1
|
Chen B, Fan H, Pang X, Shen Z, Gao R, Wang H, Yu Z, Li T, Li M, Tang Y, Liang X. Single-cell and spatial transcriptomics reveals an anti-tumor neutrophil subgroup in microwave thermochemotherapy-treated lip cancer. Int J Oral Sci 2025; 17:40. [PMID: 40360503 PMCID: PMC12075663 DOI: 10.1038/s41368-025-00366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 12/29/2024] [Accepted: 03/25/2025] [Indexed: 05/15/2025] Open
Abstract
Microwave thermochemotherapy (MTC) has been applied to treat lip squamous cell carcinoma (LSCC), but a deeper understanding of its therapeutic mechanisms and molecular biology is needed. To address this, we used single-cell transcriptomics (scRNA-seq) and spatial transcriptomics (ST) to highlight the pivotal role of tumor-associated neutrophils (TANs) among tumor-infiltrating immune cells and their therapeutic response to MTC. MNDA+ TANs with anti-tumor activity (N1-phenotype) are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion, and these TANs are characterized by enhanced cytotoxicity, ameliorated hypoxia, and upregulated IL1B, activating T&NK cells and fibroblasts via IL1B-IL1R. In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC, fibroblasts accumulated in the tumor front (TF) can recruit N1-TANs via CXCL2-CXCR2 and clear N2-TANs (pro-tumor phenotype) via CXCL12-CXCR4, which results in the aggregation of N1-TANs and extracellular matrix (ECM) deposition. In addition, we construct an N1-TANs marker, MX2, which positively correlates with better prognosis in LSCC patients, and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin (H&E)-stained images so as to conveniently guide decision making in clinical practice. Collectively, our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC.
Collapse
Affiliation(s)
- Bingjun Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huayang Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeliang Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Gao
- University of Electronic Science and Technology of China, Chengdu, China
| | - Haofan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenwei Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianjiao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Xie A, Qian W, Ye D, Deng X, Ma Y, Wang R, Zhou Q, Bao Z, Yu R. Sodium propionate protects against bronchopulmonary dysplasia by inhibiting IL-17-mediated apoptosis of alveolar epithelial cells. Sci Rep 2025; 15:11722. [PMID: 40188136 PMCID: PMC11972331 DOI: 10.1038/s41598-025-94794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Sodium propionate (SP) has been shown to enhance alveolar growth retardation in Bronchopulmonary Dysplasia (BPD), but the mechanism remains unclear. The aim of this study is to explore the potential mechanism of SP in the treatment of BPD by utilizing animal and cell models along with bioinformation analysis. Neonatal mice were exposed to either air (21% O2) or hyperoxia (85% O2) from the first day after birth to establish the BPD model. The neonatal mice were intraperitoneally injected with normal saline (control group) or SP (500 mg/kg, SP group) from day 8 to day 14. SP significantly reduced the inflammatory condition of alveolar septal thickening, and decreased the alveolar fusion and mitigated weight loss in BPD mice. ELISA results demonstrated that SP significantly inhibited the secretion of IL-17, IL-6 and TNFα. Transcriptome analysis confirmed that IL-17 signaling pathway is closely related to the therapeutic effects of SP on BPD. In addition, MX2, MMP10, IL-11, ZMAT4 and SEC1 genes were identified as key and potential targets involved in the mechanism of SP treating BPD. Meanwhile, in mouse alveolar epithelial cells, apoptosis was induced by hyperoxia, but it was reduced following SP intervention. The expression of IL-17 pathway related genes: IL-17A, IL-6, TNFα and cox2 was decreased in hyperoxia treated cells after SP intervention. In conclusion, through transcriptome analysis, animal and cell experiments, we explored the role of sodium propionate in attenuating apoptosis in a BPD model through IL-17 pathway.
Collapse
Affiliation(s)
- Anni Xie
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Weilin Qian
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Danni Ye
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Xianhui Deng
- Department of Neonatology, Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China
| | - Yizhe Ma
- Department of Neonatology, Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China
| | - Ran Wang
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Qin Zhou
- Department of Pediatric, Wuxi Yihe Gynaecology and Obstetrics Hospital, Wuxi, 214124, China.
| | - Zhidan Bao
- Department of Neonatology, Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China.
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China.
| |
Collapse
|
3
|
Muhammad I, Contes K, Bility MT, Tang Q. Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation. Viruses 2025; 17:528. [PMID: 40284971 PMCID: PMC12031425 DOI: 10.3390/v17040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
The innate immune response, particularly the interferon-mediated pathway, serves as the first line of defense against viral infections. During virus infection, viral pathogen-associated molecular patterns (PAMPs) are recognized by host pattern recognition receptors (PRRs), triggering downstream signaling pathways. This leads to the activation of transcription factors like IRF3, IRF7, and NF-κB, which translocate to the nucleus and induce the production of type I interferons (IFN-α and IFN-β). Once secreted, type I interferons bind to their receptors (IFNARs) on the surfaces of infected and neighboring cells, activating the JAK-STAT pathway. This results in the formation of the ISGF3 complex (composed of STAT1, STAT2, and IRF9), which translocates to the nucleus and drives the expression of interferon-stimulated genes (ISGs). Some ISGs exert antiviral effects by directly or indirectly blocking infection and replication. Among these ISGs, ISG15 plays a crucial role in the ISGylation process, a ubiquitin-like modification that tags viral and host proteins, regulating immune responses and inhibiting viral replication. However, viruses have evolved counteractive strategies to evade ISG15-mediated immunity and ISGylation. This review first outlines the PAMP-PRR-induced pathways leading to the production of cytokines and ISGs, followed by a summary of ISGylation's role in antiviral defense and viral evasion mechanisms targeting ISG15 and ISGYlation.
Collapse
Affiliation(s)
| | | | | | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (I.M.); (K.C.); (M.T.B.)
| |
Collapse
|
4
|
Shan Y, Pang H, Tang Y, Yang N, Wang R, Yang F, Qin B. Altered LY6E and TRIM6 expression in PBMCs correlated with HBsAg clearance and response to Peg-IFN-α treatment in HBeAg-negative chronic hepatitis B patients. Virol J 2025; 22:74. [PMID: 40089754 PMCID: PMC11909810 DOI: 10.1186/s12985-025-02689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Pegylated interferon alpha (Peg-IFN-α) has the potential to eradicate hepatitis B surface antigen (HBsAg). This study aimed to investigate whether the expression levels of lymphocyte antigen 6 family member E (LY6E) and tripartite motif-containing protein 6 (TRIM6) mRNAs in peripheral blood mononuclear cells (PBMCs) of hepatitis B e antigen (HBeAg)-negative chronic hepatitis B virus (HBV) patients is associated with the response to Peg-IFN-α treatment and HBsAg clearance. METHODS In this prospective study, HBeAg-negative chronic HBV patients treated with Peg-IFN-α were followed for 48 weeks. The participants were classified into two groups, the virological response (VR) group and nonvirological response (NVR) group, according to the changes in HBV DNA and HBsAg levels observed at week 48 of treatment. Furthermore, these patients were divided into a serological response (SR) group and a nonserological response (NSR) group, depending on whether they exhibited a loss of serum HBsAg or evidence of seroconversion. The expression levels of LY6E and TRIM6 mRNAs in PBMCs were evaluated using real-time quantitative PCR with fluorescence detection. The diagnostic performance of LY6E and TRIM6 was assessed by analyzing the receiver operating characteristic (ROC) curve and calculating the area under the ROC curve (AUC). RESULTS After the treatment period, the observed VR and SR rates were 44.64% and 28.57%, respectively. Dynamic changes in LY6E and TRIM6 mRNA levels were significantly different between the VR and NVR groups and between the SR and NSR groups. Multivariate analysis revealed that TRIM6 was independently associated with VR at weeks 12 and 24 of Peg-IFN-α therapy and with SR at week 12; in addition, LY6E was independently associated with VR at week 12 and SR at week 24. At week 24, the area under the curve (AUC) for LY6E in the prediction of VR was 0.6942, and the AUC for the prediction of SR was 0.7766; at week 12, TRIM6 had AUCs of 0.7600 for the prediction of VR and 0.8469 for the prediction of SR. CONCLUSIONS LY6E and TRIM6 are important biomarkers for early therapeutic responses to Peg-IFN-α and HBsAg clearance. TRIAL REGISTRATION Registration number: 2023 - 311. Date of registration: 1 October 2023.
Collapse
Affiliation(s)
- Yiru Shan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Tang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Na Yang
- Central Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- Central Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Yang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Naidu S, Margeridon S. Chronic Hepatitis B Virus Persistence: Mechanisms and Insights. Cureus 2025; 17:e78944. [PMID: 40092015 PMCID: PMC11910171 DOI: 10.7759/cureus.78944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Chronic hepatitis B (CHB) virus infection can lead to severe liver diseases, including cirrhosis and hepatocellular carcinoma. The chronicity of the hepatitis B virus (HBV) occurs because of the persistence of viral covalently closed circular DNA (cccDNA) within hepatocytes. The cccDNA serves as the template for viral replication and is central to HBV, maintaining a viral reservoir within the host. Despite therapeutic advancements, eliminating cccDNA remains elusive due to its evasion of immune surveillance. This review explores the formation and maintenance of cccDNA, highlighting host factors influencing cccDNA stability and viral replication. It also discusses current treatment strategies, including interferon-based therapies and nucleoside/nucleotide analogs, which aim to suppress viral replication. Emerging therapies such as gene editing and molecular interventions hold promise for targeting cccDNA directly. Currently, research is focused on making medications that target host factors of interest to disrupt or clear the viral reservoir. However, future research should focus on innovative approaches that directly target the cccDNA minichromosome, aiming for sustained viral suppression and potentially a cure for the HBV infection.
Collapse
Affiliation(s)
- Samrita Naidu
- Virology, Rio Americano High School, Sacramento, USA
| | - Severine Margeridon
- Molecular Diagnostics and Assay Development, Bio-Rad Laboratories, San Francisco, USA
| |
Collapse
|
6
|
Zheng J, Wang Z, Huang L, Qiu Z, Xie Y, Jiang S, Feng B. Achieving chronic hepatitis B functional cure: Factors and potential mechanisms. Virus Res 2025; 351:199507. [PMID: 39662778 PMCID: PMC11699463 DOI: 10.1016/j.virusres.2024.199507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Chronic hepatitis B (CHB) is a significant global health issue affecting approximately 254 million individuals worldwide. Achieving the loss of hepatitis B surface antigen (HBsAg), either with or without seroconversion to hepatitis B surface antibody (HBsAb), is regarded as a functional cure and the optimal goal for addressing CHB, and can be achieved through various approaches, including induction with nucleos(t)ide analogues (NAs), induction with pegylated interferon alpha (PegIFNα), and spontaneous clearance of HBsAg. Spontaneous clearance of HBsAg is rare, while NAs can directly inhibit HBV DNA, they are unable to act on covalently closed circular DNA (cccDNA), hence inhibiting HBsAg production or clearing HBsAg is extremely challenging. On the other hand, functional cure based on PegIFNα shows good long-term durability, but over 10 % of patients still experience relapse, mostly within 48 weeks after functional cure. Factors related to CHB functional cure with antiviral therapy are complex, including host factors, viral factors, environmental factors, etc. The integration of HBV DNA into liver cells, persistence of HBV cccDNA, insufficient B cell responses and compromised T cell function pose significant barriers to HBV clearance. Therefore, this study systematically reviewed the relevant factors and potential mechanisms influencing functional cure CHB, which can provide a basis for personalized treatment, help predict treatment outcomes and assess prognosis, and provide theoretical support for the advancement of novel treatment strategies and medications.
