolic effects of enteral nutrition. Existing clinical data on FGF19 secretion and function in the perinatal period in term and preterm infants has been equivocal. Studies in pigs show that FGF19 expression and secretion are upregulated with gestational age and point to molecular and endocrine factors that may be involved. Work focused on FGF19 in pediatric diseases suggests that augmentation of FGF19 secretion by activation of gut FXR signaling is associated with benefits in diseases such as short bowel syndrome, parenteral nutrition-associated liver disease, and biliary atresia. Future work should focus on characterization of FGF19 secretion and the mechanism underpinning the transition of FGF19 function as an embryological growth factor to metabolic and bile acid regulator.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| | - Gregory Guthrie
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| | - Douglas G Burrin
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
13
|
The Role of a Colon-in-Continuity in Short Bowel Syndrome. Nutrients 2023; 15:nu15030628. [PMID: 36771335 PMCID: PMC9918966 DOI: 10.3390/nu15030628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Short bowel syndrome (SBS) is a rare gastrointestinal condition that is defined as having less than 200 cm of remaining small intestine. SBS results from extensive surgical resection and is associated with a high risk for intestinal failure (IF) with a need for parenteral support (PS). Depending on the region of intestinal resection, three different main anatomy types can be distinguished from each other. In this review, we synthesize the current knowledge on the role of the colon in the setting of SBS-IF with a colon-in-continuity (SBS-IF-CiC), e.g., by enhancing the degree of intestinal adaptation, energy salvage, and the role of the microbiota. In addition, the effect of the disease-modifying treatment with glucagon-like peptide-2 (GLP-2) analogs in SBS-IF-CiC and how it differs from patients without a colon will be discussed. Overall, the findings explained in this review highlight the importance of preservation of the colon in SBS-IF.
Collapse
|
14
|
Gunnar R, Mutanen A, Merras-Salmio L, Pakarinen MP. Histopathological liver steatosis linked with high parenteral glucose and amino acid supply in infants with short bowel syndrome. JPEN J Parenter Enteral Nutr 2023; 47:41-50. [PMID: 35633305 PMCID: PMC10084272 DOI: 10.1002/jpen.2416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Steatosis is a common feature of intestinal failure-associated liver disease (IFALD) in adult and older pediatric patients receiving long-term parenteral nutrition (PN). There are limited clinical data concerning steatosis in infants with short bowel syndrome (SBS). We investigated early histopathological steatosis and its association to PN. METHODS In this retrospective study, 31 patients with SBS had a diagnostic liver biopsy taken at the median age of 5 (IQR 3-8) months. Follow-up biopsy was available for 24 patients at the median age of 29 (IQR 14-52) months. We evaluated the biopsies for steatosis and other histopathological signs of IFALD and compared results with patient characteristics, PN composition, and liver biochemistry. RESULTS Diagnostic biopsies revealed steatosis in 8 (26%) patients. At the age of 3 months, patients with steatosis had received higher amounts of parenteral glucose: median 15.1 (IQR 12.4-17.2) vs 12.3 (8.7-14.4) g/kg/d (P = 0.04), amino acids: 2.9 (2.5-3.4) vs 2.2 (1.6-2.7) g/kg/d (P = 0.03), and energy: 87 (80-98) vs 73 (54-79) kcal/kg/d (P = 0.01) than those without steatosis. We detected no significant differences in parenteral lipid intake between the groups. Steatosis also associated with increased serum bile acid (P = 0.02), alanine aminotransferase (P = 0.0002), and aspartate aminotransferase (P = 0.001) levels. CONCLUSIONS In this cohort, high parenteral glucose, amino acid, and energy provision associated with liver steatosis in infants with SBS. We recommend monitoring of bile acid and transaminase levels while aiming for PN with balanced macronutrient supply according to current recommendations to protect the liver from steatosis.
Collapse
Affiliation(s)
- Riikka Gunnar
- Department of Gastroenterology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Pediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Annika Mutanen
- Pediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.,Department of Pediatric Surgery, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura Merras-Salmio
- Department of Gastroenterology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Pediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Mikko P Pakarinen
- Pediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.,Department of Pediatric Surgery, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
15
|
Di Dato F, Iorio R, Spagnuolo MI. IFALD in children: What's new? A narrative review. Front Nutr 2022; 9:928371. [PMID: 35958249 PMCID: PMC9358220 DOI: 10.3389/fnut.2022.928371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Intestinal failure-associated liver disease (IFALD) is a progressive liver disease complicating intestinal failure (IF). It is a preventable and reversible condition, but at the same time, a potential cause of liver cirrhosis and an indication to combined or non-combined liver and small bowel transplantation. The diagnostic criteria are not yet standardized, so that its prevalence varies widely in the literature. Pathophysiology seems to be multifactorial, related to different aspects of intestinal failure and not only to the long-term parenteral nutrition treatment. The survival rates of children with IF have increased, so that the main problems today are preventing complications and ensuring a good quality of life. IFALD is one of the most important factors that limit long-term survival of patients with IF. For this reason, more and more interest is developing around it and the number of published articles is increasing rapidly. The purpose of this narrative review was to focus on the main aspects of the etiology, pathophysiology, management, prevention, and treatment of IFALD, based on what has been published mainly in the last 10 years. Controversies and current research gaps will be highlighted with the aim to pave the way for new project and high-quality clinical trials.
Collapse
Affiliation(s)
| | | | - Maria Immacolata Spagnuolo
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
El Kasmi KC, Anderson AL, Devereaux MW, Balasubramaniyan N, Suchy FJ, Orlicky DJ, Shearn CT, Sokol RJ. Interrupting tumor necrosis factor-alpha signaling prevents parenteral nutrition-associated cholestasis in mice. JPEN J Parenter Enteral Nutr 2022; 46:1096-1106. [PMID: 34664730 DOI: 10.1002/jpen.2279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND We have recently reported a mouse model of PN-associated cholestasis (PNAC) in which combining intestinal inflammation and PN infusion results in cholestasis, hepatic macrophage activation, and transcriptional suppression of canalicular bile acid, bilirubin and sterol transporters Abcb11, Abcc2 and Abcg5/8. The aim of this study was to examine the role of TNFα in promoting PNAC in mice. METHODS First, recombinant TNFα was administered to mice as well as in hepatocyte cell culture. Second, Tnfr1/2KO or wild-type (WT) mice were exposed to dextran sulfate sodium (DSS) for 4 days followed by soy-oil lipid emulsion-based PN infusion through a central venous catheter for 14 days (DSS-PN). Finally, WT/DSS-PN mice were also infused with infliximab at 10 mg/kg on days 3 and 10 of PN. PNAC was defined by increased serum aspartate aminotransferase, alanine aminotransferase, total bile acids, and bilirubin. RESULTS Intraperitoneal injection of TNFα into WT mice or TNFα treatment of Huh7 hepatocarcinoma cells and primary mouse hepatocytes suppressed messenger RNA (mRNA) transcription of bile (Abcb11, Abcc2]) and sterol transporters (Abcg5/8) and their regulators Nr1h3 and Nr1h4. DSS-PN mice with PNAC had increased hepatic TNFα mRNA expression and significant reduction of mRNA expression of Abcb11, Abcc2, Abcg5/8, Nr1h3, and Nr1h4. In contrast, PNAC development was prevented and mRNA expression normalized in both Tnfr1/2KO /DSS-PN mice and DSS-PN mice treated with infliximab. CONCLUSIONS TNFα is a key mediator in the pathogenesis of PNAC through suppression of hepatocyte Abcb11, Abcc2, and Abcg5/8. Pharmacologic targeting of TNFα as a therapeutic strategy for PNAC thus deserves further investigation.
Collapse
Affiliation(s)
- Karim C El Kasmi
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Aimee L Anderson
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Michael W Devereaux
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Natarajan Balasubramaniyan
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Frederick J Suchy
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Colin T Shearn
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ronald J Sokol
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
17
|
Wang Y, Liu Y, Gao B, Yan J, Cai W, Jiang L. Untargeted Metabolomics Reveal Parenteral Nutrition-Associated Alterations in Pediatric Patients with Short Bowel Syndrome. Metabolites 2022; 12:metabo12070600. [PMID: 35888724 PMCID: PMC9319335 DOI: 10.3390/metabo12070600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Short bowel syndrome (SBS) is a major cause of intestinal failure (IF) that may require long-term parenteral nutrition (PN) support. However, long-term PN is accompanied by severe complications such as catheter-related blood stream infection (CRBSI) and intestinal failure-associated liver disease (IFALD), and it is associated with high healthcare costs. In this study, we characterized the plasma metabolomic profile and investigated the role of metabolism in predicting long-term PN in pediatric patients with SBS. Untargeted metabolomics was performed in plasma samples from 20 SBS patients with PN support: 6 patients had IFALD and 14 patients had no liver disease. As controls, 18 subjects without liver or intestinal diseases were included for the analysis. SBS patients had distinct plasma metabolomic signatures compared to controls, and several pathways associated with amino acid metabolism and cell death were significantly changed. The presence of IFALD in SBS was associated with alterations of metabolites mainly classified as “amino acids, peptides, and analogues” and “benzene and derivatives”. Serum direct bilirubin levels were negatively correlated with levels of uridine, skatole, and glabrol. Importantly, SBS patients with long-term PN showed significantly increased levels of glutamine compared to those in the short-term PN group. Finally, using multivariate logistic regression analysis, we developed a prediction model including glutamine and creatinine to identify pediatric SBS patients who need long-term PN support. These findings underscore the potential key role of the metabolome in SBS with IF and suggest that metabolomic profiles could be used in long-term PN assessment.
