1
|
Chen K, Wang H, Ma B, Knapp J, Henchy C, Lu J, Stevens T, Ranganathan S, Prochownik EV. Gas1-Mediated Suppression of Hepatoblastoma Tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:982-994. [PMID: 39889823 DOI: 10.1016/j.ajpath.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Hepatoblastoma (HB), the most common pediatric liver cancer, is associated with dysregulated Wnt/β-catenin, Hippo, and/or nuclear factor erythroid 2 ligand 2/nuclear respiratory factor 2 (NFE2L2/NRF2) pathways. In mice, pairwise combinations of oncogenically active forms of the terminal transcription factors of these pathways, namely, β-catenin (B), Yes-associated protein (YAP; Y), and Nrf2 (N), generate HBs, with the triple combination (B + Y + N) being particularly potent. Each tumor group alters the expression of thousands of B-, Y-, and N-driven unique and common target genes. The identification of those most involved in transformation might reveal mechanisms and opportunities for therapy. Herein, transcription profiling of >60 murine HBs revealed a common set of 22 "BYN" genes similarly deregulated in all cases. Most were associated with multiple cancer hallmarks, and their expression often correlated with survival in HBs, hepatocellular carcinomas, and other cancers. Among the most down-regulated of these genes was Gas1, which encodes a glycosylphosphatidylinositol-linked outer membrane protein. The restoration of Gas1 expression impaired B + Y + N-driven HB tumor growth in vivo and in HB-derived immortalized BY and BYN cell lines in vitro in a manner that requires membrane anchoring of the protein via its glycosylphosphatidylinositol moiety, implicating Gas1 as a proximal mediator of HB pathogenesis and validating the BYN gene set as deserving of additional scrutiny in future studies.
Collapse
Affiliation(s)
- Keyao Chen
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Tsinghua University School of Medicine, Beijing, China
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bingwei Ma
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Tongji University School of Medicine, Shanghai, China
| | - Jessica Knapp
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colin Henchy
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Jiao J, Saxena R, Morotti R. Hepatoblastoma: Comprehensive Review With Recent Updates. Adv Anat Pathol 2025:00125480-990000000-00143. [PMID: 40178831 DOI: 10.1097/pap.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Hepatoblastoma (HB), the most common primary malignant liver tumor of childhood, demonstrates remarkable histologic heterogeneity and can be classified into epithelial or mixed epithelial-mesenchymal subtypes. This review summarizes updates in histologic classification, molecular signatures, staging, and risk stratification of HB. The Children's Hepatic tumors International Collaboration represents an international effort to standardize the study of rare pediatric liver tumors; emphasis continues to remain on improving risk stratification by a combination of clinical, histologic, and molecular features to tailor treatment in a bid to reduce toxicity while maintaining or improving efficacy. Pure fetal HB is cured by complete resection without the need for adjuvant chemotherapy. Malignant rhabdoid tumors have been parsed out from small cell undifferentiated HBs by negative INI-1 staining on immunohistochemistry; these tumors require a distinct and more aggressive chemotherapeutic regimen. The significance of recently characterized "blastema" component in HB remains to be elucidated. Hepatocellular neoplasm, not otherwise specified, is a provisional diagnostic category for tumors exhibiting either intermediate or a combination of both HB and hepatocellular carcinoma histologic features. The Children's Hepatic tumors International Collaboration risk stratification algorithm includes age as an important discriminator of risk, in addition to AFP, metastasis, and PreTreatment EXTent of disease stage and its annotations.
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | | |
Collapse
|
3
|
Cives-Losada C, Asensio M, Briz O, Chinchilla-Tábora LM, Barranco MM, Río-Álvarez ÁD, Martinez-Chantar ML, Avila MA, Cairo S, Armengol C, Marin JJG, Macias RIR. Relevance of transportome among the mechanisms of chemoresistance in hepatoblastoma. Biochem Pharmacol 2025; 237:116914. [PMID: 40185314 DOI: 10.1016/j.bcp.2025.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Approximately 20 % of hepatoblastomas (HBs) exhibit a poor response to conventional chemotherapy due to mechanisms of chemoresistance (MOCs), such as reduced intracellular drug accumulation. This study evaluated the role of transportome in the multidrug resistance (MDR) of HB. Paired HB and adjacent liver tissue samples (n = 19) and HB-derived cell lines (HepG2, HuH6) were analyzed for their resistome characterization at mRNA (RT-qPCR, Taqman Low-Density Array, sequencing) and protein (western blot, immunohistochemistry, immunofluorescence) levels. Cell viability (MTT test) proliferation and migration (holographic microscopy) were determined. The impact of short-term (72 h) and long-term (>10 months) exposure of HB cells to cisplatin or doxorubicin on the transportome was investigated. Solute carrier (SLC) family of transporters showed minor relevance in HB MDR, while drug export pumps, particularly MRP2, were associated with poor response to chemotherapy. Exposure of HB cells to doxorubicin or cisplatin up-regulated MDR1, MRP1 and MRP2. In cells with induced persistent chemoresistance, the expression of genes involved in other MOCs, and epigenetic machinery was altered. Chemoresistant cells showed cross-resistance to several anticancer drugs but maintained sensitivity to cabozantinib. In conclusion, drug export pumps, but not SLC uptake transporters, are key contributors to HB chemoresistance. Cabozantinib emerges as a potential therapeutic option for HBs resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain
| | | | - María Manuela Barranco
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Childhood Liver Oncology Group, Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Álvaro Del Río-Álvarez
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Childhood Liver Oncology Group, Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Maria Luz Martinez-Chantar
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 31008 Pamplona, Spain
| | | | - Carolina Armengol
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain; Childhood Liver Oncology Group, Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, 28029 Madrid, Spain.
| |
Collapse
|
4
|
Schoeman S, Escobar F, Kreiger P, MacFarland S, Mattei P, Rungsiprakarn P, Srinivasan A, Acord M. Image-Guided Biopsy for the Diagnosis and Molecular Profiling of Hepatoblastoma. Pediatr Blood Cancer 2025; 72:e31575. [PMID: 39905601 DOI: 10.1002/pbc.31575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
INTRODUCTION Studies on the use of image-guided percutaneous biopsy for hepatoblastoma (HB), and recommendations put forth by the pediatric hepatic international tumor trial (PHITT), are limited. It is unknown if sufficient tissue can be obtained for trial enrollment as well as molecular profiling, which will likely play a key role in informing future treatment strategies. METHODS AND MATERIALS Patients with HB who underwent percutaneous biopsy at initial diagnosis in interventional radiology (IR) over a 12-year period at a single center were included. Patient demographics, pretreatment extent of disease (PRETEXT) stage, tumor size, and procedure details were collected. Pathology reports and tumor genomic analysis, when performed, were assessed for specimen adequacy. Post-procedure records were assessed for hemoperitoneum. RESULTS A total of 33 percutaneous biopsies were performed on 32 patients [17 female; median age 1.3 years (IQR: 0.7-2.5 years); median weight 10.5 kg (IQR: 7.4-12.7 kg)]. Most (n = 27) had a single liver lesion, and most (n = 18) were PRETEXT II. A total of 15 were positive for at least one annotation factor. Median longest tumor axis was 9.3 cm (IQR: 5.0-13.5 cm). A total of 16 patients had concurrent non-targeted liver biopsy, per PHITT recommendations. An 18-gauge instrument was most commonly used (n = 24, 73%) with a median of 8 cores (IQR: 6-12) obtained. There were no instances of hemoperitoneum. Tissue was adequate for histologic diagnosis in 97% (n = 32), with histologic subtyping obtained in 94% (30/32). When available (n = 29), comparison with the subsequent surgical resection specimen showed subtype concordance in 15 (52%) patients and minor variations secondary to sampling or treatment effect in 14 patients. Molecular profiling was completed on 21/21 specimens (100%), with 19/21 (90%) showing potentially clinically significant variants, most commonly in CTNNB1 (16/21). CONCLUSION In this single-center study, percutaneous biopsy resulted in no serious adverse events, a high rate of diagnosis, and successful subtyping and molecular characterization of HB.
