1
|
Xu H, Li M, Yao H, Chen G, Chen J, Hou X, Yang H, Yu C, Lin Z, Zhu J, Wang R, Qiu S, Liu X, Wang Z, Tao X, Liu L. Multi-tissue metabolomics analysis reveals susceptible factors for chemotherapy-induced hepatotoxicity in colorectal cancer patients. Front Pharmacol 2025; 16:1517446. [PMID: 40255576 PMCID: PMC12006014 DOI: 10.3389/fphar.2025.1517446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Amis Chemotherapy-induced hepatotoxicity (CIH) is a significant concern in colorectal cancer (CRC) patients treated with the CAPEOX (capecitabine and oxaliplatin) regimen. Identifying predictive factors for CIH is crucial for clinical management. Patients and Methods This study analyzed colorectal tissue (CRT), plasma, and urine samples from CRC patients. Differentially expressed metabolites (DEMs) across these tissues were integrated for multi-omics analysis, and predictive models for CIH susceptibility were developed. An independent set of 75 plasma samples was used for validation. Results A total of 492 differentially expressed compounds were identified in samples from 63 CRC patients, including 105, 149, and 238 DEMs in CRT, plasma, and urine, respectively. Lipids and lipid-like molecules were predominant in all samples. Among these, urine samples exhibited the highest variability and provided the strongest predictive power for CIH susceptibility. Principal component analysis (PCA) effectively differentiated normal patients from those with CIH. The study revealed steatosis as the primary pathological feature of CIH, with disrupted lipid metabolism emerging as a key characteristic. Predictive models constructed from multi-tissue metabolites profile exhibited high accuracy, with the plasma model achieving an AUC of 0.933 in external validation set. Our study underscores the importance of individual metabolic variations in CIH susceptibility, reflecting the complex interplay of genetic, environmental, and lifestyle factors. Conclusion This study emphasizes the critical role of alterations in lipid, polyamine, and purine metabolism, as well as impaired tissue repair mechanisms, were identified as key endogenous factors underlying CIH susceptibility. The developed predictive models demonstrate potential for clinical application in assessing CIH risk in CRC patients undergoing CAPEOX chemotherapy.
Collapse
Affiliation(s)
- Huilin Xu
- Institutes of Biomedical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai, China
| | - Mingming Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Houshan Yao
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guoliang Chen
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiani Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xinyun Hou
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hong Yang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chenghang Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Zeshuai Lin
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiawei Zhu
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wang
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Qiu
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lei Liu
- Institutes of Biomedical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Sekine S, Sekine Y. Metabolite tunes MDV pathway to maintain mitochondrial fitness. Mol Cell 2025; 85:1253-1255. [PMID: 40185075 DOI: 10.1016/j.molcel.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
In this issue of Molecular Cell, Tang et al.1 demonstrate that the ketone body β-hydroxybutyrate (BHB) promotes the biogenesis of mitochondrial-derived vesicles (MDVs) via lysine β-hydroxybutyrylation (Kbhb) on SNX9, revealing a way to fine-tune the mitochondrial quality control pathway with metabolites.
Collapse
Affiliation(s)
- Shiori Sekine
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yusuke Sekine
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Tang M, Tu Y, Gong Y, Yang Q, Wang J, Zhang Z, Qin J, Niu S, Yi J, Shang Z, Chen H, Tang Y, Huang Q, Liu Y, Billadeau DD, Liu X, Dai L, Jia D. β-hydroxybutyrate facilitates mitochondrial-derived vesicle biogenesis and improves mitochondrial functions. Mol Cell 2025; 85:1395-1410.e5. [PMID: 40118051 DOI: 10.1016/j.molcel.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/04/2024] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
Mitochondrial dynamics and metabolites reciprocally influence each other. Mitochondrial-derived vesicles (MDVs) transport damaged mitochondrial components to lysosomes or the extracellular space. While many metabolites are known to modulate mitochondrial dynamics, it is largely unclear whether they are involved in MDV generation. Here, we discovered that the major component of ketone body, β-hydroxybutyrate (BHB), improved mitochondrial functions by facilitating the biogenesis of MDVs. Mechanistically, BHB drove specific lysine β-hydroxybutyrylation (Kbhb) of sorting nexin-9 (SNX9), a key regulator of MDV biogenesis. Kbhb increased SNX9 interaction with inner mitochondrial membrane (IMM)/matrix proteins and promoted the formation of IMM/matrix MDVs. SNX9 Kbhb was not only critical for maintaining mitochondrial homeostasis in cells but also protected mice from alcohol-induced liver injury. Altogether, our research uncovers the fact that metabolites influence the formation of MDVs by directly engaging in post-translational modifications of key protein machineries and establishes a framework for understanding how metabolites regulate mitochondrial functions.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhenzhen Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jiamin Yi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Hongyu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingying Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qian Huang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Guo M, Jiang X, Ouyang H, Zhang X, Zhang S, Wang P, Bi G, Wu T, Zhou W, Liang F, Yang X, Fan S, Fang JH, Chen P, Bi H. Parabacteroides distasonis promotes liver regeneration by increasing β-hydroxybutyric acid (BHB) production and BHB-driven STAT3 signals. Acta Pharm Sin B 2025; 15:1430-1446. [PMID: 40370533 PMCID: PMC12069244 DOI: 10.1016/j.apsb.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 05/16/2025] Open
Abstract
The liver regenerative capacity is crucial for patients with end-stage liver disease following partial hepatectomy (PHx). The specific bacteria and mechanisms regulating liver regeneration post-PHx remain unclear. This study demonstrated dynamic changes in the abundance of Parabacteroides distasonis (P. distasonis) post-PHx, correlating with hepatocyte proliferation. Treatment with live P. distasonis significantly promoted hepatocyte proliferation and liver regeneration after PHx. Targeted metabolomics revealed a significant positive correlation between P. distasonis and β-hydroxybutyric acid (BHB), as well as hyodeoxycholic acid and 3-hydroxyphenylacetic acid in the gut after PHx. Notably, treatment with BHB, but not hyodeoxycholic acid or 3-hydroxyphenylacetic acid, significantly promoted hepatocyte proliferation and liver regeneration in mice after PHx. Moreover, STAT3 inhibitor Stattic attenuated the promotive effects of BHB on cell proliferation and liver regeneration both in vitro and in vivo. Mechanistically, P. distasonis upregulated the expression of fatty acid oxidation-related proteins, and increased BHB levels in the liver, and then BHB activated the STAT3 signaling pathway to promote liver regeneration. This study, for the first time, identifies the involvement of P. distasonis and its associated metabolite BHB in promoting liver regeneration after PHx, providing new insights for considering P. distasonis and BHB as potential strategies for promoting hepatic regeneration.
Collapse
Affiliation(s)
- Manlan Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong–Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
5
|
Fastiggi VA, Mank MM, Caporizzo MA, Poynter ME. Beta-Hydroxybutyrate Inhibits Bronchial Smooth Muscle Contraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639075. [PMID: 40060651 PMCID: PMC11888348 DOI: 10.1101/2025.02.24.639075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Asthma is a chronic respiratory condition characterized by airway inflammation, remodeling, and hyperresponsiveness to triggers causing airway constriction. Bronchial smooth muscle plays a critical role by narrowing airways, leading to obstruction and breathing difficulties, often exacerbated by mast cell infiltration and histamine release. Whereas current treatments, including bronchodilators, corticosteroids, and biologics provide effective management for most patients, alternative therapies are needed for difficult-to-treat asthma. Recent research highlights the potential of therapeutic ketosis, achieved through dietary interventions or supplementation with exogenous ketones, to reduce airway hyperresponsiveness and inflammation. Ketone bodies, known for providing energy during carbohydrate scarcity, also influence asthma by activating cell-surface receptors and transporters. In vivo, interventions like weight loss and caloric restriction increase ketone body levels, correlating with improved asthma symptoms, reduced oxidative stress, and inflammation. These effects suggest ketone bodies, particularly β-hydroxybutyrate, may play a therapeutic role in mitigating bronchoconstriction and smooth muscle contraction in asthma. We utilize human bronchial smooth muscle cells (in vitro) and mouse precision-cut lung slices (PCLS) (ex vivo) to assess the effects of BHB on histamine-induced bronchoconstriction. Brightfield microscopy showed that BHB reduces contraction in human bronchial smooth muscle cells, an effect involving free fatty acid receptor 3 (FFAR3) activation. Light microscopy of PCLS revealed that BHB inhibits airway narrowing and cellular extrusion, demonstrating its ability to mitigate bronchoconstriction by suppressing smooth muscle contraction. These results implicate bronchial smooth muscle as a cellular target of therapeutic ketosis, an important contributor to the beneficial effects of BHB in preclinical models of asthma.
Collapse
Affiliation(s)
- V Amanda Fastiggi
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT, 05405, USA
| | - Madeleine M Mank
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
| | - Matthew A Caporizzo
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05405, USA
| | - Matthew E Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
| |
Collapse
|
6
|
Fastiggi VA, Mank MM, Poynter ME. Beta-Hydroxybutyrate Attenuates Bronchial Smooth Muscle Pro-Inflammatory Cytokine Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639048. [PMID: 40027689 PMCID: PMC11870512 DOI: 10.1101/2025.02.19.639048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Asthma is a common airway condition causing breathing difficulties due to reversible airflow obstruction. It often affects obese individuals, with symptoms triggered by environmental factors that induce immune responses, leading to inflammation and bronchoconstriction. Bronchial smooth muscle (BSM) plays a central role in airway narrowing, driven by type 2 immune responses involving cytokines like IL-4, IL-5, and IL-13, along with leukocytes including eosinophils and type 2 T-helper cells. These responses cause structural changes such as fibrosis and airway thickening, while BSM cells worsen asthma by releasing pro-inflammatory cytokines in response to allergens, microbial signals, or inflammatory cytokines from other cells. While current treatments manage asthma in most patients, alternative therapies are needed for difficult-to-treat cases, particularly prevalent in obese, allergic individuals. Emerging research suggests that therapeutic ketosis, induced by dietary changes or ketone supplementation, may reduce airway hyperresponsiveness and inflammation. The primary ketone body, β-hydroxybutyrate (BHB), produced during carbohydrate scarcity, acts via cell-surface receptors and transporters, potentially mitigating asthma symptoms. Weight loss and caloric restriction increase ketone levels, correlating with reduced inflammation and improved asthma outcomes. We hypothesized that β-hydroxybutyrate (BHB) reduces bronchoconstriction and inflammation in asthma by targeting bronchial smooth muscle. Using human bronchial smooth muscle cells (HBSMC) in vitro, we demonstrate herein that BHB suppresses IL-1β-induced pro-inflammatory cytokine production through Free Fatty Acid Receptor 3 (FFAR3) activation. These findings suggest that bronchial smooth muscle is a key target of therapeutic ketosis, supporting BHB's potential benefits in preclinical asthma models.
