1
|
da Silva Júnior WF, de Oliveira Costa KM, Castro Oliveira HM, Antunes MM, Mafra K, Nakagaki BN, Corradi da Silva PS, Megale JD, de Sales SC, Caixeta DC, Martins MM, Sabino-Silva R, de Paula CMP, Goulart LR, Rezende RM, Menezes GB. Physiological accumulation of lipid droplets in the newborn liver during breastfeeding is driven by TLR4 ligands. J Lipid Res 2025; 66:100744. [PMID: 39814317 PMCID: PMC11849619 DOI: 10.1016/j.jlr.2025.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
The liver plays a central role in fat storage, but little is known about physiological fat accumulation during early development. Here we investigated a transient surge in hepatic lipid droplets observed in newborn mice immediately after birth. We developed a novel model to quantify liver fat content without tissue processing. Using high-resolution microscopy assessed the spatial distribution of lipid droplets within hepatocytes. Lugol's iodine staining determined the timing weaning period, and milk deprivation experiments investigated the relationship between milk intake and fat accumulation. Lipidomic analysis revealed changes in the metabolic profile of the developing liver. Finally, we investigated the role of Toll-like receptor 4 (TLR4) signaling in fat storage using knockout mice and cell-specific deletion strategies. Newborn mice displayed a dramatic accumulation of hepatic lipid droplets within the first 12 h after birth, persisting for the initial two weeks of life. This pattern coincided with exclusive milk feeding and completely abated by the third week, aligning with weaning. Importantly, the observed fat accumulation shared characteristics with established models of pathological steatosis, suggesting potential biological relevance. Lipid droplets were primarily localized within the cytoplasm of hepatocytes. Milk deprivation experiments demonstrated that milk intake is the primary driver of this transient fat accumulation. Lipidomic analysis revealed significant changes in the metabolic profile of newborn livers compared to adults. Interestingly, several highly abundant lipids in newborns were identified as putative ligands for TLR4. Subsequent studies using TLR4-deficient mice and cell-specific deletion revealed that TLR4 signaling, particularly within hepatocytes, plays a critical role in driving fat storage within the newborn liver. Additionally, a potential collaboration between metabolic and immune systems was suggested by the observed effects of myeloid cell-specific TLR4 ablation. This study demonstrates a unique phenomenon of transient hepatic fat accumulation in newborn mice driven by milk intake and potentially regulated by TLR4 signaling, particularly within hepatocytes.
Collapse
Affiliation(s)
- Wanderson Ferreira da Silva Júnior
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karen Marques de Oliveira Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hortência Maciel Castro Oliveira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Sérgio Corradi da Silva
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Duarte Megale
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah Campos de Sales
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Douglas Carvalho Caixeta
- Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Mário Machado Martins
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Cristina Maria Pinto de Paula
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
da Silva Júnior WF, Lopes MADF, Antunes MM, Costa KMDO, Diniz AB, Nakagaki BNL, de Miranda CDM, Oliveira HMDC, Reis AC, Libreros S, de Paula CMP, Rezende RM, Menezes GB. The neonatal liver hosts a spontaneously occurring neutrophil population, exhibiting distinct spatial and functional characteristics from adults. J Leukoc Biol 2024; 116:1352-1363. [PMID: 38552209 DOI: 10.1093/jleuko/qiae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 11/28/2024] Open
Abstract
The elusive nature of the liver immune system in newborns remains an important challenge, casting a shadow over our understanding of how to effectively treat and prevent diseases in children. Therefore, deeper exploration into the intricacies of neonatal immunology might be crucial for improved pediatric healthcare. Using liver intravital microscopy, we unveiled a significant population of granulocytes in the hepatic parenchyma of fetuses and newborns. Utilizing high-dimensional immunophenotyping, we showed dynamic alterations predominantly in granulocytes during neonatal development. Liver intravital microscopy from birth through adulthood captures real-time dynamics, showing a substantial presence of Ly6G+ cells that persisted significantly up to 2 wk of age. Using time-of flight mass cytometry, we characterized neonatal Ly6G+ cells as neutrophils, confirmed by morphology and immunohistochemistry. Surprisingly, the embryonic liver hosts a distinct population of neutrophils established as early as the second gestational week, challenging conventional notions about their origin. Additionally, we observed that embryonic neutrophils occupy preferentially the extravascular space, indicating their early establishment within the liver. Hepatic neutrophils in embryos and neonates form unique cell clusters, persisting during the initial days of life, while reduced migratory capabilities in neonates are observed, potentially compensating with increased reactive oxygen species release in response to stimuli. Finally, in vivo imaging of acute neutrophil behavior in a newborn mouse, subjected to focal liver necrosis, unveils that neonatal neutrophils exhibit a reduced migratory response. The study provides unprecedented insights into the intricate interplay of neutrophils within the liver, shedding light on their functional and dynamic characteristics during development.
Collapse
Affiliation(s)
- Wanderson Ferreira da Silva Júnior
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maria Alice de Freitas Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Karen Marques de Oliveira Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Brenda Naemi Lanza Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Camila Dutra Moreira de Miranda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hortência Maciel de Castro Oliveira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Alesandra Corte Reis
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Stephania Libreros
- Vascular Biology and Therapeutics Program, Department of Pathology, Yale University, 10 Amistad Street, PO Box 208089, New Haven, CT 06520, United States
| | - Cristina Maria Pinto de Paula
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
3
|
Zhang HJ, Zhu L, Xie QH, Zhang LZ, Liu JY, Feng YYF, Chen ZK, Xia HF, Fu QY, Yu ZL, Chen G. Extracellular vesicle-packaged PD-L1 impedes macrophage-mediated antibacterial immunity in preexisting malignancy. Cell Rep 2024; 43:114903. [PMID: 39489940 DOI: 10.1016/j.celrep.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Malignancies can compromise systemic innate immunity, but the underlying mechanisms are largely unknown. Here, we find that tumor-derived small extracellular vesicles (sEVs; TEVs) deliver PD-L1 to host macrophages, thereby impeding antibacterial immunity. Mice implanted with Rab27a-knockdown tumors are more resistant to bacterial infection than wild-type controls. Injection of TEVs into mice impairs macrophage-mediated bacterial clearance, increases systemic bacterial dissemination, and enhances sepsis score in a PD-L1-dependent manner. Mechanistically, TEV-packaged PD-L1 inhibits Bruton's tyrosine kinase/PLCγ2 signaling-mediated cytoskeleton reorganization and reactive oxygen species generation, impacting bacterial phagocytosis and killing by macrophages. Neutralizing PD-L1 markedly normalizes macrophage-mediated bacterial clearance in tumor-bearing mice. Importantly, circulating sEV PD-L1 levels in patients with tumors can predict bacterial infection susceptibility, while patients with tumors treated with αPD-1 exhibit fewer postoperative infections. These findings identify a mechanism by which cancer cells dampen host innate immunity-mediated bacterial clearance and suggest targeting TEV-packaged PD-L1 to reduce bacterial infection susceptibility in tumor-bearing conditions.
Collapse
Affiliation(s)
- He-Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi-Hui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jin-Yuan Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang-Ying-Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhuo-Kun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiu-Yun Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Melini S, Trinchese G, Lama A, Cimmino F, Del Piano F, Comella F, Opallo N, Leo A, Citraro R, Trabace L, Mattace Raso G, Pirozzi C, Mollica MP, Meli R. Sex Differences in Hepatic Inflammation, Lipid Metabolism, and Mitochondrial Function Following Early Lipopolysaccharide Exposure in Epileptic WAG/Rij Rats. Antioxidants (Basel) 2024; 13:957. [PMID: 39199203 PMCID: PMC11351225 DOI: 10.3390/antiox13080957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Among the non-communicable neurological diseases, epilepsy is characterized by abnormal brain activity with several peripheral implications. The role of peripheral inflammation in the relationship between seizure development and nonalcoholic fatty liver disease based on sex difference remains still overlooked. Severe early-life infections lead to increased inflammation that can aggravate epilepsy and hepatic damage progression, both related to increased odds of hospitalization for epileptic patients with liver diseases. Here, we induced a post-natal-day 3 (PND3) infection by LPS (1 mg/kg, i.p.) to determine the hepatic damage in a genetic model of young epileptic WAG/Rij rats (PND45). We evaluated intra- and inter-gender differences in systemic and liver inflammation, hepatic lipid dysmetabolism, and oxidative damage related to mitochondrial functional impairment. First, epileptic rats exposed to LPS, regardless of gender, displayed increased serum hepatic enzymes and altered lipid profile. Endotoxin challenge triggered a more severe inflammatory and immune response in male epileptic rats, compared to females in both serum and liver, increasing pro-inflammatory cytokines and hepatic immune cell recruitment. Conversely, LPS-treated female rats showed significant alterations in systemic and hepatic lipid profiles and reduced mitochondrial fatty acid oxidation. The two different sex-dependent mechanisms of LPS-induced liver injury converge in increased ROS production and related mitochondrial oxidative damage in both sexes. Notably, a compensatory increase in antioxidant defense was evidenced only in female rats. Our study with a translational potential demonstrates, for the first time, that early post-natal infections in epileptic rats induced or worsened hepatic disorders in a sex-dependent manner, amplifying inflammation, lipid dysmetabolism, and mitochondrial impairment.