Collapse
Affiliation(s)
- Sean Schoeman
- Department of Radiology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Fernando Escobar
- Department of Radiology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Portia Kreiger
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Anatomical Pathology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Suzanne MacFarland
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Oncology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Peter Mattei
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Phassawan Rungsiprakarn
- Department of Radiology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Abhay Srinivasan
- Department of Radiology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Acord
- Department of Radiology, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
He Y, Hao X, Hu B, Xia N, Wang C, Chen X, Zhang H, Duan Y, Ying Q, Dong Q. Identification of MAD2L1 as a novel biomarker for hepatoblastoma through bioinformatics and machine learning approaches. Front Oncol 2025; 15:1524714. [PMID: 40231267 PMCID: PMC11994420 DOI: 10.3389/fonc.2025.1524714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Objective This study aims to identify potential biomarkers for Hepatoblastoma (HB) using bioinformatics and machine learning, and to explore their underlying mechanisms of action. Methods We analyzed the datasets GSE131329 and GSE133039 to perform differential gene expression analysis. Single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network analysis (WGCNA) were utilized to identify gene modules linked to gene set activity. Protein-protein interaction (PPI) networks were constructed to identify hub genes, while random forest and support vector machine models were employed to screen for key diagnostic genes. Survival and immune infiltration analyses were conducted to assess the prognostic significance of these genes. Additionally, the expression levels, biological functions, and mechanisms of action of the selected genes were validated in HB cells through relevant experimental assays. Results We identified 1,377 and 1,216 differentially expressed genes in datasets GSE131329 and GSE133039, respectively. ssGSEA and WGCNA analyses identified 234 genes significantly linked to gene set activity. PPI analysis identified 20 core Hub genes. Machine learning highlighted three key diagnostic genes: CDK1, CCNA2, and MAD2L1. Studies have demonstrated that MAD2L1 is significantly overexpressed in HB and is associated with prognosis. WGCNA revealed that MAD2L1 is enriched in gene sets related to E2F_ TARGETS and G2M_CHECKPOINT. Experimental assays demonstrated that MAD2L1 knockdown significantly inhibits the proliferation, migration, and invasion of HB cell lines, and that MAD2L1 promotes cell cycle progression through the regulation of E2F. Conclusion Our study identifies MAD2L1 as a novel potential biomarker for HB, providing new strategies for early diagnosis and targeted therapy in HB.
Collapse
Affiliation(s)
- Ying He
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiwei Hao
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Hu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Xia
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chaojin Wang
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huanyu Zhang
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuhe Duan
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qinglong Ying
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong College Collaborative Innovation Center of Digital Medicine Clinical Treatment and Nutrition Health, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Fan L, Na J, Shi T, Liao Y. Hepatoblastoma: From Molecular Mechanisms to Therapeutic Strategies. Curr Oncol 2025; 32:149. [PMID: 40136353 PMCID: PMC11941340 DOI: 10.3390/curroncol32030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor in children under five years of age. Although globally rare, it accounts for a large proportion of liver cancer in children and has poor survival rates in high-risk and metastatic cases. This review discusses the molecular mechanisms, diagnostic methods, and therapeutic strategies of HB. Mutations in the CTNNB1 gene and the activation of the Wnt/β-catenin pathway are essential genetic factors. Furthermore, genetic syndromes like Beckwith-Wiedemann syndrome (BWS) and Familial Adenomatous Polyposis (FAP) considerably heighten the risk of associated conditions. Additionally, epigenetic mechanisms, such as DNA methylation and the influence of non-coding RNAs (ncRNAs), are pivotal drivers of tumor development. Diagnostics include serum biomarkers, immunohistochemistry (IHC), and imaging techniques. Standard treatments are chemotherapy, surgical resection, and liver transplantation (LT). Emerging therapies like immunotherapy and targeted treatments offer hope against chemotherapy resistance. Future research will prioritize personalized medicine, novel biomarkers, and molecular-targeted therapies to improve survival outcomes.
Collapse
Affiliation(s)
- Ling Fan
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Tieliu Shi
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science (MOE), School of Statistics, East China Normal University, Shanghai 200062, China
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
7
|
Dang W, Li Q, Wang X. ACSL4 promotes the formation of the proliferative subtype in hepatoblastoma. BMC Cancer 2025; 25:191. [PMID: 39901207 PMCID: PMC11789379 DOI: 10.1186/s12885-025-13592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy, with its significant heterogeneity complicating the identification of the most aggressive subtypes and the development of targeted therapies. In this study, we performed transcriptomic analysis of HB samples from the GEO database and identified three distinct molecular subtypes with varying prognostic outcomes. Among them, the proliferative subtype, characterized by enhanced proliferative capacity, poor prognosis, and an immunosuppressive tumor microenvironment, was particularly notable. ACSL4 emerged as a critical biomarker of this proliferative subtype, driving HB cell proliferation both in vitro and in vivo. Furthermore, pharmacological inhibition of ACSL4 using abemaciclib significantly suppressed tumor growth in xenograft models. Mechanistically, ACSL4 was found to promote cell proliferation by downregulating the interferon response signaling pathway which may implicate contribution to immunosuppression in the tumor. These findings underscore the pivotal role of ACSL4 in HB progression and highlight its potential as a therapeutic target for aggressive HB subtypes.