Collapse
Affiliation(s)
- Jiarui Zheng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Zilong Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Linxiang Huang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Zixuan Qiu
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Yandi Xie
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Suzhen Jiang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.
| |
Collapse
|
7
|
Abebaw D, Akelew Y, Adugna A, Teffera ZH, Belew H, Selabat B, Getie M, Mulu AT, Atnaf A. Recent updates of interferon-derived myxovirus resistance protein A as a biomarker for acute viral infection. Eur J Med Res 2024; 29:612. [PMID: 39710743 DOI: 10.1186/s40001-024-02221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Antibiotic resistance (AMR) remains a global public health threat with a high burden in sub-Saharan countries. The overuse of antimicrobials in the clinical setting is the main factor for the spread of antibiotic resistance. Diagnostic uncertainty in differentiating between bacterial and viral infections is the major contributor to antimicrobial overuse. The available biomarkers lack specificity in guiding clinicians to make antibiotic decisions and only estimate bacterial infection. MAIN BODY Myxovirus resistance (Mx) proteins are a type of interferon (IFN)-inducible protein that belongs to the dynamin superfamily of large guanine triphosphates (GTPases) involved in broad antiviral responses. Myxovirus resistance protein A (MxA) is a host-derived biomarker with antiviral properties against various viruses. It is induced by IFN I and IFN III as part of the innate immune response. Its basal level is < 15 ng/ml and elevated levels are detectable 1-2 h after IFN induction and remain detectable in serum up to 10 days after viral infection. Increased levels in the blood are associated with viral infection and remain low during bacterial infections. This biomarker showed promising performance in diagnosing undifferentiated febrile patients with respiratory tract infections. In this review, we discuss the role of Mx proteins, specifically MxA, in diagnosing acute viral infections, including how they are induced and their potential as diagnostic tools. METHODS A comprehensive electronic search was conducted in Scopus and Medline (using the PubMed interface) regarding myxovirus resistance protein A as a biomarker for acute viral infection. In the search strategy, English language was used without date restriction. Manual search was also performed when appropriate. CONCLUSIONS Elevated MxA combined with other biomarkers, such as CRP and PCT, is a promising tool for identifying patients with viral infections. Therefore, incorporating MxA in the existing point of care formats help to improve the antibiotic stewardship programs and future randomized controlled trials are recommended to evaluate its utility in medical practice.
Collapse
Affiliation(s)
- Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, 269, Debre Markos, Ethiopia.
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, 269, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, 3168, Australia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, 269, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, 269, Debre Markos, Ethiopia
| | - Habtamu Belew
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, 269, Debre Markos, Ethiopia
| | - Bantegzie Selabat
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, 269, Debre Markos, Ethiopia
| | - Molla Getie
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Injibara University, 40, Injibara, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biomedical Sciences, College of Health Sciences, Debre Tabor University, 272, Debre Tabor, Ethiopia
| | - Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, 269, Debre Markos, Ethiopia
| |
Collapse
|
8
|
Lei Z, Wang L, Gao H, Guo S, Kang X, Yuan J, Lv Z, Jiang Y, Yi J, Chen Z, Wang G. Mechanisms underlying the compromised clinical efficacy of interferon in clearing HBV. Virol J 2024; 21:314. [PMID: 39633459 PMCID: PMC11619119 DOI: 10.1186/s12985-024-02589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that can cause acute or chronic hepatitis, representing a significant global health concern. By 2019, approximately 296 million individuals were chronically infected with HBV, with 1.5 million new cases annually and 820,000 deaths due to HBV-related cirrhosis and liver cancer. Current treatments for chronic hepatitis B include nucleotide analogs (NAs) and interferons (IFNs), particularly IFN-α. NAs, such as entecavir and tenofovir, inhibit viral reverse transcription, while IFN-α exerts antiviral effects by directly suppressing viral replication, modulating viral genome epigenetics, degrading cccDNA, and activating immune responses. Despite its potential, IFN-α shows limited clinical efficacy, partly due to HBV's interference with the IFN signaling pathway. HBV encodes proteins like HBc, Pol, HBsAg, and HBx that disrupt IFN-α function. For example, HBV Pol inhibits STAT1 phosphorylation, HBsAg suppresses STAT3 phosphorylation, and HBx interferes with IFN-α efficacy through multiple mechanisms. Additionally, HBV downregulates key genes in the IFN signaling pathway, further diminishing IFN-α's antiviral effects. Understanding these interactions is crucial for improving IFN-α-based therapies. Future research may focus on overcoming HBV resistance by targeting viral proteins or optimizing IFN-α delivery. In summary, HBV's ability to resist IFN-α limits its therapeutic effectiveness, highlighting the need for new strategies to enhance treatment outcomes.
Collapse
Affiliation(s)
- Zhuoyan Lei
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Luye Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Hanlin Gao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Shubian Guo
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Xinjian Kang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jiajun Yuan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Ziying Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Yuxin Jiang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jinping Yi
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
9
|
Moschonas GD, Delhaye L, Cooreman R, Hüsers F, Bhat A, Stylianidou Z, De Bousser E, De Pryck L, Grzesik H, De Sutter D, Parthoens E, De Smet AS, Maciejczuk A, Lippens S, Callewaert N, Vandekerckhove L, Debyser Z, Sodeik B, Eyckerman S, Saelens X. MX2 forms nucleoporin-comprising cytoplasmic biomolecular condensates that lure viral capsids. Cell Host Microbe 2024; 32:1705-1724.e14. [PMID: 39389033 DOI: 10.1016/j.chom.2024.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Human myxovirus resistance 2 (MX2) can restrict HIV-1 and herpesviruses at a post-entry step through a process requiring an interaction between MX2 and the viral capsids. The involvement of other host cell factors, however, remains poorly understood. Here, we mapped the proximity interactome of MX2, revealing strong enrichment of phenylalanine-glycine (FG)-rich proteins related to the nuclear pore complex as well as proteins that are part of cytoplasmic ribonucleoprotein granules. MX2 interacted with these proteins to form multiprotein cytoplasmic biomolecular condensates that were essential for its anti-HIV-1 and anti-herpes simplex virus 1 (HSV-1) activity. MX2 condensate formation required the disordered N-terminal region and MX2 dimerization. Incoming HIV-1 and HSV-1 capsids associated with MX2 at these dynamic cytoplasmic biomolecular condensates, preventing nuclear entry of their viral genomes. Thus, MX2 forms cytoplasmic condensates that likely act as nuclear pore decoys, trapping capsids and inducing premature viral genome release to interfere with nuclear targeting of HIV-1 and HSV-1.
Collapse
Affiliation(s)
- George D Moschonas
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Louis Delhaye
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Robin Cooreman
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Franziska Hüsers
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anayat Bhat
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Zoe Stylianidou
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Elien De Bousser
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laure De Pryck
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hanna Grzesik
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Delphine De Sutter
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Eef Parthoens
- VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Anne-Sophie De Smet
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Aleksandra Maciejczuk
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Saskia Lippens
- VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; VIB BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Zeger Debyser
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; DZIF-German Centre for Infection Research, Partner site Hannover-Braunschweig, Germany
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
10
|
Li G, Zhang J, Zhao Z, Wang J, Li J, Xu W, Cui Z, Sun P, Yuan H, Wang T, Li K, Bai X, Ma X, Li P, Fu Y, Cao Y, Bao H, Li D, Liu Z, Zhu N, Tang L, Lu Z. RNF144B negatively regulates antiviral immunity by targeting MDA5 for autophagic degradation. EMBO Rep 2024; 25:4594-4624. [PMID: 39285245 PMCID: PMC11467429 DOI: 10.1038/s44319-024-00256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
As a RIG-I-like receptor, MDA5 plays a critical role in antiviral innate immunity by acting as a cytoplasmic double-stranded RNA sensor capable of initiating type I interferon pathways. Here, we show that RNF144B specifically interacts with MDA5 and promotes K27/K33-linked polyubiquitination of MDA5 at lysine 23 and lysine 43, which promotes autophagic degradation of MDA5 by p62. Rnf144b deficiency greatly promotes IFN production and inhibits EMCV replication in vivo. Importantly, Rnf144b-/- mice has a significantly higher overall survival rate than wild-type mice upon EMCV infection. Collectively, our results identify RNF144B as a negative regulator of innate antiviral response by targeting CARDs of MDA5 and mediating autophagic degradation of MDA5.
Collapse
Affiliation(s)
- Guoxiu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Jiaoyang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Weihong Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Ning Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
11
|
Serrero MC, Paludan SR. Restriction factors regulating human herpesvirus infections. Trends Immunol 2024; 45:662-677. [PMID: 39198098 DOI: 10.1016/j.it.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Herpesviruses are DNA viruses and the cause of diseases ranging from mild skin conditions to severe brain diseases. Mammalian antiviral host defense comprises an array of mechanisms, including restriction factors (RFs), which block specific steps in viral replication cycles. In recent years, knowledge of RFs that contribute to controlling herpesvirus infections has expanded significantly, along with a new understanding of viral evasion mechanisms and disease pathogenesis. By integrating findings from human genetics, murine models, and cellular studies, this review provides a current view of RF control of herpesvirus infections. We also explore the regulation of RF expression, discuss the roles of RFs in diseases, and point towards their growing potential as candidate therapeutic targets.