Collapse
Affiliation(s)
- Stefania Melini
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (M.P.M.)
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (M.P.M.)
| | - Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy;
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Nicola Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Antonio Leo
- Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.L.); (R.C.)
| | - Rita Citraro
- Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.L.); (R.C.)
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (M.P.M.)
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| |
Collapse
|
5
|
Weber AA, Yang X, Mennillo E, Wong S, Le S, Ashley Teo JY, Chang M, Benner CW, Ding J, Jain M, Chen S, Karin M, Tukey RH. Triclosan administration to humanized UDP-glucuronosyltransferase 1 neonatal mice induces UGT1A1 through a dependence on PPARα and ATF4. J Biol Chem 2024; 300:107340. [PMID: 38705390 PMCID: PMC11152660 DOI: 10.1016/j.jbc.2024.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
Triclosan (TCS) is an antimicrobial toxicant found in a myriad of consumer products and has been detected in human tissues, including breastmilk. We have evaluated the impact of lactational TCS on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) neonatal mice. In hUGT1 mice, expression of the hepatic UGT1A1 gene is developmentally delayed resulting in elevated total serum bilirubin (TSB) levels. We found that newborn hUGT1 mice breastfed or orally treated with TCS presented lower TSB levels along with induction of hepatic UGT1A1. Lactational and oral treatment by gavage with TCS leads to the activation of hepatic nuclear receptors constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor alpha (PPARα), and stress sensor, activating transcription factor 4 (ATF4). When CAR-deficient hUGT1 mice (hUGT1/Car-/-) were treated with TCS, TSB levels were reduced with a robust induction of hepatic UGT1A1, leaving us to conclude that CAR is not tied to UGT1A1 induction. Alternatively, when PPARα-deficient hUGT1 mice (hUGT1/Pparα-/-) were treated with TCS, hepatic UGT1A1 was not induced. Additionally, we had previously demonstrated that TCS is a potent inducer of ATF4, a transcriptional factor linked to the integrated stress response. When ATF4 was deleted in liver of hUGT1 mice (hUGT1/Atf4ΔHep) and these mice treated with TCS, we observed superinduction of hepatic UGT1A1. Oxidative stress genes in livers of hUGT1/Atf4ΔHep treated with TCS were increased, suggesting that ATF4 protects liver from excessive oxidative stress. The increase oxidative stress may be associated with superinduction of UGT1A1. The expression of ATF4 in neonatal hUGT1 hepatic tissue may play a role in the developmental repression of UGT1A1.
Collapse
Affiliation(s)
- André A Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Samantha Wong
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Sabrina Le
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Jia Ying Ashley Teo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Max Chang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Christopher W Benner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jeffrey Ding
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Mohit Jain
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
6
|
Parsons BD, Medina-Luna D, Scur M, Pinelli M, Gamage GS, Chilvers RA, Hamon Y, Ahmed IHI, Savary S, Makrigiannis AP, Braverman NE, Rodriguez-Alcazar JF, Latz E, Karakach TK, Di Cara F. Peroxisome deficiency underlies failures in hepatic immune cell development and antigen presentation in a severe Zellweger disease model. Cell Rep 2024; 43:113744. [PMID: 38329874 DOI: 10.1016/j.celrep.2024.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Peroxisome biogenesis disorders (PBDs) represent a group of metabolic conditions that cause severe developmental defects. Peroxisomes are essential metabolic organelles, present in virtually every eukaryotic cell and mediating key processes in immunometabolism. To date, the full spectrum of PBDs remains to be identified, and the impact PBDs have on immune function is unexplored. This study presents a characterization of the hepatic immune compartment of a neonatal PBD mouse model at single-cell resolution to establish the importance and function of peroxisomes in developmental hematopoiesis. We report that hematopoietic defects are a feature in a severe PBD murine model. Finally, we identify a role for peroxisomes in the regulation of the major histocompatibility class II expression and antigen presentation to CD4+ T cells in dendritic cells. This study adds to our understanding of the mechanisms of PBDs and expands our knowledge of the role of peroxisomes in immunometabolism.
Collapse
Affiliation(s)
- Brendon D Parsons
- University of Alberta, Department of Laboratory Medicine and Pathology, Edmonton, AB T6G 1C9, Canada
| | - Daniel Medina-Luna
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Michal Scur
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Marinella Pinelli
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Gayani S Gamage
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Rebecca A Chilvers
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Yannick Hamon
- Aix Marseille University, CNRS, INSERM au Centre d'Immunologie de Marseille Luminy, 13288 Marseille, France
| | - Ibrahim H I Ahmed
- Dalhousie University, Department of Pharmacology, Halifax, NS B3H 4R2, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stéphane Savary
- University of Bourgogne, Laboratoire Bio-PeroxIL EA7270, Dijon, France
| | - Andrew P Makrigiannis
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Nancy E Braverman
- Research Institute of the McGill University Children's Hospital, Montreal, QC H4A 3J1, Canada
| | | | - Eicke Latz
- University of Bonn, Institute of Innate Immunity, Medical Faculty, 53127 Bonn, Germany
| | - Tobias K Karakach
- Dalhousie University, Department of Pharmacology, Halifax, NS B3H 4R2, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Francesca Di Cara
- University of Alberta, Department of Laboratory Medicine and Pathology, Edmonton, AB T6G 1C9, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.
| |
Collapse
|
7
|
Rao L, Cai L, Huang L. Single-cell dynamics of liver development in postnatal pigs. Sci Bull (Beijing) 2023; 68:2583-2597. [PMID: 37783617 DOI: 10.1016/j.scib.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
The postnatal development of the liver, an essential organ for metabolism and immunity, remains poorly characterized at the single-cell resolution. Here, we generated single-nucleus and single-cell transcriptomes of 84,824 pig liver cells at four postnatal time points: day 30, 42, 150, and 730. We uncovered 23 cell types, including three rare cell types: plasmacytoid dendritic cells, CAVIN3+IGF2+ endothelial cells, and EBF1+ fibroblasts. The latter two were verified by multiplex immunohistochemistry. Trajectory and gene regulatory analyses revealed 33 genes that encode transcription factors associated with hepatocyte development and function, including NFIL3 involved in regulating hepatic metabolism. We characterized the spatiotemporal heterogeneity of liver endothelial cells, identified and validated leucine zipper protein 2 (LUZP2) as a novel adult liver sinusoidal endothelial cell-specific transcription factor. Lymphoid cells (NK and T cells) governed the immune system of the pig liver since day 30. Furthermore, we identified a cluster of tissue-resident NK cells, which displayed virus defense functions, maintained proliferative features at day 730, and manifested a higher conservative transcription factor expression pattern in humans than in mouse liver. Our study presents the most comprehensive postnatal liver development single-cell atlas and demonstrates the metabolic and immune changes across the four age stages.