Collapse
Affiliation(s)
- Wei Dang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qin Li
- Department of Pathology, Institute of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Münter D, de Faria FW, Richter M, Aranda-Pardos I, Hotfilder M, Walter C, Paga E, Inserte C, Albert TK, Roy R, Rahman S, Riedel NC, Müller V, Pascher A, Wiebe K, Schmid I, Vokuhl C, Winkler B, Jüttner E, Vieth S, Mücke U, Kluiver TA, Peng WC, Rossig C, Schlué J, Madadi-Sanjani O, Sandmann S, Hartmann W, A-Gonzalez N, Soehnlein O, Kerl K. Multiomic analysis uncovers a continuous spectrum of differentiation and Wnt-MDK-driven immune evasion in hepatoblastoma. J Hepatol 2025:S0168-8278(25)00068-6. [PMID: 39900120 DOI: 10.1016/j.jhep.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND & AIMS Hepatoblastoma is the most common pediatric cancer of the liver, with the majority of cases displaying activating mutations in the Wnt/β-catenin pathway. Understanding the complex milieu of the tumor microenvironment has resulted in promising new therapies for adult cancers, but similar approaches in pediatric cancers are still lacking. We aimed to provide a comprehensive analysis of the tumor microenvironment of hepatoblastoma, unveiling its spatial architecture and key signaling mechanisms. METHODS Single-cell/-nucleus RNA-sequencing (RNA-seq) (n = 15), spatial transcriptomics (n = 22), and multiplex immunofluorescence stainings (n = 7) of treated, untreated, and metastasized pediatric hepatoblastomas were performed. An RNA-seq validation cohort (n = 110) including hepatoblastoma, non-tumor and fetal liver samples and single-cell RNA-seq data of healthy immune cells were used for further analysis. Western blotting and RNA-seq of hepatoblastoma and macrophage cell lines were conducted for experimental validation. RESULTS Of four identified transcriptional tumor programs, "Developmental" and "Metabolic" reflected different hepatic differentiation stages, while "Cycling" was enriched in undifferentiated cells and relapsed samples, and "Intermediate" displayed high activity in samples from patients with poor outcomes. We discovered an increased ratio of anti-to pro-inflammatory immune cells and evidence of immune exclusion from tumor areas. Wnt-responsive upregulation of the immunomodulator midkine in hepatoblastoma cells was associated with a change in macrophage phenotype, which could be partially reversed through midkine inhibition. CONCLUSIONS Hepatoblastoma cells exist along a continuous spectrum of hepatic differentiation and inhabit an altered immune environment. Wnt signaling augments midkine expression, which appears to be involved in shaping the immune environment by modifying macrophages to enable immune evasion, thereby providing a potential therapeutic target. IMPACT AND IMPLICATIONS Despite hepatoblastoma being the most common pediatric liver cancer, there has been a critical knowledge gap in understanding how the tumor microenvironment and immune landscape contribute to disease progression. Our novel findings, revealing a continuous spectrum of tumor differentiation states and Wnt-MDK-driven immune evasion, are significant for pediatric oncology clinicians and researchers, improving our functional understanding of the immune environment of hepatoblastoma. The identification of midkine as a tumor-specific immunomodulator suggests a potential for developing new targeted therapies, though further mechanistic and practical validation would be needed to realize clinical translation of these findings.
Collapse
Affiliation(s)
- Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Enya Paga
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Clara Inserte
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany; Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Rajanya Roy
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Shariyah Rahman
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Nicole C Riedel
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Volker Müller
- Department of Pediatric Surgery, University Hospital Münster, Münster, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplantation Surgery, University Hospital Münster, Münster, Germany
| | - Karsten Wiebe
- Department of Cardiothoracic Surgery, University Hospital Münster, Münster, Germany
| | - Irene Schmid
- Department of Pediatric Oncology and Hematology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Beate Winkler
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Jüttner
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Simon Vieth
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Urs Mücke
- Pediatric Oncology and Hematology, Medical School of Hanover, Hanover, Germany
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jerome Schlué
- Institute for Pathology, Medical School of Hanover, Hanover, Germany
| | - Omid Madadi-Sanjani
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | | | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany.
| |
Collapse
|
9
|
Ren J, Cheng S, Ren F, Gu H, Wu D, Yao X, Tan M, Huang A, Chen J. Epigenetic regulation and its therapeutic potential in hepatitis B virus covalently closed circular DNA. Genes Dis 2025; 12:101215. [PMID: 39534573 PMCID: PMC11555349 DOI: 10.1016/j.gendis.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 11/16/2024] Open
Abstract
Human hepatitis B virus (HBV) infection is the major cause of acute and chronic hepatitis B, liver cirrhosis, and hepatocellular carcinoma. Although the application of prophylactic vaccination programs has successfully prevented the trend of increasing HBV infection prevalence, the number of HBV-infected people remains very high. Approved therapeutic management efficiently suppresses viral replication; however, HBV infection is rarely completely resolved. The major reason for therapeutic failure is the persistence of covalently closed circular DNA (cccDNA), which forms viral minichromosomes by combining with histone and nonhistone proteins in the nucleus. Increasing evidence indicates that chromatin-modifying enzymes, viral proteins, and noncoding RNAs are essential for modulating the function of cccDNA. Therefore, a deeper understanding of the regulatory mechanism underlying cccDNA transcription will contribute to the development of a cure for chronic hepatitis B. This review summarizes the current knowledge of cccDNA biology, the regulatory mechanisms underlying cccDNA transcription, and novel anti-HBV approaches for eliminating cccDNA transcription.
Collapse
Affiliation(s)
- Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Huiying Gu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
10
|
López-Terrada D, Stahlschmidt J, Pérez-Atayde AR. "Update on pediatric primary liver tumors". Virchows Arch 2025; 486:23-47. [PMID: 39836187 DOI: 10.1007/s00428-024-03985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/22/2025]
Abstract
Liver masses are common in children, however primary malignant neoplasms are rare, representing only 1% of all pediatric cancers. Hepatocellular neoplasms are the most common primary liver malignancies and hepatoblastoma (HB) is the most frequently diagnosed. The incidence of HB, which is increasing, is approximately of 2 cases per million in the United States, followed by hepatocellular carcinoma (HCC). Pediatric primary liver tumors of mesenchymal origin are less common, except for benign vascular tumors (hemangiomas). Malignant mesenchymal neoplasms represent approximately 10-15% of all, the most common being embryonal sarcoma and malignant rhabdoid tumor. Malignant vascular tumors are rare, but epithelioid hemangioendothelioma (EHE) and angiosarcoma can be seen in children. The development and adoption of consensus diagnostic, therapeutic and risk-stratifying approaches for pediatric patients with malignant liver tumors has been historically challenged by their rarity and by their diverse clinical and histological appearance. On-going collaborative efforts of international consortia including the Children's Oncology Group (COG) in North America, the German Society of Paediatric Oncology and Haematology (GPOH), the Societe Internationale d' Oncologie Pediatrique Liver Tumor Study Group (SIOPEL) in Europe and the Japanese Liver Tumor group (JPLT), have made significant contributions to understanding the clinical and histopathological features, as well as the underlying biology of pediatric liver tumors, in particular HB. A new classification of pediatric liver tumors drafted at the international consensus meeting held in Los Angeles, has been incorporated in the recent WHO classification and is currently used by the PHITT (Paediatric Hepatic Malignancy International Tumour Trial) and other therapeutic protocols. This manuscript provides an overview of salient diagnostic features and updates in classification and molecular characterization for the most common pediatric primary liver neoplasms. It also includes a brief overview of other less common but relevant tumors, which should be considered in the differential diagnosis.