Collapse
Affiliation(s)
- V. Amanda Fastiggi
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT, 05405, USA
| | - Madeleine M. Mank
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
| | - Matthew E. Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
| |
Collapse
|
7
|
Huo Y, Shen T, Feng T, Li M, Zhao W, Loor JJ, Aernouts B, Psifidi A, Xu C. β-Hydroxybutyrate-induced mitochondrial DNA (mtDNA) release mediated innate inflammatory response in bovine mammary epithelial cells by inhibiting autophagy. J Anim Sci Biotechnol 2025; 16:15. [PMID: 39891248 PMCID: PMC11786434 DOI: 10.1186/s40104-024-01143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND In perinatal dairy cows, ketosis is a prevalent metabolic disorder that lowers milk output and performance. Mitochondrial dysfunction and chronic inflammation in mammary tissue are linked to elevated blood ketone levels, particularly β-hydroxybutyrate (BHB). Recent research has linked cytosolic mitochondrial DNA (mtDNA) with chronic aseptic inflammation by activating the cGAS-STING pathway during metabolic disorders, while autophagy activation effectively reverses this process. However, whether it is involved in mammary gland damage during ketosis is poorly understood. Therefore, this study aimed to explore the underlying mechanisms of mtDNA-induced inflammation under BHB stress and evaluate the potential therapeutic strategy of autophagy activation in mitigating this damage. RESULTS Our study found an increased cytoplasmic mtDNA abundance in mammary gland tissues of dairy cows with ketosis and bovine mammary epithelial cell line (MAC-T) subjected to BHB stress. Further investigations revealed the activation of the cGAS-STING pathway and inflammatory response, indicated by elevated levels of cGAS and STING, along with increased phosphorylation levels of TBK1, P65, and IκB, and higher transcript levels of pro-inflammatory factors (IL-1B, IL-6, and TNF-α) in both in vivo and in vitro experiments. Notably, STING inhibition via si-STING transfection reversed BHB-induced inflammation. Additionally, autophagy activation appeared to protect against BHB stress by facilitating the removal of cytoplasmic mtDNA and preventing cGAS-STING pathway-mediated inflammation. CONCLUSIONS The findings illustrate that elevated BHB levels lead to the release of cytoplasmic mtDNA, which in turn activates the cGAS-STING pathway and triggers an inflammatory response in the mammary glands during hyperketonemia. Conversely, autophagy activation has been shown to alleviate this process by promoting cytoplasmic mtDNA degradation.
Collapse
Affiliation(s)
- Yihui Huo
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Taiyu Shen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Tianyin Feng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Moli Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wanli Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ben Aernouts
- Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, Campus Geel, Leuven, 2440, Belgium
| | - Androniki Psifidi
- Department of Clinical Science and Services, Queen Mother Hospital for Animals, The Royal Veterinary College, London, UK
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Bai YP, Xing YJ, Ma T, Li K, Zhang T, Wang DG, Wan SJ, Zhang CW, Sun Y, Wang MY, Wang GD, Pei WJ, Lv K, Zhang Y, Kong X. β-Hydroxybutyrate suppresses M1 macrophage polarization through β-hydroxybutyrylation of the STAT1 protein. Cell Death Dis 2024; 15:874. [PMID: 39627223 PMCID: PMC11615246 DOI: 10.1038/s41419-024-07268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
β-Hydroxybutyrate (β-OHB), the primary ketone body, is a bioactive metabolite that acts as both an energy substrate and a signaling molecule. Recent studies found that β-OHB inhibits the production of pro-inflammatory cytokines in macrophages, but its underlying molecular mechanisms have not yet been fully elucidated. Lysine β-hydroxybutyrylation (Kbhb), a post-translational modification mediated by β-OHB, plays a key role in regulating the expression and activity of modified proteins. However, whether macrophages undergo protein Kbhb and whether Kbhb modification regulates macrophage polarization remains largely unknown. In this study, treatment with β-OHB and ketone ester significantly decreased the lipopolysaccharide (LPS)-induced enhancement of the M1 phenotype of mouse bone marrow-derived macrophages (BMDMs), RAW264.7 cells, and peritoneal macrophages (PMs) in vitro and in vivo. Moreover, β-OHB treatment induced global protein Kbhb, which is associated with the regulation of macrophage M1 polarization. Proteome-wide Kbhb analysis in β-OHB-treated BMDMs revealed 3469 Kbhb modification sites within 1549 proteins, among which interleukin-12-responding proteins were significantly upregulated. Our results indicated that β-OHB regulated M1 macrophage polarization by inducing Kbhb modification of the signal transducer and activator of transcription 1 (STAT1) K679 site, which inhibited its LPS-induced phosphorylation and transcription. Altogether, our study demonstrated the presence of a widespread Kbhb landscape in the β-OHB-treated macrophages and provided novel insights into the anti-inflammatory effects of β-OHB.
Collapse
Affiliation(s)
- Ya-Ping Bai
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yu-Jie Xing
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
| | - Tao Ma
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
| | - Kai Li
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
| | - Teng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - De-Guo Wang
- Department of Gerontology, Geriatric Endocrinology unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- National Clinical Research Center for Geriatric Diseases, Anhui Provincial Sub-center, Wuhu, China
| | - Shu-Jun Wan
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
| | - Cui-Wei Zhang
- Department of Gerontology, Geriatric Endocrinology unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- National Clinical Research Center for Geriatric Diseases, Anhui Provincial Sub-center, Wuhu, China
| | - Yue Sun
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Meng-Yan Wang
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Guo-Dong Wang
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Wen-Jun Pei
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, China
| | - Kun Lv
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
| | - Yan Zhang
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Xiang Kong
- Anhui Provincial Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
- College of Life Sciences, Anhui Normal University, Wuhu, China.
- Department of Gerontology, Geriatric Endocrinology unit, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.
- National Clinical Research Center for Geriatric Diseases, Anhui Provincial Sub-center, Wuhu, China.
| |
Collapse
|
9
|
Jiao X, Li Y, Chen Z, Zhang Q, He R, Huang Y, Zuo Z. Targeting the PDE3B-cAMP-autophagy axis prevents liver injury in long-term supercooling liver preservation. Sci Transl Med 2024; 16:eadk0636. [PMID: 39602509 DOI: 10.1126/scitranslmed.adk0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/11/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
In liver transplantation, donor livers are typically stored in a preservation solution at 4°C for up to 12 hours. However, this short preservation duration can lead to various issues, such as suboptimal donor-recipient matching and limited opportunities for organ sharing. Previous studies have developed a long-term preservation method called supercooling liver preservation (SLP) to address these issues. However, in this study using a rat model, we observed that long-term SLP led to more severe liver damage compared with clinically prevalent traditional static cold storage (SCS) for durations less than 8 hours. To understand the potential mechanism of SLP-induced liver injury, we conducted an integrative metabolomic, transcriptomic, and proteomic analysis. We identified the PDE3B-cAMP-autophagy pathway as a key determinant of SLP-induced liver injury. Specifically, we found that PDE3B was elevated during SLP, which promoted a reduction of cAMP metabolites, triggering an AMPK-dependent autophagy process that led to liver injury in rats. We found that blocking the reduction in cAMP using the PDE3B inhibitor cilostamide inhibited autophagy and substantially ameliorated liver injury during 48-hour SLP in rat livers. Furthermore, we validated the effectiveness of cilostamide treatment in preventing liver injury in pig and human liver 48-hour SLP models. In summary, our results reveal that metabolic reprogramming involving the PDE3B-cAMP-autophagy axis is the key determinant of liver injury in long-term SLP and provide an early therapeutic strategy to prevent liver injury in this setting.
Collapse
Affiliation(s)
- Xingyuan Jiao
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yihu Li
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhihang Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China
| | - Qi Zhang
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui He
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yinbing Huang
- Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China
| |
Collapse
|
10
|
Zhuang H, Ren X, Zhang Y, Li H, Zhou P. β-Hydroxybutyrate enhances chondrocyte mitophagy and reduces cartilage degeneration in osteoarthritis via the HCAR2/AMPK/PINK1/Parkin pathway. Aging Cell 2024; 23:e14294. [PMID: 39126207 PMCID: PMC11561673 DOI: 10.1111/acel.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoarthritis (OA) is widely recognized as the prevailing joint disease associated with aging. The ketogenic diet (KD) has been postulated to impede the advancement of various inflammatory ailments. β-Hydroxybutyrate (βOHB), a prominent constituent of ketone bodies, has recently been proposed to possess crucial signaling capabilities. In this study, we propose to explore the role and mechanism of βOHB in OA. Tissue staining and inflammatory factor assay were employed to evaluate the impacts of KD and βOHB on OA rats. The oxidative stress conditions in chondrocytes were induced using tert-butyl hydroperoxide (TBHP). The mechanisms were determined using the siRNA of hydroxycarboxylic acid receptor 2 (HCAR2), the antagonist of adenosine monophosphate-activated protein kinase (AMPK), and the inhibitor of mitophagy. The administration of KD demonstrated a reduction in pathological damage to cartilage, as well as a decrease in plasma levels of inflammatory factors. Furthermore, it resulted in an increase in the concentration of βOHB in the blood and synovial fluid. In vitro experiments showed that βOHB facilitated mitophagy and adenosine triphosphate production. Besides, βOHB mitigated chondrocyte senescence, inflammatory factors secretion, extracellular matrix degradation, and apoptosis induced by TBHP. Subsequent investigations indicated that the protective effects of βOHB were no longer observed following the knockdown of HCAR2, the antagonist of AMPK, or the inhibitor of mitophagy. Moreover, in vivo studies suggested that βOHB played a protective role by targeting the HCAR2-AMPK-PINK1 axis. In conclusion, βOHB enhanced chondrocyte mitophagy through the HCAR2/AMPK/PINK1/Parkin pathway, offering a potential therapeutic approach for the treatment of OA.
Collapse
Affiliation(s)
- Huangming Zhuang
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xunshan Ren
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuelong Zhang
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Huajie Li
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Panghu Zhou
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
11
|
Chen N, Luo J, Zhou T, Shou Y, Du C, Song G, Xu L, Zhao K, Jin Y, Li C, Yu D. Lysine β-hydroxybutyrylation promotes lipid accumulation in alcoholic liver disease. Biochem Pharmacol 2024; 228:115936. [PMID: 38012969 DOI: 10.1016/j.bcp.2023.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Continuous (chronic or sub-chronic) alcohol consumption induces a metabolic byproduct known as ketone bodies, and the accumulation of ketones leads to a life-threatening syndrome called alcoholic ketoacidosis. However, the mechanism underlining the physiological effects of ketone accumulation in alcoholic liver disease (ALD) is still in its infancy. Here, we discovered that mitochondrial acetyl-CoA accumulation was diverted into the ketogenesis pathway in ethanol-fed mice and ethanol-exposed hepatocytes. Unexpectedly, global protein lysine β-hydroxybutyrylation (Kbhb) was induced in response to increased ketogenesis-derived β-hydroxybutyrate (BHB) levels both in hepatocytes and in livers of mice. Focusing on the solute carrier family (SLCs), we found that SLC25A5 presented obvious Kbhb at lysine residues 147 and 166. Kbhb modifications at these two lysine residues stabilized SLC25A5 expression by blocking ubiquitin-proteasome pathway. Subsequent mutation analysis revealed that Kbhb of SLC25A5 at K147 and K166 had site-specific regulatory roles by increasing peroxisome proliferator activated receptor gamma (PPARγ) expression, which further promoting lipogenesis. Additionally, 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 (HMGCS2), a rate-limiting enzyme for BHB production, was profoundly induced by ethanol exposure, and knockout of Hmgcs2 with CRISPR/Cas9 attenuated SLC25A5 Kbhb. Together, our study demonstrated a widespread Kbhb landscape under ethanol exposure and clarified a physiological effect of Kbhb modification on liver lipid accumulation.