Collapse
Affiliation(s)
- Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark.
| |
Collapse
|
12
|
Pondé RADA, Amorim GDSP. Elimination of the hepatitis B virus: A goal, a challenge. Med Res Rev 2024; 44:2015-2034. [PMID: 38528684 DOI: 10.1002/med.22030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
The hepatitis B elimination is a goal proposed by the WHO to be achieved by 2030 through the adoption of synergistic measures for the prevention and chronic HBV infection treatment. Complete cure is characterized by the HBV elimination from the body and is the goal of the chronic hepatitis B treatment, which once achieved, will enable the hepatitis B elimination. This, today, has been a scientific challenge. The difficulty in achieving a complete cure is due to the indefinite maintenance of a covalently closed episomal circular DNA (cccDNA) reservoir and the maintenance and persistence of an insufficient and dysfunctional immune response in chronically infected patients. Among the measures adopted to eliminate hepatitis B, two have the potential to directly interfere with the virus cycle, but with limited effect on HBV control. These are conventional vaccines-blocking transmission and antiviral therapy-inhibiting replication. Vaccines, despite their effectiveness in protecting against horizontal transmission and preventing mother-to-child vertical transmission, have no effect on chronic infection or potential to eliminate the virus. Treatment with antivirals suppresses viral replication, but has no curative effect, as it has no action against cccDNA. Therapeutic vaccines comprise an additional approach in the chronic infection treatment, however, they have only a modest effect on the immune system, enhancing it temporarily. This manuscript aims to address (1) the cccDNA persistence in the hepatocyte nucleus and the immune response dysfunction in chronically infected individuals as two primary factors that have hampered the treatment and HBV elimination from the human body; (2) the limitations of antiviral therapy and therapeutic vaccines, as strategies to control hepatitis B; and (3) the possibly promising therapeutic approaches for the complete cure and elimination of hepatitis B.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde-SES, Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil
- Department of Microbiology, Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
13
|
Guo H, Yang W, Li H, Yang J, Huang Y, Tang Y, Wang S, Ni F, Yang W, Yu XF, Wei W. The SAMHD1-MX2 axis restricts HIV-1 infection at postviral DNA synthesis. mBio 2024; 15:e0136324. [PMID: 38888311 PMCID: PMC11253599 DOI: 10.1128/mbio.01363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
HIV-1 replication is tightly regulated in host cells, and various restriction factors have important roles in inhibiting viral replication. SAMHD1, a well-known restriction factor, suppresses HIV-1 replication by hydrolyzing intracellular dNTPs, thereby limiting the synthesis of viral cDNA in quiescent cells. In this study, we revealed an additional and distinct mechanism of SAMHD1 inhibition during the postviral cDNA synthesis stage. Using immunoprecipitation and mass spectrometry analysis, we demonstrated the interaction between SAMHD1 and MX2/MxB, an interferon-induced antiviral factor that inhibits HIV-1 cDNA nuclear import. The disruption of endogenous MX2 expression significantly weakened the ability of SAMHD1 to inhibit HIV-1. The crucial region within SAMHD1 that binds to MX2 has been identified. Notably, we found that SAMHD1 can act as a sensor that recognizes and binds to the incoming HIV-1 core, subsequently delivering it to the molecular trap formed by MX2, thereby blocking the nuclear entry of the HIV-1 core structure. SAMHD1 mutants unable to recognize the HIV-1 core showed a substantial decrease in antiviral activity. Certain mutations in HIV-1 capsids confer resistance to MX2 inhibition while maintaining susceptibility to suppression by the SAMHD1-MX2 axis. Overall, our study identifies an intriguing antiviral pattern wherein two distinct restriction factors, SAMHD1 and MX2, collaborate to establish an alternative mechanism deviating from their actions. These findings provide valuable insight into the complex immune defense networks against exogenous viral infections and have implications for the development of targeted anti-HIV therapeutics. IMPORTANCE In contrast to most restriction factors that directly bind to viral components to exert their antiviral effects, SAMHD1, the only known deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, indirectly inhibits viral replication in quiescent cells by reducing the pool of dNTP substrates available for viral cDNA synthesis. Our study provides a novel perspective on the antiviral functions of SAMHD1. In addition to its role in dNTP hydrolysis, SAMHD1 cooperates with MX2 to inhibit HIV-1 nuclear import. In this process, SAMHD1 acts as a sensor for incoming HIV-1 cores, detecting and binding to them, before subsequently delivering the complex to the molecular trap formed by MX2, thereby immobilizing the virus. This study not only reveals a new antiviral pathway for SAMHD1 but also identifies a unique collaboration and interaction between two distinct restriction factors, establishing a novel line of defense against HIV-1 infection, which challenges the traditional view of restriction factors acting independently. Overall, our findings further indicate the intricate complexity of the host immune defense network and provide potential targets for promoting host antiviral immune defense.
Collapse
Affiliation(s)
- Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wanying Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yuehan Huang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yubin Tang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Shijin Wang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | | | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Li YP, Liu CR, He L, Dang SS. Hepatitis B cure: Current situation and prospects. World J Hepatol 2024; 16:900-911. [PMID: 38948438 PMCID: PMC11212658 DOI: 10.4254/wjh.v16.i6.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Achievement of a 'clinical cure' in chronic hepatitis B (CHB) implies sustained virological suppression and immunological control over the infection, which is the ideal treatment goal according to domestic and international CHB management guidelines. Clinical practice has shown encouraging results for specific patient cohorts using tailored treatment regimens. These regimens incorporate either nucleos(t)ide analogs, immunomodulatory agents such as pegylated interferon α, or a strategic combination of both, sequentially or concurrently administered. Despite these advancements in the clinical handling of hepatitis B, achieving a clinical cure remains elusive for a considerable subset of patients due to the number of challenges that preclude the realization of optimal treatment outcomes. These include, but are not limited to, the emergence of antiviral resistance, incomplete immune recovery, and the persistence of covalently closed circular DNA. Moreover, the variance in response to interferon therapy and the lack of definitive biomarkers for treatment cessation also contribute to the complexity of achieving a clinical cure. This article briefly overviews the current research progress and existing issues in pursuing a clinical cure for hepatitis B.
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ling He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
15
|
Yi D, An N, Li Q, Liu Q, Shao H, Zhou R, Wang J, Zhang Y, Ma L, Guo F, Li X, Liu Z, Cen S. Interferon-induced MXB protein restricts vimentin-dependent viral infection. Acta Pharm Sin B 2024; 14:2520-2536. [PMID: 38828143 PMCID: PMC11143536 DOI: 10.1016/j.apsb.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 06/05/2024] Open
Abstract
Type I interferon (IFN) inhibits a wide spectrum of viruses through stimulating the expression of antiviral proteins. As an IFN-induced protein, myxovirus resistance B (MXB) protein was reported to inhibit multiple highly pathogenic human viruses. It remains to be determined whether MXB employs a common mechanism to restrict different viruses. Here, we find that IFN alters the subcellular localization of hundreds of host proteins, and this IFN effect is partially lost upon MXB depletion. The results of our mechanistic study reveal that MXB recognizes vimentin (VIM) and recruits protein kinase B (AKT) to phosphorylate VIM at amino acid S38, which leads to reorganization of the VIM network and impairment of intracellular trafficking of virus protein complexes, hence causing a restriction of virus infection. These results highlight a new function of MXB in modulating VIM-mediated trafficking, which may lead towards a novel broad-spectrum antiviral strategy to control a large group of viruses that depend on VIM for successful replication.
Collapse
Affiliation(s)
- Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Ni An
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Huihan Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing 100730, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| |
Collapse
|
16
|
Sinha P, Thio CL, Balagopal A. Intracellular Host Restriction of Hepatitis B Virus Replication. Viruses 2024; 16:764. [PMID: 38793645 PMCID: PMC11125714 DOI: 10.3390/v16050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The hepatitis B virus (HBV) infects hepatocytes and hijacks host cellular mechanisms for its replication. Host proteins can be frontline effectors of the cell's defense and restrict viral replication by impeding multiple steps during its intracellular lifecycle. This review summarizes many of the well-described restriction factors, their mechanisms of restriction, and counteractive measures of HBV, with a special focus on viral transcription. We discuss some of the limitations and knowledge gaps about the restriction factors, highlighting how these factors may be harnessed to facilitate therapeutic strategies against HBV.
Collapse
Affiliation(s)
| | | | - Ashwin Balagopal
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.S.); (C.L.T.)
| |
Collapse
|
17
|
Li H, Zhao J, Xing Y, Chen J, Wen Z, Ma R, Han F, Huang B, Wang H, Li C, Chen Y, Ning X. Identification of Age-Related Characteristic Genes Involved in Severe COVID-19 Infection Among Elderly Patients Using Machine Learning and Immune Cell Infiltration Analysis. Biochem Genet 2024:10.1007/s10528-024-10802-9. [PMID: 38656671 DOI: 10.1007/s10528-024-10802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms and exacerbate the condition of basic diseases with long COVID-19 syndrome. However, the molecular mechanisms underlying severe COVID-19 in the elderly patients remain unclear. Our study aims to investigate the function of the interaction between disease-characteristic genes and immune cell infiltration in patients with severe COVID-19 infection. COVID-19 datasets (GSE164805 and GSE180594) and aging dataset (GSE69832) were obtained from the Gene Expression Omnibus database. The combined different expression genes (DEGs) were subjected to Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Diseases Ontology functional enrichment analysis, Gene Set Enrichment Analysis, machine learning, and immune cell infiltration analysis. GO and KEGG enrichment analyses revealed that the eight DEGs (IL23A, PTGER4, PLCB1, IL1B, CXCR1, C1QB, MX2, ALOX12) were mainly involved in inflammatory mediator regulation of TRP channels, coronavirus disease-COVID-19, and cytokine activity signaling pathways. Three-degree algorithm (LASSO, SVM-RFE, KNN) and correlation analysis showed that the five DEGs up-regulated the immune cells of macrophages M0/M1, memory B cells, gamma delta T cell, dendritic cell resting, and master cell resisting. Our study identified five hallmark genes that can serve as disease-characteristic genes and target immune cells infiltrated in severe COVID-19 patients among the elderly population, which may contribute to the study of pathogenesis and the evaluation of diagnosis and prognosis in aging patients infected with severe COVID-19.