Collapse
Affiliation(s)
- Lin Rao
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Liping Cai
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
8
|
Antala S, Gromer KD, Gadhvi G, Kriegermeier A, Wang JJ, Abdala-Valencia H, Wechsler JB, Perlman H, Winter DR, Zhang ZJ, Green RM, Taylor SA. Single-cell sequencing of a novel model of neonatal bile duct ligation in mice identifies macrophage heterogeneity in obstructive cholestasis. Sci Rep 2023; 13:14104. [PMID: 37644108 PMCID: PMC10465511 DOI: 10.1038/s41598-023-41207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Macrophages (MΦ) play a role in neonatal etiologies of obstructive cholestasis, however, the role for precise MΦ subsets remains poorly defined. We developed a neonatal murine model of bile duct ligation (BDL) to characterize etiology-specific differences in neonatal cholestatic MΦ polarization. Neonatal BDL surgery was performed on female BALB/c mice at 10 days of life (DOL) with sham laparotomy as controls. Comparison was made to the Rhesus Rotavirus (RRV)-induced murine model of biliary atresia (BA). Evaluation of changes at day 7 after surgery (BDL and sham groups) and murine BA (DOL14) included laboratory data, histology (H&E, anti-CD45 and anti-CK19 staining), flow cytometry of MΦ subsets by MHCII and Ly6c expression, and single cell RNA-sequencing (scRNA-seq) analysis. Neonatal BDL achieved a 90% survival rate; mice had elevated bile acids, bilirubin, and alanine aminotransferase (ALT) versus controls (p < 0.05 for all). Histology demonstrated hepatocellular injury, CD45+ portal infiltrate, and CK19+ bile duct proliferation in neonatal BDL. Comparison to murine BA showed increased ALT in neonatal BDL despite no difference in histology Ishak score. Neonatal BDL had significantly lower MHCII-Ly6c+ MΦ versus murine BA, however, scRNA-seq identified greater etiology-specific MΦ heterogeneity with increased endocytosis in neonatal BDL MΦ versus cellular killing in murine BA MΦ. We generated an innovative murine model of neonatal obstructive cholestasis with low mortality. This model enabled comparison to murine BA to define etiology-specific cholestatic MΦ function. Further comparisons to human data may enable development of immune modulatory therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Swati Antala
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Hepatology, Department of Pediatrics, Kravis Children's Hospital at Mount Sinai, New York, NY, USA
| | - Kyle D Gromer
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Gaurav Gadhvi
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Alyssa Kriegermeier
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua B Wechsler
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Deborah R Winter
- Division of Rheumatology, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Zheng J Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Richard M Green
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Sarah A Taylor
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, 13123 E. 16th Ave., Box B290, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Zheng L, Ling W, Zhu D, Li Z, Li Y, Zhou H, Kong L. Roquin-1 resolves sepsis-associated acute liver injury by regulating inflammatory profiles via miRNA cargo in extracellular vesicles. iScience 2023; 26:107295. [PMID: 37554446 PMCID: PMC10405074 DOI: 10.1016/j.isci.2023.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/05/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Sepsis-associated acute liver injury (SALI) is an independent risk for sepsis-induced death orchestrated by innate and adaptive immune responses. Here, we found that Roquin-1 was decreased during SALI and expressed mainly in monocyte-derived macrophages. Meanwhile, Roquin-1 was correlated with the inflammatory profiles in humans and mice. Mechanically, Roquin-1 in macrophages promoted Ago2-K258-ubiquitination and inhibited Ago2-S387/S828-phosphorylation. Ago2-S387-phosphorylation inhibited Ago2-miRNA's complex location in multivesicular bodies and sorting in macrophages-derived extracellular vesicles (MDEVs), while Ago2-S828-phosphorylation modulated the binding between Ago2 and miRNAs by special miRNAs-motifs. Then, the anti-inflammatory miRNAs in MDEVs decreased TSC22D2 expression directly, upregulated Tregs-differentiation via TSC22D2-STAT3 signaling, and inhibited M1-macrophage-polarization by TSC22D2-AMPKα-mTOR pathway. Furthermore, WT MDEVs in mice alleviated SALI by increasing Tregs ratio and decreasing M1-macrophage frequency synchronously. Our study showed that Roquin-1 in macrophages increased Tregs-differentiation and decreased M1-macrophage-polarization simultaneously via miRNA in MDEVs, suggesting Roquin-1 can be used as a potential tool for SALI treatment and MDEVs engineering.
Collapse
Affiliation(s)
- Lei Zheng
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao-tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Wei Ling
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Deming Zhu
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Zhi Li
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao-tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Haoming Zhou
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Lianbao Kong
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| |
Collapse
|
10
|
Nadeev AP, Abyshev AA, Marinkin IO. Study of the Morphogenesis of Granulomas in the Liver of Mice in Different Age Periods Treated with Oxidized Dextran. Bull Exp Biol Med 2023:10.1007/s10517-023-05818-x. [PMID: 37335448 DOI: 10.1007/s10517-023-05818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 06/21/2023]
Abstract
We studied granuloma formation and its outcomes in BCG-induced granulomatosis in the liver of mice of different age periods treated with oxidized dextran. Newborn C57BL/6 mice were intraperitoneally injected with BCG vaccine on the first day of life (group 1) or BCG vaccine solution on first day of life and oxidized dextran on the second day of life (group 2). Analysis was carried out on 3, 5, 10, 28, and 56 days of life. After injection of BCG vaccine, granulomas in the liver appeared starting from the day 28. In mice treated with oxidized dextran, granulomas on day 28 were smaller and less numerous than in group 1 animals. In BCG granulomatosis, fibroplastic processes in the liver develop mainly at the site of granulomas. Injection of oxidized dextran under conditions of BCG granulomatosis reduced the manifestations of fibrosis in the liver.
Collapse
Affiliation(s)
- A P Nadeev
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia.
| | - A A Abyshev
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - I O Marinkin
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
11
|
Comerford SA, Hinnant EA, Chen Y, Hammer RE. Hepatic ribosomal protein S6 (Rps6) insufficiency results in failed bile duct development and loss of hepatocyte viability; a ribosomopathy-like phenotype that is partially p53-dependent. PLoS Genet 2023; 19:e1010595. [PMID: 36656901 PMCID: PMC9888725 DOI: 10.1371/journal.pgen.1010595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.
Collapse
Affiliation(s)
- Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Elizabeth A. Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas. United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Gao F, Li Y, Zhao H, Liang Y, Liu Z. Sub-chronic, low dose co-exposure to Aflatoxin B 1 and Microcystin-LR in C57BL/6 mice significantly alters the cytokine response in serum and liver. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2130436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fuqing Gao
- Department of Biotechnology and Food Engineering, Israel Institute of Technology, Haifa, Israel
| | - Yun Li
- Institute of Quality Standards and Testing Technology for Agro-Products Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Haiqing Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yannei Liang
- Institute of Quality Standards and Testing Technology for Agro-Products Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhe Liu
- Institute of Quality Standards and Testing Technology for Agro-Products Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
13
|
Porto-Pedrosa MLM, de Miranda CDM, Lopes ME, Nakagaki BN, Mafra K, de Paula CMP, Diniz AB, Costa KMDO, Antunes MM, Oliveira AG, Balderas R, Lopes RP, Menezes GB. High-dimensional intravital microscopy reveals major changes in splenic immune system during postnatal development. Front Immunol 2022; 13:1002919. [PMID: 36531990 PMCID: PMC9755845 DOI: 10.3389/fimmu.2022.1002919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
Spleen is a key organ for immunologic surveillance, acting as a firewall for antigens and parasites that spread through the blood. However, how spleen leukocytes evolve across the developmental phase, and how they spatially organize and interact in vivo is still poorly understood. Using a novel combination of selected antibodies and fluorophores to image in vivo the spleen immune environment, we described for the first time the dynamics of immune development across postnatal period. We found that spleens from adults and infants had similar numbers and arrangement of lymphoid cells. In contrast, splenic immune environment in newborns is sharply different from adults in almost all parameters analysed. Using this in vivo approach, B cells were the most frequent subtype throughout the development. Also, we revealed how infections - using a model of malaria - can change the spleen immune profile in adults and infants, which could become the key to understanding different severity grades of infection. Our new imaging solutions can be extremely useful for different groups in all areas of biological investigation, paving a way for new intravital approaches and advances.
Collapse
Affiliation(s)
- Maria Luiza Mundim Porto-Pedrosa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Dutra Moreira de Miranda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Eustáquio Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristina Maria Pinto de Paula
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karen Marques de Oliveira Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maisa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André Gustavo Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Robert Balderas
- BD Biosciences, Department of Biological Sciences, San Jose, CA, United States
| | - Rodrigo Pestana Lopes
- BD Biosciences, Department of Medical & Scientific Affairs, São Paulo, São Paulo, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Gustavo Batista Menezes,
| |
Collapse
|
14
|
Groot M, van Dijk A, van Baak M, Boshuis P, van de Braak A, Zuidema T, Sterk S. 4-acetaminophen (Paracetamol) levels in treated and untreated veal calves, an update. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Hirako IC, Antunes MM, Rezende RM, Hojo-Souza NS, Figueiredo MM, Dias T, Nakaya H, Menezes GB, Gazzinelli RT. Uptake of Plasmodium chabaudi hemozoin drives Kupffer cell death and fuels superinfections. Sci Rep 2022; 12:19805. [PMID: 36396745 PMCID: PMC9671901 DOI: 10.1038/s41598-022-23858-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Kupffer cells (KCs) are self-maintained tissue-resident macrophages that line liver sinusoids and play an important role on host defense. It has been demonstrated that upon infection or intense liver inflammation, KCs might be severely depleted and replaced by immature monocytic cells; however, the mechanisms of cell death and the alterations on liver immunity against infections deserves further investigation. We explored the impact of acute Plasmodium infection on KC biology and on the hepatic immune response against secondary infections. Similar to patients, infection with Plasmodium chabaudi induced acute liver damage as determined by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation. This was associated with accumulation of hemozoin, increased of proinflammatory response and impaired bacterial and viral clearance, which led to pathogen spread to other organs. In line with this, mice infected with Plasmodium had enhanced mortality during secondary infections, which was associated with increased production of mitochondrial superoxide, lipid peroxidation and increased free iron within KCs-hallmarks of cell death by ferroptosis. Therefore, we revealed that accumulation of iron with KCs, triggered by uptake of circulating hemozoin, is a novel mechanism of macrophage depletion and liver inflammation during malaria, providing novel insights on host susceptibility to secondary infections. Malaria can cause severe liver damage, along with depletion of liver macrophages, which can predispose individuals to secondary infections and enhance the chances of death.