Collapse
Affiliation(s)
- Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Tao Zhou
- School of Public Health, Qingdao University, Qingdao, China
| | - Yingqing Shou
- School of Public Health, Qingdao University, Qingdao, China
| | - Chenlong Du
- School of Public Health, Qingdao University, Qingdao, China
| | - Ge Song
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Svart M, Rittig N, Luong TV, Gopalasingam N, Vestergaard ET, Gormsen L, Søndergaard E, Thomsen HH, Gravholt CH. Three Weeks on a Ketogenic Diet Reduces Free Testosterone and Free Estradiol in Middle-Aged Obese Men and Women. J Nutr Metab 2024; 2024:9301369. [PMID: 39139216 PMCID: PMC11321886 DOI: 10.1155/2024/9301369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Background Beta-hydroxybuturate (β-OHB) supplements are commonly utilized in sports by both recreational and professional athletes. In a recent study, we observed a drop in testosterone levels following the oral ingestion of racemic sodium-β-OHB. In this investigation, we aim to determine whether a single oral dose of ketone ester (study I) and prolonged endogenous ketosis (study II) also reduces testosterone levels. Design This investigation integrated samples from two distinct studies. Study I was a randomized, controlled, crossover trial with ten healthy, young male participants receiving either a weight-adjusted ketone ester or control (water, CTR) and vice versa following an overnight fast. Repeated blood sampling was used to monitor plasma β-OHB and testosterone levels. Study II, another randomized, controlled, crossover trial, included 11 middle-aged participants (five males). They followed either a ketogenic diet (KD) characterized by low carbohydrates and high fat content or a standard diet (SDD) for three weeks. After each study period, participants underwent examination following an overnight fast, with repeated measures employed to analyze concentrations of plasma β-OHB and sex hormone levels. Results Study I: Testosterone decreased from 23.8 ± 2.4 nmol/l to 22.3 ± 2.5 nmol/l 300 minutes after the ketone ester and increased from 20.9 ± 2.1 nmol/l to 22.2 ± 1.9 300 minutes after CTR. This difference was not significant, p = 0.06. Study II. Total testosterone was unaffected after the KD compared to the SDD in men (20.2 ± 1.23 nmol/l vs. 18.2 ± 1.23 nmol/l (p = 0.1)) and was lower after KD in women (0.87 ± 0.06 vs. 1.1 ± 0.06 nmol/l (p < 0.0001)). Sex hormone-binding globulin (SHBG) increased in men after KD compared with SDD (31.2 ± 2.6 nmol/l vs 25.0 ± 2.6 nmol/l, p < 0.0001) and women (26.5 ± 3.05 nmol/l vs 24.2 ± 3.05 nmol/l, p = 0.003). The free androgen index decreased after KD in men (ratio: 0.65 ± 0.05 vs. ratio: 0.74 ± 0.05, p = 0.04) and in women (ratio: 0.036 ± 0.006 vs. SDD 0.05 ± 0.006, p = 0.0001). Free estradiol index was also found lower after KD in men (ratio: 3.1 ± 0.8 vs. ratio: 4.8 ± 0.8, p = 0.0003) and in women (ratio: 1.2 ± 2.2 vs. 9.8 ± 2.2, p = 0.0001). Conclusion Our findings indicate that the acute ingestion of ketone ester may not reduce testosterone levels in healthy young males. However, a three-week exposure to KB from a KD results in an increase in SHBG in men and women with obesity as well as it lowers free testosterone and estradiol for men and women. We thus present evidence of crosstalk between alterations in a metabolite, β-OHB, and the regulation of the hypothalamic-pituitary-gonadal axis from a KD. The clinical impact of this reduction remains to be investigated. This trial is registered with NCT04156477 and NCT05012748.
Collapse
Affiliation(s)
- Mads Svart
- Department of Internal MedicineHorsens Regional Hospital, Horsens, Denmark
- Department of Internal Medicine and EndocrinologyAarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center AarhusAarhus University Hospital, Aarhus, Denmark
| | - Nikolaj Rittig
- Department of Internal Medicine and EndocrinologyAarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center AarhusAarhus University Hospital, Aarhus, Denmark
| | - Thien Vinh Luong
- Steno Diabetes Center AarhusAarhus University Hospital, Aarhus, Denmark
- Department of Nuclear Medicine & PET-centreAarhus University Hospital, Aarhus, Denmark
| | - Nigopan Gopalasingam
- Department of CardiologyAarhus University Hospital, Aarhus, Denmark
- Department of CardiologyGødstrup Hospital, Herning, Denmark
| | - Esben Thyssen Vestergaard
- Steno Diabetes Center AarhusAarhus University Hospital, Aarhus, Denmark
- Department of PediatricsAarhus University Hospital, Aarhus, Denmark
| | - Lars Gormsen
- Department of Nuclear Medicine & PET-centreAarhus University Hospital, Aarhus, Denmark
| | - Esben Søndergaard
- Department of Internal Medicine and EndocrinologyAarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center AarhusAarhus University Hospital, Aarhus, Denmark
- Department of Clinical MedicineAarhus University Hospital, Aarhus, Denmark
| | - Henrik Holm Thomsen
- Department of Clinical MedicineAarhus University Hospital, Aarhus, Denmark
- Department of Internal MedicineViborg Regional Hospital, Viborg, Denmark
| | - Claus H. Gravholt
- Department of Internal Medicine and EndocrinologyAarhus University Hospital, Aarhus, Denmark
- Department of Clinical MedicineAarhus University Hospital, Aarhus, Denmark
- Department of Molecular MedicineAarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Deemer SE, Roberts BM, Smith DL, Plaisance EP, Philp A. Exogenous ketone esters as a potential therapeutic for treatment of sarcopenic obesity. Am J Physiol Cell Physiol 2024; 327:C140-C150. [PMID: 38766768 DOI: 10.1152/ajpcell.00471.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Identifying effective treatment(s) for sarcopenia and sarcopenic obesity is of paramount importance as the global population advances in age and obesity continues to be a worldwide concern. Evidence has shown that a ketogenic diet can be beneficial for the preservation of muscle quality and function in older adults, but long-term adherence is low due in part to the high-fat (≥80%), very low carbohydrate (<5%) composition of the diet. When provided in adequate amounts, exogenous ketone esters (KEs) can increase circulating ketones to concentrations that exceed those observed during prolonged fasting or starvation without significant alterations in the diet. Ketone esters first emerged in the mid-1990s and their use in preclinical and clinical research has escalated within the past 10-15 years. We present findings from a narrative review of the existing literature for a proposed hypothesis on the effects of exogenous ketones as a therapeutic for preservation of skeletal muscle and function within the context of sarcopenic obesity and future directions for exploration. Much of the reviewed literature herein examines the mechanisms of the ketone diester (R,S-1,3-butanediol diacetoacetate) on skeletal muscle mass, muscle protein synthesis, and epigenetic regulation in murine models. Additional studies are needed to further examine the key regulatory factors producing these effects in skeletal muscle, examine convergent and divergent effects among different ketone ester formulations, and establish optimal frequency and dosing regimens to translate these findings into humans.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Kinesiology, Health Promotion & Recreation, University of North Texas, Denton, Texas, United States
| | - Brandon M Roberts
- US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Eric P Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Murphy S, Rahmy S, Gan D, Liu G, Zhu Y, Manyak M, Duong L, He J, Schofield JH, Schafer ZT, Li J, Lu X, Lu X. Ketogenic Diet Alters the Epigenetic and Immune Landscape of Prostate Cancer to Overcome Resistance to Immune Checkpoint Blockade Therapy. Cancer Res 2024; 84:1597-1612. [PMID: 38588411 PMCID: PMC11096030 DOI: 10.1158/0008-5472.can-23-2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/15/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Resistance to immune checkpoint blockade (ICB) therapy represents a formidable clinical challenge limiting the efficacy of immunotherapy. In particular, prostate cancer poses a challenge for ICB therapy due to its immunosuppressive features. A ketogenic diet (KD) has been reported to enhance response to ICB therapy in some other cancer models. However, adverse effects associated with continuous KD were also observed, demanding better mechanistic understanding and optimized regimens for using KD as an immunotherapy sensitizer. In this study, we established a series of ICB-resistant prostate cancer cell lines and developed a highly effective strategy of combining anti-PD1 and anti-CTLA4 antibodies with histone deacetylase inhibitor (HDACi) vorinostat, a cyclic KD (CKD), or dietary supplementation of the ketone body β-hydroxybutyrate (BHB), which is an endogenous HDACi. CKD and BHB supplementation each delayed prostate cancer tumor growth as monotherapy, and both BHB and adaptive immunity were required for the antitumor activity of CKD. Single-cell transcriptomic and proteomic profiling revealed that HDACi and ketogenesis enhanced ICB efficacy through both cancer cell-intrinsic mechanisms, including upregulation of MHC class I molecules, and -extrinsic mechanisms, such as CD8+ T-cell chemoattraction, M1/M2 macrophage rebalancing, monocyte differentiation toward antigen-presenting cells, and diminished neutrophil infiltration. Overall, these findings illuminate a potential clinical path of using HDACi and optimized KD regimens to enhance ICB therapy for prostate cancer. SIGNIFICANCE Optimized cyclic ketogenic diet and 1,3-butanediol supplementation regimens enhance the efficacy of immune checkpoint blockade in prostate cancer through epigenetic and immune modulations, providing dietary interventions to sensitize tumors to immunotherapy.
Collapse
Affiliation(s)
- Sean Murphy
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sharif Rahmy
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dailin Gan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guoqiang Liu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yini Zhu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maxim Manyak
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Loan Duong
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jianping He
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James H Schofield
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zachary T Schafer
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jun Li
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Wang N, Yang A, Tian X, Liao J, Yang Z, Pan Y, Guo Y, He S. Label-free analysis of the β-hydroxybutyricacid drug on mitochondrial redox states repairment in type 2 diabetic mice by resonance raman scattering. Biomed Pharmacother 2024; 172:116320. [PMID: 38387134 DOI: 10.1016/j.biopha.2024.116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Mitochondrial redox imbalance underlies the pathophysiology of type2 diabetes mellitus (T2DM), and is closely related to tissue damage and dysfunction. Studies have shown the beneficial effects of dietary strategies that elevate β-hydroxybutyrate (BHB) levels in alleviating T2DM. Nevertheless, the role of BHB has not been clearly elucidated. METHODS We performed a spectral study to visualize the preventive effects of BHB on blood and multiorgan mitochondrial redox imbalance in T2DM mice via using label-free resonance Raman spectroscopy (RRS), and further explored the impact of BHB therapy on the pathology of T2DM mice by histological and biochemical analyses. FINDINGS Our data revealed that RRS-based mitochondrial redox states assay enabled clear and reliable identification of the improvement of mitochondrial redox imbalance by BHB, evidenced by the reduction of Raman peak intensity at 750 cm-1, 1128 cm-1 and 1585 cm-1 in blood, tissue as well as purified mitochondria of db/db mice and the increase of tissue mitochondrial succinic dehydrogenase (SDH) staining after BHB treatment. Exogenous supplementation of BHB was also found to attenuate T2DM pathology related to mitochondrial redox states, involving organ injury, blood glucose control, insulin resistance and systemic inflammation. INTERPRETATION Our findings provide strong evidence for BHB as a potential therapeutic strategy targeting mitochondria for T2DM.