Collapse
Affiliation(s)
- Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China; (Y.W.); (J.Y.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Yang Liu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China;
| | - Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
| | - Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China; (Y.W.); (J.Y.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China; (Y.W.); (J.Y.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China;
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Correspondence: (W.C.); (L.J.); Tel.: +86-(21)-25078674 (W.C.); +86-(21)-65791316 (L.J.)
| | - Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China; (Y.W.); (J.Y.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Correspondence: (W.C.); (L.J.); Tel.: +86-(21)-25078674 (W.C.); +86-(21)-65791316 (L.J.)
| |
Collapse
|
18
|
Maitiabula G, Tian F, Wang P, Zhang L, Gao X, Wan S, Sun H, Yang J, Zhang Y, Gao T, Xue B, Li C, Li J, Wang X. Liver PP2A-Cα Protects From Parenteral Nutrition-associated Hepatic Steatosis. Cell Mol Gastroenterol Hepatol 2022; 14:669-692. [PMID: 35643235 PMCID: PMC9421584 DOI: 10.1016/j.jcmgh.2022.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Parenteral nutrition (PN) is a lifesaving therapy for patients with intestinal failure. Hepatic steatosis is a potentially fatal complication of long-term PN, but the involved pathological mechanisms are incompletely unclarified. Herein, we identify the role of protein phosphatase 2A (PP2A) in the pathogenesis of parenteral nutrition-associated hepatic steatosis (PNAHS). METHODS Proteomic/phosphoproteomic analyses of liver samples from patients with PNAHS were applied to identify the mechanism of PNAHS. Total parenteral nutrition (TPN) mice model, in vivo, and in vitro experiments were used to assess the effect of PP2A-Cα on liver fatty acid metabolism. RESULTS Reduced expression of PP2A-Cα (catalytic subunit) enhanced activation of serine/threonine kinase Akt2 and decreased activation of adenosine monophosphate-activated protein kinase (AMPK) were associated with hepatic steatosis in patients with PNAHS. Mice given PN for 14 days developed hepatic steatosis, down-regulation of PP2A-Cα, activation of Akt2, and inhibition of AMPK. Hepatocyte-specific deletion of PP2A-Cα in mice given PN exacerbated Akt2 activation, AMPK inhibition, and hepatic steatosis through an effect on fatty acid degradation, whereas hepatocyte-specific PP2A-Cα overexpression significantly ameliorated hepatic steatosis accompanied with Akt2 suppression and AMPK activation. Additionally, pharmacological activation of Akt2 in mice overexpressing PP2A-Cα led to the aggravation of hepatic steatosis. CONCLUSIONS Our findings demonstrate that hepatic PP2A-Cα serves as a protective factor of PNAHS due to ameliorating hepatic steatosis and improving liver function. Our study provides a strong rationale that PP2A-Cα may be involved in the pathogenesis of PNAHS.
Collapse
Affiliation(s)
- Gulisudumu Maitiabula
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Tian
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuejin Gao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Songlin Wan
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haifeng Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianbo Yang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yupeng Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tingting Gao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bin Xue
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School of Nanjing University, Nanjing, China,Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China,Bin Xue, PhD, LongMian Avenue, Nanjing 211166, China. tel: +86-25-87115542
| | - Chaojun Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School of Nanjing University, Nanjing, China,Chaojun Li, PhD, Hankou Road, Nanjing, 210093, China. tel: +86-25-83596289.
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinying Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China,Correspondence Address correspondence to: Xinying Wang, MD, PhD, Department of General Surgery, Jinling Hospital, Medical School of Nanjing University. 305 East Zhongshan Road, Nanjing, 210002, China. tel: +86-25-80861429
| |
Collapse
|
19
|
El Kasmi KC, Ghosh S, Anderson AL, Devereaux MW, Balasubramaniyan N, D'Alessandro A, Orlicky DJ, Suchy FJ, Shearn CT, Sokol RJ. Pharmacologic activation of hepatic farnesoid X receptor prevents parenteral nutrition-associated cholestasis in mice. Hepatology 2022; 75:252-265. [PMID: 34387888 DOI: 10.1002/hep.32101] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Parenteral nutrition (PN)-associated cholestasis (PNAC) complicates the care of patients with intestinal failure. In PNAC, phytosterol containing PN synergizes with intestinal injury and IL-1β derived from activated hepatic macrophages to suppress hepatocyte farnesoid X receptor (FXR) signaling and promote PNAC. We hypothesized that pharmacological activation of FXR would prevent PNAC in a mouse model. APPROACH AND RESULTS To induce PNAC, male C57BL/6 mice were subjected to intestinal injury (2% dextran sulfate sodium [DSS] for 4 days) followed by central venous catheterization and 14-day infusion of PN with or without the FXR agonist GW4064. Following sacrifice, hepatocellular injury, inflammation, and biliary and sterol transporter expression were determined. GW4064 (30 mg/kg/day) added to PN on days 4-14 prevented hepatic injury and cholestasis; reversed the suppressed mRNA expression of nuclear receptor subfamily 1, group H, member 4 (Nr1h4)/FXR, ATP-binding cassette subfamily B member 11 (Abcb11)/bile salt export pump, ATP-binding cassette subfamily C member 2 (Abcc2), ATP binding cassette subfamily B member 4(Abcb4), and ATP-binding cassette subfamily G members 5/8(Abcg5/8); and normalized serum bile acids. Chromatin immunoprecipitation of liver showed that GW4064 increased FXR binding to the Abcb11 promoter. Furthermore, GW4064 prevented DSS-PN-induced hepatic macrophage accumulation, hepatic expression of genes associated with macrophage recruitment and activation (ll-1b, C-C motif chemokine receptor 2, integrin subunit alpha M, lymphocyte antigen 6 complex locus C), and hepatic macrophage cytokine transcription in response to lipopolysaccharide in vitro. In primary mouse hepatocytes, GW4064 activated transcription of FXR canonical targets, irrespective of IL-1β exposure. Intestinal inflammation and ileal mRNAs (Nr1h4, Fgf15, and organic solute transporter alpha) were not different among groups, supporting a liver-specific effect of GW4064 in this model. CONCLUSIONS GW4064 prevents PNAC in mice through restoration of hepatic FXR signaling, resulting in increased expression of canalicular bile and of sterol and phospholipid transporters and suppression of macrophage recruitment and activation. These data support augmenting FXR activity as a therapeutic strategy to alleviate or prevent PNAC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- Animals
- Bile Acids and Salts/blood
- Cholestasis/etiology
- Cholestasis/prevention & control
- Gene Expression/drug effects
- Gene Expression Regulation/drug effects
- Hepatocytes/metabolism
- Interleukin-1beta/pharmacology
- Intestinal Diseases/chemically induced
- Intestinal Diseases/therapy
- Isoxazoles/pharmacology
- Isoxazoles/therapeutic use
- Lipoproteins/genetics
- Liver Diseases/etiology
- Liver Diseases/pathology
- Liver Diseases/prevention & control
- Macrophage Activation/drug effects
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Multidrug Resistance-Associated Protein 2/genetics
- Multidrug Resistance-Associated Proteins/genetics
- Parenteral Nutrition/adverse effects
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Karim C El Kasmi
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
- Boehringer IngelheimIngelheim am RheinGermany
| | - Swati Ghosh
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Aimee L Anderson
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Michael W Devereaux
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Natarajan Balasubramaniyan
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - David J Orlicky
- Department of PathologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Frederick J Suchy
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Colin T Shearn
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| | - Ronald J Sokol
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
- Pediatric Liver CenterDigestive Health InstituteChildren's Hospital ColoradoAuroraColoradoUSA
| |
Collapse
|
20
|
Wang Y, Zheng L, Zhou Z, Yao D, Huang Y, Liu B, Duan Y, Li Y. Review article: insights into the bile acid-gut microbiota axis in intestinal failure-associated liver disease-redefining the treatment approach. Aliment Pharmacol Ther 2022; 55:49-63. [PMID: 34713470 DOI: 10.1111/apt.16676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/04/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Intestinal failure-associated liver disease (IFALD) increases mortality of patients with intestinal failure (IF), but lacks effective prevention or treatment approaches. Bile acids, gut microbiota and the host have close and complex interactions, which play a central role in modulating host immune and metabolic homeostasis. Increasing evidence suggests that derangement of the bile acid-gut microbiota (BA-GM) axis contributes to the development of IFALD. AIMS To review the BA-GM axis in the pathogenesis and clinical applications of IFALD, and to explore future directions for effective disease management. METHODS We conducted a literature search on bile acid and gut microbiota in IF and liver diseases. RESULTS The BA-GM axis demonstrates a unique IF signature manifesting as an increase in primary-to-secondary bile acids ratio, disturbed enterohepatic circulation, blunted bile acid signalling pathways, gut microbial dysbiosis, and altered microbial metabolic outputs. Bile acids and gut microbiota shape the compositional and functional alterations of each other in IF; collaboratively, they promote immune dysfunction and metabolic aberration in the liver. Diagnostic markers and treatments targeting the BA-GM axis showed promising potential in the management of IFALD. CONCLUSIONS Bile acids and gut microbiota play a central role in the development of IFALD and make attractive biomarkers as well as therapeutic targets. A multitarget, individualised therapy aiming at different parts of the BA-GM axis may provide optimal clinical benefits and requires future investigation.