Collapse
Affiliation(s)
- Isabella C Hirako
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, 3rd Floor, Worcester, MA, USA
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Thomaz Dias
- Escola de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helder Nakaya
- Escola de Ciências Farmacêuticas - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil.
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, 3rd Floor, Worcester, MA, USA.
- Departamento de Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
Hoogerland JA, Staels B, Dombrowicz D. Immune-metabolic interactions in homeostasis and the progression to NASH. Trends Endocrinol Metab 2022; 33:690-709. [PMID: 35961913 DOI: 10.1016/j.tem.2022.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) has increased significantly over the past two decades. NAFLD ranges from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) and predisposes to fibrosis and hepatocellular carcinoma (HCC). The importance of the immune system in hepatic physiology and in the progression of NAFLD is increasingly recognized. At homeostasis, the liver participates in immune defense against pathogens and in tolerance of gut-derived microbial compounds. Hepatic immune cells also respond to metabolic stimuli and have a role in NAFLD progression to NASH. In this review, we discuss how metabolic perturbations affect immune cell phenotype and function in NAFL and NASH, and then focus on the role of immune cells in liver homeostasis and in the development of NASH.
Collapse
Affiliation(s)
- Joanne A Hoogerland
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
17
|
Mettl3-mediated mRNA m 6A modification controls postnatal liver development by modulating the transcription factor Hnf4a. Nat Commun 2022; 13:4555. [PMID: 35931692 PMCID: PMC9355946 DOI: 10.1038/s41467-022-32169-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatic specification and functional maturation are tightly controlled throughout development. N6-methyladenosine (m6A) is the most abundant RNA modification of eukaryotic mRNAs and is involved in various physiological and pathological processes. However, the function of m6A in liver development remains elusive. Here we dissect the role of Mettl3-mediated m6A modification in postnatal liver development and homeostasis. Knocking out Mettl3 perinatally with Alb-Cre (Mettl3 cKO) induces apoptosis and steatosis of hepatocytes, results in severe liver injury, and finally leads to postnatal lethality within 7 weeks. m6A-RIP sequencing and RNA-sequencing reveal that mRNAs of a series of crucial liver-enriched transcription factors are modified by m6A, including Hnf4a, a master regulator for hepatic parenchymal formation. Deleting Mettl3 reduces m6A modification on Hnf4a, decreases its transcript stability in an Igf2bp1-dependent manner, and down-regulates Hnf4a expression, while overexpressing Hnf4a with AAV8 alleviates the liver injury and prolongs the lifespan of Mettl3 cKO mice. However, knocking out Mettl3 in adults using Alb-CreERT2 does not affect liver homeostasis. Our study identifies a dynamic role of Mettl3-mediated RNA m6A modification in liver development. m6A is the most abundant RNA modification of eukaryotic mRNAs and is involved in various physiological and pathological processes. Here the authors show a role for Mettl3-mediated RNA m6A modification in postnatal liver development by regulating the Hnf4a-centered transcriptional network
Collapse
|
18
|
Lopes ME, Nakagaki BN, Mattos MS, Campolina-Silva GH, Meira RDO, Paixão P, Oliveira A, Faustino L, Gonçalves R, Menezes GB. Susceptibility to Infections During Acute Liver Injury Depends on Transient Disruption of Liver Macrophage Niche. Front Immunol 2022; 13:892114. [PMID: 35967353 PMCID: PMC9368782 DOI: 10.3389/fimmu.2022.892114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Kupffer cells are the primary liver resident immune cell responsible for the liver firewall function, including clearance of bacterial infection from the circulation, as they are strategically positioned inside the liver sinusoid with intimate contact with the blood. Disruption in the tissue-resident macrophage niche, such as in Kupffer cells, can lead to a window of susceptibility to systemic infections, which represents a significant cause of mortality in patients with acetaminophen (APAP) overdose-induced acute liver injury (ALI). However, how Kupffer cell niche disruption increases susceptibility to systemic infections in ALI is not fully understood. Using a mouse model of ALI induced by APAP overdose, we found that Kupffer cells upregulated the apoptotic cell death program and were markedly reduced in the necrotic areas during the early stages of ALI, opening the niche for the infiltration of neutrophils and monocyte subsets. In addition, during the resolution phase of ALI, the remaining tissue macrophages with a Kupffer cell morphology were observed forming replicating cell clusters closer to necrotic areas devoid of Kupffer cells. Interestingly, mice with APAP-induced liver injury were still susceptible to infections despite the dual cellular input of circulating monocytes and proliferation of remaining Kupffer cells in the damaged liver. Therapy with bone marrow-derived macrophages (BMDM) was shown to be effective in occupying the niche devoid of Kupffer cells following APAP-induced ALI. The rapid BMDM migration to the liver and their positioning within necrotic areas enhanced the healing of the tissue and restored the liver firewall function after BMDM therapy. Therefore, we showed that disruption in the Kupffer cell niche and its impaired function during acute liver injury are key factors for the susceptibility to systemic bacterial infections. In addition, modulation of the liver macrophage niche was shown to be a promising therapeutic strategy for liver injuries that reduce the Kupffer cell number and compromise the organ function.
Collapse
Affiliation(s)
- Mateus Eustáquio Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- *Correspondence: Mateus Eustáquio Lopes, ; Gustavo Batista Menezes,
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Matheus Silvério Mattos
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Henrique Campolina-Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Raquel de Oliveira Meira
- Macrophage and Monocyte Biology Laboratory, Department of Pathology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pierre Henrique de Menezes Paixão
- Macrophage and Monocyte Biology Laboratory, Department of Pathology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Instituto de Ciências Biológicas, Universidade
Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas D. Faustino
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ricardo Gonçalves
- Macrophage and Monocyte Biology Laboratory, Department of Pathology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- *Correspondence: Mateus Eustáquio Lopes, ; Gustavo Batista Menezes,
| |
Collapse
|
19
|
Ma J, Zhang L, Huang Y, Shen F, Wu H, Yang Z, Hou R, Song Z, Yue B, Zhang X. Epigenomic profiling indicates a role for DNA methylation in the postnatal liver and pancreas development of giant pandas. Genomics 2022; 114:110342. [PMID: 35306168 DOI: 10.1016/j.ygeno.2022.110342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/14/2022] [Accepted: 03/13/2022] [Indexed: 01/14/2023]
Abstract
Giant pandas are unique within Carnivora with a strict bamboo diet. Here, the epigenomic profiles of giant panda liver and pancreas tissues collected from three important feeding stages were investigated using BS-seq. Few differences in DNA methylation profiles were exhibited between no feeding and suckling groups in both tissues. However, we observed a tendency toward a global loss of DNA methylation in the gene-body and promoter region of metabolism-related genes from newborn to adult. Correlation analysis revealed a significant negative correlation between the changes in methylation levels within gene promoters and gene expression. The majority of genes related to nutrition metabolism had lost DNA methylation with increased mRNA expression in adult giant pandas. The few galactose metabolism and unsaturated fatty acid metabolism related genes that were hypomethylated and highly-expressed at early stages of giant panda development may meet the nutritional requirement of this species' highly altricial neonates.