Collapse
Affiliation(s)
- Na Wang
- Taizhou Hospital, Zhejiang University School of Medicine, Linhai, China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Anqi Yang
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
| | - Xiong Tian
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jiaqi Liao
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Yang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yixiao Pan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Sailing He
- Taizhou Hospital, Zhejiang University School of Medicine, Linhai, China; Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China; School of Electrical Engineering, Royal Institute of Technology, Stockholm S-100 44, Sweden.
| |
Collapse
|
16
|
Gonzatti MB, Goldberg EL. Ketone bodies as chemical signals for the immune system. Am J Physiol Cell Physiol 2024; 326:C707-C711. [PMID: 38189135 PMCID: PMC11193451 DOI: 10.1152/ajpcell.00478.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Ketone bodies are short-chain fatty acids produced by the liver during periods of limited glucose availability, such as during fasting or low carbohydrate feeding. Recent studies have highlighted important nonmetabolic functions of the most abundant ketone body, β-hydroxybutyrate (BHB). Notably, many of these functions, including limiting specific sources of inflammation, histone deacetylase inhibition, NFκB inhibition, and GPCR stimulation, are particularly important to consider in immune cells. Likewise, dietary manipulations like caloric restriction or ketogenic diet feeding have been associated with lowered inflammation, improved health outcomes, and improved host defense against infection. However, the underlying mechanisms of the broad benefits of ketosis remain incompletely understood. In this Perspective, we contextualize the current state of the field of nonmetabolic functions of ketone bodies specifically in the immune system and speculate on the molecular explanations and broader physiological significance.
Collapse
Affiliation(s)
- Michelangelo B Gonzatti
- Department of Physiology, University of California, San Francisco, California, United States
| | - Emily L Goldberg
- Department of Physiology, University of California, San Francisco, California, United States
| |
Collapse
|
17
|
Thind MK, Uhlig HH, Glogauer M, Palaniyar N, Bourdon C, Gwela A, Lancioni CL, Berkley JA, Bandsma RHJ, Farooqui A. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front Immunol 2024; 14:1334205. [PMID: 38259490 PMCID: PMC10800387 DOI: 10.3389/fimmu.2023.1334205] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Agnes Gwela
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - James A Berkley
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Omega Laboratories Inc, Mississauga, ON, Canada
| |
Collapse
|
18
|
Zhao C, Wang H, Liu Y, Cheng L, Wang B, Tian X, Fu H, Wu C, Li Z, Shen C, Yu J, Yang S, Hu H, Fu P, Ma L, Wang C, Yan W, Shao Z. Biased allosteric activation of ketone body receptor HCAR2 suppresses inflammation. Mol Cell 2023; 83:3171-3187.e7. [PMID: 37597514 DOI: 10.1016/j.molcel.2023.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/21/2023]
Abstract
Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body β-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or β-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.
Collapse
Affiliation(s)
- Chang Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Heli Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Ying Liu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Cheng
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan, China
| | - Bo Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Hong Fu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Jingjing Yu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.
| |
Collapse
|
19
|
Li K, Wang WH, Wu JB, Xiao WH. β-hydroxybutyrate: A crucial therapeutic target for diverse liver diseases. Biomed Pharmacother 2023; 165:115191. [PMID: 37487440 DOI: 10.1016/j.biopha.2023.115191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
β-hydroxybutyrate (β-HB), the most abundant ketone body, is produced primarily in the liver and acts as a substitute energy fuel to provide energy to extrahepatic tissues in the event of hypoglycemia or glycogen depletion. We now have an improved understanding of β-HB as a signal molecule and epigenetic regulatory factor as a result of intensive research over the last ten years. Because β-HB regulates various physiological and pathological processes, it may have a potential role in the treatment of metabolic diseases. The liver is the most significant metabolic organ, and the part that β-HB plays in liver disorders is receiving increasing attention. In this review, we summarize the therapeutic effects of β-HB on liver diseases and its underlying mechanisms of action. Moreover, we explore the prospects of exogenous supplements and endogenous ketosis including fasting, caloric restriction (CR), ketogenic diet (KD), and exercise as adjuvant nutritional therapies to protect the liver from damage and provide insights and strategies for exploring the treatment of various liver diseases.
Collapse
Affiliation(s)
- Ke Li
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wen-Hong Wang
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Jia-Bin Wu
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei-Hua Xiao
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
20
|
Andersen OE, Poulsen JV, Farup J, de Morree A. Regulation of adult stem cell function by ketone bodies. Front Cell Dev Biol 2023; 11:1246998. [PMID: 37745291 PMCID: PMC10513036 DOI: 10.3389/fcell.2023.1246998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Adult stem cells play key roles in tissue homeostasis and regeneration. Recent evidence suggests that dietary interventions can significantly impact adult stem cell function. Some of these effects depend on ketone bodies. Adult stem cells could therefore potentially be manipulated through dietary regimens or exogenous ketone body supplementation, a possibility with significant implications for regenerative medicine. In this review we discuss recent findings of the mechanisms by which ketone bodies could influence adult stem cells, including ketogenesis in adult stem cells, uptake and transport of circulating ketone bodies, receptor-mediated signaling, and changes to cellular metabolism. We also discuss the potential effects of ketone bodies on intracellular processes such as protein acetylation and post-transcriptional control of gene expression. The exploration of mechanisms underlying the effects of ketone bodies on stem cell function reveals potential therapeutic targets for tissue regeneration and age-related diseases and suggests future research directions in the field of ketone bodies and stem cells.
Collapse
Affiliation(s)
- Ole Emil Andersen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
21
|
Murphy S, Rahmy S, Gan D, Zhu Y, Manyak M, Li J, Lu X, Lu X. Overcome Prostate Cancer Resistance to Immune Checkpoint Therapy with Ketogenic Diet-Induced Epigenetic Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552383. [PMID: 37609341 PMCID: PMC10441324 DOI: 10.1101/2023.08.07.552383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Advanced prostate cancer (PCa) is overwhelmingly resistant to immune checkpoint blockade (ICB) therapy, representing a formidable clinical challenge. In this study, we developed a syngeneic murine PCa model with acquired ICB resistance. Using this model, synergistic efficacy was achieved by combining anti-PD1 and anti-CTLA4 antibodies with histone deacetylase inhibitor (HDACi) vorinostat, a cyclic ketogenic diet (CKD), or supplementation of ketone body β-hydroxybutyrate (BHB, endogenous HDACi) via 1,3-butanediol-admixed food. CKD and BHB supplementation delayed PCa tumors as monotherapy, and both BHB and adaptive immunity are required for the anti-tumor activity of CKD. Single-cell transcriptomic and proteomic profiling revealed that the HDACi and ketogenesis-enhanced ICB therapy involves cancer-cell-intrinsic (upregulated MHC class I molecules) and extrinsic mechanisms (CD8 + T cell chemoattraction, M1/M2 macrophage rebalancing, monocyte differentiation toward antigen presenting cells, and diminished neutrophils). Overall, these findings underscore the potential of using HDACi and optimized KD to enhance ICB therapy for PCa.
Collapse
|
22
|
Enders JD, Thomas S, Lynch P, Jack J, Ryals JM, Puchalska P, Crawford P, Wright DE. ATP-gated potassium channels contribute to ketogenic diet-mediated analgesia in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100138. [PMID: 38099277 PMCID: PMC10719532 DOI: 10.1016/j.ynpai.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 12/17/2023]
Abstract
Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.
Collapse
Affiliation(s)
- Jonathan D. Enders
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Sarah Thomas
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Paige Lynch
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jarrid Jack
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Janelle M. Ryals
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
| | - Peter Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Douglas E. Wright
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
23
|
Zhang Y, Li Z, Liu X, Chen X, Zhang S, Chen Y, Chen J, Chen J, Wu F, Chen GQ. 3-Hydroxybutyrate ameliorates insulin resistance by inhibiting PPARγ Ser273 phosphorylation in type 2 diabetic mice. Signal Transduct Target Ther 2023; 8:190. [PMID: 37230992 DOI: 10.1038/s41392-023-01415-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 05/27/2023] Open
Abstract
3-Hydroxybutyrate (3HB) is a small ketone body molecule produced endogenously by the body in the liver. Previous studies have shown that 3HB can reduce blood glucose level in type 2 diabetic (T2D) patients. However, there is no systematic study and clear mechanism to evaluate and explain the hypoglycemic effect of 3HB. Here we demonstrate that 3HB reduces fasting blood glucose level, improves glucose tolerance, and ameliorates insulin resistance in type 2 diabetic mice through hydroxycarboxylic acid receptor 2 (HCAR2). Mechanistically, 3HB increases intracellular calcium ion (Ca2+) levels by activating HCAR2, thereby stimulating adenylate cyclase (AC) to increase cyclic adenosine monophosphate (cAMP) concentration, and then activating protein kinase A (PKA). Activated PKA inhibits Raf1 proto-oncogene serine/threonine-protein kinase (Raf1) activity, resulting in a decrease in extracellular signal-regulated kinases 1/2 (ERK1/2) activity and ultimately inhibiting peroxisome proliferator-activated receptor γ (PPARγ) Ser273 phosphorylation in adipocytes. Inhibition of PPARγ Ser273 phosphorylation by 3HB altered the expression of PPARγ regulated genes and reduced insulin resistance. Collectively, 3HB ameliorates insulin resistance in type 2 diabetic mice through a pathway of HCAR2/Ca2+/cAMP/PKA/Raf1/ERK1/2/PPARγ.
Collapse
Affiliation(s)
- Yudian Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Zihua Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia, 750004, P. R. China
| | - Xinyi Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinyu Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Shujie Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuemeng Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiangnan Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
- MOE Key Lab of Industrial Biocatalysis, Dept of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
24
|
Enders JD, Thomas S, Lynch P, Jack J, Ryals JM, Puchalska P, Crawford P, Wright DE. ATP-Gated Potassium Channels Contribute to Ketogenic Diet-Mediated Analgesia in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541799. [PMID: 37292762 PMCID: PMC10245818 DOI: 10.1101/2023.05.22.541799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.
Collapse
Affiliation(s)
- Jonathan D Enders
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Sarah Thomas
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Paige Lynch
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Jarrid Jack
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Janelle M Ryals
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
| | - Peter Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
- Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | - Douglas E Wright
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, 66160
| |
Collapse
|
25
|
Hu X, Qiu Y, Cao R, Xu C, Lu C, Wang Z, Yang J. Ketogenic Diet Alleviates Renal Interstitial Fibrosis in UUO Mice by Regulating Macrophage Proliferation. J Nutr Biochem 2023; 118:109335. [PMID: 37023933 DOI: 10.1016/j.jnutbio.2023.109335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
The ketogenic diet (KD), a high-fat and extremely low-carbohydrate dietary regimen, has long been acknowledged as a highly beneficial dietary therapy for the treatment of intractable epilepsy throughout the last decade. Because of its significant therapeutic potential for a variety of ailments, KD is increasingly attracting study interest. In renal fibrosis, KD has received little attention. This study aimed to determine whether KD protects against renal fibrosis in unilateral ureteral obstruction (UUO) models and the possible mechanisms. The ketogenic diet, according to our findings, reduces UUO-induced kidney injury and fibrosis in mice. KD dramatically decreased the number of F4/80+macrophages in kidneys. Next, immunofluorescence results revealed a reduction in the number of F4/80+Ki67+macrophages in the KD group. Furthermore, our study evaluated the impact of β-hydroxybutyric acid (β-OHB) in RAW246.7 macrophages in vitro. We found that β-OHB inhibits macrophage proliferation. Mechanistically, β-OHB inhibits macrophage proliferation may be via the FFAR3-AKT pathway. Collectively, our study indicated that KD ameliorates UUO-induced renal fibrosis by regulating macrophage proliferation. KD may be an effective therapy method for renal fibrosis due to its protective impact against the disorder.