Collapse
Affiliation(s)
- Yaoxuan Wang
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Zhiyuan Zhou
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Danhua Yao
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Yuhua Huang
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Bin Liu
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Yantao Duan
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Yousheng Li
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| |
Collapse
|
21
|
Koelfat KV, Picot D, Chang X, Desille‐Dugast M, van Eijk HM, van Kuijk SM, Lenicek M, Layec S, Carsin M, Dussaulx L, Seynhaeve E, Trivin F, Lacaze L, Thibault R, Schaap FG, Olde Damink SW. Chyme Reinfusion Restores the Regulatory Bile Salt-FGF19 Axis in Patients With Intestinal Failure. Hepatology 2021; 74:2670-2683. [PMID: 34133768 PMCID: PMC8596508 DOI: 10.1002/hep.32017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Automated chyme reinfusion (CR) in patients with intestinal failure (IF) and a temporary double enterostomy (TDE) restores intestinal function and protects against liver injury, but the mechanisms are incompletely understood. The aim was to investigate whether the beneficial effects of CR relate to functional recovery of enterohepatic signaling through the bile salt-FGF19 axis. APPROACH AND RESULTS Blood samples were collected from 12 patients, 3 days before, at start, and 1, 3, 5, and 7 weeks after CR initiation. Plasma FGF19, total bile salts (TBS), 7-α-hydroxy-4-cholesten-3-one (C4; a marker of bile salt synthesis), citrulline (CIT), bile salt composition, liver tests, and nutritional risk indices were determined. Paired small bowel biopsies prior to CR and after 21 days were taken, and genes related to bile salt homeostasis and enterocyte function were assessed. CR induced an increase in plasma FGF19 and decreased C4 levels, indicating restored regulation of bile salt synthesis through endocrine FGF19 action. TBS remained unaltered during CR. Intestinal farnesoid X receptor was up-regulated after 21 days of CR. Secondary and deconjugated bile salt fractions were increased after CR, reflecting restored microbial metabolism of host bile salts. Furthermore, CIT and albumin levels gradually rose after CR, while abnormal serum liver tests normalized after CR, indicating restored intestinal function, improved nutritional status, and amelioration of liver injury. CR increased gene transcripts related to enterocyte number, carbohydrate handling, and bile salt homeostasis. Finally, the reciprocal FGF19/C4 response after 7 days predicted the plasma CIT time course. CONCLUSIONS CR in patients with IF-TDE restored bile salt-FGF19 signaling and improved gut-liver function. Beneficial effects of CR are partly mediated by recovery of the bile salt-FGF19 axis and subsequent homeostatic regulation of bile salt synthesis.
Collapse
Affiliation(s)
- Kiran V.K. Koelfat
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Denis Picot
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Xinwei Chang
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Mireille Desille‐Dugast
- INSERM, INRAEUniversity of RennesNutrition Metabolisms and CancerNuMeCanNutrition UnitCRB SantéCHU RennesRennesFrance
| | - Hans M. van Eijk
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Sander M.J. van Kuijk
- Department of Clinical Epidemiology and Medical Technology AssessmentMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Martin Lenicek
- Institute of Medical Biochemistry and Laboratory Diagnostics1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Sabrina Layec
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Marie Carsin
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Laurence Dussaulx
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Eloi Seynhaeve
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Florence Trivin
- Department of Nutritional and Digestive RehabilitationClinique Saint YvesRennesFrance
| | - Laurence Lacaze
- INSERM, INRAEUniversity of RennesNutrition Metabolisms and CancerNuMeCanNutrition UnitCRB SantéCHU RennesRennesFrance
| | - Ronan Thibault
- INSERM, INRAEUniversity of RennesNutrition Metabolisms and CancerNuMeCanNutrition UnitCRB SantéCHU RennesRennesFrance
| | - Frank G. Schaap
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| | - Steven W.M. Olde Damink
- Department of SurgeryMaastricht University Medical CenterMaastrichtthe Netherlands,NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands,Department of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| |
Collapse
|
22
|
Tian S, Chen M, Wang B, Han Y, Shang H, Chen J. Salvianolic acid B blocks hepatic stellate cell activation via FGF19/FGFR4 signaling. Ann Hepatol 2021; 20:100259. [PMID: 32980439 DOI: 10.1016/j.aohep.2020.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES The activation of hepatic stellate cells (HSCs) is the main cause of liver fibrosis. The beneficial effects of fibroblast growth factor (FGF) 19 on liver fibrosis were recently reported. The S. miltiorrhiza as well as S. miltiorrhiza derived bioactive chemical components has shown prominent antifibrotic effects in liver fibrosis but the mechanism is still not fully understood. We aimed to investigate the bioactive compounds derived from S. miltiorrhiza which exerts antifibrotic effects in HSCs via regulating FGF19. MATERIALS AND METHODS FGF19 level in culture media was determined by enzyme-linked immunosorbent assay. Cell proliferation was measured by Cell Counting Kit-8 assay. Further, mRNA and protein expressions were assessed by quantitative polymerase chain reaction and western blotting, respectively. Knocking down of FGF receptor 4 (FGFR4) by transfection with siRNA was used to confirm the role of FGF19/FGFR4 signaling. RESULTS Using the human HSC cell line LX-2, we screened several natural products and found that bioactive compounds isolated from Salvia miltiorrhiza, particularly salvianolic acid B, strongly upregulated FGF19 secretion by LX-2 cells. We further showed that salvianolic acid B inhibited lipopolysaccharide (LPS)-induced HSC proliferation and activation. LPS treatment may also reduce the mRNA and protein levels of FGF19 and its receptor FGFR4. Salvianolic acid B treatment restored the impaired expressions of FGF19 and FGFR4. Finally, FGFR4 knockdown abolished the antifibrotic effects of salvianolic acid B in the LPS-induced HSC activation model. CONCLUSIONS Salvianolic acid B prevented LPS-induced HSC proliferation and activation by enhancing antifibrotic FGF19/FGFR4 signaling.
Collapse
Affiliation(s)
- Shuxia Tian
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China
| | - Min Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China
| | - Bing Wang
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Yonglong Han
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Haonan Shang
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, China
| | - Junming Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China; Shanghai Jiaotong University Affiliated Sixth People's Hospital, China.
| |
Collapse
|
23
|
Hvistendahl MK, Naimi RM, Hansen SH, Rehfeld JF, Kissow H, Pedersen J, Dragsted LO, Sonne DP, Knop FK, Jeppesen PB. Bile acid-farnesoid X receptor-fibroblast growth factor 19 axis in patients with short bowel syndrome: The randomized, glepaglutide phase 2 trial. JPEN J Parenter Enteral Nutr 2021; 46:923-935. [PMID: 34287979 DOI: 10.1002/jpen.2224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The gut-liver axis and enterohepatic circulation have gained increasing attention lately. Patients with short bowel syndrome (SBS) are, in fact, human knock-out models that may assist in the understanding of bile acid synthesis and regulation. We evaluated effect of glepaglutide (a long-acting glucagon-like peptide-2 analog) on bile acid synthesis (the enterohepatic circulation of bile acids and liver biochemistry in patients with SBS). METHOD In a single-center, double-blinded, dose-finding, crossover phase 2 trial, 18 patients with SBS were randomly assigned to 2 of 3 treatment arms (0.1, 1, and 10 mg) with daily subcutaneous injections of glepaglutide for 3 weeks. The washout period between the 2 treatment periods was 4-8 weeks. Measurements were performed at baseline and at the end of each treatment period and included postprandial plasma samples for fibroblast growth factor 19 (FGF19), 7α-hydroxy-4-cholesten-3-one (C4), total excretion of fecal bile acids, gene expression of farnesoid X receptor (FXR) in intestinal mucosal biopsies, total plasma bile acids, and liver biochemistry. RESULTS Compared with baseline, the median (interquartile range) postprandial response (area under the curve 0-2h) of FGF19 increased by 150 h × ng/L (41, 195; P = 0.001) and C4 decreased by 82 h × µg/L (-169, -28; p = 0.010) in the 10-mg dose. FXR gene expression did not change in any of the groups. Alkaline phosphatase significantly decreased. CONCLUSION Glepaglutide may stimulate the bile acid/FXR/FGF19 axis, leading to increased plasma concentrations of FGF19. Thereby, glepaglutide may ameliorate the accelerated de novo bile acid synthesis and play a role in the prevention and/or treatment of intestinal failure-associated liver disease.
Collapse
Affiliation(s)
- Mark Krogh Hvistendahl
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rahim Mohammad Naimi
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Svend Høime Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Novo Nordisk Foundation Center of Basic Metabolic Research and Department of Biomedical Sciences, Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Novo Nordisk Foundation Center of Basic Metabolic Research and Department of Biomedical Sciences, Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Science, University of Copenhagen, Frederiksberg, Denmark
| | - David Peick Sonne
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Filip Krag Knop
- Novo Nordisk Foundation Center of Basic Metabolic Research and Department of Biomedical Sciences, Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Palle Bekker Jeppesen
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Wang J, Micic D. Hepatobiliary Manifestations of Short Bowel Syndrome and Intestinal Failure-Associated Liver Disease. Clin Liver Dis (Hoboken) 2021; 17:297-300. [PMID: 33968392 PMCID: PMC8087921 DOI: 10.1002/cld.1053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/31/2020] [Accepted: 10/11/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Jennifer Wang
- Department of Internal MedicineSection of Gastroenterology, Hepatology and NutritionUniversity of Chicago MedicineChicagoIL
| | - Dejan Micic
- Department of Internal MedicineSection of Gastroenterology, Hepatology and NutritionUniversity of Chicago MedicineChicagoIL
| |
Collapse
|
25
|
Prediction, identification and progression of histopathological liver disease activity in children with intestinal failure. J Hepatol 2021; 74:593-602. [PMID: 33002568 DOI: 10.1016/j.jhep.2020.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/22/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Diagnostic criteria, progression risk and optimal monitoring for intestinal failure (IF)-associated liver disease (IFALD) remain undefined. We assessed predictors, non-invasive markers and progression of histopathological liver disease in patients with IF. METHODS In total, 77 children with IF and median age of 1.7 years underwent diagnostic liver biopsy, which was repeated in 48 patients after 2.9 years with simultaneous evaluation of liver biochemistry, liver stiffness, serum citrulline (a surrogate for viable enterocyte mass), spleen size, esophageal varices and clinical data. Patients were staged according to histopathological liver disease activity: active IFALD (cholestasis and/or inflammation), chronic IFALD (significant fibrosis and/or steatosis), or no IFALD (none of these features). RESULTS Diagnostic liver biopsy revealed active, chronic or no IFALD in 48%, 21% and 31% of patients. Active IFALD was segregated by low serum citrulline, parenteral nutrition (PN) dependency and young age, while weaning off PN and older age predicted chronic IFALD. Although the liver histopathology in most patients either normalized (52%) or transformed to a less reactive (chronic) disease stage (23%), 19% of patients retained and 6.3% progressed to an active cholestatic/inflammatory IFALD phenotype. Decreased serum citrulline and PN-dependency also predicted active IFALD in follow-up biopsies. Increased median liver biochemistry values and liver stiffness only associated with active IFALD, which was accurately identified by gamma-glutamyltransferase (GGT), citrulline and liver stiffness, their combinations reaching diagnostic and follow-up AUROC values above 0.90. CONCLUSIONS Active IFALD, essentially predicted by intestinal disruption and PN-dependency, was accurately detected by GGT, liver stiffness and citrulline, which together with recent advances in clinical management options, provides new avenues for monitoring and targeted liver protection in patients with IF. LAY SUMMARY Liver disease is a common and critical complication in patients with intestinal failure, who require intravenous nutrition for survival due to severe intestinal dysfunction. We showed that both intravenous nutrition dependency and intestinal disruption essentially predicted development of active histopathological liver disease, which persisted in 25% of patients during long-term follow-up and could be accurately detected without the need for liver biopsy. Identification of the active and potentially progressive histopathology offers new possibilities for monitoring and targeted liver protection in patients with intestinal failure.