Collapse
Affiliation(s)
- Jinnan Ma
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, 98 Tongjiang Road, Dujiangyan, Chengdu, Sichuan 611800, China
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, 98 Tongjiang Road, Dujiangyan, Chengdu, Sichuan 611800, China
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, China
| | - Zhaobin Song
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, China.
| |
Collapse
|
20
|
Asif S, Kim RY, Fatica T, Sim J, Zhao X, Oh Y, Denoncourt A, Cheung A, Downey M, Mulvihill EE, Kim KH. Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis. Mol Metab 2022; 61:101494. [PMID: 35421611 PMCID: PMC9039870 DOI: 10.1016/j.molmet.2022.101494] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Aberrant ketogenesis is correlated with the degree of steatosis in NAFLD patients, and an inborn error of ketogenesis (mitochondrial HMG-CoA synthase deficiency) is commonly associated with the development of the fatty liver. Here we aimed to determine the impact of Hmgcs2-mediated ketogenesis and its modulations on the development and treatment of fatty liver disease. METHODS Loss- and gain-of-ketogenic function through in vivo and in vitro models, achieved by Hmgcs2 knockout and overexpression, respectively, were examined to investigate the role of ketogenesis in the hepatic lipid accumulation during neonatal development and the diet-induced NAFLD mouse model. RESULTS Ketogenic function was decreased in NAFLD mice with a reduction in Hmgcs2 expression. Mice lacking Hmgcs2 developed spontaneous fatty liver phenotype during postnatal development, which was rescued by a shift to a low-fat dietary composition via early weaning. Hmgcs2 heterozygous mice, which exhibited reduced ketogenic activity, were more susceptible to diet-induced NAFLD development, whereas HMGCS2 overexpression in NAFLD mice improved hepatosteatosis and glucose homeostasis. CONCLUSIONS Our study adds new knowledge to the field of ketone body metabolism and shows that Hmgcs2-mediated ketogenesis modulates hepatic lipid regulation under a fat-enriched nutritional environment. The regulation of hepatic ketogenesis may be a viable therapeutic strategy in the prevention and treatment of hepatosteatosis.
Collapse
Affiliation(s)
- Shaza Asif
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ri Youn Kim
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Thet Fatica
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Jordan Sim
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, K1H 8M5, Canada
| | - Xiaoling Zhao
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, K1H 8M5, Canada
| | - Angela Cheung
- Gastroenterology and Hepatology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, K1H 8M5, Canada; The Ottawa Hospital Research Institute, Chronic Disease Program, Ottawa, ON, K1Y 4E9, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, K1H 8M5, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
21
|
Xu J, Hao S, Shi Q, Deng Q, Jiang Y, Guo P, Yuan Y, Shi X, Shangguan S, Zheng H, Lai G, Huang Y, Wang Y, Song Y, Liu Y, Wu L, Wang Z, Cheng J, Wei X, Cheng M, Lai Y, Volpe G, Esteban MA, Hou Y, Liu C, Liu L. Transcriptomic Profile of the Mouse Postnatal Liver Development by Single-Nucleus RNA Sequencing. Front Cell Dev Biol 2022; 10:833392. [PMID: 35465320 PMCID: PMC9019599 DOI: 10.3389/fcell.2022.833392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jiangshan Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Shijie Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Quan Shi
- BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Yujia Jiang
- BGI-Shenzhen, Shenzhen, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengcheng Guo
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Xuyang Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Shuncheng Shangguan
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huiwen Zheng
- BGI-Shenzhen, Shenzhen, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guangyao Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | - Liang Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Jiehui Cheng
- Guangdong Hospital of Traditional Chinese Medicine, Zhuhai, China
| | | | - Mengnan Cheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori‘Giovanni Paolo II’, Bari, Italy
| | - Miguel A. Esteban
- BGI-Shenzhen, Shenzhen, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | | | | | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
22
|
Simino LADP, Fontana MF, de Fante T, Panzarin C, Ignacio-Souza LM, Milanski M, Torsoni MA, Desai M, Ross MG, Torsoni AS. Hepatic Epigenetic Reprogramming After Liver Resection in Offspring Alleviates the Effects of Maternal Obesity. Front Cell Dev Biol 2022; 10:830009. [PMID: 35433669 PMCID: PMC9009519 DOI: 10.3389/fcell.2022.830009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity has become a public health problem in recent decades, and during pregnancy, it can lead to an increased risk of gestational complications and permanent changes in the offspring resulting from a process known as metabolic programming. The offspring of obese dams are at increased risk of developing non-alcoholic fatty liver disease (NAFLD), even in the absence of high-fat diet consumption. NAFLD is a chronic fatty liver disease that can progress to extremely severe conditions that require surgical intervention with the removal of the injured tissue. Liver regeneration is necessary to preserve organ function. A range of pathways is activated in the liver regeneration process, including the Hippo, TGFβ, and AMPK signaling pathways that are under epigenetic control. We investigated whether microRNA modulation in the liver of the offspring of obese dams would impact gene expression of Hippo, TGFβ, and AMPK pathways and tissue regeneration after partial hepatectomy (PHx). Female Swiss mice fed a standard chow or a high-fat diet (HFD) before and during pregnancy and lactation were mated with male control mice. The offspring from control (CT-O) and obese (HF-O) dams weaned to standard chow diet until day 56 were submitted to PHx surgery. Prior to the surgery, HF-O presented alterations in miR-122, miR-370, and Let-7a expression in the liver compared to CT-O, as previously shown, as well as in its target genes involved in liver regeneration. However, after the PHx (4 h or 48 h post-surgery), differences in gene expression between CT-O and HF-O were suppressed, as well as in microRNA expression in the liver. Furthermore, both CT-O and HF-O presented a similar regenerative capacity of the liver within 48 h after PHx. Our results suggest that survival and regenerative mechanisms induced by the partial hepatectomy may overcome the epigenetic changes in the liver of offspring programmed by maternal obesity.
Collapse
Affiliation(s)
- Lais A. de Paula Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Marina Figueiredo Fontana
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Carolina Panzarin
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | | | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Mina Desai
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael G. Ross
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
- *Correspondence: Adriana Souza Torsoni,
| |
Collapse
|
23
|
Almeida JI, Tenreiro MF, Martinez-Santamaria L, Guerrero-Aspizua S, Gisbert JP, Alves PM, Serra M, Baptista PM. Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 2022; 76:694-725. [PMID: 34715263 DOI: 10.1016/j.jhep.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022]
Abstract
As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.
Collapse
Affiliation(s)
- Joana I Almeida
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Miguel F Tenreiro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucía Martinez-Santamaria
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Sara Guerrero-Aspizua
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Department. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
24
|
Liang Y, Kaneko K, Xin B, Lee J, Sun X, Zhang K, Feng GS. Temporal analyses of postnatal liver development and maturation by single-cell transcriptomics. Dev Cell 2022; 57:398-414.e5. [PMID: 35134346 PMCID: PMC8842999 DOI: 10.1016/j.devcel.2022.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 02/09/2023]
Abstract
The postnatal development and maturation of the liver, the major metabolic organ, are inadequately understood. We have analyzed 52,834 single-cell transcriptomes and identified 31 cell types or states in mouse livers at postnatal days 1, 3, 7, 21, and 56. We observe unexpectedly high levels of hepatocyte heterogeneity in the developing liver and the progressive construction of the zonated metabolic functions from pericentral to periportal hepatocytes, which is orchestrated with the development of sinusoid endothelial, stellate, and Kupffer cells. Trajectory and gene regulatory analyses capture 36 transcription factors, including a circadian regulator, Bhlhe40, in programming liver development. Remarkably, we identified a special group of macrophages enriched at day 7 with a hybrid phenotype of macrophages and endothelial cells, which may regulate sinusoidal construction and Treg-cell function. This study provides a comprehensive atlas that covers all hepatic cell types and is instrumental for further dissection of liver development, metabolism, and disease.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kota Kaneko
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bing Xin
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Lee
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gen-Sheng Feng
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Andrade ACDSP, Campolina-Silva GH, Queiroz-Junior CM, de Oliveira LC, Lacerda LDSB, Pimenta JC, de Souza FRO, de Meira Chaves I, Passos IB, Teixeira DC, Bittencourt-Silva PG, Valadão PAC, Rossi-Oliveira L, Antunes MM, Figueiredo AFA, Wnuk NT, Temerozo JR, Ferreira AC, Cramer A, Oliveira CA, Durães-Carvalho R, Weis Arns C, Guimarães PPG, Costa GMJ, de Menezes GB, Guatimosim C, da Silva GSF, Souza TML, Barrioni BR, Pereira MDM, de Sousa LP, Teixeira MM, Costa VV. A Biosafety Level 2 Mouse Model for Studying Betacoronavirus-Induced Acute Lung Damage and Systemic Manifestations. J Virol 2021; 95:e0127621. [PMID: 34495692 PMCID: PMC8549505 DOI: 10.1128/jvi.01276-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1β), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.