Collapse
Affiliation(s)
- Huan Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
- Department of Nephrology, The Second People's Hospital of Shaan xi Province, Xi'an, China
| | - Jin Zhao
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia Chen
- Xi'an Medical University, Xi'an, China
| | | | - Rui Ma
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Fengxia Han
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Boyong Huang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Hao Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Cui Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Yang Chen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
18
|
Deng R, Tian R, Li X, Xu Y, Li Y, Wang X, Li H, Wang L, Xu B, Yang D, Tang S, Xue B, Zuo C, Zhu H. ISG12a promotes immunotherapy of HBV-associated hepatocellular carcinoma through blocking TRIM21/AKT/β-catenin/PD-L1 axis. iScience 2024; 27:109533. [PMID: 38591006 PMCID: PMC11000115 DOI: 10.1016/j.isci.2024.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/16/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatitis B virus (HBV) infection generally elicits weak type-I interferon (IFN) immune response in hepatocytes, covering the regulatory effect of IFN-stimulated genes. In this study, low level of IFN-stimulated gene 12a (ISG12a) predicted malignant transformation and poor prognosis of HBV-associated hepatocellular carcinoma (HCC), whereas high level of ISG12a indicated active NK cell phenotypes. ISG12a interacts with TRIM21 to inhibit the phosphorylation activation of protein kinase B (PKB, also known as AKT) and β-catenin, suppressing PD-L1 expression to block PD-1/PD-L1 signaling, thereby enhancing the anticancer effect of NK cells. The suppression of PD-1-deficient NK-92 cells on HBV-associated tumors was independent of ISG12a expression, whereas the anticancer effect of PD-1-expressed NK-92 cells on HBV-associated tumors was enhanced by ISG12a and treatments of atezolizumab and nivolumab. Thus, tumor intrinsic ISG12a promotes the anticancer effect of NK cells by regulating PD-1/PD-L1 signaling, presenting the significant role of innate immunity in defending against HBV-associated HCC.
Collapse
Affiliation(s)
- Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Xinran Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Yan Xu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Yongqi Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Xintao Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Biaoming Xu
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| |
Collapse
|
19
|
Mondal A, Sarkar A, Das D, Sengupta A, Kabiraj A, Mondal P, Nag R, Mukherjee S, Das C. Epigenetic orchestration of the DNA damage response: Insights into the regulatory mechanisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:99-141. [PMID: 39179350 DOI: 10.1016/bs.ircmb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The DNA damage response (DDR) is a critical cellular mechanism that safeguards genome integrity and prevents the accumulation of harmful DNA lesions. Increasing evidence highlights the intersection between DDR signaling and epigenetic regulation, offering profound insights into various aspects of cellular function including oncogenesis. This comprehensive review explores the intricate relationship between the epigenetic modifications and DDR activation, with a specific focus on the impact of viral infections. Oncogenic viruses, such as human papillomavirus, hepatitis virus (HBV or HCV), and Epstein-Barr virus have been shown to activate the DDR. Consequently, these DNA damage events trigger a cascade of epigenetic alterations, including changes in DNA methylation patterns, histone modifications and the expression of noncoding RNAs. These epigenetic changes exert profound effects on chromatin structure, gene expression, and maintenance of genome stability. Importantly, elucidation of the viral-induced epigenetic alterations in the context of DDR holds significant implications for comprehending the complexity of cancer and provides potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | | | - Dipanwita Das
- Virus Unit [NICED-ICMR], ID and BG Hospital, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Rachayita Nag
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
20
|
Wang S, Xie Y, Liu F, Wang J, Yang Y, Wang J, Wang Y, Hang X. miR-3188 inhibits hepatitis B virus transcription by targeting Bcl-2. Arch Virol 2024; 169:88. [PMID: 38565755 DOI: 10.1007/s00705-024-05992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/30/2023] [Indexed: 04/04/2024]
Abstract
Transcription of the covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is subject to dual regulation by host factors and viral proteins. MicroRNAs (miRNAs) can regulate the expression of target genes at the post-transcriptional level. Systematic investigation of miRNA expression in HBV infection and the interaction between HBV and miRNAs may deepen our understanding of the transcription mechanisms of HBV cccDNA, thereby providing opportunities for intervention. miRNA sequencing and real-time quantitative PCR (qRT-PCR) were used to analyze miRNA expression after HBV infection of cultured cells. Clinical samples were analyzed for miRNAs and HBV transcription-related indicators, using qRT-PCR, enzyme-linked immunoassay (ELISA), and Western blot. miRNA mimics or inhibitors were used to study their effects on the HBV life cycle. The target genes of miR-3188 and their roles in HBV cccDNA transcription were also identified. The expression of 10 miRNAs, including miR-3188, which was significantly decreased after HBV infection, was measured in clinical samples from patients with chronic HBV infection. Overexpression of miR-3188 inhibited HBV transcription, whereas inhibition of miR-3188 expression promoted HBV transcription. Further investigation confirmed that miR-3188 inhibited HBV transcription by targeting Bcl-2. miR-3188 is a key miRNA that regulates HBV transcription by targeting the host protein Bcl-2. This observation provides insights into the regulation of cccDNA transcription and suggests new targets for anti-HBV treatment.
Collapse
Affiliation(s)
- Shijie Wang
- Department of Infectious Diseases, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ying Xie
- Department of Infectious Diseases, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fufei Liu
- Department of Infectious Diseases, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianrong Wang
- Department of Infectious Diseases, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yinghao Yang
- Department of Infectious Diseases, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Infectious Diseases, The 988th Hospital of the Joint Logistic Support Force, Jiaozuo, China
| | - Junxue Wang
- Department of Infectious Diseases, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaofeng Hang
- Department of Infectious Diseases, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
21
|
Ye G, Zhang Z, Liu X, Liu H, Chen W, Feng C, Li J, Zhou Q, Zhao D, Zhang S, Chen H, Bu Z, Huang L, Weng C. African swine fever virus pH240R enhances viral replication via inhibition of the type I IFN signaling pathway. J Virol 2024; 98:e0183423. [PMID: 38353534 PMCID: PMC10949494 DOI: 10.1128/jvi.01834-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/19/2023] [Indexed: 03/20/2024] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by ASF virus (ASFV) infection. At present, there are still no safe and effective drugs and vaccines to prevent ASF. Mining the important proteins encoded by ASFV that affect the virulence and replication of ASFV is the key to developing effective vaccines and drugs. In this study, ASFV pH240R, a capsid protein of ASFV, was found to inhibit the type I interferon (IFN) signaling pathway. Mechanistically, pH240R interacted with IFNAR1 and IFNAR2 to disrupt the interaction of IFNAR1-TYK2 and IFNAR2-JAK1. Additionally, pH240R inhibited the phosphorylation of IFNAR1, TYK2, and JAK1 induced by IFN-α, resulting in the suppression of the nuclear import of STAT1 and STAT2 and the expression of IFN-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induced more ISGs in porcine alveolar macrophages compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs expression. Taken together, our results clarify that pH240R enhances ASFV replication by inhibiting the JAK-STAT signaling pathway, which highlights the possibility of pH240R as a potential drug target.IMPORTANCEThe innate immune response is the host's first line of defense against pathogen infection, which has been reported to affect the replication and virulence of African swine fever virus (ASFV) isolates. Identification of ASFV-encoded proteins that affect the virulence and replication of ASFV is the key step in developing more effective vaccines and drugs. In this study, we found that pH240R interacted with IFNAR1 and IFNAR2 by disrupting the interaction of IFNAR1-TYK2 and IFNAR2-JAK1, resulting in the suppression of the expression of interferon (IFN)-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induces more ISGs' expression compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs' expression. Taken together, our findings showed that pH240R enhances ASFV replication by inhibiting the IFN-JAK-STAT axis, which highlights the possibility of pH240R as a potential drug target.
Collapse
Affiliation(s)
- Guangqiang Ye
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoxia Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Xiaohong Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyang Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weiye Chen
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunying Feng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiangnan Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Qiongqiong Zhou
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongming Zhao
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuai Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hefeng Chen
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Huang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| |
Collapse
|
22
|
Peng C, Ye Z, Ju Y, Huang X, Zhan C, Wei K, Zhang Z. Mechanism of action and treatment of type I interferon in hepatocellular carcinoma. Clin Transl Oncol 2024; 26:326-337. [PMID: 37402970 DOI: 10.1007/s12094-023-03266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
Hepatocellular carcinoma (HCC) caused by HBV, HCV infection, and other factors is one of the most common malignancies in the world. Although, percutaneous treatments such as surgery, ethanol injection, radiofrequency ablation, and transcatheter treatments such as arterial chemoembolization are useful for local tumor control, they are not sufficient to improve the prognosis of patients with HCC. External interferon agents that induce interferon-related genes or type I interferon in combination with other drugs can reduce the recurrence rate and improve survival in HCC patients after surgery. Therefore, in this review, we focus on recent advances in the mechanism of action of type I interferons, emerging therapies, and potential therapeutic strategies for the treatment of HCC using IFNs.
Collapse
Affiliation(s)
- Chunxiu Peng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhijian Ye
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Ju
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuxin Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chenjie Zhan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ke Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
23
|
Zhao Q, Liu H, Tang L, Wang F, Tolufashe G, Chang J, Guo JT. Mechanism of interferon alpha therapy for chronic hepatitis B and potential approaches to improve its therapeutic efficacy. Antiviral Res 2024; 221:105782. [PMID: 38110058 DOI: 10.1016/j.antiviral.2023.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Hepatitis B virus (HBV) chronically infects 296 million people worldwide and causes more than 820,000 deaths annually due to cirrhosis and hepatocellular carcinoma. Current standard-of-care medications for chronic hepatitis B (CHB) include nucleos(t)ide analogue (NA) viral DNA polymerase inhibitors and pegylated interferon alpha (PEG-IFN-α). NAs can efficiently suppress viral replication and improve liver pathology, but not eliminate or inactivate HBV covalently closed circular DNA (cccDNA). CCC DNA is the most stable HBV replication intermediate that exists as a minichromosome in the nucleus of infected hepatocyte to transcribe viral RNA and support viral protein translation and genome replication. Consequentially, a finite duration of NA therapy rarely achieves a sustained off-treatment suppression of viral replication and life-long NA treatment is most likely required. On the contrary, PEG-IFN-α has the benefit of finite treatment duration and achieves HBsAg seroclearance, the indication of durable immune control of HBV replication and functional cure of CHB, in approximately 5% of treated patients. However, the low antiviral efficacy and poor tolerability limit its use. Understanding how IFN-α suppresses HBV replication and regulates antiviral immune responses will help rational optimization of IFN therapy and development of novel immune modulators to improve the rate of functional cure. This review article highlights mechanistic insight on IFN control of HBV infection and recent progress in development of novel IFN regimens, small molecule IFN mimetics and combination therapy of PEG-IFN-α with new direct-acting antivirals and therapeutic vaccines to facilitate the functional cure of CHB.