Collapse
Affiliation(s)
- Dolores López-Terrada
- Department of Pathology, Texas Children's Hospital, and Baylor College of Medicine, Houston, TX, USA.
| | - Jens Stahlschmidt
- Department of Histopathology and Molecular Pathology, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Antonio R Pérez-Atayde
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Requena D, Medico JA, Soto-Ugaldi LF, Shirani M, Saltsman JA, Torbenson MS, Coffino P, Simon SM. Liver cancer multiomics reveals diverse protein kinase A disruptions convergently produce fibrolamellar hepatocellular carcinoma. Nat Commun 2024; 15:10887. [PMID: 39738196 PMCID: PMC11685927 DOI: 10.1038/s41467-024-55238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis. RNA-seq data of 1412 liver tumors from FLC, hepatocellular carcinoma, hepatoblastoma and intrahepatic cholangiocarcinoma are analyzed, obtaining transcriptomic signatures unrestricted by experimental processing methods. These signatures reveal which dysregulations are unique to specific tumors and which are common to all liver cancers. Moreover, the transcriptomic FLC signature identifies a unifying phenotype for all FLC tumors regardless of how PKA was activated. We study this signature at multi-omics and single-cell levels in the first spatial transcriptomic characterization of FLC, identifying the contribution of tumor, normal, stromal, and infiltrating immune cells. Additionally, we study FLC metastases, finding small differences from the primary tumors.
Collapse
Affiliation(s)
- David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Jack A Medico
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - James A Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
12
|
Liu J, Jiang B, Xu W, Liu Q, Huang H, Chang X, Ma G, Xu X, Zhou L, Xiao GG, Guo J. Targeted inhibition of CHKα and mTOR in models of pancreatic ductal adenocarcinoma: A novel regimen for metastasis. Cancer Lett 2024; 605:217280. [PMID: 39343354 DOI: 10.1016/j.canlet.2024.217280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy for which there are currently no effective anti-metastatic therapies. Herein, we employed single-cell RNA sequencing and metabolomics analysis to demonstrate that metastatic cells highly express focal adhesion kinase (FAK), which promotes metastasis by remodeling choline kinase α (CHKα)-dependent choline metabolism. We designed a novel CHKα inhibitor, CHKI-03, and verified its efficacy in inhibiting metastasis in multiple preclinical models. Classical and newly synthesized small-molecule inhibitors have previously been used to assess the therapeutic potential of targeting mTOR and CHKα in various animal models. Mechanistically, FAK activated mTOR and its downstream HIF-1α, thereby elevating CHKα expression and promoting the proliferation, migration, and invasion of PDAC cells, as well as tumor growth and metastasis. Consistently, high expression levels of both FAK and CHKα are correlated with poor prognosis in patients with PDAC. Notably, CHK1-03 inhibited CHKα expression and also suppressed mTORC1 phosphorylation, disrupting the mTORC1-CHKα positive feedback loop. In addition, the combination of CHKI-03 and the mTORC1 inhibitor rapamycin synergistically inhibited tumor growth and metastasis in PDX models. The combination of CHKI-03 and rapamycin demonstrates considerable therapeutic efficacy in PDO models resistant to gemcitabine. Our findings reveal a pivotal mechanism underlying PDAC metastasis regulated by mTORC1-CHKα loop-dependent choline metabolism reprogramming, highlighting the therapeutic potential of this novel regimen for treating PDAC metastasis.
Collapse
Affiliation(s)
- Jianzhou Liu
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bolun Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 31003, China
| | - Wenchao Xu
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haoran Huang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Li Zhou
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Gary Guishan Xiao
- Functional Genomics and Proteomics Center, Creighton University Medical Center, 601N 30th ST, Omaha, NE, 68131, USA
| | - Junchao Guo
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
13
|
Wu PV, Fish M, Hazard FK, Zhu C, Vennam S, Walton H, Wagh D, Coller J, Przybyl J, Morri M, Neff N, West RB, Nusse R. A developmental biliary lineage program cooperates with Wnt activation to promote cell proliferation in hepatoblastoma. Nat Commun 2024; 15:10007. [PMID: 39567523 PMCID: PMC11579301 DOI: 10.1038/s41467-024-53802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Cancers evolve not only through the acquisition and clonal transmission of somatic mutations but also by epigenetic mechanisms that modify cell phenotype. Here, we use histology-guided and spatial transcriptomics to characterize hepatoblastoma, a childhood liver cancer that exhibits significant histologic and proliferative heterogeneity despite clonal activating mutations in the Wnt/β-catenin pathway. Highly proliferative regions with embryonal histology show high expression of Wnt target genes, the embryonic biliary transcription factor SOX4, and striking focal expression of the growth factor FGF19. In patient-derived tumoroids with constitutive Wnt activation, FGF19 is a required growth signal for FGF19-negative cells. Indeed, some tumoroids contain subsets of cells that endogenously express FGF19, downstream of Wnt/β-catenin and SOX4. Thus, the embryonic biliary lineage program cooperates with stabilized nuclear β-catenin, inducing FGF19 as a paracrine growth signal that promotes tumor cell proliferation, together with active Wnt signaling. In this pediatric cancer presumed to originate from a multipotent hepatobiliary progenitor, lineage-driven heterogeneity results in a functional growth advantage, a non-genetic mechanism whereby developmental lineage programs influence tumor evolution.
Collapse
Affiliation(s)
- Peng V Wu
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Matt Fish
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Chunfang Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hannah Walton
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Population Health, NYC Health + Hospitals, New York, NY, 10004, USA
| | - Dhananjay Wagh
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - John Coller
- Stanford Genomics, Stanford University, Stanford, CA, 94305, USA
| | - Joanna Przybyl
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Surgery, McGill University, Montreal, H4A 3J1, QC, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, H4A 3J1, QC, Canada
| | - Maurizio Morri
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
- Altos Labs, Redwood City, CA, 94065, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Kluiver TA, Lu Y, Schubert SA, Kraaier LJ, Ringnalda F, Lijnzaad P, DeMartino J, Megchelenbrink WL, Amo-Addae V, Eising S, de Faria FW, Münter D, van de Wetering M, Kerl K, Duiker E, van den Heuvel MC, de Meijer VE, de Kleine RH, Molenaar JJ, Margaritis T, Stunnenberg HG, de Krijger RR, Zsiros J, Clevers H, Peng WC. Divergent WNT signaling and drug sensitivity profiles within hepatoblastoma tumors and organoids. Nat Commun 2024; 15:8576. [PMID: 39567475 PMCID: PMC11579375 DOI: 10.1038/s41467-024-52757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatoblastoma, the most prevalent pediatric liver cancer, almost always carries a WNT-activating CTNNB1 mutation, yet exhibits notable molecular heterogeneity. To characterize this heterogeneity and identify novel targeted therapies, we perform comprehensive analysis of hepatoblastomas and tumor-derived organoids using single-cell RNA-seq/ATAC-seq, spatial transcriptomics, and high-throughput drug profiling. We identify two distinct tumor epithelial signatures: hepatic 'fetal' and WNT-high 'embryonal', displaying divergent WNT signaling patterns. The fetal group is enriched for liver-specific WNT targets, while the embryonal group is enriched in canonical WNT target genes. Gene regulatory network analysis reveals enrichment of regulons related to hepatic functions such as bile acid, lipid and xenobiotic metabolism in the fetal subtype but not in the embryonal subtype. In addition, the dichotomous expression pattern of the transcription factors HNF4A and LEF1 allows for a clear distinction between the fetal and embryonal tumor cells. We also perform high-throughput drug screening using patient-derived tumor organoids and identify sensitivity to HDAC inhibitors. Intriguingly, embryonal and fetal tumor organoids are sensitive to FGFR and EGFR inhibitors, respectively, indicating a dependency on EGF/FGF signaling in hepatoblastoma tumorigenesis. In summary, our data uncover the molecular and drug sensitivity landscapes of hepatoblastoma and pave the way for the development of targeted therapies.