Collapse
Affiliation(s)
- Xiaofan Hu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Qiu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Cao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhimin Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
26
|
Charan HV, Dwivedi DK, Khan S, Jena G. Mechanisms of NLRP3 inflammasome-mediated hepatic stellate cell activation: Therapeutic potential for liver fibrosis. Genes Dis 2023; 10:480-494. [PMID: 37223529 PMCID: PMC10201559 DOI: 10.1016/j.gendis.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
The liver injury leads to an inflammatory response, which causes the activation of hepatic stellate cells (HSCs) that further secrete ECM proteins and play an important role in liver fibrosis. Moreover, the inflammatory response is a driving force for fibrogenesis, which is triggered by many types of injuries. Exaggerated inflammatory immune responses are mediated by cytoplasmic protein complexes known as inflammasomes, which are involved in many chronic liver diseases. Inflammasomes are pattern recognition receptors (PRRs) that can sense any microbial motifs known as pathogen-associated molecular patterns (PAMPs), and host- or environmental-derived stress signals known as damage-associated molecular patterns (DAMPs). The inflammasomes cause caspase-mediated proteolytic cleavage of pro-IL-1β and pro-IL-18 into active IL-1β and IL-18. In this review, we provide a comprehensive summary of the important roles of NLRP3 inflammasome in the pathogenesis of liver fibrosis with an emphasis on several direct and indirect pathways responsible for the NLRP3 inflammasome-mediated HSCs activation and fibrogenesis. In addition, we discuss the general pharmacological and genetics strategies for the inhibition of NLRP3 inflammasome activation and its downstream signaling with examples of emerging pharmacotherapeutics, targeting the NLRP3 inflammasome signaling as well as a possible way to develop effective and safer NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Harsh Vardhan Charan
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Durgesh Kumar Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Sabbir Khan
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
27
|
Falkenhain K, Islam H, Little JP. Exogenous ketone supplementation: an emerging tool for physiologists with potential as a metabolic therapy. Exp Physiol 2023; 108:177-187. [PMID: 36533967 PMCID: PMC10103874 DOI: 10.1113/ep090430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the topic of this review? The integrative physiological response to exogenous ketone supplementation. What advances does it highlight? The physiological effects and therapeutic potential of exogenous ketones on metabolic health, cardiovascular function, cognitive processing, and modulation of inflammatory pathways and immune function. Also highlighted are current challenges and future directions of the field. ABSTRACT Exogenous oral ketone supplements, primarily in form of ketone salts or esters, have emerged as a useful research tool for manipulating metabolism with potential therapeutic application targeting various aspects of several common chronic diseases. Recent literature has investigated the effects of exogenously induced ketosis on metabolic health, cardiovascular function, cognitive processing, and modulation of inflammatory pathways and immune function. This narrative review provides an overview of the integrative physiological effects of exogenous ketone supplementation and highlights current challenges and future research directions. Much of the existing research on therapeutic applications - particularly mechanistic studies - has involved pre-clinical rodent and/or cellular models, requiring further validation in human clinical studies. Existing human studies report that exogenous ketones can lower blood glucose and improve some aspects of cognitive function, highlighting the potential therapeutic application of exogenous ketones for type 2 diabetes and neurological diseases. There is also support for the ability of exogenous ketosis to improve cardiac metabolism in rodent models of heart failure with supporting human studies emerging; long-terms effects of exogenous ketone supplementation on the human cardiovascular system and lipid profiles are needed. An important avenue for future work is provided by research accelerating technologies that enable continuous ketone monitoring and/or the development of more palatable ketone mixtures that optimize plasma ketone kinetics to enable sustained ketosis. Lastly, research exploring the physiological interactions between exogenous ketones and varying metabolic states (e.g., exercise, fasting, metabolic disease) should yield important insights that can be used to maximize the health benefits of exogenous ketosis.
Collapse
Affiliation(s)
- Kaja Falkenhain
- School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Hashim Islam
- School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Jonathan P. Little
- School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| |
Collapse
|
28
|
Zhang X, Ji L, Li MO. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity 2023; 56:14-31. [PMID: 36630912 PMCID: PMC9839308 DOI: 10.1016/j.immuni.2022.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Metazoan tissue specification is associated with integration of macrophage lineage cells in sub-tissular niches to promote tissue development and homeostasis. Oncogenic transformation, most prevalently of epithelial cell lineages, results in maladaptation of resident tissue macrophage differentiation pathways to generate parenchymal and interstitial tumor-associated macrophages that largely foster cancer progression. In addition to growth factors, nutrients that can be consumed, stored, recycled, or converted to signaling molecules have emerged as crucial regulators of macrophage responses in tumor. Here, we review how nutrient acquisition through plasma membrane transporters and engulfment pathways control tumor-associated macrophage differentiation and function. We also discuss how nutrient metabolism regulates tumor-associated macrophages and how these processes may be targeted for cancer therapy.
Collapse
Affiliation(s)
- Xian Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liangliang Ji
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
29
|
Luo S, Yang M, Han Y, Zhao H, Jiang N, Li L, Chen W, Li C, Yang J, Liu Y, Liu C, Zhao C, Sun L. β-Hydroxybutyrate against Cisplatin-Induced acute kidney injury via inhibiting NLRP3 inflammasome and oxidative stress. Int Immunopharmacol 2022; 111:109101. [PMID: 35940076 DOI: 10.1016/j.intimp.2022.109101] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
Cisplatin, as a commonly used anticancer drug, can easily lead to acute kidney injury (AKI), and has received more and more attention in clinical practice. β-hydroxybutyric acid (BHB) is a metabolite in the body and acts as an inhibitor of oxidative stress and NLRP3 inflammasome, reducing inflammatory responses and apoptosis. However, the role of BHB in cisplatin-induced AKI is currently not fully elucidated. In this study, C57BL/6 male mice were randomly divided into normal control group, cisplatin-induced AKI group and AKI with BHB treatment group. Compared to the control, cisplatin-treated mice exhibited high level of serum creatinine, blood urea nitrogen and severe tubular injury, which accompanied with significantly increased expression level of NLRP3, IL-1β, IL-18, BAX, cleaved-caspase 3, as well as aggravated oxidative stress and renal tubular cell apoptosis. However, these changes were significantly improved in that of BHB treatment. In vitro, our study showed that the expression of cleaved-caspase3, IL-1β and IL-18 were significantly increased in human proximal tubular epithelial cell line (HK-2) treated with cisplatin compared with the control group, while decreased in cells treated with BHB. Furthermore, a significantly increased expression of cGAS and STING in HK-2 cells treated with cisplatin were found, whereas notably decreased in cells treated with BHB. This data indicates that BHB protects against cisplatin-induced AKI and renal tubular damage mediated by NLRP3 inflammasome and cGAS-STING pathway.
Collapse
Affiliation(s)
- Shilu Luo
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Jinfei Yang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chanyue Zhao
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
30
|
Wang FX, Xu CL, Su C, Li J, Lin JY. β-Hydroxybutyrate Attenuates Painful Diabetic Neuropathy via Restoration of the Aquaporin-4 Polarity in the Spinal Glymphatic System. Front Neurosci 2022; 16:926128. [PMID: 35898407 PMCID: PMC9309893 DOI: 10.3389/fnins.2022.926128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Waste removal is essential for maintaining homeostasis and the normal function of the central nervous system (CNS). The glymphatic system based on aquaporin-4 (AQP4) water channels on the endfeet of astrocytes is recently discovered as the excretion pathway for metabolic waste products of CNS. In the CNS, α-syntrophin (SNTA1) directly or indirectly anchors AQP4 in astrocyte membranes facing blood vessels. Studies have indicated that β-hydroxybutyrate (BHB) can raise the expression of SNTA1 and thus restoring AQP4 polarity in mice models with Alzheimer’s disease. The study aims to evaluate the neuroprotective mechanism of BHB in rats with painful diabetic neuropathy (PDN). PDN rats were modeled under a high-fat and high-glucose diet with a low dose of streptozotocin. Magnetic resonance imaging (MRI) was applied to observe the clearance of contrast to indicate the functional variability of the spinal glymphatic system. Mechanical allodynia was assessed by paw withdrawal threshold. The expressions of SNTA1 and AQP4 were tested, and the polarity reversal of AQP4 protein was measured. As demonstrated, PDN rats were manifested with deceased contrast clearance of the spinal glymphatic system, enhanced mechanical allodynia, lower expression of SNTA1, higher expression of AQP4, and reversed polarity of AQP4 protein. An opposite change in the above characteristics was observed in rats being treated with BHB. This is the first study that demonstrated the neuroprotective mechanism of BHB to attenuate PDN via restoration of the AQP4 polarity in the spinal glymphatic system and provides a promising therapeutic strategy for PDN.
Collapse
Affiliation(s)
- Fei-xiang Wang
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chi-liang Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Can Su
- Department of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-yan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Jing-yan Lin,
| |
Collapse
|
31
|
Qi J, Gan L, Fang J, Zhang J, Yu X, Guo H, Cai D, Cui H, Gou L, Deng J, Wang Z, Zuo Z. Beta-Hydroxybutyrate: A Dual Function Molecular and Immunological Barrier Function Regulator. Front Immunol 2022; 13:805881. [PMID: 35784364 PMCID: PMC9243231 DOI: 10.3389/fimmu.2022.805881] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
Ketone bodies are crucial intermediate metabolites widely associated with treating metabolic diseases. Accumulating evidence suggests that ketone bodies may act as immunoregulators in humans and animals to attenuate pathological inflammation through multiple strategies. Although the clues are scattered and untrimmed, the elevation of these ketone bodies in the circulation system and tissues induced by ketogenic diets was reported to affect the immunological barriers, an important part of innate immunity. Therefore, beta-hydroxybutyrate, a key ketone body, might also play a vital role in regulating the barrier immune systems. In this review, we retrospected the endogenous ketogenesis in animals and the dual roles of ketone bodies as energy carriers and signal molecules focusing on beta-hydroxybutyrate. In addition, the research regarding the effects of beta-hydroxybutyrate on the function of the immunological barrier, mainly on the microbiota, chemical, and physical barriers of the mucosa, were outlined and discussed. As an inducible endogenous metabolic small molecule, beta-hydroxybutyrate deserves delicate investigations focusing on its immunometabolic efficacy. Comprehending the connection between ketone bodies and the barrier immunological function and its underlining mechanisms may help exploit individualised approaches to treat various mucosa or skin-related diseases.
Collapse
Affiliation(s)
- Jiancheng Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Linli Gan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jizong Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
32
|
Kim ER, Kim SR, Cho W, Lee SG, Kim SH, Kim JH, Choi E, Kim JH, Yu JW, Lee BW, Kang ES, Cha BS, Lee MS, Cho JW, Jeon JY, Lee YH. Short Term Isocaloric Ketogenic Diet Modulates NLRP3 Inflammasome Via B-hydroxybutyrate and Fibroblast Growth Factor 21. Front Immunol 2022; 13:843520. [PMID: 35572519 PMCID: PMC9095902 DOI: 10.3389/fimmu.2022.843520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
A ketogenic diet (KD) is known to have beneficial health effects. Various types of KD interventions have been applied to manage metabolic syndrome based on modification of diet parameters such as duration of intervention, macronutrient components, and total calories. Nevertheless, the beneficial health impact of isocaloric KD is largely unknown, especially in healthy subjects. The present study investigated the acute effects of a 3-day isocaloric KD. In this non-randomized intervention study, we recruited 15 healthy volunteers aged 24-38 years (7 men and 8 women) and placed them on an isocaloric KD restricting intake of carbohydrates but not energy (75% fat, 20% protein, 5% carbohydrate) for 3 days. Biochemical profiles and laboratory measurements were performed. Peripheral blood monocular cells were cultured, and measured cell stimulated cytokines. After short-term isocaloric KD, subjects lost body weight and serum free fatty acid levels were increased. These results accompanied elevated serum β-hydroxybutyrate (BHB) concentration and fibroblast growth factor 21 (FGF21) levels and improved insulin sensitivity. Regarding the direct effect of BHB on inflammasome activation, interleukin-1β (IL-1β) and tumor necrosis factor-α secretion in response to adenosine triphosphate or palmitate stimulation in human macrophages decreased significantly after isocaloric KD. In ex-vivo experiments with macrophages, both FGF21 and BHB further reduced IL-1β secretion compared to either BHB or FGF21 alone. The inhibitory effect of FGF21 on IL-1β secretion was blunted with bafilomycin treatment, which blocked autophagy flux. In conclusion, isocaloric KD for 3 days is a promising approach to improve metabolic and inflammatory status.