Collapse
|
26
|
Meessen EC, Bakker GJ, Nieuwdorp M, Dallinga-Thie GM, Kemper EM, Olde Damink SW, Romijn JA, Hartmann B, Holst JJ, Knop FK, Groen AK, Schaap FG, Soeters MR. Parenteral nutrition impairs plasma bile acid and gut hormone responses to mixed meal testing in lean healthy men. Clin Nutr 2021; 40:1013-1021. [DOI: 10.1016/j.clnu.2020.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/17/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|
27
|
Fousekis FS, Mitselos IV, Christodoulou DK. New insights into intestinal failure-associated liver disease in adults: A comprehensive review of the literature. Saudi J Gastroenterol 2021; 27:3-12. [PMID: 33642350 PMCID: PMC8083246 DOI: 10.4103/sjg.sjg_551_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intestinal failure-associated liver disease (IFALD) remains one of the most common and serious complications of parenteral nutrition (PN), causing a wide spectrum of hepatic manifestations from steatosis and mild cholestasis to portal hypertension and end-stage liver failure. The prevalence of IFALD depends on the diagnostic criteria and ranges from 4.3% to 65%. Moreover, many factors are shown to contribute to its development, including nutrient deficiencies, toxicity of PN, infections, and alterations of bile acid metabolism and gut microbiota. Prevention and management of IFALD aim at ameliorating or eliminating the risk factors associated with IFALD. The use of PN formulations with a lower ratio omega-6-to-omega-3 polyunsaturated fatty acids, cycle PN, optimization of enteral stimulation and prevention and early treatment of infections constitute the main therapeutic targets. However, failure of improvement and severe IFALD with end-stage liver failure should be considered as the indications of intestinal transplantation. The aim of this review is to provide an update of the epidemiology, pathophysiology, and diagnosis of IFALD in the adult population as well as to present a clinical approach of the therapeutic strategies of IFALD and present novel therapeutic targets.
Collapse
Affiliation(s)
- Fotios S. Fousekis
- Department of Gastroenterology and Hepatology, School of Health Sciences, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Ioannis V. Mitselos
- Department of Gastroenterology and Hepatology, School of Health Sciences, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios K. Christodoulou
- Department of Gastroenterology and Hepatology, School of Health Sciences, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Ioannina, Greece,Address for correspondence: Prof. Dimitrios K. Christodoulou, Professor of Gastroenterology, Department of Gastroenterology and Hepatology, School of Health Sciences, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, POBox 1186, Ioannina 45110, Greece. E-mail:
| |
Collapse
|
28
|
Anti-TNF-α Therapy Exerts Intestinal Anti-inflammatory and Anti-apoptotic Effects After Massive Bowel Resection in a Rat. J Pediatr Gastroenterol Nutr 2021; 72:49-55. [PMID: 32740515 DOI: 10.1097/mpg.0000000000002876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of massive small bowel resection on proinflammatory cytokine intestinal expression and the effect of anti-TNF-α antibodies (ATA) on intestinal inflammation, epithelial cell turnover, and intestinal adaptation after bowel resection in rats. METHODS Male Sprague-Dawley rats were divided into 4 experimental groups: Sham-rats underwent bowel transection; Sham-ATA rats underwent bowel transection and were treated with ATA; SBS-animals underwent 75% bowel resection; and SBS-ATA rats underwent bowel resection and were treated with ATA similarly to Group B. Parameters of intestinal adaptation, enterocyte proliferation, and apoptosis were determined at sacrifice. TNF-α and apoptosis-related gene and protein levels were determined by Illumina's Digital Gene Expression (DGE) analysis, Real Time PCR, Western blotting, and immunohistochemistry. RESULTS From 25 genes related to TNF-α signalling that were investigated, 8 genes in the jejunum and 10 genes in the ileum were found to be up-regulated in resected versus sham animals. SBS rats demonstrated a significant increase in tissue and plasma TNF-α, IL-6 levels, intestinal mucosal TNF-α related gene expression, and microscopic parameters of inflammation. Treatment of resected animals with ATA resulted in a significant decrease in TNF-α levels, intestinal mucosal TNF-α-related gene expression, decreased number of intraepithelial lymphocytes and macrophages, and lower apoptotic index compared with SBS animals. CONCLUSIONS In a rat model of SBS, ATA decreased plasma and tissue TNF-α levels, diminished mucosal inflammation, and inhibited cell apoptosis. Anti-apoptotic effects of ATA appear to be associated with an inhibited extrinsic apoptotic pathway.
Collapse
|
29
|
Gulfo J, Rotondo F, Ávalos de León CG, Cornide-Petronio ME, Fuster C, Gracia-Sancho J, Jiménez-Castro MB, Peralta C. FGF15 improves outcomes after brain dead donor liver transplantation with steatotic and non-steatotic grafts in rats. J Hepatol 2020; 73:1131-1143. [PMID: 32422221 DOI: 10.1016/j.jhep.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Donation after brain death (DBD) grafts are associated with reduced graft quality and function post liver transplantation (LT). We aimed to elucidate i) the impact of FGF15 levels on DBD grafts; ii) whether this impact resulted from altered intestinal FXR-FGF15; iii) whether administration of FGF15 to donors after brain death could confer a benefit on graft function post LT; and iv) whether FGF15 affects bile acid (BA) accumulation. METHODS Steatotic and non-steatotic grafts from DBD donors and donors without brain death were transplanted in rats. FGF15 was administered alone or combined with either a BA (cholic acid) or a YAP inhibitor. RESULTS Brain death induced intestinal damage and downregulation of FXR. The resulting reduced intestinal FGF15 was associated with low hepatic FGF15 levels, liver damage and regenerative failure. Hepatic FGFR4-Klb - the receptor for FGF15 - was downregulated whereas CYP7A1 was overexpressed, resulting in BA accumulation. FGF15 administration to DBD donors increased hepatic FGFR4-Klb, reduced CYP7A1 and normalized BA levels. The benefit of FGF15 on liver damage was reversed by cholic acid, whereas its positive effect on regeneration was maintained. YAP signaling in DBD donors was activated after FGF15 treatment. When a YAP inhibitor was administered, the benefits of FGF15 on regeneration were abolished, whereas its positive effect on hepatic damage remained. Neither the Hippo-YAP-BA nor the BA-IQGAP1-YAP axis was involved in the benefits of FGF15. CONCLUSION Alterations in the gut-liver axis contribute to the reduced quality of DBD grafts and the associated pathophysiology of LT. FGF15 pre-treatment in DBD donors protected against damage and promoted cell proliferation. LAY SUMMARY After brain death, potential liver donors have reduced intestinal FXR, which is associated with reduced intestinal, circulatory and hepatic levels of FGF15. A similar reduction in the cell-surface receptor complex Fgfr4/Klb is observed, whereas CYP7A1 is overexpressed; together, these molecular events result in the dangerous accumulation of bile acids, leading to damage and regenerative failure in brain dead donor grafts. Herein, we demonstrate that when such donors receive appropriate doses of FGF15, CYP7A1 levels and hepatic bile acid toxicity are reduced, and liver regeneration is promoted.