Collapse
Affiliation(s)
| | - Gabriel Henrique Campolina-Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Camilo de Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Jordane C Pimenta
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ian de Meira Chaves
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ingredy Beatriz Passos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle Cunha Teixeira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paloma Graziele Bittencourt-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Leonardo Rossi-Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maisa Mota Antunes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - André Felipe Almeida Figueiredo
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália Teixeira Wnuk
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - André Costa Ferreira
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratório de Pesquisas Pré-clínicas, Universidade Iguaçu (UNIG), Rio de Janeiro, RJ, Brazil
| | - Allysson Cramer
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cleida Aparecida Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Clarice Weis Arns
- Laboratory of Virology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Mattos Jardim Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Batista de Menezes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glauber Santos Ferreira da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago Moreno L. Souza
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Breno Rocha Barrioni
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, Brazil
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, Brazil
| | - Lirlândia Pires de Sousa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Pérez-Iturralde A, Carte B, Aldabe R. Consequences of Mammalian Target of Rapamycin Inhibition on Adeno-Associated Virus Hepatic Transduction Efficacy. Hum Gene Ther 2021; 32:1242-1250. [PMID: 34555962 DOI: 10.1089/hum.2021.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The efficiency of recombinant adeno-associated virus (AAV) vectors transducing host cells is very low, limiting their therapeutic potential in patients. There are several cellular pathways interacting and interfering with the journey of the AAV from the cell surface to the nucleus, opening the possibility to enhance AAV transduction by modifying these interactions. In this study, we explored the results of AAV hepatic transduction when different mammalian target of rapamycin (mTOR) inhibitors, rapamycin, MLN0128, RapaLink-1, were used in preconditioned juvenile and adult mice. We confirmed rapamycin as an AAV hepatic transduction enhancer in juvenile and adult mice; however, RapaLink-1, a stronger mTOR inhibitor and a clear hepatic autophagy inducer, had no positive effect. Moreover, MLN0128 reduced AAV hepatic transduction. Therefore, our results show a complex interaction between the mTOR pathway and AAV-mediated hepatic transduction and indicate that mTOR inhibition is not a straightforward strategy for improving AAV transduction. More studies are necessary to elucidate the molecular mechanisms involved in the positive and negative effects of mTOR inhibitors on AAV transduction efficiency.
Collapse
Affiliation(s)
- Andrea Pérez-Iturralde
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
| | - Beatriz Carte
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
| | - Rafael Aldabe
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
| |
Collapse
|
27
|
Zheng Y, Ye PP, Zhou Y, Wu SY, Liu XT, Du B, Tang BH, Kan M, Nie AQ, Yin R, Wang M, Hao GX, Song LL, Yang XM, Huang X, Su LQ, Wang WQ, van den Anker J, Zhao W. LPS-Induced Inflammation Affects Midazolam Clearance in Juvenile Mice in an Age-Dependent Manner. J Inflamm Res 2021; 14:3697-3706. [PMID: 34377007 PMCID: PMC8349217 DOI: 10.2147/jir.s321492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Inflammation has a significant impact on CYP3A activity. We hypothesized that this effect might be age dependent. Our objective was to conduct a population pharmacokinetic study of midazolam in mice at different developmental stages with varying degrees of inflammation to verify our hypothesis. Methods Different doses (2 and 5 mg/kg) of lipopolysaccharide (LPS) were used to induce different degrees of systemic inflammation in Swiss mice (postnatal age 9–42 days, n = 220). The CYP3A substrate midazolam was selected as the pharmacological probe to study CYP3A activity. Postnatal age, current body weight, serum amyloid A protein 1 (SAA1) levels and LPS doses were collected as covariates to perform a population pharmacokinetic analysis using NONMEM 7.2. Results A population pharmacokinetic model of midazolam in juvenile and adult mice was established. Postnatal age and current body weight were the most significant and positive covariates for clearance and volume of distribution. LPS dosage was the most significant and negative covariate for clearance. LPS dosage can significantly reduce the clearance of midazolam by 21.8% and 38.7% with 2 mg/kg and 5 mg/kg, respectively. Moreover, the magnitude of the reduction was higher in mice with advancing postnatal age. Conclusion Both inflammation and ontogeny have an essential role in CYP3A activity in mice. The effect of LPS-induced systemic inflammation on midazolam clearance in mice is dependent on postnatal age.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Pan-Pan Ye
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| | - Yue Zhou
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Su-Ying Wu
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xi-Ting Liu
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Bin Du
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Min Kan
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Ai-Qing Nie
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Rui Yin
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Meng Wang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Lin-Lin Song
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| | - Xin-Mei Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| | - Le-Qun Su
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| | - Wen-Qi Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA.,Departments of Pediatrics, Pharmacology & Physiology, Genomics & Precision Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.,Department of Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Wei Zhao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| |
Collapse
|
28
|
Triantafyllou E, Gudd CL, Mawhin MA, Husbyn HC, Trovato FM, Siggins MK, O'Connor T, Kudo H, Mukherjee SK, Wendon JA, Bernsmeier C, Goldin RD, Botto M, Khamri W, McPhail MJ, Possamai LA, Woollard KJ, Antoniades CG, Thursz MR. PD-1 blockade improves Kupffer cell bacterial clearance in acute liver injury. J Clin Invest 2021; 131:140196. [PMID: 33320839 PMCID: PMC7880414 DOI: 10.1172/jci140196] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with acute liver failure (ALF) have systemic innate immune suppression and increased susceptibility to infections. Programmed cell death 1 (PD-1) expression by macrophages has been associated with immune suppression during sepsis and cancer. We therefore examined the role of the programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) pathway in regulating Kupffer cell (KC) inflammatory and antimicrobial responses in acetaminophen-induced (APAP-induced) acute liver injury. Using intravital imaging and flow cytometry, we found impaired KC bacterial clearance and systemic bacterial dissemination in mice with liver injury. We detected increased PD-1 and PD-L1 expression in KCs and lymphocyte subsets, respectively, during injury resolution. Gene expression profiling of PD-1+ KCs revealed an immune-suppressive profile and reduced pathogen responses. Compared with WT mice, PD-1–deficient mice and anti–PD-1–treated mice with liver injury showed improved KC bacterial clearance, a reduced tissue bacterial load, and protection from sepsis. Blood samples from patients with ALF revealed enhanced PD-1 and PD-L1 expression by monocytes and lymphocytes, respectively, and that soluble PD-L1 plasma levels could predict outcomes and sepsis. PD-1 in vitro blockade restored monocyte functionality. Our study describes a role for the PD-1/PD-L1 axis in suppressing KC and monocyte antimicrobial responses after liver injury and identifies anti–PD-1 immunotherapy as a strategy to reduce infection susceptibility in ALF.
Collapse
Affiliation(s)
- Evangelos Triantafyllou
- Department of Metabolism, Digestion and Reproduction, Section of Hepatology and Gastroenterology, and.,Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Cathrin Lc Gudd
- Department of Metabolism, Digestion and Reproduction, Section of Hepatology and Gastroenterology, and.,Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Marie-Anne Mawhin
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Hannah C Husbyn
- Department of Metabolism, Digestion and Reproduction, Section of Hepatology and Gastroenterology, and
| | - Francesca M Trovato
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | | | - Thomas O'Connor
- Department of Metabolism, Digestion and Reproduction, Section of Hepatology and Gastroenterology, and
| | - Hiromi Kudo
- Department of Metabolism, Digestion and Reproduction, Section of Pathology, Imperial College London, London, United Kingdom
| | - Sujit K Mukherjee
- Department of Metabolism, Digestion and Reproduction, Section of Hepatology and Gastroenterology, and
| | - Julia A Wendon
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Christine Bernsmeier
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Section of Pathology, Imperial College London, London, United Kingdom
| | - Marina Botto
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Wafa Khamri
- Department of Metabolism, Digestion and Reproduction, Section of Hepatology and Gastroenterology, and
| | - Mark Jw McPhail
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, United Kingdom
| | - Lucia A Possamai
- Department of Metabolism, Digestion and Reproduction, Section of Hepatology and Gastroenterology, and
| | - Kevin J Woollard
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Charalambos G Antoniades
- Department of Metabolism, Digestion and Reproduction, Section of Hepatology and Gastroenterology, and
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Section of Hepatology and Gastroenterology, and
| |
Collapse
|
29
|
Zarate MA, Nguyen LM, De Dios RK, Zheng L, Wright CJ. Maturation of the Acute Hepatic TLR4/NF-κB Mediated Innate Immune Response Is p65 Dependent in Mice. Front Immunol 2020; 11:1892. [PMID: 32973783 PMCID: PMC7472845 DOI: 10.3389/fimmu.2020.01892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBβ), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leanna M Nguyen
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
30
|
Programing of an Intravascular Immune Firewall by the Gut Microbiota Protects against Pathogen Dissemination during Infection. Cell Host Microbe 2020; 28:660-668.e4. [PMID: 32810440 DOI: 10.1016/j.chom.2020.07.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
Eradication of pathogens from the bloodstream is critical to prevent disseminated infections and sepsis. Kupffer cells in the liver form an intravascular firewall that captures and clears pathogens from the blood. Here, we show that the catching and killing of circulating pathogens by Kupffer cells in vivo are promoted by the gut microbiota through commensal-derived D-lactate that reaches the liver via the portal vein. The integrity of this Kupffer cell-mediated intravascular firewall requires continuous crosstalk with gut commensals, as microbiota depletion with antibiotics leads to a failure of pathogen clearance and overwhelming disseminated infection. Furthermore, administration of purified D-lactate to germ-free mice, or gnotobiotic colonization with D-lactate-producing commensals, restores Kupffer cell-mediated pathogen clearance by the liver firewall. Thus, the gut microbiota programs an intravascular immune firewall that protects against the spread of bacterial infections via the bloodstream.