Collapse
Affiliation(s)
- Eun Ran Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - So Ra Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate School, Yonsei University College of Medicine, Seoul, South Korea.,Department of Hospital Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Wonhee Cho
- Exercise Medicine Center for Diabetes and Cancer Patients, Institute of Convergence Science (ICONS), Yonsei University, Seoul, South Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Hyun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunhye Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong-Ho Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Je-Wook Yu
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate School, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate School, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Bong-Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate School, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Myung-Shik Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Won Cho
- Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, South Korea
| | - Justin Y Jeon
- Exercise Medicine Center for Diabetes and Cancer Patients, Institute of Convergence Science (ICONS), Yonsei University, Seoul, South Korea
| | - Yong-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate School, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea.,Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
33
|
Liu X, Yang G, Sun T, Tao L, Shen D, Zhang W, Zhang J, Xue D, Chen B, Wu L, Liu C, Ma W. Glial cell line-derived neurotrophic factor contributes to alcoholic-induced liver injury by regulating the NF-κB pathway. Alcohol Clin Exp Res 2022; 46:724-735. [PMID: 35338490 DOI: 10.1111/acer.14815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 02/27/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is associated with high morbidity and mortality worldwide. The pathogenesis of ALD is not completely understood. Although accumulating evidence suggests an important role of glial cell line-derived neurotrophic factor (GDNF) in several diseases, there are no data concerning its role in ALD. This study compared patients with ALD with control subjects and used a mouse model and a cell culture model to investigate the function of GDNF in ALD and its mechanism of action in hepatocyte injury. METHODS Serum levels of GDNF were measured in 25 patients with ALD and 25 healthy control subjects. A 4-week Lieber-DeCarli ethanol (EtOH) liquid diet combined with the Gao-Binge model was used in the mouse study. Mouse primary hepatocytes and Huh-7 cells were used for cell experiments. The parameters of liver injury, inflammatory cytokines, and lipid metabolism were measured. RESULTS Patients with alcoholic hepatitis had higher serum GDNF than control subjects. Expression of GDNF mRNA and protein was markedly increased in mice in the chronic-plus-binge ALD mouse model. The level of GDNF mRNA was upregulated in primary hepatic stellate cells isolated from ethanol-fed mouse liver. Ethanol induced GDNF expression in LX2 cells. The levels of inflammatory cytokines (tumor necrosis factor α, interleukin 1β, and monocyte chemotactic protein 1) were significantly increased after GDNF stimulation in primary hepatocytes and Huh-7 cells. After GDNF stimulation, levels of both p-AKT and p-NF-κB were significantly increased in primary hepatocytes and Huh-7 cells. The NF-κB activity induced by GDNF was significantly decreased by an NF-κB inhibitor, which limited hepatocyte injury and inflammation. CONCLUSIONS The concentration of GDNF is increased in the circulation of ALD patients. GDNF promotes alcohol-induced liver injury and inflammation via the activation of NF-κB, which mediates hepatocyte injury and inflammatory cytokine expression. Based on these findings, GDNF is a potential therapeutic target for preventing or ameliorating liver injury in ALD.
Collapse
Affiliation(s)
- Xuling Liu
- Laboratory of Liver Disease, Department of Infectious Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangyue Yang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiantian Sun
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Le Tao
- Laboratory of Liver Disease, Department of Infectious Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongxiao Shen
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhang
- Laboratory of Liver Disease, Department of Infectious Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongying Xue
- Laboratory of Liver Disease, Department of Infectious Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei Chen
- Laboratory of Liver Disease, Department of Infectious Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Wu
- Laboratory of Liver Disease, Department of Infectious Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Liu
- Laboratory of Liver Disease, Department of Infectious Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenting Ma
- Laboratory of Liver Disease, Department of Infectious Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Enders J, Swanson T, Ryals J, Wright D. A ketogenic diet reduces mechanical allodynia and improves epidermal innervation in diabetic mice. Pain 2022; 163:682-689. [PMID: 34252910 PMCID: PMC10067134 DOI: 10.1097/j.pain.0000000000002401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023]
Abstract
ABSTRACT Dietary interventions are promising approaches to treat pain associated with metabolic changes because they impact both metabolic and neural components contributing to painful neuropathy. Here, we tested whether consumption of a ketogenic diet could affect sensation, pain, and epidermal innervation loss in type 1 diabetic mice. C57Bl/6 mice were rendered diabetic using streptozotocin and administered a ketogenic diet at either 3 weeks (prevention) or 9 weeks (reversal) of uncontrolled diabetes. We quantified changes in metabolic biomarkers, sensory thresholds, and epidermal innervation to assess impact on neuropathy parameters. Diabetic mice consuming a ketogenic diet had normalized weight gain, reduced blood glucose, elevated blood ketones, and reduced hemoglobin-A1C levels. These metabolic biomarkers were also improved after 9 weeks of diabetes followed by 4 weeks of a ketogenic diet. Diabetic mice fed a control chow diet developed rapid mechanical allodynia of the hind paw that was reversed within a week of consumption of a ketogenic diet in both prevention and reversal studies. Loss of thermal sensation was also improved by consumption of a ketogenic diet through normalized thermal thresholds. Finally, diabetic mice consuming a ketogenic diet had normalized epidermal innervation, including after 9 weeks of uncontrolled diabetes and 4 weeks of consumption of the ketogenic diet. These results suggest that, in mice, a ketogenic diet can prevent and reverse changes in key metabolic biomarkers, altered sensation, pain, and axon innervation of the skin. These results identify a ketogenic diet as a potential therapeutic intervention for patients with painful diabetic neuropathy and/or epidermal axon loss.
Collapse
Affiliation(s)
- Jonathan Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Taylor Swanson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Janelle Ryals
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Douglas Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
35
|
Zhang L, Shi J, Du D, Niu N, Liu S, Yang X, Lu P, Shen X, Shi N, Yao L, Zhang R, Hu G, Lu G, Zhu Q, Zeng T, Liu T, Xia Q, Huang W, Xue J. Ketogenesis acts as an endogenous protective programme to restrain inflammatory macrophage activation during acute pancreatitis. EBioMedicine 2022; 78:103959. [PMID: 35339899 PMCID: PMC8960978 DOI: 10.1016/j.ebiom.2022.103959] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Background Innate immunity and metabolites link to the pathogenesis and severity of acute pancreatitis (AP). However, liver metabolism and its role in immune response and AP progression remain elusive. We investigated the function of liver metabolism in the pathogenesis of AP. Methods Circulating ketone body β-hydroxybutyrate (βOHB) levels were determined in AP clinical cohorts and caerulein-induced AP (CER-AP) mouse models receiving seven (Cer*7) or twelve (Cer*12) injection regimens at hourly intervals. Liver transcriptomics and metabolomics were compared between CER-AP (Cer*7) and CER-AP (Cer*12). Inhibition of fatty acid β-oxidation (FAO)-ketogenesis, or supplementation of βOHB was performed in mouse models of AP. The effect and mechanism of βOHB were examined in vitro. Findings Elevated circulating βOHB was observed in patients with non-severe AP (SAP) but not SAP. These findings were replicated in CER-AP (Cer*7) and CER-AP (Cer*12), which manifested as limited and hyperactive immune responses, respectively. FAO-ketogenesis was activated in CER-AP (Cer*7), while impaired long-chain FAO and mitochondrial function were observed in the liver of CER-AP (Cer*12). Blockage of FAO-ketogenesis (Cpt1a antagonism or Hmgcs2 knockdown) worsened, while supplementation of βOHB or its precursor 1,3-butanediol alleviated the severity of CER-AP. Mechanistically, βOHB had a discernible effect on pancreatic acinar cell damage, instead, it greatly attenuated the activation of pancreatic and systemic proinflammatory macrophages via class I histone deacetylases. Interpretation Our findings reveal that hepatic ketogenesis is activated as an endogenous protective programme to restrain AP progression, indicating its potential therapeutic value. Funding This work was supported by the National Natural Science Foundation of China, Shanghai Youth Talent Support Programme, and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Dan Du
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; Advanced Mass Spectrometry Centre, Research Core Facility, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Shiyu Liu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China
| | - Na Shi
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Linbo Yao
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Ruling Zhang
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guoyong Hu
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Guotao Lu
- Department of Gastroenterology, Pancreatic Centre, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Qingtian Zhu
- Department of Gastroenterology, Pancreatic Centre, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Tao Zeng
- Zhangjiang Laboratory, Institute of Brain-Intelligence Technology, Shanghai, China
| | - Tingting Liu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Qing Xia
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Wei Huang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China; Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Centre for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai 200127 China.
| |
Collapse
|
36
|
Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022; 182:206-218. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Intermittent fasting (IF) has been studied for its effects on lifespan and the prevention or delay of age-related diseases upon the regulation of metabolic pathways. Mitochondria participate in key metabolic pathways and play important roles in maintaining intracellular signaling networks that modulate various cellular functions. Mitochondrial dysfunction has been described as an early feature of brain aging and neurodegeneration. Although IF has been shown to prevent brain aging and neurodegeneration, the mechanism is still unclear. This review focuses on the mechanisms by which IF improves mitochondrial function, which plays a central role in brain aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The cellular and molecular mechanisms of IF in brain aging and neurodegeneration involve activation of adaptive cellular stress responses and signaling- and transcriptional pathways, thereby enhancing mitochondrial function, by promoting energy metabolism and reducing oxidant production.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
37
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Spigoni V, Cinquegrani G, Iannozzi NT, Frigeri G, Maggiolo G, Maggi M, Parello V, Dei Cas A. Activation of G protein-coupled receptors by ketone bodies: Clinical implication of the ketogenic diet in metabolic disorders. Front Endocrinol (Lausanne) 2022; 13:972890. [PMID: 36339405 PMCID: PMC9631778 DOI: 10.3389/fendo.2022.972890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Ketogenesis takes place in hepatocyte mitochondria where acetyl-CoA derived from fatty acid catabolism is converted to ketone bodies (KB), namely β-hydroxybutyrate (β-OHB), acetoacetate and acetone. KB represent important alternative energy sources under metabolic stress conditions. Ketogenic diets (KDs) are low-carbohydrate, fat-rich eating strategies which have been widely proposed as valid nutritional interventions in several metabolic disorders due to its substantial efficacy in weight loss achievement. Carbohydrate restriction during KD forces the use of FFA, which are subsequently transformed into KB in hepatocytes to provide energy, leading to a significant increase in ketone levels known as "nutritional ketosis". The recent discovery of KB as ligands of G protein-coupled receptors (GPCR) - cellular transducers implicated in a wide range of body functions - has aroused a great interest in understanding whether some of the clinical effects associated to KD consumption might be mediated by the ketone/GPCR axis. Specifically, anti-inflammatory effects associated to KD regimen are presumably due to GPR109A-mediated inhibition of NLRP3 inflammasome by β-OHB, whilst lipid profile amelioration by KDs could be ascribed to the actions of acetoacetate via GPR43 and of β-OHB via GPR109A on lipolysis. Thus, this review will focus on the effects of KD-induced nutritional ketosis potentially mediated by specific GPCRs in metabolic and endocrinological disorders. To discriminate the effects of ketone bodies per se, independently of weight loss, only studies comparing ketogenic vs isocaloric non-ketogenic diets will be considered as well as short-term tolerability and safety of KDs.