Collapse
Affiliation(s)
- José Gulfo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Floriana Rotondo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Carla Fuster
- Pathology Department, Hospital Clinic, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), Barcelona, Spain; Liver Vascular Biology Research Group, IDIBAPS, Barcelona, Spain
| | | | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), Barcelona, Spain.
| |
Collapse
|
30
|
Maselli KM, Gee K, Grikscheit TC. Remnant Intestinal Length Defines Intestinal Adaptation and Hepatic Steatosis: Two Zebrafish Models. J Surg Res 2020; 255:86-95. [DOI: 10.1016/j.jss.2020.05.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/10/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
|
31
|
Myronovych A, Bhattacharjee J, Salazar-Gonzalez RM, Tan B, Mowery S, Ferguson D, Ryan KK, Zhang W, Zhao X, Oehrle M, Setchell KD, Seeley RJ, Sandoval DA, Kohli R. Assessment of the role of FGF15 in mediating the metabolic outcomes of murine Vertical Sleeve Gastrectomy (VSG). Am J Physiol Gastrointest Liver Physiol 2020; 319:G669-G684. [PMID: 32967428 PMCID: PMC7792670 DOI: 10.1152/ajpgi.00175.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 01/31/2023]
Abstract
Vertical sleeve gastrectomy (VSG) is the best current therapy for remission of obesity and its co-morbidities. It is understood to alter the enterohepatic circulation of bile acids in vivo. Fibroblast growth factor 19 (FGF19) in human and its murine orthologue Fgf15 plays a pivotal role in this bile acid driven enterohepatic signaling. The present study evaluated the metabolic outcomes of VSG in Fgf15 deficient mice. 6-8 weeks old male wildtype mice (WT) and Fgf15 deficient mice (KO) were fed a high fat diet (HFD) for 8 weeks. At 8th week of diet, both WT and KO mice were randomly distributed to VSG or sham surgery. Post-surgery, mice were observed for 8 weeks while fed a HFD and then euthanized to collect tissues for experimental analysis. Fgf15 deficient (KO) mice lost weight post VSG, but glucose tolerance in KO mice did not improve post VSG compared to WT mice. Enteroids derived from WT and KO mice proliferated with bile acid exposure in vitro. Post VSG both WT and KO mice had similarly altered bile acid enterohepatic flux, however Fgf15 deficient mice post VSG had increased hepatic accumulation of free and esterified cholesterol leading to lipotoxicity related ER stress, inflammasome activation, and increased Fgf21 expression. Intact Fgf15 mediated enterohepatic bile acid signaling, but not changes in bile acid flux, appear to be important for the metabolic improvements post-murine bariatric surgery. These novel data introduce a potential point of distinction between bile acids acting as ligands compared to their canonical downstream signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Brandon Tan
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | - Sarah Mowery
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | - Danielle Ferguson
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | | | - Wujuan Zhang
- Human Genetics, Cincinnati Children's Hospital Medical Center, United States
| | - Xueheng Zhao
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | - Melissa Oehrle
- Pediatrics, Cincinnati Children's Hospital Medical Center, United States
| | | | - Randy J Seeley
- Surgery, University of Michigan-Ann Arbor, United States
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Rohit Kohli
- Pediatrics, Children's Hospital of Los Angeles, United States
| |
Collapse
|
32
|
Manithody C, Denton C, Price A, Blomenkamp K, Patel Y, Welu A, Glbert E, Madnawat H, Jain S, Villalona GA, Jain AK. Development and validation of an ambulatory piglet model for short bowel syndrome with ileo-colonic anastomosis. Exp Biol Med (Maywood) 2020; 245:1049-1057. [PMID: 32264693 PMCID: PMC7357144 DOI: 10.1177/1535370220915881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
IMPACT STATEMENT Short bowel syndrome is associated with significant comorbidities and mortality. This study is important as unlike current systems, it provides a validated piglet model which mirrors anatomical, histological, and serological characteristics observed in human SBS. This model can be used to advance knowledge into mechanistic pathways and therapeutic modalities to improve outcomes for SBS patients. This study is novel in that in addition to significant reduction in the remnant bowel and noted liver disease, we also developed a method to emulate ileocecal valve resection and described gut adaptive responses which has important clinical implications in humans.
Collapse
Affiliation(s)
| | - Christine Denton
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Amber Price
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Keith Blomenkamp
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Yogi Patel
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Adam Welu
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Ester Glbert
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Himani Madnawat
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Sonali Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Gustavo A Villalona
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Ajay K Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| |
Collapse
|
33
|
Khalaf RT, Sokol RJ. New Insights Into Intestinal Failure-Associated Liver Disease in Children. Hepatology 2020; 71:1486-1498. [PMID: 32003009 PMCID: PMC8245203 DOI: 10.1002/hep.31152] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022]
Abstract
Development of intestinal failure-associated liver disease (IFALD) is a common complication of long-term parenteral nutrition (PN) in children and adults. The molecular and cellular mechanisms and the phases of IFALD are now being delineated. Components of PN lipid emulsions, including plant sterols, interact with hepatic innate immune activation promoted by products of gut bacterial overgrowth/dysbiosis and altered intestinal barrier function (gut-liver axis) and by episodes of sepsis to cause cholestasis and IFALD. New therapeutic strategies, including modifications of intravenous lipid emulsions to reduce pro-inflammatory fatty acids and plant sterol content, can lower the risk of IFALD, reverse cholestasis, and reduce complications, although the significance of persisting hepatic fibrosis is unknown. This review will provide an update on advances in the pathogenesis of IFALD, newer therapeutic and preventative strategies, and challenges that confront managing patients with IFALD.
Collapse
Affiliation(s)
- Racha T Khalaf
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Ronald J Sokol
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
34
|
Wang J, Wamuo O, Micic D. Evaluation of Fibrosis in Intestinal Failure–Associated Liver Disease in the Sustain Registry. JPEN J Parenter Enteral Nutr 2020; 44:1285-1290. [DOI: 10.1002/jpen.1758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jennifer Wang
- Section of Gastroenterology Hepatology and Nutrition Department of Internal Medicine University of Chicago Medicine Chicago Illinois USA
| | - Obinnaya Wamuo
- Maclean Center for Clinical Medical Ethics University of Chicago Medicine Chicago Illinois USA
| | - Dejan Micic
- Section of Gastroenterology Hepatology and Nutrition Department of Internal Medicine University of Chicago Medicine Chicago Illinois USA
| |
Collapse
|
35
|
Avalos-de León CG, Jiménez-Castro MB, Cornide-Petronio ME, Gulfo J, Rotondo F, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. The Effect of Fibroblast Growth Factor 15 Signaling in Non-Steatotic and Steatotic Liver Transplantation from Cardiocirculatory Death. Cells 2019; 8:1640. [PMID: 31847428 PMCID: PMC6952771 DOI: 10.3390/cells8121640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
We elucidate the relevance of fibroblast growth factor 15 (FGF15) in liver transplantation (LT) using rats with both steatotic and non-steatotic organs from donors after cardiocirculatory death (DCD). Compared to LT from non-DCDs, the induction of cardiocirculatory death (CD) increases hepatic damage, proliferation, and intestinal and circulatory FGF15. This is associated with high levels of FGF15, bilirubin and bile acids (BAs), and overexpression of the enzyme involved in the alternative BA synthesis pathway, CYP27A1, in non-steatotic livers. Furthermore, CD activates the proliferative pathway, Hippo/YAP, in these types of liver. Blocking FGF15 action in LT from DCDs does not affect CYP27A1 but causes an overexpression of CYP7A, an enzyme from the classic BA synthesis pathway, and this is related to further accumulation of BAs and exacerbated damage. FGF15 inhibition also impairs proliferation without changing Hippo/YAP. In spite of worse damage, steatosis prevents a proliferative response in livers from DCDs. In steatotic grafts, CD does not modify CYP7A1, CYP27A1, BA, or the Hippo/YAP pathway, and FGF15 is not involved in damage or proliferation. Thus, endogenous FGF15 protects against BA accumulation and damage and promotes regeneration independently of the Hippo/YAP pathway, in non-steatotic LT from DCDs. Herein we show a minor role of FGF15 in steatotic LT from DCDs.
Collapse
Affiliation(s)
- Cindy G. Avalos-de León
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - María Eugenia Cornide-Petronio
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - José Gulfo
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - Floriana Rotondo
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
- Liver Vascular Biology Research Group, IDIBAPS, 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
| |
Collapse
|
36
|
Danko M, Żyła-Pawlak A, Książyk J, Olszewska-Durkacz K, Sibilska M, Żydak J, Popińska K. A Retrospective Analysis of the Effect of Combination of Pure Fish Oil with Third Generation Lipid Emulsion on Liver Function in Children on Long-Term Parenteral Nutrition. Nutrients 2019; 11:nu11102495. [PMID: 31627315 PMCID: PMC6836066 DOI: 10.3390/nu11102495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Deterioration of liver function, or intestinal failure-associated liver disease, is often observed in long-term parenterally fed children. Fish oil-based intravenous lipids have been reported to play a role in the prevention and treatment of intestinal failure associated liver disease. METHODS This retrospective analysis included 40 pediatric patients, (20 male and 20 female), median age 38 months (range 1.5-200 months) on long-term (≥1 month) parenteral nutrition who received the parenteral mixtures containing a combination of a third-generation lipid emulsion and pure fish oil because of laboratory liver function abnormalities. The total dose of fish oil from both emulsions for each patient exceeded 0.5 g/kg/day. Data from visits in an outpatient clinic were retrospectively analyzed using the Wilcoxon test, Mann-Whitney test, and Spearman correlation test. RESULTS The median time of therapy was 149 days (range 28-418 days). There was a decrease of median total and direct (conjugated) bilirubin concentration from 22.23 µmol/L (range 3.42-243 µmol/L) to 10.26 µmol/L (range 3.42-180.58 µmol/L; p < 0.005) and 8.55 (range 1.71-212.04 µmol/L) to 6.84 µmol/L (range 1.71-150.48 µmol/L; p < 0.007) respectively. A significant decrease in median alanine aminotransferase, aspartate aminotransferase and gamma-glutamyl transferase was also observed. In 11 patients bilirubin concentrations increased or remained unchanged. When compared to the patients who responded to the combination therapy, the patients who did not respond received parenteral nutrition for a longer time prior to the start of the therapy (51 vs. 30 months; p < 0.05). CONCLUSIONS The mixture of an intravenous lipid emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil with the addition of pure fish oil emulsion may be helpful in the treatment of liver complications in children on long-term parenteral nutrition.