Collapse
Affiliation(s)
- Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Yuyan Lu
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Hepatobiliary Surgery, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, China
| | - Stephanie A Schubert
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Jeff DeMartino
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Wouter L Megchelenbrink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, Naples, Italy
| | - Vicky Amo-Addae
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Selma Eising
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Evelien Duiker
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ruben H de Kleine
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Thanasis Margaritis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Hendrik G Stunnenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, the Netherlands
| | - József Zsiros
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands.
| |
Collapse
|
15
|
Bai Y, Deng X, Chen D, Han S, Lin Z, Li Z, Tong W, Li J, Wang T, Liu X, Liu Z, Cui Z, Zhang Y. Integrative analysis based on ATAC-seq and RNA-seq reveals a novel oncogene PRPF3 in hepatocellular carcinoma. Clin Epigenetics 2024; 16:154. [PMID: 39501301 PMCID: PMC11539654 DOI: 10.1186/s13148-024-01769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Assay of Transposase Accessible Chromatin Sequencing (ATAC-seq) is a high-throughput sequencing technique that detects open chromatin regions across the genome. These regions are critical in facilitating transcription factor binding and subsequent gene expression. Herein, we utilized ATAC-seq to identify key molecular targets regulating the development and progression of hepatocellular carcinoma (HCC) and elucidate the underlying mechanisms. METHODS We first compared chromatin accessibility profiles between HCC and normal tissues. Subsequently, RNA-seq data was employed to identify differentially expressed genes (DEGs). Integrating ATAC-seq and RNA-seq data allowed the identification of transcription factors and their putative target genes associated with differentially accessible regions (DARs). Finally, functional experiments were conducted to investigate the effects of the identified regulatory factors and corresponding targets on HCC cell proliferation and migration. RESULTS Enrichment analysis of DARs between HCC and adjacent normal tissues revealed distinct signaling pathways and regulatory factors. Upregulated DARs in HCC were enriched in genes related to the MAPK and FoxO signaling pathways and associated with transcription factor families like ETS and AP-1. Conversely, downregulated DARs were associated with the TGF-β, cAMP, and p53 signaling pathways and the CTCF family. Integration of the datasets revealed a positive correlation between specific DARs and DEGs. Notably, PRPF3 emerged as a gene associated with DARs in HCC, and functional assays demonstrated its ability to promote HCC cell proliferation and migration. To the best of our knowledge, this is the first report highlighting the oncogenic role of PRPF3 in HCC. Furthermore, ZNF93 expression positively correlated with PRPF3, and ChIP-seq data indicated its potential role as a transcription factor regulating PRPF3 by binding to its promoter region. CONCLUSION This study provides a comprehensive analysis of the epigenetic landscape in HCC, encompassing both chromatin accessibility and the transcriptome. Our findings reveal that ZNF93 promotes the proliferation and motility of HCC cells through transcriptional regulation of a novel oncogene, PRPF3.
Collapse
Affiliation(s)
- Yi Bai
- Department of Hepatobiliary Surgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xiyue Deng
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Dapeng Chen
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Shuangqing Han
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Zijie Lin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Zhongmin Li
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Wen Tong
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Jinming Li
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Tianze Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiangyu Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zilin Cui
- Department of Hepatobiliary Surgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
16
|
Paul D, Sinnarasan VSP, Das R, Sheikh MMR, Venkatesan A. Machine learning approach to predict blood-secretory proteins and potential biomarkers for liver cancer using omics data. J Proteomics 2024; 309:105298. [PMID: 39216516 DOI: 10.1016/j.jprot.2024.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Identifying non-invasive blood-based biomarkers is crucial for early detection and monitoring of liver cancer (LC), thereby improving patient outcomes. This study leveraged computational approaches to predict potential blood-based biomarkers for LC. Machine learning (ML) models were developed using selected features from blood-secretory proteins collected from the curated databases. The logistic regression (LR) model demonstrated the optimal performance. Transcriptome analysis across 7 LC cohorts revealed 231 common differentially expressed genes (DEGs). The encoded proteins of these DEGs were compared with the ML dataset, revealing 29 proteins overlapping with the blood-secretory dataset. The LR model also predicted 29 additional proteins as blood-secretory with the remaining protein-coding genes. As a result, 58 potential blood-secretory proteins were obtained. Among the top 20 genes, 13 common hub genes were identified. Further, area under the receiver operating characteristic curve (ROC AUC) analysis was performed to assess the genes as potential diagnostic blood biomarkers. Six genes, ESM1, FCN2, MDK, GPC3, CTHRC1 and COL6A6, exhibited an AUC value higher than 0.85 and were predicted as blood-secretory. This study highlights the potential of an integrative computational approach for discovering non-invasive blood-based biomarkers in LC, facilitating for further validation and clinical translation. SIGNIFICANCE: Liver cancer is one of the leading causes of premature death worldwide, with its prevalence and mortality rates projected to increase. Although current diagnostic methods are highly sensitive, they are invasive and unsuitable for repeated testing. Blood biomarkers offer a promising non-invasive alternative, but their wide dynamic range of protein concentration poses experimental challenges. Therefore, utilizing available omics data to develop a diagnostic model could provide a potential solution for accurate diagnosis. This study developed a computational method integrating machine learning and bioinformatics analysis to identify potential blood biomarkers. As a result, ESM1, FCN2, MDK, GPC3, CTHRC1 and COL6A6 biomarkers were identified, holding significant promise for improving diagnosis and understanding of liver cancer. The integrated method can be applied to other cancers, offering a possible solution for early detection and improved patient outcomes.
Collapse
Affiliation(s)
- Dahrii Paul
- Department of Bioinformatics, Pondicherry University, Puducherry 605014, India
| | | | - Rajesh Das
- Department of Bioinformatics, Pondicherry University, Puducherry 605014, India
| | | | - Amouda Venkatesan
- Department of Bioinformatics, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
17
|
Wyatt KD, Alexander N, Hills GD, Liang WH, Kadauke S, Volchenboum SL, Mian A, Phillips CA. Making sense of artificial intelligence and large language models-including ChatGPT-in pediatric hematology/oncology. Pediatr Blood Cancer 2024; 71:e31143. [PMID: 38924670 DOI: 10.1002/pbc.31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
ChatGPT and other artificial intelligence (AI) systems have captivated the attention of healthcare providers and researchers for their potential to improve care processes and outcomes. While these technologies hold promise to automate processes, increase efficiency, and reduce cognitive burden, their use also carries risks. In this commentary, we review basic concepts of AI, outline some of the capabilities and limitations of currently available tools, discuss current and future applications in pediatric hematology/oncology, and provide an evaluation and implementation framework that can be used by pediatric hematologist/oncologists considering the use of AI in clinical practice.