Collapse
Affiliation(s)
- Qiong Zhao
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Hui Liu
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Liudi Tang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | | | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, United States.
| |
Collapse
|
24
|
Groth C, Maric J, Garcés Lázaro I, Hofman T, Zhang Z, Ni Y, Keller F, Seufert I, Hofmann M, Neumann-Haefelin C, Sticht C, Rippe K, Urban S, Cerwenka A. Hepatitis D infection induces IFN-β-mediated NK cell activation and TRAIL-dependent cytotoxicity. Front Immunol 2023; 14:1287367. [PMID: 38143742 PMCID: PMC10739304 DOI: 10.3389/fimmu.2023.1287367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background and aims The co-infection of hepatitis B (HBV) patients with the hepatitis D virus (HDV) causes the most severe form of viral hepatitis and thus drastically worsens the course of the disease. Therapy options for HBV/HDV patients are still limited. Here, we investigated the potential of natural killer (NK) cells that are crucial drivers of the innate immune response against viruses to target HDV-infected hepatocytes. Methods We established in vitro co-culture models using HDV-infected hepatoma cell lines and human peripheral blood NK cells. We determined NK cell activation by flow cytometry, transcriptome analysis, bead-based cytokine immunoassays, and NK cell-mediated effects on T cells by flow cytometry. We validated the mechanisms using CRISPR/Cas9-mediated gene deletions. Moreover, we assessed the frequencies and phenotype of NK cells in peripheral blood of HBV and HDV superinfected patients. Results Upon co-culture with HDV-infected hepatic cell lines, NK cells upregulated activation markers, interferon-stimulated genes (ISGs) including the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), produced interferon (IFN)-γ and eliminated HDV-infected cells via the TRAIL-TRAIL-R2 axis. We identified IFN-β released by HDV-infected cells as an important enhancer of NK cell activity. In line with our in vitro data, we observed activation of peripheral blood NK cells from HBV/HDV co-infected, but not HBV mono-infected patients. Conclusion Our data demonstrate NK cell activation in HDV infection and their potential to eliminate HDV-infected hepatoma cells via the TRAIL/TRAIL-R2 axis which implies a high relevance of NK cells for the design of novel anti-viral therapies.
Collapse
Affiliation(s)
- Christopher Groth
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jovana Maric
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Irene Garcés Lázaro
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tomáš Hofman
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZFI) - Heidelberg Partner Site, Heidelberg, Germany
| | - Franziska Keller
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Isabelle Seufert
- Division of Chromatin Networks, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ) and Bioquant, Heidelberg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ) and Bioquant, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZFI) - Heidelberg Partner Site, Heidelberg, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
25
|
Zhuang AQ, Chen Y, Chen SM, Liu WC, Li Y, Zhang WJ, Wu YH. Current Status and Challenges in Anti-Hepatitis B Virus Agents Based on Inactivation/Inhibition or Elimination of Hepatitis B Virus Covalently Closed Circular DNA. Viruses 2023; 15:2315. [PMID: 38140556 PMCID: PMC10747957 DOI: 10.3390/v15122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Hang Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
26
|
Wang X, Gu X, Liu F. IL-6 gene polymorphism predicts PEGylated IFN-α treatment response in hepatitis B surface antigen-positive chronic hepatitis B patients. Per Med 2023; 20:503-510. [PMID: 37909375 DOI: 10.2217/pme-2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Background: Genetic polymorphism can affect the response to antiviral therapy of chronic hepatitis B (CHB) patients. Objective: The study examined the genetic association of the IL-6 rs1800796 polymorphism with PEGylated IFN-α (PegIFN-α) treatment response in hepatitis B surface antigen (HBsAg)-positive CHB patients. Methods: Direct sequencing was done for the genotyping of the rs1800796 polymorphism in the serum of CHB patients. Results: More patients with combined response (n = 95) carried IL-6 rs1800796 GC genotypes, while CC genotype carriers possessed reduced HBeAg seroconversion rate and high values of hepatitis B virus DNA. Baseline HBsAg and HBeAg and IL-6 rs1800796 CC genotype were independently related to PegIFN-α treatment response. Conclusion: Detection of the IL-6 rs1800796 genotype in CHB patients may have potential guiding significance for PegIFN-α response.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Hepatology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China
| | - Xiu Gu
- Department of Hepatology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China
| | - Fengli Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China
| |
Collapse
|
27
|
Li YP, Liu CR, Hao M, Lu R, Dang SS. Clinical cure of hepatitis B: Delight and anticipation. Shijie Huaren Xiaohua Zazhi 2023; 31:837-845. [DOI: 10.11569/wcjd.v31.i20.837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Miao Hao
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Rui Lu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
28
|
Meng CY, Sun S, Liang Y, Xu H, Zhang C, Zhang M, Wang FS, Fu YX, Peng H. Engineered anti-PDL1 with IFNα targets both immunoinhibitory and activating signals in the liver to break HBV immune tolerance. Gut 2023; 72:1544-1554. [PMID: 36316098 PMCID: PMC10359590 DOI: 10.1136/gutjnl-2022-327059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The purpose of this study is to develop an anti-PDL1-based interferon (IFN) fusion protein to overcome the chronic hepatitis B virus (HBV)-induced immune tolerance, and combine this immunotherapy with a HBV vaccine to achieve the functional cure of chronic hepatitis B (CHB) infection. DESIGN We designed an anti-PDL1-IFNα heterodimeric fusion protein, in which one arm was derived from anti-PDL1 antibody and the other arm was IFNα, to allow targeted delivery of IFNα into the liver by anti-PDL1 antibody. The effect of the anti-PDL1-IFNα heterodimer on overcoming hepatitis B surface antigen (HBsAg) vaccine resistance was evaluated in chronic HBV carrier mice. RESULTS The anti-PDL1-IFNα heterodimer preferentially targeted the liver and resulted in viral suppression, the PD1/PDL1 immune checkpoint blockade and dendritic cell activation/antigen presentation to activate HBsAg-specific T cells, thus breaking immune tolerance in chronic HBV carrier mice. When an HBsAg vaccine was administered soon after anti-PDL1-IFNα heterodimer treatment, we observed strong anti-HBsAg antibody and HBsAg-specific T cell responses for efficient HBsAg clearance in chronic HBV carrier mice that received the combination treatment but not in those that received either single treatment. CONCLUSIONS Targeting the liver with an engineered anti-PDL1-IFNα heterodimer can break HBV-induced immune tolerance to an HBsAg vaccine, offering a promising translatable therapeutic strategy for the functional cure of CHB.
Collapse
Affiliation(s)
- Chao-Yang Meng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Sun
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Liang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hairong Xu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Zhang
- Senior Department of Liver Disease, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Song B, Xu C, Zhang Y, Shan Y. Circ_ATAD3B inhibits cell proliferation of breast cancer via mediating the miR-570-3p/MX2 axis. Prev Med 2023; 173:107568. [PMID: 37286092 DOI: 10.1016/j.ypmed.2023.107568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
It has been discovered that some circular RNAs can serve as excellent therapeutic targets for breast cancer (BC). However, the biological role that circ ATAD3B plays in BC is not yet completely understood. As a result, the purpose of this work was to evaluate the function of circ_ATAD3B in the development of BC. Three different GEO datasets were used to compile the expression profiles of circRNAs related to BC (GSE101124, GSE165884, and GSE182471). CCK-8 and the production of clones, in addition to RT-PCR and western blot assays, were utilized in this study to evaluate the regulation of these three biological molecules in the process of BC carcinogenesis.circ_ATAD3B was the only potential BC-related circRNA that was significantly reduced in BC tumor tissues, and it functioned as a miR-570-3p sponge to suppress cell survival and proliferation, as stated by the aforementioned two algorithms. The expression of MX2 was boosted when circ_ATAD3B was used to sponge miR-570-3p. The inhibitory effect that circ_ATAD3B has on the malignant phenotype of BC cells was overcome by the expression of miR-570-3p through up-regulation and MX2 through down-regulation. The tumor suppressor circ_ATAD3B prevents cancer progression by regulating the miR-570-3p/MX2 pathway. Circ_ATAD3B may be a candidate for targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Binbin Song
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, No. 1882 South Zhonghuan Road, Jiaxing 310012, Zhejiang, China
| | - Ce Xu
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| | - Yi Zhang
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| | - Yuanyuan Shan
- Hangzhou Mushi Biotechnology Co., LTD., Hangzhou, China.
| |
Collapse
|
30
|
Wang X, Hu B, Hu H, Zhou S, Yin M, Cheng X, Zhang Z, Liu H. Tannic Acid Suppresses HBV Replication via the Regulation of NF-κB, MAPKs, and Autophagy in HepG2.2.15 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37450882 DOI: 10.1021/acs.jafc.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hepatitis B virus (HBV) infection is a serious global health problem that threatens the health of human. Tannic acid (TA), a natural polyphenol in foods, fruits, and plants, exhibits a variety of bioactive functions. In our research, we decide to explore the pharmacological mechanism of TA against HBV replication. Our results showed that TA effectively reduced the content of HBV DNA and viral antigens (HBsAg and HBeAg) in HepG2.2.15 cells. Meanwhile, TA significantly decreased the mRNA expression of HBV RNA, which include total HBV RNA, HBV pregenomic RNA, and HBV precore mRNA. Besides, TA evidently downregulated the activity of HBV promoters in HepG2.2.15 cells. Furthermore, we found that TA upregulated the expression of IL-8, TNF-α, IFN-α, and IFN-α-mediated antiviral effectors in HepG2.2.15 cells. On the contrary, TA downregulated the expression of IL-10 and hepatic nuclear factor 4 (HNF4α). In addition, TA activated the NF-κB and MAPK pathways that contributed to the inhibition of HBV replication. Finally, TA treatment led to the occurrence of autophagy, which accelerated the elimination of HBV components in HepG2.2.15 cells. Taken together, our results elucidated the suppressive effect of TA on HBV replication and provided inspiration for its clinical application in HBV treatment.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Shuhan Zhou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xue Cheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| |
Collapse
|
31
|
Ghufran SM, Sharma P, Roy B, Jaiswal S, Aftab M, Sengupta S, Ghose S, Biswas S. Transcriptome wide functional analysis of HBx expressing human hepatocytes stimulated with endothelial cell cross-talk. Genomics 2023; 115:110642. [PMID: 37209778 PMCID: PMC7615065 DOI: 10.1016/j.ygeno.2023.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Identification of genes dysregulated during the hepatitis B virus (HBV)-host cell interaction adds to the understanding of underlying molecular mechanisms and aids in discovering effective therapies to improve prognosis in hepatitis B virus (HBV)-infected individuals. Through bioinformatics analyses of transcriptomics data, this study aimed to identify potential genes involved in the cross-talk of human hepatocytes expressing the HBV viral protein HBx with endothelial cells. Transient transfection of HBV viral gene X (HBx) was performed in THLE2 cells using pcDNA3 constructs. Through mRNA Sequencing (RNA Seq) analysis, differentially expressed genes (DEGs) were identified. THLE2 cells transfected with HBx (THLE2x) were further treated with conditioned medium from cultured human umbilical vein derived endothelial cells (HUVEC-CM). Gene Ontology (GO) enrichment analysis revealed that interferon and cytokine signaling pathways were primarily enriched for the downregulated DEGs in THLE2x cells treated with HUVEC-CM. One significant module was selected following protein-protein interaction (PPI) network generation, and thirteen hub genes were identified from the module. The prognostic values of the hub genes were evaluated using Kaplan-Meier (KM) plotter, and three genes (IRF7, IFIT1, and IFITM1) correlated with poor disease specific survival (DSS) in HCC patients with chronic hepatitis. A comparison of the DEGs identified in HUVEC-stimulated THLE2x cells with four publicly available HBV-related HCC microarray datasets revealed that PLAC8 was consistently downregulated in all four HCC datasets as well as in HUVEC-CM treated THLE2x cells. KM plots revealed that PLAC8 correlated with worse relapse free survival and progression free survival in HCC patients with hepatitis B virus infection. This study provided molecular insights which may help develop a deeper understanding of HBV-host stromal cell interaction and open avenues for future research.