Collapse
Affiliation(s)
- Mikołaj Danko
- Department of Paediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Al. Dzieci Polski 20, 04-730 Warsaw, Poland.
| | - Aleksandra Żyła-Pawlak
- Department of Paediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Al. Dzieci Polski 20, 04-730 Warsaw, Poland.
| | - Janusz Książyk
- Department of Paediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Al. Dzieci Polski 20, 04-730 Warsaw, Poland.
| | - Katarzyna Olszewska-Durkacz
- Department of Paediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Al. Dzieci Polski 20, 04-730 Warsaw, Poland.
| | - Marta Sibilska
- Department of Paediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Al. Dzieci Polski 20, 04-730 Warsaw, Poland.
| | - Joanna Żydak
- Department of Paediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Al. Dzieci Polski 20, 04-730 Warsaw, Poland.
| | - Katarzyna Popińska
- Department of Paediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Al. Dzieci Polski 20, 04-730 Warsaw, Poland.
| |
Collapse
|
37
|
Mutanen A, Lohi J, Heikkilä P, Jalanko H, Pakarinen MP. Liver Inflammation Relates to Decreased Canalicular Bile Transporter Expression in Pediatric Onset Intestinal Failure. Ann Surg 2019; 268:332-339. [PMID: 28234635 DOI: 10.1097/sla.0000000000002187] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Although liver disease is a major complication of parenteral nutrition (PN) for intestinal failure (IF), its pathogenesis remains unclear. We investigated potential molecular mechanisms of liver injury in pediatric onset IF. METHODS Liver expression of canalicular phospholipid (ABCB4), bile acid (ABCB11), and sterol (ABCG5/8) transporters, their upstream regulators LXR and FXR as well as pro-inflammatory cytokines interleukin-6 (IL6) and tumor necrosis factor (TNF) were investigated among patients with IF [age median 3.8 (IQR 1.2 to 11)] in relation to biochemical and histologic liver injury, PN, serum plant sterols, fibroblast growth factor 19, and α-tocopherol. RESULTS Patients receiving PN currently (n = 18) showed more advanced liver injury than patients after weaning off PN (n = 30). Histologic portal inflammation strongly segregated PN-dependent (44%) from weaned off patients (3%, P = 0.001) and coupled with progression of cholestasis and liver fibrosis. Patients with portal inflammation demonstrated markedly induced liver RNA expression of IL6 and TNF, repression of FXR and its canalicular bile transporter target gene RNA expression, including ABCB4 and ABCB11 as well as decreased protein expression of ABCB11 and ABCB4. Furthermore, upregulation of LXR and ABCG5/8 RNA expression was suppressed in patients with portal inflammation. Current PN, increased serum levels of plant sterols stigmasterol, avenasterol, and sitosterol along with serum citrulline, a marker of enterocyte mass, predicted portal inflammation. CONCLUSIONS In pediatric onset IF, current PN delivery synergistically with intestinal compromise promote liver inflammation, which associates with progression of biochemical and histologic liver injury, while reducing expression of canalicular bile transporters.
Collapse
Affiliation(s)
- Annika Mutanen
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, HUSLAB, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, HUSLAB, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Hannu Jalanko
- Department of Pediatric Nephrology and Transplantation, Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Mikko P Pakarinen
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Bond A, Huijbers A, Pironi L, Schneider SM, Wanten G, Lal S. Review article: diagnosis and management of intestinal failure-associated liver disease in adults. Aliment Pharmacol Ther 2019; 50:640-653. [PMID: 31342540 DOI: 10.1111/apt.15432] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatic disturbances in the context of intestinal failure and parenteral nutrition (PN) are frequently encountered and carry a significant burden of morbidity and sometimes mortality. The term intestinal failure-associated liver disease (IFALD) refers to liver injury due to intestinal failure and associated PN, in the absence of another evident cause of liver disease, encompassing a spectrum of conditions from deranged liver enzymes, steatosis/ steatohepatitis, cholestasis as well as progressive fibrosis, cirrhosis and end-stage liver disease. AIMS To present an up to date perspective on the diagnosis/definition, aetiologies and subsequent management of IFALD and to explore future consideration for the condition, including pharmacological therapies RESULTS: In adults using long-term PN for benign chronic intestinal failure, 1%-4% of all deaths are attributed to IFALD. The aetiology of IFALD is multifactorial and can be broadly divided into nutritional factors (eg lipid emulsion type) and patient-related factors (eg remaining bowel anatomy). Given its multifaceted aetiology, the management of IFALD requires clinicians to investigate a number of factors simultaneously. Patients with progressive liver disease should be considered for combined liver-intestine transplantation, although multivisceral grafts have a worse prognosis. However, there is no established non-invasive method to identify progressive IFALD such that liver biopsy, where appropriate, remains the gold standard. CONCLUSION A widely accepted definition of IFALD would aid in diagnosis, monitoring and subsequent management. Management can be complex with a number of factors to consider. In the future, dedicated pharmacological interventions may become more prominent in the management of IFALD.
Collapse
Affiliation(s)
- Ashley Bond
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Salford, UK
| | - Angelique Huijbers
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Geert Grooteplein, The Netherlands
| | - Loris Pironi
- Department of Digestive System, Center for Chronic Intestinal Failure, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Stephane M Schneider
- Nutritional Support Unit, Archet University Hospital, University Côte d'Azur, Nice, France
| | - Geert Wanten
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Geert Grooteplein, The Netherlands
| | - Simon Lal
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Salford, UK.,Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Pierret ACS, Wilkinson JT, Zilbauer M, Mann JP. Clinical outcomes in pediatric intestinal failure: a meta-analysis and meta-regression. Am J Clin Nutr 2019; 110:430-436. [PMID: 31172170 PMCID: PMC6669059 DOI: 10.1093/ajcn/nqz110] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Intestinal failure (IF) is associated with significant morbidity and mortality, yet specific parameters that determine medium- and long-term outcomes remain ill defined. OBJECTIVE The aim of this study was to determine the long-term outcomes in childhood IF and identify patient characteristics associated with clinical endpoints. DESIGN MEDLINE and EMBASE were searched for cohorts of >10 pediatric-onset IF patients with >12 mo follow-up. Random-effects meta-analysis and meta-regression weighted by follow-up duration were used to calculate clinical outcome rates and patient factors associated with outcomes. Primary outcome was mortality rate; secondary outcomes included neurodevelopmental status, transplantation, IF-associated liver disease (IFALD), enteral autonomy, and sepsis. RESULTS In total, 175 cohorts (9318 patients and 34,549 y follow-up) were included in the meta-analysis. Overall mortality was 5.2% per y (95% CI: 4.3, 6.0) and was associated with sepsis and IFALD on meta-regression. Mortality rate improved with time from 5.9% per y pre-2000 to 4.5% per y post-2005. Sepsis rate was also predictive of IFALD and liver failure. Enteral autonomy was associated with small bowel length but not presence of ileo-cecal valve. There was a relative lack of data on neurodevelopmental outcomes. CONCLUSIONS Sepsis is the primary modifiable factor associated with mortality and liver failure, whereas enteral autonomy correlates with small-bowel length. No clear parameters have been identified that accurately predict neurodevelopmental outcomes, and hence further research is needed. Together, our findings are helpful for parental counseling and resource planning, and support targeting reduction in sepsis.
Collapse
Affiliation(s)
- Aureliane Chantal Stania Pierret
- Department of Pharmacology, University of Cambridge, Cambridge, UK,Clinical School of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Jake Peter Mann
- Department of Paediatrics, University of Cambridge, Cambridge, UK,Metabolic Research Laboratories—Institute of Metabolic Science, University of Cambridge, Cambridge, UK,MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK,Address correspondence to JPM (e-mail: )
| |
Collapse
|
40
|
Pakarinen MP. GLP-2 cures the gut - What about the liver? EBioMedicine 2019; 46:11-12. [PMID: 31303504 PMCID: PMC6710903 DOI: 10.1016/j.ebiom.2019.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 01/24/2023] Open
Affiliation(s)
- Mikko P Pakarinen
- Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
41
|
Koelfat KVK, Plummer MP, Schaap FG, Lenicek M, Jansen PLM, Deane AM, Olde Damink SWM. Gallbladder Dyskinesia Is Associated With an Impaired Postprandial Fibroblast Growth Factor 19 Response in Critically Ill Patients. Hepatology 2019; 70:308-318. [PMID: 30933374 DOI: 10.1002/hep.30629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Critical illness is associated with a disturbed regulation of gastrointestinal hormones resulting in functional and metabolic anomalies. Fibroblast growth factor 19 (FGF19) is an ileum-derived metabolic hormone induced by bile salts upon gallbladder emptying after enteral nutrient stimulation. Our aim was to study the nutrient-stimulated FGF19 response in 24 patients admitted to the intensive care unit (ICU) compared with 12 healthy controls. All subjects received intraduodenal high-lipid nutrient infusion for 120 minutes. Blood was collected every 30 minutes until 1 hour after infusion, and gallbladder emptying was studied by ultrasound. Serum levels of bile salts and FGF19 were assessed. ICU patients had significantly higher fasting bile salt serum levels compared with controls, whereas FGF19 serum levels were similar. In both groups, nutrient infusion elicited substantial bile salt elevations (P < 0.001), peaking at 90 minutes, albeit with a significantly lower peak in the ICU patients (P = 0.029). In controls, FGF19 was significantly elevated relative to baseline from 120 minutes onward (P < 0.001). In ICU patients, the FGF19 response was blunted, as reflected by significantly lower FGF19 elevations at 120, 150, and 180 minutes (P < 0.05) and significantly lower area under the curve (AUC) values compared with controls (P < 0.001). Gallbladder dysmotility was associated with the impaired FGF19 response in critical illness. The gallbladder ejection fraction correlated positively with FGF19 AUC values (ρ = +0.34, P = 0.045). In 10 of 24 ICU patients, gallbladder emptying was disturbed. These patients had significantly lower FGF19 AUC values (P < 0.001). Gallbladder emptying and the FGF19 response were respectively disturbed or absent in patients receiving norepinephrine. Conclusion: The nutrient-stimulated FGF19 response is impaired in ICU patients, which is mechanistically linked to gallbladder dysmotility in critical illness. This may contribute to disturbed liver metabolism in these patients and has potential as a nutritional biomarker.