Collapse
Affiliation(s)
- Kirk D Wyatt
- Department of Pediatric Hematology/Oncology, Roger Maris Cancer Center, Fargo, North Dakota, USA
- Data for the Common Good, University of Chicago, Chicago, Illinois, USA
| | - Natasha Alexander
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gerard D Hills
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Regenstrief Institute, Indianapolis, Indiana, USA
- Riley Children's Health at Indiana University Health, Indianapolis, Indiana, USA
| | - Wayne H Liang
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Stephan Kadauke
- Department of Pathology and Lab Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Cell and Gene Therapy Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samuel L Volchenboum
- Data for the Common Good, University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Amir Mian
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Dell Children's Hospital, Austin, Texas, USA
- Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Charles A Phillips
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Wu Z, Xia F, Wang W, Zhang K, Fan M, Lin R. Worldwide burden of liver cancer across childhood and adolescence, 2000-2021: a systematic analysis of the Global Burden of Disease Study 2021. EClinicalMedicine 2024; 75:102765. [PMID: 39170941 PMCID: PMC11338123 DOI: 10.1016/j.eclinm.2024.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Background Liver cancer is a significant contributor to the global disease burden, of which hepatoblastomas are the most common liver tumors in children, with 90% of cases occurring within the first 5 years of life. It is important for pediatricians and subspecialists in pediatric gastroenterology and hepatology to have knowledge of the epidemiology and incidence trends of pediatric hepatic cancer, despite its rarity. In the present study, we first provide estimates of the incidence and mortality burden of hepatoblastoma and liver cancer from 2000 to 2021 in the childhood and adolescence. Methods Liver cancer burden and its attributable risk factors were estimated using data from the Global Burden of Disease Study (GBD) 2021. Percentage change was estimated to show the trend of liver cancer estimates from 2000 to 2021. The age-standardized rate (ASR) and estimated annual percentage change (EAPC) were utilized for measuring hepatoblastomas incidence and deaths rate trends. In accordance with the GBD framework, 95% uncertainty intervals (UIs) for all estimates by averaging the data from 1000 draws, with the lower and upper bounds of the 95% UIs. Findings Globally, from 2000 to 2021 in the age 5-19 years group, the incidence cases and deaths cases due to liver cancer decreased from 2449.2 (95% UI: 2235.9-2689.8) to 1692.9 (95% UI: 1482.0-1992.5) and 2248.5 (95% UI: 2053.7-2474.9) to 1516.6 (95% UI: 1322.1-1797.9), respectively. Meanwhile, from 2000 to 2021 in the age 20-24 years group, the incidence cases and deaths cases due to liver cancer decreased from 1453.5 (95% UI: 1327.8-1609.4) to 1285.1 (95% UI: 1159.2-1447.2) and 1432.3 (95% UI: 1307.6-1585.7) to 1195.5 (95% UI: 1066.1-1355.2), respectively. In addition, the prevalence of liver cancer decreased from 41.9% (95% UI: 18.7%-64.7%) to 26.4% (95% UI: 14.2%-39.1%) in the age 5-19 years group, and 46.6% (95% UI: 42.8%-51.5%) to 36.5% (95% UI: 33.1%-40.9%) in the age 20-24 years. From 2000 to 2021, in the age group of 5-19 years, the proportion of liver cancer incidence due to hepatitis B has decreased from 42.2% to 37.9%, while the proportion due to hepatitis C has increased from 1.1% to 1.6%. Additionally, there has been an increase in the proportion of NASH-induced liver cancer incidence from 5.2% to 9.4%, and alcohol use induced liver cancer incidence has also increased from 0.5% to 0.7% over the same period. Globally, from 2000 to 2021, the incidence cases and deaths cases due to hepatoblastoma decreased from 6131.8 (95% UI: 5234.8-6961.9) to 4045.6 (95% UI: 3250-4995.8) and 4059.2 (95% UI: 3494.5-4621.2) to 2416 (95% UI: 1940.2-3022.5), respectively. There was some variation in age-related sex-specific patterns, the highest number of hepatoblastoma incidence cases occurred in children between 2 and 4 years old and females in the age range of 12 months to 9 years had a higher number of new cases. Importantly, the incidence of hepatoblastoma was started to increase sharply after the age of 1 month. Interpretation The results of the present study are significant for liver health policy and practice in childhood and adolescence. Differentiated intervention and outreach strategies based on age and gender would be necessary to reduce the impact of liver cancer. Early screening and interventions for hepatoblastoma is important especially in the population of under 9 years old. Funding This study was supported by the National Key R&D Program of China (grant numbers 2023YFC2307000), National Natural Science Foundation of China [grant numbers 82170571 and 81974068], China Postdoctoral Science Foundation (grant numbers 2023M741283).
Collapse
Affiliation(s)
- Zenghong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangnan Xia
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Xiao F, Zhang Z, Li L, He X, Chen Y. LINC01370 suppresses hepatocellular carcinoma proliferation and metastasis by regulating the PI3K/AKT pathway. Discov Oncol 2024; 15:326. [PMID: 39090419 PMCID: PMC11294307 DOI: 10.1007/s12672-024-01193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) poses a serious threat to human health worldwide. lncRNA dysregulation is frequently observed in various cancers, including HCC. However, the function of LINC01370 in HCC progression and its underlying mechanisms remain unclear. METHODS LINC01370 expression in HCC tissues with cells was analyzed by applying the GEO and GEPIA databases and qRT-PCR. CCK-8 and Transwell assays were used to assess HCC cell proliferation, migration, and invasion. The PI3K, AKT, with p-AKT protein expression were analyzed by western blotting. RESULTS Gene Expression Omnibus (GEO) and Gene Expression Profiling Interactive Analysis (GEPIA) showed that LINC01370 expression was significantly lower in HCC tissues than in normal tissues. LINC01370 overexpression markedly repressed HepG2 SMMC-7721 cells proliferation, migration, and invasion. To understand the downstream mechanism of LINC01370 regulation, we further analyzed the genes co-expressed with LINC01370 in GSE136247 and GSE132037 and then performed KEGG analysis. The PA pathway was found to be a downstream pathway regulated by LINC01370 in GSE136247 and GSE132037 via gene co-expression and KEGG analysis. Furthermore, PI3K and p-AKT protein levels decreased after LINC01370 overexpression. Importantly, rescue experiments showed that activation of the PI3K/AKT pathway disrupted the repressive effect of LINC01370 overexpression on the proliferation, migration, and invasion of HepG2 of SMMC-7721 cells. CONCLUSIONS This study verified that LINC01370 suppresses HCC proliferation with metastasis by regulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fei Xiao
- Laboratory Department, Maoming People's Hospital, No. 101 Weimin Road, Maoming, 525000, Guangdong, China
| | - Zhuoyun Zhang
- Cancer Department, Maoming People's Hospital, Maoming, 525000, China
| | - Luqian Li
- Laboratory Department, Maoming People's Hospital, No. 101 Weimin Road, Maoming, 525000, Guangdong, China
| | - Xiaojie He
- Department of Endocrinology, Maoming People's Hospital, Maoming, 525000, China
| | - Yufeng Chen
- Laboratory Department, Maoming People's Hospital, No. 101 Weimin Road, Maoming, 525000, Guangdong, China.