Collapse
Affiliation(s)
- Valentina Spigoni
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gloria Cinquegrani
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicolas Thomas Iannozzi
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Frigeri
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Giulia Maggiolo
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marta Maggi
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Vanessa Parello
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessandra Dei Cas
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Nutritional and Metabolic Sciences, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
- *Correspondence: Alessandra Dei Cas,
| |
Collapse
|
39
|
High-Fat Diet-Induced Fatty Liver Is Associated with Immunosuppressive Response during Sepsis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5833857. [PMID: 34925696 PMCID: PMC8674062 DOI: 10.1155/2021/5833857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
High-fat diet-induced fatty liver is an indolent and chronic disease accompanied by immune dysfunction and metabolic disturbances involving numerous biological pathways. This study investigated how this abnormal metabolic disorder influences sepsis in mice. Mice were fed with normal chow (NC) or high-fat diet (HFD), and palmitic acid (PA) was used to treat hepatocytes to mimic fat accumulation in vitro. Lipopolysaccharide (LPS) was used to induce sepsis and related immune responses. Mice fed on a high-fat diet displayed higher mortality and more severe liver damage but compromised immunoreaction. The supernatant from PA-treated primary hepatocytes markedly diminished the inflammatory cytokine expression of macrophages after LPS stimulation, which showed a state of immunosuppression. Metabolomics analysis indicated the level of many key metabolites with possible roles in immunoreaction was altered in the HFD and PA groups compared with corresponding controls; specifically, β-hydroxybutyric acid (BHB) showed an immunosuppressive effect on Raw264.7 cells during the LPS stimulation. Transcriptomic analysis suggested that several differential signaling pathways may be associated with the alteration of immune function between the NC and HFD groups, as well as in the in vitro model. Our study suggests that the consumption of HFD may alter the hepatic metabolic profile, and that certain metabolites may remold the immune system to immunosuppressive state in the context of sepsis.
Collapse
|
40
|
Li Z, Zhang S, Zhang Y, Chen J, Wu F, Liu G, Chen GQ. Applications and Mechanism of 3-Hydroxybutyrate (3HB) for Prevention of Colonic Inflammation and Carcinogenesis as a Food Supplement. Mol Nutr Food Res 2021; 65:e2100533. [PMID: 34704372 DOI: 10.1002/mnfr.202100533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/07/2021] [Indexed: 01/19/2023]
Abstract
SCOPE Inflammatory bowel disease and colorectal carcinogenesis (CRC) are common diseases without effective prevention approach. 3-Hydroxybutyrate (3HB) reported to have multiple functions as an oral food supplement. This study observes that 3HB prevents mouse colitis and CRC. METHODS AND RESULTS The sensitivity of wild type (WT) and GPR109a-/- mice to colitis is compared using dextran sulfate sodium salt (DSS)-induced colitis model. Flow cytometry showed that 3HB cellular surface receptor GPR109a that can decrease the percentage of M1 macrophages from 50% of the DSS-induced acute colitis mouse group to 42% DSS+3HB group mediating the inhibitory effect on inflammation. Bone marrow transplantation experiments further demonstrated that the function of 3HB depended on bone marrow cells. Subsequently, the sensitivity of WT and GPR109a-/- mice to CRC is compared using an azoxymethane-DSS-induced CRC mouse model. It is found that the activation of GPR109a inhibited CRC, depended on reduced myeloid-derived suppressor cells accumulation from 27% of the DSS group to 19% of the DSS+3HB group studied using flow cytometry. CONCLUSION It is concluded that 3HB significantly suppresses colonic inflammation and carcinogenesis, promising to benefit colon disease prevention in form of a food supplement.
Collapse
Affiliation(s)
- Zihua Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Shujie Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yudian Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,MOE Key Lab of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
41
|
GC-MS Based Metabolomics Reveals the Synergistic Mechanism of Gardeniae Fructus-Forsythiae Fructus Herb Pair in Lipopolysaccharide-Induced Acute Lung Injury Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8064557. [PMID: 34354760 PMCID: PMC8331283 DOI: 10.1155/2021/8064557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
Compatibility remains among the crucial and significant characteristics of traditional Chinese medicines. The Gardeniae Fructus (FG)-Forsythiae Fructus (FF) herb pair, an epitome of formulations for heat-clearing and detoxification, is extensively used to treat bacterial pneumonia in clinical settings. However, there are few reports on their synergistic effects. This study thus investigated their compatibility by GC-MS based metabolomics using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Differential metabolites were identified by both variable importance in the projection (VIP) > 1 in orthogonal partial least-squares discriminant analysis (OPLS-DA) mode and P < 0.05. Results of biochemistry and histopathology indicated that FG-FF herb pair exerted more promising lung protective effect than its individual decoction against the LPS-induced ALI model. From the metabolomics study, 32 differential metabolites in vehicle vs. model groups, 21 differential metabolites in FF vs. model groups, 21 differential metabolites in FG vs. model groups, and 20 differential metabolites in FG-FF herb pair vs. model groups were found. Among them, the levels of 3-hydroxybutyric acid, alanine, isophthalic acid, and terephthalic acid were restored significantly in the FF group, while silanol and cholesterol were restored significantly in the FG group. For FG-FF treatment, the amount of behenic acid, a metabolite with anti-inflammatory properties, was increased, while palmitic acid, a proinflammatory metabolite, was decreased. Meanwhile, the two biomarkers were restored more significantly than that by FG or FF treatment, which indicated that the synergistic effects by FF coupled with FG might be attributed to restoring fatty acids metabolic pathway.
Collapse
|
42
|
Swartz TH, Bradford BJ, Mamedova LK. Connecting Metabolism to Mastitis: Hyperketonemia Impaired Mammary Gland Defenses During a Streptococcus uberis Challenge in Dairy Cattle. Front Immunol 2021; 12:700278. [PMID: 34267762 PMCID: PMC8276125 DOI: 10.3389/fimmu.2021.700278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
β-hydroxybutyrate (BHB) has been associated with disease incidence in early lactation dairy cattle, but such associations do not demonstrate causation. Therefore, the objective of this study was to examine the effects of BHB during an intramammary Streptococcus uberis challenge. A secondary objective was to elucidate the mechanisms behind BHB effects on cytokine transcript abundance using the RAW 264.7 cell line. Late lactation multiparous dairy cows (n = 12) were continuously infused intravenously with either BHB to induce hyperketonemia (target concentration: 1.8 mM) or with saline (CON) for 72 h during a S. uberis intramammary challenge. Body temperature, dry matter intake (DMI), milk production, and milk S. uberis cfu were measured daily until one week post-challenge. Blood samples were collected during infusion to assess changes in metabolism (glucose, insulin, glucagon, NEFA, and cortisol) and systemic inflammation (IL-1β and SAA). Mammary biopsies were conducted at 72 h post-challenge to assess transcript abundance of inflammation-associated genes. BHB-infused cows exhibited a delayed febrile response, noted by a lesser vaginal temperature during the final day of infusion, followed by a greater vaginal temperature 6 d post-challenge. Consequently, BHB-infused cows had greater S. uberis cfu on d 4, 6, and 7 as compared to CON. Accordingly, BHB-infused cows consumed less DM, produced less milk, had reduced blood glucose, and had increased cortisol concentrations, however, no effects were seen on other systemic parameters or transcript abundance of inflammation-related genes in mammary tissue. To elucidate mechanisms behind the impaired immune defenses, RAW 264.7 cells were transfected with a GPR109A siRNA for 24 h and then treated with or without 1.8 mM BHB and challenged or left unchallenged with S. uberis for an additional 3 h. Transfection with siRNA reduced Gpr109a by 75%. Although BHB treatment did not significantly increase Il10, GPR109A knockdown as compared to the scrambled control reduced Il10 by 90% in S. uberis challenged macrophages treated with BHB, suggesting that macrophage immune responses to S. uberis can be altered via a GPR109A-dependent mechanism. Taken together, these data suggest that BHB altered the immune response promoting tolerance toward S. uberis rather than resistance.
Collapse
Affiliation(s)
- Turner H. Swartz
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Barry J. Bradford
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Laman K. Mamedova
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
43
|
Blanco-Gandía MDC, Ródenas-González F, Pascual M, Reguilón MD, Guerri C, Miñarro J, Rodríguez-Arias M. Ketogenic Diet Decreases Alcohol Intake in Adult Male Mice. Nutrients 2021; 13:nu13072167. [PMID: 34202492 PMCID: PMC8308435 DOI: 10.3390/nu13072167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023] Open
Abstract
The classic ketogenic diet is a diet high in fat, low in carbohydrates, and well-adjusted proteins. The reduction in glucose levels induces changes in the body’s metabolism, since the main energy source happens to be ketone bodies. Recent studies have suggested that nutritional interventions may modulate drug addiction. The present work aimed to study the potential effects of a classic ketogenic diet in modulating alcohol consumption and its rewarding effects. Two groups of adult male mice were employed in this study, one exposed to a standard diet (SD, n = 15) and the other to a ketogenic diet (KD, n = 16). When a ketotic state was stable for 7 days, animals were exposed to the oral self-administration paradigm to evaluate the reinforcing and motivating effects of ethanol. Rt-PCR analyses were performed evaluating dopamine, adenosine, CB1, and Oprm gene expression. Our results showed that animals in a ketotic state displayed an overall decrease in ethanol consumption without changes in their motivation to drink. Gene expression analyses point to several alterations in the dopamine, adenosine, and cannabinoid systems. Our results suggest that nutritional interventions may be a useful complementary tool in treating alcohol-use disorders.
Collapse
Affiliation(s)
| | - Francisco Ródenas-González
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - María Pascual
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Marina Daiana Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Correspondence: ; Tel.: +34-963864637
| |
Collapse
|
44
|
Swartz T, Bradford B, Mamedova L. Diverging in vitro inflammatory responses toward Streptococcus uberis in mouse macrophages either preconditioned or continuously treated with β-hydroxybutyrate. JDS COMMUNICATIONS 2021; 2:142-147. [PMID: 36339507 PMCID: PMC9623636 DOI: 10.3168/jdsc.2020-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/10/2021] [Indexed: 11/24/2022]
Abstract
β-Hydroxybutyrate preconditioning reduced Tlr2 and tended to reduce Il10 expression. Continuous β-hydroxybutyrate treatment increased Tlr2 and Il10 expression. Diverging responses due to the timing of BHB treatment suggest opposing mechanisms.