Collapse
Affiliation(s)
- Kiran V K Koelfat
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Mark P Plummer
- Intensive Care Unit, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Frank G Schaap
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Martin Lenicek
- Department of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter L M Jansen
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Adam M Deane
- Intensive Care Unit, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
42
|
Koelfat KVK, Huijbers A, Schaap FG, van Kuijk SMJ, Lenicek M, Soeters MR, Wanten GJA, Olde Damink SWM. Low circulating concentrations of citrulline and FGF19 predict chronic cholestasis and poor survival in adult patients with chronic intestinal failure: development of a Model for End-Stage Intestinal Failure (MESIF risk score). Am J Clin Nutr 2019; 109:1620-1629. [PMID: 31075790 DOI: 10.1093/ajcn/nqz036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients with chronic intestinal failure (CIF) often develop cholestatic liver injury, which may lead to liver failure and need for organ transplantation. OBJECTIVES The aim of this study was to investigate whether citrulline (CIT) and the enterokine fibroblast growth factor 19 (FGF19) are associated with chronic cholestasis and survival in adult CIF patients, and to develop a risk score to predict their survival. METHODS We studied 135 adult CIF patients on intravenous supplementation (>3 mo). Associations of plasma CIT and FGF19 with chronic cholestasis and survival were estimated by logistic and Cox regression models. A predictive risk score was developed and validated internally. RESULTS Patients with chronic cholestasis (17%) had a reduced 5-y survival rate compared with patients without chronic cholestasis (38% and 62%, respectively). In multivariable analysis, low FGF19, low CIT, and female sex were associated with chronic cholestasis. Patients with low rather than high CIT or FGF19 also had reduced 5-y survival rates (29% compared with 69%; 54% compared with 66%, respectively). Risk factors identified in multivariable analysis of survival were low FGF19 (HR: 3.4), low CIT (HR: 3.3), and number of intravenous infusions per week (HR: 1.4). These 3 predictors were incorporated in a risk model of survival termed Model for End-Stage Intestinal Failure (MESIF) (C-statistic 0.78). The 5-y survival rates for patients with MESIF scores of 0 to <20 (n = 47), 20-40 (n = 75), and >40 (n = 13) were 80%, 58%, and 14%, respectively. CONCLUSIONS CIT and FGF19 predict chronic cholestasis and survival in this cohort of adult CIF patients, and the derived MESIF score is associated with their survival. Pending external validation, the MESIF score may help to identify patients for closer clinical monitoring or earlier referral to intestinal transplantation centers.
Collapse
Affiliation(s)
- Kiran V K Koelfat
- Department of Surgery, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Angelique Huijbers
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank G Schaap
- Department of Surgery, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, Netherlands
| | - Martin Lenicek
- Department of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
| | - Geert J A Wanten
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The goal of this review is to provide updates on the causes, manifestations and therapies IFALD in adults with an emphasis on recent discoveries on pathways of pathogenesis and interventions to reduce the incidence of IFALD. RECENT FINDINGS IFALD is a multifactorial complication of long-term home parenteral therapy. Although exact pathways are unknown, altered bile acid metabolism, microbiome dysbiosis impact on the gut-liver axis and soybean-based lipid formulations are major drivers of IFALD development. SUMMARY IFALD contributes to morbidity and mortality in patients on parenteral nutrition. Proactive management by a multidisciplinary team has led to improved outcomes in at-risk patients. Attention to early treatment and prevention of sepsis, introduction of nonsoybean based lipid formulations, surgical procedures such as step enteroplasties and, potentially, microbiome dysbiosis are considerations in IFLAD management.
Collapse
|
44
|
Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 2018; 39:960-989. [PMID: 30124818 DOI: 10.1210/er.2018-00134] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
45
|
Xiao Y, Zhou K, Lu Y, Yan W, Cai W, Wang Y. Administration of antibiotics contributes to cholestasis in pediatric patients with intestinal failure via the alteration of FXR signaling. Exp Mol Med 2018; 50:1-14. [PMID: 30504803 PMCID: PMC6269533 DOI: 10.1038/s12276-018-0181-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
The link between antibiotic treatment and IF-associated liver disease (IFALD) is unclear. Here, we study the effect of antibiotic treatment on bile acid (BA) metabolism and investigate the involved mechanisms. The results showed that pediatric IF patients with cholestasis had a significantly lower abundance of BA-biotransforming bacteria than patients without cholestasis. In addition, the BA composition was altered in the serum, feces, and liver of pediatric IF patients with cholestasis, as reflected by the increased proportion of primary BAs. In the ileum, farnesoid X receptor (FXR) expression was reduced in patients with cholestasis. Correspondingly, the serum FGF19 levels decreased significantly in patients with cholestasis. In the liver, the expression of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), increased noticeably in IF patients with cholestasis. In mice, we showed that oral antibiotics (gentamicin, GM or vancomycin, VCM) reduced colonic microbial diversity, with a decrease in both Gram-negative bacteria (GM affected Eubacterium and Bacteroides) and Gram-positive bacteria (VCM affected Clostridium, Bifidobacterium and Lactobacillus). Concomitantly, treatment with GM or VCM decreased secondary BAs in the colonic contents, with a simultaneous increase in primary BAs in plasma. Moreover, the changes in the colonic BA profile especially that of tauro-beta-muricholic acid (TβMCA), were predominantly associated with the inhibition of the FXR and further altered BA synthesis and transport. In conclusion, the administration of antibiotics significantly decreased the intestinal microbiota diversity and subsequently altered the BA composition. The alterations in BA composition contributed to cholestasis in IF patients by regulating FXR signaling. Using antibiotics during intestinal failure in children may lead to the development of liver disease. Microbiota in the gut play vital roles in balancing the digestive system, including transforming bile acids (BAs) secreted by the liver into forms that help us digest food. Wai Cai and Ying Wang at Shanghai Jiao Tong University in China and co-workers examined samples from 46 children treated with antibiotics for intestinal failure. The patients who also had cholestasis – disrupted production and flow of bile – had far fewer BA-transforming bacteria in their gut than those without cholestasis. They also had altered expression of a crucial BA receptor protein. Experiments on mice showed that treatment with two different antibiotics reduced microbiota diversity, which in turn influenced BA receptor signaling and altered BA composition, contributing to cholestasis.
Collapse
Affiliation(s)
- Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Kejun Zhou
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Weihui Yan
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Institute of Pediatric Research, Shanghai, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Ying Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
46
|
Memon N, Griffin IJ, Lee CW, Herdt A, Weinberger BI, Hegyi T, Carayannopoulos MO, Aleksunes LM, Guo GL. Developmental regulation of the gut-liver (FGF19-CYP7A1) axis in neonates. J Matern Fetal Neonatal Med 2018; 33:987-992. [PMID: 30122083 DOI: 10.1080/14767058.2018.1513483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Fibroblast growth factor 19 (FGF19) is a gut-derived hormone that regulates the expression of CYP7A1, the rate-limiting enzyme in bile acid (BA) synthesis pathway. Dysregulation of the FGF19-CYP7A1 (gut-liver) axis is associated with cholestatic liver disease. Infants, especially preterm infants and those with intestinal failure are at high risk for developing cholestatic liver disease. The activity of the gut-liver axis has not been characterized in this population. Our objective was to assess relationships between circulating FGF19 concentrations and CYP7A1 activity in neonates.Materials and methods: Plasma samples were obtained longitudinally from term and preterm infants (22-41-week gestation) hospitalized in a neonatal intensive care unit. Infants with congenital and acquired gastrointestinal disorders were excluded. Plasma levels of 7α-hydroxy-4-cholesten-3-one (C4), a marker of CYP7A1 activity, were quantified using HPLC-MS/MS. Plasma FGF19 concentrations were quantified by ELISA. Data were analyzed using linear regression models and structural equation modeling.Results: One hundred eighty-one plasma samples were analyzed from 62 infants. C4 concentrations were undetectable prior to 30 weeks' gestation and, thereafter, increased with advancing gestational age and with volume of enteral feeds. They did not correlate with serum FGF19 concentrations, which decreased with advancing gestational age and volume of enteral feeds.Discussion: The activity of CYP7A1, the rate-limiting BA synthetic enzyme in adults, is developmentally regulated and undetectable in newborns less than 30 weeks' gestation. FGF19 concentrations do not correlate with CYP7A1 activity, suggesting that the gut-liver axis is not functional in infants. High FGF19 concentrations at birth in infants less than 37 weeks' gestation is a novel finding, and its source and role in preterm infants warrants further investigation.Rationale: The intestinal hormone, fibroblast growth factor 19 (FGF19), is a major regulator of CYP7A1, the rate limiting enzyme in bile acid (BA) synthesis. Recently, dysregulation of the gut-liver (FGF19-CYP7A1) axis has been implicated in adult cholestatic liver disease, and animal studies have shown that exogenous FGF19 protects against liver injury. Given the therapeutic potential related to this signaling pathway, we sought to characterize the association between CYP7A1 and FGF19 in term and preterm infants. We conducted a prospective, observational study that measured in vivo CYP7A1 activity and FGF19 concentrations in 62 term and preterm infants (n = 181 samples). We found that CYP7A1 activity is developmentally regulated; its activity is undetectable prior to 30 weeks' gestation and increases with advancing gestational age and volume of enteral feeds. Contrary to expectation, we demonstrated that FGF19 is expressed at birth in preterm infants and decreases over time, even as enteral feeds increase. Using structural equation modeling, we were able to show that CYP7A1 activity does not correlate with FGF19 concentrations. Our results suggest that the gut-liver axis is not upregulated in preterm and term infants and that neonates with cholestatic liver disease will unlikely benefit from supplemental FGF19. We also report novel findings of elevated FGF19 concentrations in preterm infants at birth and speculate that there may be an extra-intestinal source of FGF19 that is developmentally expressed in these infants.