| |
Collapse
|
20
|
Failli M, Demir S, Del Río-Álvarez Á, Carrillo-Reixach J, Royo L, Domingo-Sàbat M, Childs M, Maibach R, Alaggio R, Czauderna P, Morland B, Branchereau S, Cairo S, Kappler R, Armengol C, di Bernardo D. Computational drug prediction in hepatoblastoma by integrating pan-cancer transcriptomics with pharmacological response. Hepatology 2024; 80:55-68. [PMID: 37729391 PMCID: PMC11185924 DOI: 10.1097/hep.0000000000000601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the predominant form of pediatric liver cancer, though it remains exceptionally rare. While treatment outcomes for children with HB have improved, patients with advanced tumors face limited therapeutic choices. Additionally, survivors often suffer from long-term adverse effects due to treatment, including ototoxicity, cardiotoxicity, delayed growth, and secondary tumors. Consequently, there is a pressing need to identify new and effective therapeutic strategies for patients with HB. Computational methods to predict drug sensitivity from a tumor's transcriptome have been successfully applied for some common adult malignancies, but specific efforts in pediatric cancers are lacking because of the paucity of data. APPROACH AND RESULTS In this study, we used DrugSense to assess drug efficacy in patients with HB, particularly those with the aggressive C2 subtype associated with poor clinical outcomes. Our method relied on publicly available collections of pan-cancer transcriptional profiles and drug responses across 36 tumor types and 495 compounds. The drugs predicted to be most effective were experimentally validated using patient-derived xenograft models of HB grown in vitro and in vivo. We thus identified 2 cyclin-dependent kinase 9 inhibitors, alvocidib and dinaciclib as potent HB growth inhibitors for the high-risk C2 molecular subtype. We also found that in a cohort of 46 patients with HB, high cyclin-dependent kinase 9 tumor expression was significantly associated with poor prognosis. CONCLUSIONS Our work proves the usefulness of computational methods trained on pan-cancer data sets to reposition drugs in rare pediatric cancers such as HB, and to help clinicians in choosing the best treatment options for their patients.
Collapse
Affiliation(s)
- Mario Failli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Naples, Italy
| | - Salih Demir
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany
| | - Álvaro Del Río-Álvarez
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | - Juan Carrillo-Reixach
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
- Nottingham Clinical Trials Unit, Nottingham, United Kingdom
| | - Laura Royo
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | - Montserrat Domingo-Sàbat
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | | | - Rudolf Maibach
- International Breast Cancer Study Group Coordinating Center, Bern, Switzerland
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Piotr Czauderna
- Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, Gdansk, Poland
| | - Bruce Morland
- Department of Oncology, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | | | - Stefano Cairo
- XenTech, Evry, France
- Champions Oncology, Rockville, Maryland, USA
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany
| | - Carolina Armengol
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Madrid, Spain
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
21
|
Liang Y, Yin W, Cai Z, Luo H, Liu Q, Zhong C, Chen J, Lin Z, Huang Y, Liang Z, Deng J, Zhong W, Cai C, Lu J. N6-methyladenosine modified lncRNAs signature for stratification of biochemical recurrence in prostate cancer. Hum Genet 2024; 143:857-874. [PMID: 37758909 DOI: 10.1007/s00439-023-02603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Nonmutational epigenetic reprogramming is a crucial mechanism contributing to the pronounced heterogeneity of prostate cancer (PCa). Among these mechanisms, N6-methyladenosine (m6A)-modified long non-coding RNAs (lncRNAs) have emerged as key players. However, the precise roles of m6A-modified lncRNAs in PCa remain to be elucidated. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted on primary and metastatic PCa samples, leading to the identification of 21 lncRNAs exhibiting differential methylation and expression patterns. We further established a PCa prognostic signature, named m6A-modified lncRNA score (mLs), based on 9 differential methylated lncRNAs in 4 multicenter cohorts. The high mLs score cohort exhibited a tendency for earlier biochemical recurrence (BCR) compared to the low mLs score cohort. Remarkably, the predictive performance of the mLs score surpassed that of five previously reported lncRNA-based signatures. Functional enrichment analysis underscored a negative correlation between the mLs score and lipid metabolism. Additionally, through MeRIP-qPCR, we pinpointed a hub gene, MIR210HG, which was validated through in vitro and in vivo experiments. These findings collectively illuminate the landscape of m6A-methylated lncRNAs in PCa tissue via MeRIP-seq and harness this information to prognosticate PCa outcomes using the mLs score. Furthermore, our study validates, both experimentally and mechanistically, the facilitative role of MIR210HG in driving PCa progression.
Collapse
Affiliation(s)
- Yingke Liang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Wenjun Yin
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Hongwei Luo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Qinwei Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, China
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Zhuoyuan Lin
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510282, Guangdong, China
| | - Yaqiang Huang
- Department of Urology, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Zhenguo Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, China.
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
22
|
Gulati R, Fleifil Y, Jennings K, Bondoc A, Tiao G, Geller J, Timchenko L, Timchenko N. Inhibition of Histone Deacetylase Activity Increases Cisplatin Efficacy to Eliminate Metastatic Cells in Pediatric Liver Cancers. Cancers (Basel) 2024; 16:2300. [PMID: 39001363 PMCID: PMC11240720 DOI: 10.3390/cancers16132300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
The pediatric liver cancers, hepatoblastoma and hepatocellular carcinoma, are dangerous cancers which often spread to the lungs. Although treatments with cisplatin significantly improve outcomes, cisplatin may not eliminate metastasis-initiating cells. Our group has recently shown that the metastatic microenvironments of hepatoblastoma contain Cancer Associated Fibroblasts (CAFs) and neuron-like cells, which initiate cancer spread from liver to lungs. In this study, we found that these cells express high levels of HDAC1; therefore, we examined if histone deacetylase inhibition improves cisplatin anti-proliferative effects and reduces the formation of tumor clusters in pediatric liver cancer metastatic microenvironments. METHODS New cell lines were generated from primary hepatoblastoma liver tumors (hbl) and lung metastases (LM) of HBL patients. In addition, cell lines were generated from hepatocellular neoplasm, not otherwise specified (HCN-NOS) tumor samples, and hcc cell lines. Hbl, LM and hcc cells were treated with cisplatin, SAHA or in combination. The effect of these drugs on the number of cells, formation of tumor clusters and HDAC1-Sp5-p21 axis were examined. RESULTS Both HBL and HCC tissue specimens have increased HDAC1-Sp5 pathway activation, recapitulated in cell lines generated from the tumors. HDAC inhibition with vorinostat (SAHA) increases cisplatin efficacy to eliminate CAFs in hbl and in hcc cell lines. Although the neuron-like cells survive the combined treatments, proliferation was inhibited. Notably, combining SAHA with cisplatin overcame cisplatin resistance in an LM cell line from an aggressive case with multiple metastases. Underlying mechanisms of this enhanced inhibition include suppression of the HDAC1-Sp5 pathway and elevation of an inhibitor of proliferation p21. Similar findings were found with gemcitabine treatments suggesting that elimination of proliferative CAFs cells is a key event in the inhibition of mitotic microenvironment. CONCLUSIONS Our studies demonstrate the synergistic benefits of HDAC inhibition and cisplatin to eliminate metastasis-initiating cells in pediatric liver cancers.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