Collapse
Affiliation(s)
| | - Prachi Sharma
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Bornika Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Mehreen Aftab
- Division of Cellular and Molecular Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Sampa Ghose
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India.
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India.
| |
Collapse
|
32
|
Liu N, Liu M, Yang J, Dong S, Yue M, Huang P, Xia X, Zhang AM. Association of genetic polymorphisms in the C19orf66 gene and biochemical indices of HBV infected individuals in Yunnan. Front Cell Infect Microbiol 2023; 13:1180366. [PMID: 37293200 PMCID: PMC10245551 DOI: 10.3389/fcimb.2023.1180366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Hepatitis B virus (HBV) infection causes serious liver diseases and is a healthy problem worldwide. Although vaccines are administered to infants after birth, there is no effective medicine for HBV infection. The interferon-stimulated genes (ISGs) are important factors in the host that can aid in restraining the virus, and the C19orf66 gene has a wide-antiviral spectrum. METHODS In this study, three SNPs in the C19orf66 gene were sequenced and genotyped, and their potential function were predicted and further verified by dual-luciferase reporter assay. RESULTS Although no significant difference of genotype and allele frequency was observed between HBV patients and the controls, the genotype and allele frequency showed significant difference between HBV patients with HBsAg-positive and HBV patients with HBsAg-negative or controls. Genotype AA (P= 0.009) and AT (P= 0.019) of rs77076061 showed higher and lower frequency in HBV patients with HBsAg-positive than in patients with HBsAg-negative, respectively. Genotype AG of rs1979262 played a risk role in HBV patients with HBsAg-positive (13.22%) than in patients with HBsAg-negative (7.53%, P= 0.036) or controls (8.48%, P= 0.033). The frequency of allele A of rs1979262 was higher in patients with HBsAg-positive (6.61%) than in patients with HBsAg-negative (3.77%, P= 0.042), while it was the opposite for the allele G. Moreover, the associations between genotypes of SNPs in the C19orf66 gene and the ALT, AST, and DBIL level were also identified. The functional assay suggested that the SNPs might influence the C19orf66 expression by changing the connection of transcriptional factors. CONCLUSION In summary, the association between genetic polymorphisms in the C19orf66 gene and HBV infection/biochemical indices of patients was firstly identified in Yunnan Province.
Collapse
Affiliation(s)
- Ni Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Min Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jun Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Clinical Laboratory, The People’s Hospital of Maguan County, Wenshan, Yunnan, China
| | - Shuwei Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ming Yue
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
33
|
Hu X, Luo H, Tan G, Li Y, Qin B. The expression of interleukin-1β in patients with chronic hepatitis B treated with pegylated-interferon-alpha combined with tenofovir disoproxil fumarate and monotherapy. BMC Gastroenterol 2023; 23:163. [PMID: 37208599 DOI: 10.1186/s12876-023-02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Anti-hepatitis B virus (HBV) treatment uses tenofovir disoproxil fumarate (TDF) along with Pegylated-interferon-alpha (Peg-IFN-α), which is more effective than TDF/Peg-IFN-α monotherapy. We have previously shown that interleukin-1beta (IL-1β) is related to the effectiveness of IFN-α treatment in chronic hepatitis B (CHB) patients. The aim was to investigate the expression of IL-1β in CHB patients treated with Peg-IFN-α combination with TDF and TDF/Peg-IFN-α monotherapy. METHODS Huh7 cells infected with HBV were stimulated by Peg-IFN-α and/or Tenofovir (TFV) for 24h. A single-center cohort study of prospective recruitment of CHB patients: untreated CHB (Group A), TDF combined with Peg-IFN-α therapy (Group B), Peg-IFN-α monotherapy (Group C), TDF monotherapy (Group D). Normal donors served as controls. The clinical datas and blood of patients were collected at 0, 12, and 24 weeks. According to the early response criteria, Group B and C were divided into two subgroups: the early response group (ERG) and the non-early response group (NERG). Stimulation of HBV-infected hepatoma cells with IL-1β to validate the antiviral activity of IL-1β. To test the blood sample, cell culture supernatant, and cell lysates and to assess the expression of IL-1β and HBV replication levels in various treatment protocols, Enzyme-Linked Immunosorbent Assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used. SPSS 26.0 and GraphPad Prism 8.0.2 software were used for statistical analysis. P values < 0.05 was considered to be statistically significant. RESULTS In vitro experiments, Peg-IFN-α plus TFV treatment group expressed higher IL-1β and inhibited HBV more effectively than monotherapy. Finally, 162 cases were enrolled for observation (Group A (n = 45), Group B (n = 46), Group C (n = 39), and Group D (n = 32)), and normal donors (n = 20) were enrolled for control. The early virological response rates of Group B, C, and D were 58.7%, 51.3%, and 31.2%. At 24 weeks, IL-1β in Group B(P = 0.007) and C(P = 0.034) showed higher than at 0 week. In Group B, the IL-1β showed an upward trend at 12w and 24w in the ERG. IL-1β significantly reduced HBV replication levels in hepatoma cells. CONCLUSION The increased expression of IL-1β may enhance the efficacy of TDF combined with Peg-IFN-α therapy in achieving an early response for CHB patients.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Haiying Luo
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guili Tan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yadi Li
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
34
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Ranga A, Gupta A, Yadav L, Kumar S, Jain P. Advancing beyond reverse transcriptase inhibitors: The new era of hepatitis B polymerase inhibitors. Eur J Med Chem 2023; 257:115455. [PMID: 37216809 DOI: 10.1016/j.ejmech.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Hepatitis B virus (HBV) is a genetically diverse blood-borne virus responsible for chronic hepatitis B. The HBV polymerase plays a key role in viral genome replication within the human body and has been identified as a potential drug target for chronic hepatitis B therapeutics. However, available nucleotide reverse transcriptase inhibitors only target the reverse transcriptase domain of the HBV polymerase; they also pose resistance issues and require lifelong treatment that can burden patients financially. In this study, various chemical classes are reviewed that have been developed to target different domains of the HBV polymerase: Terminal protein, which plays a vital role in the formation of the viral DNA; Reverse transcriptase, which is responsible for the synthesis of the viral DNA from RNA, and; Ribonuclease H, which is responsible for degrading the RNA strand in the RNA-DNA duplex formed during the reverse transcription process. Host factors that interact with the HBV polymerase to achieve HBV replication are also reviewed; these host factors can be targeted by inhibitors to indirectly inhibit polymerase functionality. A detailed analysis of the scope and limitations of these inhibitors from a medicinal chemistry perspective is provided. The structure-activity relationship of these inhibitors and the factors that may affect their potency and selectivity are also examined. This analysis will be useful in supporting the further development of these inhibitors and in designing new inhibitors that can inhibit HBV replication more efficiently.
Collapse
Affiliation(s)
- Abhishek Ranga
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Aarti Gupta
- Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Laxmi Yadav
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India.
| | - Priti Jain
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India.
| |
Collapse
|
36
|
Betancor G. You Shall Not Pass: MX2 Proteins Are Versatile Viral Inhibitors. Vaccines (Basel) 2023; 11:vaccines11050930. [PMID: 37243034 DOI: 10.3390/vaccines11050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Myxovirus resistance (MX) proteins are pivotal players in the innate immune response to viral infections. Less than 10 years ago, three independent groups simultaneously showed that human MX2 is an interferon (IFN)-stimulated gene (ISG) with potent anti-human immunodeficiency virus 1 (HIV-1) activity. Thenceforth, multiple research works have been published highlighting the ability of MX2 to inhibit RNA and DNA viruses. These growing bodies of evidence have identified some of the key determinants regulating its antiviral activity. Therefore, the importance of the protein amino-terminal domain, the oligomerization state, or the ability to interact with viral components is now well recognized. Nonetheless, there are still several unknown aspects of MX2 antiviral activity asking for further research, such as the role of cellular localization or the effect of post-translational modifications. This work aims to provide a comprehensive review of our current knowledge on the molecular determinants governing the antiviral activity of this versatile ISG, using human MX2 and HIV-1 inhibition as a reference, but drawing parallelisms and noting divergent mechanisms with other proteins and viruses when necessary.
Collapse
Affiliation(s)
- Gilberto Betancor
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
37
|
Dihydromyricetin inhibits Hepatitis B virus replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Mol Biol Rep 2023; 50:1403-1414. [PMID: 36474061 DOI: 10.1007/s11033-022-07971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a severe global health problem, and there has been no effective method to eliminate HBV. This study was designed to explore the pharmacological mechanism of Dihydromyricetin (DHM) treatment on HBV replication in vitro. METHODS AND RESULTS DHM is a flavonoid compound from Ampelopsis grossedentata. Using HepG2.2.15 cells, which can stably express HBV in vitro, we demonstrated that DHM treatment dramatically reduced HBV replication and secretions of HBsAg and HBeAg. Meanwhile, DHM inhibited mRNA expression of HBV RNAs in HepG2.2.15 cells, including Total HBV RNA, HBV pregenomic RNA (pgRNA), and HBV precore mRNA (pcRNA). Also, DHM elevated the mRNA expressions of inflammatory cytokines and antiviral effectors. In contrast, DHM decreased the mRNA level of HNF4α, which positively correlated with HBV replication. Further studies show that the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway played a critical role in DHM-initiated inhibition of HBV replication in HepG2.2.15 cells. Besides, activated autophagy was another contributor that may accelerate the clearance of HBV components. CONCLUSION In summary, DHM could suppress HBV replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Our studies shed light on the future application of DHM for the clinical treatment of HBV infection.