Collapse
|
31
|
Diniz AB, Antunes MM, Lacerda VADS, Nakagaki BN, Freitas Lopes MA, Castro-Oliveira HMD, Mattos MS, Mafra K, de Miranda CDM, de Oliveira Costa KM, Lopes ME, Alvarenga DM, Carvalho-Gontijo R, Marchesi SC, Lacerda DR, de Araújo AM, de Carvalho É, David BA, Santos MM, Lima CX, Silva Gomes JA, Minto Fontes Cal TC, de Souza BR, Couto CA, Faria LC, Teixeira Vidigal PV, Matos Ferreira AV, Radhakrishnnan S, Ricci M, Oliveira AG, Rezende RM, Menezes GB. Imaging and immunometabolic phenotyping uncover changes in the hepatic immune response in the early phases of NAFLD. JHEP Rep 2020; 2:100117. [PMID: 32695965 PMCID: PMC7365949 DOI: 10.1016/j.jhepr.2020.100117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
Background & Aims The precise determination of non-alcoholic fatty liver disease (NAFLD) onset is challenging. Thus, the initial hepatic responses to fat accumulation, which may be fundamental to our understanding of NAFLD evolution and clinical outcomes, are largely unknown. Herein, we chronologically mapped the immunologic and metabolic changes in the liver during the early stages of fatty liver disease in mice and compared this with human NAFLD samples. Methods Liver biopsies from patients with NAFLD (NAFLD activity score [NAS] 2–3) were collected for gene expression profiling. Mice received a high-fat diet for short periods to mimic initial steatosis and the hepatic immune response was investigated using a combination of confocal intravital imaging, gene expression, cell isolation, flow cytometry and bone marrow transplantation assays. Results We observed major immunologic changes in patients with NAS 2–3 and in mice in the initial stages of NAFLD. In mice, these changes significantly increased mortality rates upon drug-induced liver injury, as well as predisposing mice to bacterial infections. Moreover, deletion of Toll-like receptor 4 in liver cells dampened tolerogenesis, particularly in Kupffer cells, in the initial stages of dietary insult. Conclusion The hepatic immune system acts as a sentinel for early and minor changes in hepatic lipid content, mounting a biphasic response upon dietary insult. Priming of liver immune cells by gut-derived Toll-like receptor 4 ligands plays an important role in liver tolerance in initial phases, but continuous exposure to insults may lead to damage and reduced ability to control infections. Lay summary Fatty liver is a very common form of hepatic disease, leading to millions of cases of cirrhosis every year. Patients are often asymptomatic until becoming very sick. Therefore, it is important that we expand our knowledge of the early stages of disease pathogenesis, to enable early diagnosis. Herein, we show that even in the early stages of fatty liver disease, there are significant alterations in genes involved in the inflammatory response, suggesting that the hepatic immune system is disturbed even following minor and undetectable changes in liver fat content. This could have implications for the diagnosis and clinical management of fatty liver disease. Hepatic immune response is already altered in liver biopsies from patients with mild NAFLD. We designed a novel mouse model to mimic mild NAFLD, enabling the chronological mapping of liver changes. This revealed an increased mortality rate upon secondary liver damage and a window of increased susceptibility to infection. NAFLD diagnosis may be significantly improved by a more profound investigation of changes in hepatic immunology. These data could guide customized nutritional and therapeutic interventions at different stages of NAFLD.
Collapse
Key Words
- ALT, alanine aminotransferase
- APAP, acetaminophen
- CFUs, colony forming units
- DCs, dendritic cells
- E. coli, Escherichia coli
- HFD, high-fat diet
- ITT, insulin tolerance test
- KCs, Kupffer cells
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NPCs, non-parenchymal cells
- SD, standard diet
- TLR4, Toll-like receptor 4
- WT, wild-type
- diet
- immune system
- immunity
- in vivo imaging
- liver
- metabolism
- steatosis
Collapse
Affiliation(s)
- Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Viviane Aparecida de Souza Lacerda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maria Alice Freitas Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hortência Maciel de Castro-Oliveira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Matheus Silvério Mattos
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Camila Dutra Moreira de Miranda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Karen Marques de Oliveira Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mateus Eustáquio Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Débora Moreira Alvarenga
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Sarah Cozzer Marchesi
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Alan Moreira de Araújo
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, FL, USA
| | - Érika de Carvalho
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Mônica Morais Santos
- Laboratório de Morfologia, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Cristiano Xavier Lima
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | | - Bruna Roque de Souza
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Cláudia Alves Couto
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luciana Costa Faria
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | | | | | | | | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Corresponding author. Address: Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 - Belo Horizonte, Minas Gerais, 31270-901, Brazil. Tel./fax: +5531 3409 3015.
| |
Collapse
|
32
|
Chronic ingestion of Primex-Z, compared with other common fat sources, drives worse liver injury and enhanced susceptibility to bacterial infections. Nutrition 2020; 81:110938. [PMID: 32739658 DOI: 10.1016/j.nut.2020.110938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to investigate putative different outcomes on the development of non-alcoholic fatty liver disease in mice using fat options regularly used in human nutrition. METHODS Male C57BL/6 mice were fed a control diet, and four different high-fat diets (HFD: 40% calories from fat; Research Diet, Inc., New Brunswick, New Jersey, USA) for 16 and 30 wk. HFDs had different common fat sources, including trans-fat, non-trans-fat palm oil (Primex-Z), palm oil alone, and corn oil alone. Mice were sacrificed and samples were collected for analysis. RESULTS Using an unprecedented combination of in vivo imaging with immunometabolic phenotyping, we revealed that a HFD induced a major increase in hepatic lipid droplet deposition compared with control mice, being significantly higher in Primex-Z-fed mice. All HFD mice had similar or less weight gain as control mice; however, Primex-Z ingestion led to a higher increase in adiposity index (~90% increase) compared with other fat sources. Gene expression of isolated liver immune cells revealed large changes in expression of several inflammatory pathways, which were also more elevated in Primex-Z-fed mice, including Tnf (~20-fold), Il1b (~60-fold), and Tgfb (2.5-fold). Immunophenotyping and in vivo analysis showed that the frequency of hepatic immune cells was also disturbed during different HFD contents, rendering not only Kupffer cell depletion, but also reduced bacterial arresting ability. CONCLUSION Different fat dietary sources imprint different immune and metabolic effects in the liver during consumption of an HFD. The present data highlighted that Primex-Z-a novel non-trans-fat-is not only able to damage hepatocytes, but also to impair liver ability to clear blood-borne infections.
Collapse
|
33
|
Does early weaning shape future endocrine and metabolic disorders? Lessons from animal models. J Dev Orig Health Dis 2020; 11:441-451. [PMID: 32487270 DOI: 10.1017/s2040174420000410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity and its complications occur at alarming rates worldwide. Epidemiological data have associated perinatal conditions, such as malnutrition, with the development of some disorders, such as obesity, dyslipidemia, diabetes, and cardiovascular diseases, in childhood and adulthood. Exclusive breastfeeding has been associated with protection against long-term chronic diseases. However, in humans, the interruption of breastfeeding before the recommended period of 6 months is a common practice and can increase the risk of several metabolic disturbances. Nutritional and environmental changes within a critical window of development, such as pregnancy and breastfeeding, can induce permanent changes in metabolism through epigenetic mechanisms, leading to diseases later in life via a phenomenon known as programming or developmental plasticity. However, little is known regarding the underlying mechanisms by which precocious weaning can result in adipose tissue dysfunction and endocrine profile alterations. Here, the authors give a comprehensive report of the different animal models of early weaning and programming that can result in the development of metabolic syndrome. In rats, for example, pharmacological and nonpharmacological early weaning models are associated with the development of overweight and visceral fat accumulation, leptin and insulin resistance, and neuroendocrine and hepatic changes in adult progeny. Sex-related differences seem to influence this phenotype. Therefore, precocious weaning seems to be obesogenic for offspring. A better understanding of this condition seems essential to reducing the risk for diseases. Additionally, this knowledge can generate new insights into therapeutic strategies for obesity management, improving health outcomes.