Hyperketonemia is a common condition in early-lactation dairy cows that has been associated with an increase in the risk of infectious disease. Recent mouse studies have elucidated an anti-inflammatory effect of the ketone body β-hydroxybutyrate (BHB). Therefore, the objective of this study was to determine whether BHB altered inflammatory responses in macrophages challenged with the common mastitis pathogen Streptococcus uberis. A secondary objective was to determine whether the inflammatory response to the S. uberis challenge was dependent on whether BHB was present in the medium during the challenge (i.e., preconditioned vs. continuous treatment). Two cell culture experiments were conducted. In the first experiment, mouse macrophages (RAW 264.7 line) were preconditioned with BHB (0, 0.6, 1.2, and 1.8 mM) for 24 h; the medium was then replaced with a standard cell culture medium, and the cells were challenged or not with S. uberis for an additional 6 h. In the second experiment, a similar protocol was used; however, cells were preconditioned with BHB (0, 0.6, 1.2, and 1.8 mM) for 24 h, the medium was replaced with fresh medium containing the same concentration of BHB, and cells were either challenged or not with S. uberis for 6 h. In both experiments, relative transcript abundance of cell membrane receptors (Tlr2 and Gpr109a), cytokines (Il1b, Il10, Tnf, and Tgfb1), and chemokines (Cxcl2 and Ccl5) were determined using quantitative real-time PCR and normalized against the geometric mean of Hprt and B2m. Data were analyzed using a linear mixed model, and orthogonal contrasts were conducted to examine the effect of S. uberis challenge and BHB treatment. Streptococcus uberis activated the macrophages, noted by greater transcript abundance of analyzed genes. Intriguingly, in both experiments, the S. uberis challenge increased expression of Gpr109a, which encodes a receptor that is ligated by BHB. Paradoxically, preconditioning macrophages with BHB increased transcript abundance of the immunosuppressive cytokine Tgfb1 and increased that of the neutrophil chemoattractant Cxcl2. Preconditioning decreased Tlr2 and tended to decrease Il10 transcript abundance. In opposition to the preconditioning experiment, continuous treatment of BHB during the S. uberis challenge linearly increased abundance of Tlr2 and Il10 transcripts. Continuous BHB treatment also increased expression of Il1b. In conclusion, BHB treatment altered macrophage inflammatory responses during an S. uberis challenge; however, the direction of this response was dependent on whether BHB was added to the medium during the S. uberis challenge. Future studies should be conducted using bovine macrophages and in vivo approaches to examine BHB effects during an S. uberis challenge.
Collapse
Affiliation(s)
- T.H. Swartz
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
- Corresponding author
| | - B.J. Bradford
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L.K. Mamedova
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| |
Collapse
|
45
|
Zhang S, Li Z, Zhang Y, Chen J, Li Y, Wu F, Wang W, Cui ZJ, Chen G. Ketone Body 3-Hydroxybutyrate Ameliorates Atherosclerosis via Receptor Gpr109a-Mediated Calcium Influx. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003410. [PMID: 33977048 PMCID: PMC8097358 DOI: 10.1002/advs.202003410] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that can cause acute cardiovascular events. Activation of the NOD-like receptor family, pyrin domain containing protein 3 (NLRP3) inflammasome enhances atherogenesis, which links lipid metabolism to sterile inflammation. This study examines the impact of an endogenous metabolite, namely ketone body 3-hydroxybutyrate (3-HB), on a mouse model of atherosclerosis. It is found that daily oral administration of 3-HB can significantly ameliorate atherosclerosis. Mechanistically, 3-HB is found to reduce the M1 macrophage proportion and promote cholesterol efflux by acting on macrophages through its receptor G-protein-coupled receptor 109a (Gpr109a). 3-HB-Gpr109a signaling promotes extracellular calcium (Ca2+) influx. The elevation of intracellular Ca2+ level reduces the release of Ca2+ from the endothelium reticulum (ER) to mitochondria, thus inhibits ER stress triggered by ER Ca2+ store depletion. As NLRP3 inflammasome can be activated by ER stress, 3-HB can inhibit the activation of NLRP3 inflammasome, which triggers the increase of M1 macrophage proportion and the inhibition of cholesterol efflux. It is concluded that daily nutritional supplementation of 3-HB attenuates atherosclerosis in mice.
Collapse
Affiliation(s)
- Shu‐jie Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Zi‐hua Li
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yu‐dian Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Jin Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yuan Li
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Fu‐qing Wu
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Wei Wang
- Innovative Institute of Animal Healthy BreedingCollege of Animal Sciences and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510025P. R. China
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062P. R. China
| | - Zong Jie Cui
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Guo‐Qiang Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084P. R. China
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijing100084P. R. China
- MOE Key Laboratory for Industrial BiocatalysisDept Chemical EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
46
|
Liu Y, Wei X, Wu M, Xu J, Xu B, Kang L. Cardioprotective Roles of β-Hydroxybutyrate Against Doxorubicin Induced Cardiotoxicity. Front Pharmacol 2021; 11:603596. [PMID: 33935690 PMCID: PMC8082360 DOI: 10.3389/fphar.2020.603596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background: β-Hydroxybutyrate (BHB) is produced by fatty acid oxidation in the liver under the fasting state and confirmed to play a cardioprotective role in ischemia and hypertensive settings. Doxorubicin (DOX) is an effective chemotherapeutic drug, but limited by serious irreversible cardiotoxicity. However, whether BHB can protect from DOX-induced cardiotoxicity remains unknown. Methods and Results: C57BL/6 mice were intraperitoneally injected with DOX to induce cardiac toxicity and intragastrically administered into BHB for treatment. They were randomly divided into three groups, namely a sham group (Sham), a doxorubicin group (DOX), and a doxorubicin+β-Hydroxybutyrate group (DOX + BHB). Echocardiography and pathological staining were performed to evaluate cardiac function and fibrosis. H9c2 cardiomyocyte was treated with DOX or BHB for in vitro experiments. Cell apoptosis and ROS were determined by flow cytometry. BHB significantly restored DOX-induced cardiac function decline and partially prevented cardiac reverse remodeling, characterized by increased cell size and decreased fibrosis. In vitro, BHB treatment decreased cellular injury and apoptosis. Also, BHB alleviated oxidative stress level and increased mitochondrial membrane potential. Conclusion: Our results suggested that BHB could protected from DOX-induced cardiotoxicity by inhibiting cell apoptosis and oxidative stress and maintaining mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Xuan Wei
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Mingyue Wu
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Jiamin Xu
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital as Affiliated Drum Tower Hospital, Nanjing, China
| |
Collapse
|
47
|
Ketogenic Diet Enhances the Cholesterol Accumulation in Liver and Augments the Severity of CCl 4 and TAA-Induced Liver Fibrosis in Mice. Int J Mol Sci 2021; 22:ijms22062934. [PMID: 33805788 PMCID: PMC7998170 DOI: 10.3390/ijms22062934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Persistent chronic liver diseases increase the scar formation and extracellular matrix accumulation that further progress to liver fibrosis and cirrhosis. Nevertheless, there is no antifibrotic therapy to date. The ketogenic diet is composed of high fat, moderate to low-protein, and very low carbohydrate content. It is mainly used in epilepsy and Alzheimer’s disease. However, the effects of the ketogenic diet on liver fibrosis remains unknown. Through ketogenic diet consumption, β-hydroxybutyrate (bHB) and acetoacetate (AcAc) are two ketone bodies that are mainly produced in the liver. It is reported that bHB and AcAc treatment decreases cancer cell proliferation and promotes apoptosis. However, the influence of bHB and AcAc in hepatic stellate cell (HSC) activation and liver fibrosis are still unclear. Therefore, this study aimed to investigate the effect of the ketogenic diet and ketone bodies in affecting liver fibrosis progression. Our study revealed that feeding a high-fat ketogenic diet increased cholesterol accumulation in the liver, which further enhanced the carbon tetrachloride (CCl4)- and thioacetamide (TAA)-induced liver fibrosis. In addition, more severe liver inflammation and the loss of hepatic antioxidant and detoxification ability were also found in ketogenic diet-fed fibrotic mouse groups. However, the treatment with ketone bodies (bHB and AcAc) did not suppress transforming growth factor-β (TGF-β)-induced HSC activation, platelet-derived growth factor (PDGF)-BB-triggered proliferation, and the severity of CCl4-induced liver fibrosis in mice. In conclusion, our study demonstrated that feeding a high-fat ketogenic diet may trigger severe steatohepatitis and thereby promote liver fibrosis progression. Since a different ketogenic diet composition may exert different metabolic effects, more evidence is necessary to clarify the effects of a ketogenic diet on disease treatment.
Collapse
|
48
|
Mahajan VR, Elvig SK, Vendruscolo LF, Koob GF, Darcey VL, King MT, Kranzler HR, Volkow ND, Wiers CE. Nutritional Ketosis as a Potential Treatment for Alcohol Use Disorder. Front Psychiatry 2021; 12:781668. [PMID: 34916977 PMCID: PMC8670944 DOI: 10.3389/fpsyt.2021.781668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.
Collapse
Affiliation(s)
- Vikrant R Mahajan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M Todd King
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Henry R Kranzler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Corinde E Wiers
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
49
|
Choi RY, Ji M, Lee MK, Paik MJ. Metabolomics Study of Serum from a Chronic Alcohol-Fed Rat Model Following Administration of Defatted Tenebrio molitor Larva Fermentation Extract. Metabolites 2020; 10:436. [PMID: 33138187 PMCID: PMC7693418 DOI: 10.3390/metabo10110436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
We have previously showed that defatted mealworm fermentation extract (MWF) attenuates alcoholic liver injury by regulating lipid, inflammatory, and antioxidant metabolism in chronic alcohol-fed rats. The current metabolomics study was performed to monitor biochemical events following the administration of MWF (daily for eight weeks) to a rat model of alcoholic liver injury by gas chromatography-tandem mass spectrometry (GC-MS/MS). The levels of 15 amino acids (AAs), 17 organic acids (OAs), and 19 free fatty acids (FFAs) were measured in serum. Analysis of variance (ANOVA), principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) were used to compare the levels of 51 metabolites in serum. In particular, 3-hydroxybutyric acid (3-HB), pyroglutamic acid (PG), octadecanoic acid, and docosahexaenoic acid (DHA) were evaluated as high variable importance point (VIP) scores and PCA loading scores as determined by PLS-DA and PCA, and these were significantly higher in the MWF and silymarin groups than in the EtOH group. MWF showed a protective effect from alcohol-induced liver damage by elevating hepatic β-oxidation activity, and serum 3-HB levels were significantly higher in the MWF group than in the EtOH control group. Glycine levels were higher in the MWF group than in the EtOH group, and PG levels (related to glutathione production) were also elevated, indicating a reduction in alcohol-related oxidative stress. In addition, MWF is protected from alcohol-induced inflammation and steatosis by increasing serum DHA, palmitic, and octadecanoic acid levels as compared with the EtOH group. These results suggest that MWF might attenuate alcoholic liver disease, due to its anti-inflammatory and antioxidant effects by up-regulating hepatic β-oxidation activity and down-regulating liver FFA uptake.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea;
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea;
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea;
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea;
| |
Collapse
|
50
|
cAMP Signaling in Pathobiology of Alcohol Associated Liver Disease. Biomolecules 2020; 10:biom10101433. [PMID: 33050657 PMCID: PMC7600246 DOI: 10.3390/biom10101433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The importance of cyclic adenosine monophosphate (cAMP) in cellular responses to extracellular signals is well established. Many years after discovery, our understanding of the intricacy of cAMP signaling has improved dramatically. Multiple layers of regulation exist to ensure the specificity of cellular cAMP signaling. Hence, disturbances in cAMP homeostasis could arise at multiple levels, from changes in G protein coupled receptors and production of cAMP to the rate of degradation by phosphodiesterases. cAMP signaling plays critical roles in metabolism, inflammation and development of fibrosis in several tissues. Alcohol-associated liver disease (ALD) is a multifactorial condition ranging from a simple steatosis to steatohepatitis and fibrosis and ultimately cirrhosis, which might lead to hepatocellular cancer. To date, there is no FDA-approved therapy for ALD. Hence, identifying the targets for the treatment of ALD is an important undertaking. Several human studies have reported the changes in cAMP homeostasis in relation to alcohol use disorders. cAMP signaling has also been extensively studied in in vitro and in vivo models of ALD. This review focuses on the role of cAMP in the pathobiology of ALD with emphasis on the therapeutic potential of targeting cAMP signaling for the treatment of various stages of ALD.
Collapse
|