Collapse
|
38
|
IFIT3 Is Increased in Serum from Patients with Chronic Hepatitis B Virus (HBV) Infection and Promotes the Anti-HBV Effect of Interferon Alpha via JAK-STAT2 In Vitro. Microbiol Spectr 2022; 10:e0155722. [PMID: 36314949 PMCID: PMC9769971 DOI: 10.1128/spectrum.01557-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence indicates that interferon alpha (IFN-α) therapy is an effective treatment option for a subgroup of patients with chronic hepatitis B virus (HBV) infection. It has been confirmed that interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), a member of the interferon-stimulated genes (ISGs), could inhibit the replication of various viruses. However, its effect on HBV replication is unclear. The present study sought to explore the role and mechanism of IFIT3 in IFN-α antiviral activities against HBV. IFIT3 mRNA levels in the peripheral blood of 108 treatment-naive patients and 70 healthy controls were analyzed first. The effect of IFIT3 on the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway under the dual intervention of IFN-α and HBV was also explored in vitro. Treatment-naive individuals exhibited elevated levels of IFIT3 mRNA compared to the controls (P < 0.0001). Mechanistically, the knockdown of IFIT3 inhibited the phosphorylation of signal transducer and activator of transcription 2 (STAT2), whereas the overexpression of IFIT3 produced the opposite effect in vitro. Meanwhile, the overexpression of IFIT3 enhanced the expression of IFN-α-triggered ISGs, including myxovirus resistance A (MxA), 2'-5'-oligoadenylate synthetase 1 (OAS1), and double-stranded RNA-activated protein kinase (PKR), while a weaker induction of IFN-α-triggered ISGs was observed in ruxolitinib-treated cells. After decreasing IFIT3 expression by validated small hairpin RNAs (shRNAs), the levels of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and HBV DNA secreted by HepG2 cells transiently transfected with the pHBV1.2 plasmid were increased. Our findings suggest that IFIT3 works in a STAT2-dependent manner to promote the antiviral effect of IFN-α through the JAK-STAT pathway in HBV infection in both human hepatocytes and hepatocarcinoma cells. IMPORTANCE Our study contributes new insights into the understanding of the functions and roles of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), which is one of the interferon-stimulated genes induced by hepatitis B virus infection in human hepatocytes and hepatocarcinoma cells, and may help to identify targeted genes promoting the efficacy of interferon alpha.
Collapse
|
39
|
Li Q, Sun B, Zhuo Y, Jiang Z, Li R, Lin C, Jin Y, Gao Y, Wang D. Interferon and interferon-stimulated genes in HBV treatment. Front Immunol 2022; 13:1034968. [PMID: 36531993 PMCID: PMC9751411 DOI: 10.3389/fimmu.2022.1034968] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Human hepatitis B virus (HBV) is a small enveloped DNA virus with a complex life cycle. It is the causative agent of acute and chronic hepatitis. HBV can resist immune system responses and often causes persistent chronic infections. HBV is the leading cause of liver cancer and cirrhosis. Interferons (IFNs) are cytokines with antiviral, immunomodulatory, and antitumor properties. IFNs are glycoproteins with a strong antiviral activity that plays an important role in adaptive and innate immune responses. They are classified into three categories (type I, II, and III) based on the structure of their cell-surface receptors. As an effective drug for controlling chronic viral infections, Type I IFNs are approved to be clinically used for the treatment of HBV infection. The therapeutic effect of interferon will be enhanced when combined with other drugs. IFNs play a biological function by inducing the expression of hundreds of IFN-stimulated genes (ISGs) in the host cells, which are responsible for the inhibiting of HBV replication, transcription, and other important processes. Animal models of HBV, such as chimpanzees, are also important tools for studying IFN treatment and ISG regulation. In the present review, we summarized the recent progress in IFN-HBV treatment and focused on its mechanism through the interaction between HBV and ISGs.
Collapse
Affiliation(s)
- Qirong Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Zhuo
- School of Acupuncture-Moxi bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| |
Collapse
|
40
|
Liu C, Zhao W, Su J, Chen X, Zhao F, Fan J, Li X, Liu X, Zou L, Zhang M, Zhang Z, Zhang L, Fan S, Li Y, Zhao M, Chen J, Yi L. HSP90AA1 interacts with CSFV NS5A protein and regulates CSFV replication via the JAK/STAT and NF-κB signaling pathway. Front Immunol 2022; 13:1031868. [PMID: 36405689 PMCID: PMC9666401 DOI: 10.3389/fimmu.2022.1031868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 08/23/2023] Open
Abstract
Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), is a highly contagious and fatal viral disease, posing a significant threat to the swine industry. Heat shock protein 90 kDa alpha class A member 1 (HSP90AA1) is a very conservative chaperone protein that plays an important role in signal transduction and viral proliferation. However, the role of HSP90AA1 in CSFV infection is unknown. In this study, we found that expression of HSP90AA1 could be promoted in PK-15 and 3D4/2 cells infected by CSFV. Over-expression of HSP90AA1 could inhibit CSFV replication and functional silencing of HSP90AA1 gene promotes CSFV replication. Further exploration revealed that HSP90AA1 interacted with CSFV NS5A protein and reduced the protein levels of NS5A. Since NS5A has an important role in CSFV replication and is closely related to type I IFN and NF-κB response, we further analyzed whether HSP90AA1 affects CSFV replication by regulating type I IFN and NF-κB pathway responses. Our research found HSP90AA1 positively regulated type I IFN response by promoting STAT1 phosphorylation and nuclear translocation processes and promoted the nuclear translocation processes of p-P65. However, CSFV infection antagonizes the activation of HSP90AA1 on JAK/STAT and NF-κB pathway. In conclusion, our study found that HSP90AA1 overexpression significantly inhibited CSFV replication and may inhibit CSFV replication by interacting with NS5A and activating JAK/STAT and NF-κB signaling pathways. These results provide new insights into the mechanism of action of HSP90AA1 in CSFV infection, which abundant the candidate library of anti-CSFV.
Collapse
Affiliation(s)
- Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wei Zhao
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jia Su
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaochun Chen
- China Institute of Veterinary Drug Control, Beijing, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zilin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Liangliang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
41
|
Yang Z, Sun B, Xiang J, Wu H, Kan S, Hao M, Chang L, Liu H, Wang D, Liu W. Role of epigenetic modification in interferon treatment of hepatitis B virus infection. Front Immunol 2022; 13:1018053. [PMID: 36325353 PMCID: PMC9618964 DOI: 10.3389/fimmu.2022.1018053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Human hepatitis B virus (HBV) is a small, enveloped DNA virus that causes acute and chronic hepatitis. Chronic hepatitis B (CHB) is associated with hepatocellular carcinoma pathogenesis. Interferons (IFNs) have been used for the treatment of CHB for a long time, with advantages including less treatment duration and sustained virological response. Presently, various evidence suggests that epigenetic modification of the viral covalently closed circular DNA (cccDNA) and the host genome is crucial for the regulation of viral activity. This modification includes histone acetylation, DNA methylation, N6-methyladenosine, and non-coding RNA modification. IFN treatment for CHB can stimulate multiple IFN-stimulated genes for inhibiting virus replication. IFNs can also affect the HBV life cycle through epigenetic modulation. In this review, we summarized the different mechanisms through which IFN-α inhibits HBV replication, including epigenetic regulation. Moreover, the mechanisms underlying IFN activity are discussed, which indicated its potential as a novel treatment for CHB. It is proposed that epigenetic changes such as histone acetylation, DNA methylation, m6A methylation could be the targets of IFN, which may offer a novel approach to HBV treatment.
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dongxu Wang, ; Weiwei Liu,
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Dongxu Wang, ; Weiwei Liu,
| |
Collapse
|
42
|
White MC, Wu X, Damania B. Oncogenic viruses, cancer biology, and innate immunity. Curr Opin Immunol 2022; 78:102253. [PMID: 36240666 DOI: 10.1016/j.coi.2022.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Malignancies that arise as a result of viral infection account for roughly 15% of cancer cases worldwide. The innate immune system is the body's first line of defense against oncogenic viral infection and is also involved in the response against viral-driven tumors. In this review, we discuss research advances made over the last five years elucidating how the innate immune system recognizes and responds to oncogenic viruses, how these viruses have evolved to escape this immune pressure, and ways that innate immunity can inform the development of novel therapeutics against oncogenic viral infection and their associated cancers.
Collapse
Affiliation(s)
- Maria C White
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xinjun Wu
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
43
|
Zhang Z, Zhang Y, Yang D, Luo Y, Luo Y, Ru Y, Song J, Fei X, Chen Y, Li B, Jiang J, Kuai L. Characterisation of key biomarkers in diabetic ulcers via systems bioinformatics. Int Wound J 2022; 20:529-542. [PMID: 36181454 PMCID: PMC9885479 DOI: 10.1111/iwj.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/03/2023] Open
Abstract
Diabetic ulcers (DUs) are characterised by a high incidence and disability rate. However, its pathogenesis remains elusive. Thus, a deep understanding of the underlying mechanisms for the pathogenesis of DUs has vital implications. The weighted gene co-expression network analysis was performed on the main data from the Gene Expression Omnibus database. Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were adopted to analyse the potential biological function of the most relevant module. Furthermore, we utilised CytoHubba and protein-protein interaction network to identify the hub genes. Finally, the hub genes were validated by animal experiments in diabetic ulcer mice models. The expression of genes from the turquoise module was found to be strongly related to DUs. GO terms, KEGG analysis showed that biological functions are closely related to immune response. The hub genes included IFI35, IFIT2, MX2, OASL, RSAD2, and XAF1, which were higher in wounds of DUs mice than that in normal lesions. Additionally, we also demonstrated that the expression of hub genes was correlated with the immune response using immune checkpoint, immune cell infiltration, and immune scores. These data suggests that IFI35, IFIT2, MX2, OASL, RSAD2, and XAF1 are crucial for DUs.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina,Institute of DermatologyShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina,Institute of DermatologyShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina,Institute of DermatologyShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yue Luo
- Department of Integrated TCM and Western Medicine, Shanghai Skin Disease HospitalTongji UniversityShanghaiChina
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina,Institute of DermatologyShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina,Institute of DermatologyShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Jiankun Song
- Department of Integrated TCM and Western Medicine, Shanghai Skin Disease HospitalTongji UniversityShanghaiChina
| | - Xiaoya Fei
- Department of Integrated TCM and Western Medicine, Shanghai Skin Disease HospitalTongji UniversityShanghaiChina
| | - Yiran Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina,Institute of DermatologyShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Bin Li
- Institute of DermatologyShanghai Academy of Traditional Chinese MedicineShanghaiChina,Department of Integrated TCM and Western Medicine, Shanghai Skin Disease HospitalTongji UniversityShanghaiChina
| | - Jingsi Jiang
- Department of Skin and Cosmetics Research, Shanghai Skin Disease HospitalTongji UniversityShanghaiChina
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina,Institute of DermatologyShanghai Academy of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
44
|
Four Mx Genes Identified in Andrias davidianus and Characterization of Their Response to Chinese Giant Salamander Iridovirus Infection. Animals (Basel) 2022; 12:ani12162147. [PMID: 36009736 PMCID: PMC9405346 DOI: 10.3390/ani12162147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Amphibians, including Andrias davidianus, are declining worldwide partly due to infectious diseases. The Myxovirus resistance (Mx) gene is a typical interferon (IFN)-stimulated gene (ISG) involved in the antiviral immunity. Therefore, knowledge regarding the antiviral immunity of A. davidianus can be used for improved reproduction in captivity and protection in the wild. In this study, we amplified and characterized four different A. davidianus Mx genes (adMx) and generated temporal mRNA expression profiles in healthy and Chinese giant salamander iridovirus (GSIV) infected A. davidianus by qualitative real-time PCR (qPCR). The four adMx genes ranged in length from 2008 to 2840 bp. The sequences revealed conserved protein domains including the dynamin superfamily signature motif and the tripartite guanosine-5-triphosphate (GTP)-binding motif. Gene and deduced amino acid sequence alignment revealed relatively high sequence identity with the Mx genes and proteins of other vertebrates. In phylogenetic analysis, the adMx genes clustered together, but also clustered closely with those of fish species. The four adMx genes were broadly expressed in healthy A. davidianus, but were differentially expressed in the spleen during the GSIV infection. Our results show that the adMx genes share major structural features with their homologs, suggesting similar functions to those in other species.