Collapse
|
34
|
Ye PP, Zheng Y, Du B, Liu XT, Tang BH, Kan M, Zhou Y, Hao GX, Huang X, Su LQ, Wang WQ, Yu F, Zhao W. First dose in neonates: pharmacokinetic bridging study from juvenile mice to neonates for drugs metabolized by CYP3A. Xenobiotica 2020; 50:1275-1284. [PMID: 32400275 DOI: 10.1080/00498254.2020.1768454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
First dose prediction is challenging in neonates. Our objective in this proof-of-concept study was to perform a pharmacokinetic (PK) bridging study from juvenile mice to neonates for drugs metabolized by CYP3A. We selected midazolam and clindamycin as model drugs. We developed juvenile mice population PK models using NONMEM. The PK parameters of these two drugs in juvenile mice were used to bridge PK parameters in neonates using different correction methods. The bridging results were evaluated by the fold-error of 0.5- to 1.5-fold. Simple allometry with and without a correction factor for maximum lifespan potential could be used for a bridging of clearance (CL) and volume of distribution (Vd), respectively, from juvenile mice to neonates. Simulation results demonstrated that for midazolam, 100% of clinical studies for which both the predictive CL and Vd were within 0.5- to 1.5-fold of the observed. For clindamycin, 75% and 100% of clinical studies for which the predictive CL and Vd were within 0.5- to 1.5-fold of the observed. A PK bridging of drugs metabolized by CYP3A is feasible from juvenile mice to neonates. It could be a complement to the ADE and PBPK models to support the first dose in neonates.
Collapse
Affiliation(s)
- Pan-Pan Ye
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Du
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xi-Ting Liu
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Kan
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Le-Qun Su
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wen-Qi Wang
- Clinical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Feng Yu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Clinical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Pediatrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
35
|
David BA, Kubes P. Exploring the complex role of chemokines and chemoattractants in vivo on leukocyte dynamics. Immunol Rev 2020; 289:9-30. [PMID: 30977202 DOI: 10.1111/imr.12757] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Chemotaxis is fundamental for leukocyte migration in immunity and inflammation and contributes to the pathogenesis of many human diseases. Although chemokines and various other chemoattractants were initially appreciated as important mediators of acute inflammation, in the past years they have emerged as critical mediators of cell migration during immune surveillance, organ development, and cancer progression. Such advances in our knowledge in chemokine biology have paved the way for the development of specific pharmacological targets with great therapeutic potential. Chemoattractants may belong to different classes, including a complex chemokine system of approximately 50 endogenous molecules that bind to G protein-coupled receptors, which are expressed by a wide variety of cell types. Also, an unknown number of other chemoattractants may be generated by pathogens and damaged/dead cells. Therefore, blocking chemotaxis without causing side effects is an extremely challenging task. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the whole organ level in homeostasis, inflammation, and infection.
Collapse
Affiliation(s)
- Bruna A David
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Fonseca RC, Bassi GS, Brito CC, Rosa LB, David BA, Araújo AM, Nóbrega N, Diniz AB, Jesus ICG, Barcelos LS, Fontes MAP, Bonaventura D, Kanashiro A, Cunha TM, Guatimosim S, Cardoso VN, Fernandes SOA, Menezes GB, de Lartigue G, Oliveira AG. Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain Behav Immun 2019; 81:444-454. [PMID: 31271871 PMCID: PMC7826199 DOI: 10.1016/j.bbi.2019.06.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract harbors commensal microorganisms as well as invasive bacteria, toxins and other pathogens and, therefore, plays a pivotal barrier and immunological role against pathogenic agents. The vagus nerve is an important regulator of the GI tract-associated immune system, having profound effects on inflammatory responses. Among GI tract organs, the liver is a key site of immune surveillance, as it has a large population of resident macrophages and receives the blood drained from the guts through the hepatic portal circulation. Although it is widely accepted that the hepatic tissue is a major target for vagus nerve fibers, the role of this neural circuit in liver immune functions is still poorly understood. Herein we used in vivo imaging techniques, including confocal microscopy and scintigraphy, to show that vagus nerve stimulation increases the phagocytosis activity by resident macrophages in the liver, even on the absence of an immune challenge. The activation of this neural circuit in a non-lethal model of sepsis optimized the removal of bacteria in the liver and resulted in the production of anti-inflammatory and pro-regenerative cytokines. Our findings provide new insights into the neural regulation of the immune system in the liver.
Collapse
Affiliation(s)
- Roberta Cristelli Fonseca
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil,Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Shimizu Bassi
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Pharmacology, Ribeirão Preto, Brazil
| | - Camila Carvalho Brito
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil,Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil
| | - Lorena Barreto Rosa
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil,Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Araújo David
- Universidade Federal de Minas Gerais, Department of Morphology, Belo Horizonte, Minas Gerais, Brazil
| | - Alan Moreira Araújo
- University of Florida, College of Pharmacy, Department of Pharmacodynamics, Gainesville, FL, USA
| | - Natália Nóbrega
- Universidade Federal de Minas Gerais, Department of Pharmacology, Belo Horizonte, Minas Gerais, Brazil
| | - Ariane Barros Diniz
- Universidade Federal de Minas Gerais, Department of Morphology, Belo Horizonte, Minas Gerais, Brazil
| | - Itamar Couto Guedes Jesus
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Lucíola Silva Barcelos
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Antônio Peliky Fontes
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Bonaventura
- Universidade Federal de Minas Gerais, Department of Pharmacology, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre Kanashiro
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Pharmacology, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Pharmacology, Ribeirão Preto, Brazil
| | - Sílvia Guatimosim
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Universidade Federal de Minas Gerais, College of Pharmacy, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Universidade Federal de Minas Gerais, College of Pharmacy, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Universidade Federal de Minas Gerais, Department of Morphology, Belo Horizonte, Minas Gerais, Brazil
| | - Guillaume de Lartigue
- University of Florida, College of Pharmacy, Department of Pharmacodynamics, Gainesville, FL, USA
| | - André Gustavo Oliveira
- Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Minas Gerais, Brazil; Universidade Federal de Minas Gerais, Liver Center, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
37
|
A wave of Foxp3 + regulatory T cell accumulation in the neonatal liver plays unique roles in maintaining self-tolerance. Cell Mol Immunol 2019; 17:507-518. [PMID: 31171863 DOI: 10.1038/s41423-019-0246-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Newborn animals require tightly regulated local and systemic immune environments to govern the development and maturation of multiple organs/tissues even though the immune system itself is far from mature during the neonatal period. Regulatory T cells (Tregs) are essential for maintaining immune tolerance/homeostasis and modulating inflammatory responses. The features of Tregs in the neonatal liver under steady-state conditions are not well understood. The present study aimed to investigate the phenotype, functions, and significance of neonatal Tregs in the liver. We found a wave of thymus-derived Treg influx into the liver during 1-2 weeks of age. Depletion of these Tregs between days 7 and 11 after birth rapidly resulted in Th1-type liver inflammation and metabolic disorder. More Tregs in the neonatal liver than in the spleen underwent MHC II-dependent activation and proliferation, and the liver Tregs acquired stronger suppressive functions. The transcriptomic profile of these neonatal liver Tregs showed elevated expression of PPARγ and T-bet and features of Tregs that utilize lipid metabolic machinery and are capable of regulating Th1 responses. The accumulation of Tregs with unique features in the neonatal liver is critical to ensure self-tolerance and liver maturation.
Collapse
|
38
|
Mafra K, Nakagaki BN, Castro Oliveira HM, Rezende RM, Antunes MM, Menezes GB. The liver as a nursery for leukocytes. J Leukoc Biol 2019; 106:687-693. [PMID: 31107980 DOI: 10.1002/jlb.mr1118-455r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/10/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Leukocytes are a large population of cells spread within most tissues in the body. These cells may be either sessile (called as resident cells) or circulating leukocytes, which travel long journeys inside the vessels during their lifespan. Although production and maturation of these leukocytes in adults primarily occur in the bone marrow, it is well known that this process-called hematopoiesis-started in the embryonic life in different sites, including the yolk sac, placenta, and the liver. In this review, we will discuss how the liver acts as a pivotal site for leukocyte maturation during the embryo phase, and also how the most frequent liver-resident immune cell populations-namely Kupffer cells, dendritic cells, and lymphocytes-play a vital role in both tolerance and inflammatory responses to antigens from food, microbiota, and pathogens.
Collapse
Affiliation(s)
- Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hortência Maciel Castro Oliveira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|