Collapse
Affiliation(s)
- Naureen Memon
- MidAtlantic Neonatology Associates, Morristown, NJ, USA.,Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ, USA
| | - Ian J Griffin
- MidAtlantic Neonatology Associates, Morristown, NJ, USA.,Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ, USA
| | - Chris W Lee
- MidAtlantic Neonatology Associates, Morristown, NJ, USA
| | - Aimee Herdt
- MidAtlantic Neonatology Associates, Morristown, NJ, USA
| | - Barry I Weinberger
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center of New York, Northwell Health, New Hyde Park, NY, USA
| | - Thomas Hegyi
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Mary O Carayannopoulos
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
47
|
Role of the Gut⁻Liver Axis in Driving Parenteral Nutrition-Associated Injury. CHILDREN-BASEL 2018; 5:children5100136. [PMID: 30257520 PMCID: PMC6210809 DOI: 10.3390/children5100136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
For decades, parenteral nutrition (PN) has been a successful method for intravenous delivery of nutrition and remains an essential therapy for individuals with intolerance of enteral feedings or impaired gut function. Although the benefits of PN are evident, its use does not come without a significant risk of complications. For instance, parenteral nutrition-associated liver disease (PNALD)—a well-described cholestatic liver injury—and atrophic changes in the gut have both been described in patients receiving PN. Although several mechanisms for these changes have been postulated, data have revealed that the introduction of enteral nutrition may mitigate this injury. This observation has led to the hypothesis that gut-derived signals, originating in response to the presence of luminal contents, may contribute to a decrease in damage to the liver and gut. This review seeks to present the current knowledge regarding the modulation of what is known as the “gut–liver axis” and the gut-derived signals which play a role in PN-associated injury.
Collapse
|
48
|
Xiao Y, Yan W, Lu Y, Zhou K, Cai W. Neurotensin contributes to pediatric intestinal failure-associated liver disease via regulating intestinal bile acids uptake. EBioMedicine 2018; 35:133-141. [PMID: 30104181 PMCID: PMC6154870 DOI: 10.1016/j.ebiom.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
Although the pathogenesis of intestinal failure (IF)-associated liver disease (IFALD) is uncertain, IF-associated cholestasis mediated by the combination of intestinal injury and parenteral nutrition (PN) can lead to disturbed hepatocyte bile acids (BA) homeostasis and cause liver damages. We here show that neurotensin (NT; also known as NTS) concentrations were lower compared to healthy matched controls. Patients with cholestasis [56.1 ng/L (9.7-154.7) vs. 210.4 ng/L (134-400.4), p < .001] had lower serum NT concentrations than others. In patients' ileum, the levels of NT mRNA were positively correlated with the apical sodium dependent bile acid transporter (ASBT) mRNA levels. In mice and in cultured intestinal cells, NT treatments stimulated the expression of ASBT and led to increase BA uptake via NT receptors (NTR1 and NTR3; also known as NTSR1and NTSR3). In conclusion, these findings directly link NT with BA homeostasis, which provide an insight into the complex mechanisms mediating the development of liver disease in pediatric patients with IF.
Collapse
Affiliation(s)
- Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Weihui Yan
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Kejun Zhou
- Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
49
|
Brandl K, Hartmann P, Jih LJ, Pizzo DP, Argemi J, Ventura-Cots M, Coulter S, Liddle C, Ling L, Rossi SJ, DePaoli AM, Loomba R, Mehal WZ, Fouts DE, Lucey MR, Bosques-Padilla F, Mathurin P, Louvet A, Garcia-Tsao G, Verna EC, Abraldes JG, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross D, Stärkel P, Ho SB, Bataller R, Schnabl B. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J Hepatol 2018; 69:396-405. [PMID: 29654817 PMCID: PMC6054564 DOI: 10.1016/j.jhep.2018.03.031] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The degree of cholestasis is an important disease driver in alcoholic hepatitis, a severe clinical condition that needs new biomarkers and targeted therapies. We aimed to identify the largely unknown mechanisms and biomarkers linked to cholestasis in alcoholic hepatitis. METHODS Herein, we analyzed a well characterized cohort of patients with alcoholic hepatitis and correlated clinical and histological parameters and outcomes with serum bile acids and fibroblast growth factor 19 (FGF19), a major regulator of bile acid synthesis. RESULTS We found that total and conjugated bile acids were significantly increased in patients with alcoholic hepatitis compared with controls. Serum FGF19 levels were strongly increased and gene expression of FGF19 was induced in biliary epithelial cells and ductular cells of patients with alcoholic hepatitis. De novo bile acid synthesis (CYP7A1 gene expression and C4 serum levels) was significantly decreased in patients with alcoholic hepatitis. Importantly, total and conjugated bile acids correlated positively with FGF19 and with disease severity (model for end-stage liver disease score). FGF19 correlated best with conjugated cholic acid, and model for end-stage liver disease score best with taurine-conjugated chenodeoxycholic acid. Univariate analysis demonstrated significant associations between FGF19 and bilirubin as well as gamma glutamyl transferase, and negative correlations between FGF19 and fibrosis stage as well as polymorphonuclear leukocyte infiltration, in all patients with alcoholic hepatitis. CONCLUSION Serum FGF19 and bile acids are significantly increased in patients with alcoholic hepatitis, while de novo bile acid synthesis is suppressed. Modulation of bile acid metabolism or signaling could represent a promising target for treatment of alcoholic hepatitis in humans. LAY SUMMARY Understanding the underlying mechanisms that drive alcoholic hepatitis is important for the development of new biomarkers and targeted therapies. Herein, we describe a molecule that is increased in patients with alcoholic hepatitis. Modulating the molecular pathway of this molecule might lead to promising targets for the treatment of alcoholic hepatitis.
Collapse
Affiliation(s)
- Katharina Brandl
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lily J. Jih
- Department of Pathology, University of California San Diego, La Jolla, CA, USA,Department of Pathology, VA San Diego Healthcare System, San Diego, CA, USA
| | - Donald P. Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Meritxell Ventura-Cots
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Sally Coulter
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Lei Ling
- NGM Bio, South San Francisco, CA, USA
| | | | | | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wajahat Z. Mehal
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA, and Section of Digestive Diseases, VA-CT Healthcare System, West Haven, CT, USA
| | | | - Michael R. Lucey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Francisco Bosques-Padilla
- Hospital Universitario, Departamento de Gastroenterología, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - Philippe Mathurin
- Service des Maladies de L’appareil Digestif et Unité INSERM, Hôpital Huriez, Lille, France
| | - Alexander Louvet
- Service des Maladies de L’appareil Digestif et Unité INSERM, Hôpital Huriez, Lille, France
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA, and Section of Digestive Diseases, VA-CT Healthcare System, West Haven, CT, USA
| | - Elizabeth C. Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Juan G. Abraldes
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert S. Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Victor Vargas
- Liver Unit, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Jose Altamirano
- Liver Unit, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Caballería
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain,Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Debbie Shawcross
- Institute of Liver Studies, King’s College London School of Medicine at King’s College Hospital, King’s College Hospital, London, UK
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Samuel B. Ho
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
50
|
Lavallee CM, Wizzard PR, Lansing M, Vine DF, Nation PN, Yap JY, Willing BP, Wales PW, Turner JM. Surgical Anatomy Does Not Affect the Progression of Intestinal Failure-Associated Liver Disease in Neonatal Piglets. JPEN J Parenter Enteral Nutr 2017; 42:14-23. [PMID: 28719764 DOI: 10.1177/0148607117718478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intestinal failure-associated liver disease (IFALD) causes significant morbidity in neonates with short bowel syndrome (SBS) dependent on parenteral nutrition (PN). Resected ileum, with loss of the ileocecal valve (ICV), is the most common anatomy in SBS, yet its impact on IFALD has not been adequately studied. METHODS Neonatal piglets were randomized to 75% intestinal resection with jejunocolic anastomosis (JC, n = 12), 75% resection with jejunoileal anastomosis and intact ICV (JI, n = 13), PN-fed sham (sham, n = 14), or sow-fed control (SF, n = 8). Surgical and sham piglets received 100% PN for 14 days before bile flow was measured and blood chemistry, liver pathology, jejunal permeability, and bacterial translocation were assessed. RESULTS Bile flow was lower for PN-fed compared with SF (P = .002) but not different between the PN-fed groups. Total bilirubin (P = .03) and liver pathology (P < .001) were greater in PN-fed than SF groups but not different between PN-fed groups. Serum bile acids were increased in sham (P = .01) but not different between SBS groups. PN-fed piglets with sepsis had lower bile flow (P = .001) and increased bilirubin (P = .04). Neither jejunal permeability nor bacterial translocation were different between JC, JI, or sham groups. CONCLUSION Contrary to our hypothesis, the remnant anatomy does not appear to worsen the progression of IFALD. However, the role of sepsis in IFALD should be further explored, in addition to other mechanisms, including PN factors, host immune responses, and intestinal bacterial dysbiosis.
Collapse
Affiliation(s)
- Celeste M Lavallee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela R Wizzard
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Marihan Lansing
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Donna F Vine
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick N Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason Y Yap
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W Wales
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Justine M Turner
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|