Collapse
|
45
|
Meng XW, Cheng ZL, Lu ZY, Tan YN, Jia XY, Zhang M. MX2: Identification and systematic mechanistic analysis of a novel immune-related biomarker for systemic lupus erythematosus. Front Immunol 2022; 13:978851. [PMID: 36059547 PMCID: PMC9433551 DOI: 10.3389/fimmu.2022.978851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organs. However, the current SLE-related biomarkers still lack sufficient sensitivity, specificity and predictive power for clinical application. Thus, it is significant to explore new immune-related biomarkers for SLE diagnosis and development. Methods We obtained seven SLE gene expression profile microarrays (GSE121239/11907/81622/65391/100163/45291/49454) from the GEO database. First, differentially expressed genes (DEGs) were screened using GEO2R, and SLE biomarkers were screened by performing WGCNA, Random Forest, SVM-REF, correlation with SLEDAI and differential gene analysis. Receiver operating characteristic curves (ROCs) and AUC values were used to determine the clinical value. The expression level of the biomarker was verified by RT‒qPCR. Subsequently, functional enrichment analysis was utilized to identify biomarker-associated pathways. ssGSEA, CIBERSORT, xCell and ImmuCellAI algorithms were applied to calculate the sample immune cell infiltration abundance. Single-cell data were analyzed for gene expression specificity in immune cells. Finally, the transcriptional regulatory network of the biomarker was constructed, and the corresponding therapeutic drugs were predicted. Results Multiple algorithms were screened together for a unique marker gene, MX2, and expression analysis of multiple datasets revealed that MX2 was highly expressed in SLE compared to the normal group (all P < 0.05), with the same trend validated by RT‒qPCR (P = 0.026). Functional enrichment analysis identified the main pathway of MX2 promotion in SLE as the NOD-like receptor signaling pathway (NES=2.492, P < 0.001, etc.). Immuno-infiltration analysis showed that MX2 was closely associated with neutrophils, and single-cell and transcriptomic data revealed that MX2 was specifically expressed in neutrophils. The NOD-like receptor signaling pathway was also remarkably correlated with neutrophils (r >0.3, P < 0.001, etc.). Most of the MX2-related interacting proteins were associated with SLE, and potential transcription factors of MX2 and its related genes were also significantly associated with the immune response. Conclusion Our study found that MX2 can serve as an immune-related biomarker for predicting the diagnosis and disease activity of SLE. It activates the NOD-like receptor signaling pathway and promotes neutrophil infiltration to aggravate SLE.
Collapse
Affiliation(s)
- Xiang-Wen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhi-Luo Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhi-Yuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ya-Nan Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao-Yi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- *Correspondence: Xiao-Yi Jia, ; Min Zhang,
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xiao-Yi Jia, ; Min Zhang,
| |
Collapse
|
46
|
Xiong J, Jiang Y, Zhang J, Chen Y, Hu Y. CK1α upregulates the IFNAR1 expression to prompt the anti-HBV effect of type I IFN in hepatoma carcinoma cells. Virol Sin 2022; 37:894-903. [PMID: 35985475 PMCID: PMC9797371 DOI: 10.1016/j.virs.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/08/2022] [Indexed: 01/01/2023] Open
Abstract
Casein kinase 1α (CK1α) mediates the phosphorylation and degradation of interferon-α/β receptor 1 (IFNAR1) in response to viral infection. However, how CK1α regulates hepatitis B virus (HBV) replication and the anti-HBV effects of IFN-α are less reported. Here we show that CK1α can interact with IFNAR1 in hepatoma carcinoma cells and increased the abundance of IFNAR1 by reducing the ubiquitination levels in the presence of HBV. Furthermore, CK1α promotes the IFN-α triggered JAK-STAT signaling pathway and consequently enhances the antiviral effects of IFN-α against HBV replication. Our results collectively provide evidence that CK1α positively regulates the anti-HBV activity of IFN-α in hepatoma carcinoma cells, which would be a promising therapeutic target to improve the effectiveness of IFN-α therapy to cure CHB.
Collapse
|
47
|
Wang Y, Yuan W, Guo S, Li Q, Chen X, Li C, Liu Q, Sun L, Chen Z, Yuan Z, Luo C, Chen S, Tong S, Nassal M, Wen YM, Wang YX. A 33-residue peptide tag increases solubility and stability of Escherichia coli produced single-chain antibody fragments. Nat Commun 2022; 13:4614. [PMID: 35941164 PMCID: PMC9359998 DOI: 10.1038/s41467-022-32423-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Single-chain variable fragments (scFvs), composed of variable domains of heavy and light chains of an antibody joined by a linker, share antigen binding capacity with their parental antibody. Due to intrinsically low solubility and stability, only two Escherichia coli-produced scFvs have been approved for therapy. Here we report that a 33-residue peptide, termed P17 tag, increases the solubility of multiple scFvs produced in Escherichia coli SHuffle strain by up to 11.6 fold. Hydrophilic sequence, especially charged residues, but not the predicted α-helical secondary structure of P17 tag, contribute to the solubility enhancement. Notably, the P17 tag elevates the thermostability of scFv as efficiently as intra-domain disulfide bonds. Moreover, a P17-tagged scFv targeting hepatitis B virus surface proteins shows over two-fold higher antigen-binding affinity and virus-neutralizing activity than the untagged version. These data strongly suggest a type I intramolecular chaperone-like activity of the P17 tag. Hence, the P17 tag could benefit the research, production, and application of scFv. Low solubility and stability of Escherichia coli produced single chain variable fragments (scFvs) restrict their applications. Here the authors report a 33-residue peptide tag which simultaneously increases the solubility and thermostability of multiple scFvs produced in Escherichia coli SHuffle strain.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjie Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siqi Guo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, Nanchang University, Nanchang, China
| | - Qiqi Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomei Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianying Liu
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Lei Sun
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Zhenguo Chen
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Shijie Chen
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Shuping Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Yu-Mei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong-Xiang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
49
|
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection is potently inhibited by human myxovirus resistance 2 (MX2/MxB), which binds to the viral capsid and blocks the nuclear import of viral DNA. We have recently shown that phosphorylation is a key regulator of MX2 antiviral activity, with phosphorylation of serine residues at positions 14, 17, and 18 repressing MX2 function. Here, we extend the study of MX2 posttranslational modifications and identify serine and threonine phosphorylation in all domains of MX2. By substituting these residues with aspartic acid or alanine, hence mimicking the presence or absence of a phosphate group, respectively, we identified key positions that control MX2 antiviral activity. Aspartic acid substitutions of residues Ser306 or Thr334 and alanine substitutions of Thr343 yielded proteins with substantially reduced antiviral activity, whereas the presence of aspartic acid at positions Ser28, Thr151, or Thr343 resulted in enhanced activity: referred to as hypermorphic mutants. In some cases, these hypermorphic mutations, particularly when paired with other MX2 mutations (e.g., S28D/T151D or T151D/T343A) acquired the capacity to inhibit HIV-1 capsid mutants known to be insensitive to wild-type MX2, such as P90A or T210K, as well as MX2-resistant retroviruses such as equine infectious anemia virus (EIAV) and murine leukemia virus (MLV). This work highlights the complexity and importance of MX2 phosphorylation in the regulation of antiviral activity and in the selection of susceptible viral substrates.
Collapse
|
50
|
Zheng K, Shen Y, Xia X, Song Y, Zhang AM. Genetic polymorphisms in the IFNL4, MxA, and MxB genes were associated with biochemical index of chronic HBV patients from Yunnan, China. PeerJ 2022; 10:e13353. [PMID: 35505682 PMCID: PMC9057288 DOI: 10.7717/peerj.13353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 01/15/2023] Open
Abstract
Hepatitis B virus (HBV) infection causes Hepatitis B, which is one of the most common causes of hepatocellular carcinoma (HCC). The single nucleotide polymorphisms (SNPs) of the host immune genes could impact HBV infection, viral clearance, and treatment effect. However, the contradictory roles of several studies suggest further analysis of various populations. The whole blood and biochemical indexes of 448 HBV patients and matched controls were collected from the Yunnan population to investigate the genetic roles of IFNL4 and the downstream genes (MxA and MxB). The genotypes, alleles, and haplotypes frequencies of the seven SNPs (rs11322783, rs117648444, rs2071430, rs17000900, rs9982944, rs408825, and rs2838029) from the HBV patients and controls were analyzed. However, no association was identified between the SNPs and HBV infection. Then, biochemical index levels were evaluated among the HBV patients with different genotypes of the seven SNPs. The results indicated that the liver function index levels (including alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), and albumin (ALB)) were influenced by the genotypes of the SNPs in HBV patients. Moreover, when the HBV patients were divided into HBsAg-positive and -negative groups, the association between the SNP genotypes and the biochemical indexes still existed. In addition, although the genetic polymorphisms in the IFNL4, MxA, and MxB genes were not significantly associated with HBV infection in the Yunnan population, these genes could indirectly influence disease progression by associating with the biochemical index levels of Yunnan HBV patients.
Collapse
Affiliation(s)
- Kexi Zheng
- Kunming University of Science and Technology, Kunming, China
| | - Yunsong Shen
- Kunming Angel Women’s & Children’s Hospital, Kunming, China
| | - Xueshan Xia
- Kunming University of Science and Technology, Kunming, China
| | - Yuzhu Song
- Kunming University of Science and Technology, Kunming, China
| | - A-Mei Zhang
- Kunming University of Science and Technology, Kunming, China
| |
Collapse
|