| | - Yasmeen Fleifil
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
| | - Katherine Jennings
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Alex Bondoc
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
| | - Greg Tiao
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
23
|
Braghini MR, De Stefanis C, Tiano F, Castellano A, Cicolani N, Pezzullo M, Tocco V, Spada M, Alaggio R, Alisi A, Francalanci P. Focal adhesion kinase and its epigenetic interactors as diagnostic and therapeutic hints for pediatric hepatoblastoma. Front Oncol 2024; 14:1397647. [PMID: 38947885 PMCID: PMC11211568 DOI: 10.3389/fonc.2024.1397647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Background Hepatoblastoma (HB) is the most common pediatric hepatic malignancy. Despite the progress in HB treatment, investigating HB pathomechanisms to optimize stratification and therapies remains a focal point to improve the outcome for high-risk patients. Methods Here, we pointed to explore the impact of these mechanisms in HB. An observational study was performed on liver samples from a cohort of 17 patients with a diagnosis of HB and two normal liver samples. The in vitro experiments were executed on the Huh6 human HB cell line treated with the FAK inhibitor TAE226. Results Our results highlight a significant up-regulation of mRNA and protein expression of FAK in livers from HB with respect to normal livers. The increased protein expression of total and Tyr397 phosphorylated FAK (pTyr397FAK) was significantly correlated with the expression of some epigenetic regulators of histone H3 methylation and acetylation. Of note, the expression of pTyr397FAK, N-methyltransferase enzyme (EZH2) and tri-methylation of the H3K27 residue correlated with tumor size and alpha-fetoprotein (AFP) levels. Finally, TAE226 caused a significant reduction of pTyr397FAK, epigenetic regulators, AFP, EPCAM, OCT4, and SOX2, in association with anti-proliferative and pro-apoptotic effects on HB cells. Conclusion Our results suggest a role of FAK in HB that requires further investigations mainly focused on the exploration of its effective diagnostic and therapeutic translatability.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Francesca Tiano
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Aurora Castellano
- Division of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicolo’ Cicolani
- Core Facilities, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Pezzullo
- Core Facilities, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valeria Tocco
- Core Facilities, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Spada
- Research Unit of Clinical Hepatogastroenterology and Transplantation; Division of Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Francalanci
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
24
|
Cillo U, Carraro A, Avolio AW, Cescon M, Di Benedetto F, Giannelli V, Magistri P, Nicolini D, Vivarelli M, Lanari J. Immunosuppression in liver transplant oncology: position paper of the Italian Board of Experts in Liver Transplantation (I-BELT). Updates Surg 2024; 76:725-741. [PMID: 38713396 DOI: 10.1007/s13304-024-01845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 05/08/2024]
Abstract
Liver transplant oncology (TO) represents an area of increasing clinical and scientific interest including a heterogeneous group of clinical-pathological settings. Immunosuppressive management after LT is a key factor relevantly impacting result. However, disease-related guidance is still lacking, and many open questions remain in the field. Based on such a substantial lack of solid evidences, the Italian Board of Experts in Liver Transplantation (I-BELT) (a working group including representatives of all national transplant centers), unprecedently promoted a methodologically sound consensus conference on the topic, based on the GRADE approach. The group final recommendations are herein presented and commented. The 18 PICOs and Statements and their levels of evidence and grades of recommendation are reported and grouped into seven areas: (1) risk stratification by histopathological and bio-molecular parameters and role of mTORi post-LT; (2) steroids and HCC recurrence; (3) management of immunosuppression when HCC recurs after LT; (4) mTORi monotherapy; (5) machine perfusion and HCC recurrence after LT; (6) physiopathology of tumor-infiltrating lymphocytes and immunosuppression, the role of inflammation; (7) immunotherapy in liver transplanted patients. The interest in mammalian targets of rapamycin inhibitors (mTORi), for steroid avoidance and the need for a reduction to CNI exposure emerged from the consensus process. A selected list of unmet needs prompting further investigations have also been developed. The so far heterogeneous and granular approach to immunosuppression in oncologic patients deserves greater efforts for a more standardized therapeutic response to the different clinical scenarios. This consensus process makes a first unprecedented step in this direction, to be developed on a larger scale.
Collapse
Affiliation(s)
- Umberto Cillo
- Department of Surgical, Oncological and Gastroenterological Sciences, General Surgery 2 Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Padua University Hospital, Via Giustiniani 2, 34128, Padua, PD, Italy.
| | - Amedeo Carraro
- Liver Transplant Unit, Department of Surgery and Oncology, University Hospital Trust of Verona, Verona, Italy
| | - Alfonso W Avolio
- Department of General Surgery and Liver Transplantation, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Matteo Cescon
- General Surgery and Transplantation Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Fabrizio Di Benedetto
- Hepatopancreatobiliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Valerio Giannelli
- Liver Unit, Department of Liver Transplant, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Paolo Magistri
- Hepatopancreatobiliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Nicolini
- Hepatobiliary and Abdominal Transplantation Surgery, Department of Experimental and Clinical Medicine, Riuniti Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Marco Vivarelli
- Hepatobiliary and Abdominal Transplantation Surgery, Department of Experimental and Clinical Medicine, Riuniti Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Jacopo Lanari
- Department of Surgical, Oncological and Gastroenterological Sciences, General Surgery 2 Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Padua University Hospital, Via Giustiniani 2, 34128, Padua, PD, Italy
| |
Collapse
|
25
|
Aguiar TFM, Rivas MP, de Andrade Silva EM, Pires SF, Dangoni GD, Macedo TC, Defelicibus A, Barros BDDF, Novak E, Cristofani LM, Odone V, Cypriano M, de Toledo SRC, da Cunha IW, da Costa CML, Carraro DM, Tojal I, de Oliveira Mendes TA, Krepischi ACV. First Transcriptome Analysis of Hepatoblastoma in Brazil: Unraveling the Pivotal Role of Noncoding RNAs and Metabolic Pathways. Biochem Genet 2024:10.1007/s10528-024-10764-y. [PMID: 38649558 DOI: 10.1007/s10528-024-10764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Talita Ferreira Marques Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
- Columbia University Irving Medical Center, New York, NY, USA
| | - Maria Prates Rivas
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Edson Mario de Andrade Silva
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Minas Gerais, Brazil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | - Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Gustavo Dib Dangoni
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Taiany Curdulino Macedo
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil
| | | | | | - Estela Novak
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Vicente Odone
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Adolescent and Child With Cancer Support Group (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Dirce Maria Carraro
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem-Cell Research Center, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
Roehrig A, Hirsch TZ, Pire A, Morcrette G, Gupta B, Marcaillou C, Imbeaud S, Chardot C, Gonzales E, Jacquemin E, Sekiguchi M, Takita J, Nagae G, Hiyama E, Guérin F, Fabre M, Aerts I, Taque S, Laithier V, Branchereau S, Guettier C, Brugières L, Fresneau B, Zucman-Rossi J, Letouzé E. Single-cell multiomics reveals the interplay of clonal evolution and cellular plasticity in hepatoblastoma. Nat Commun 2024; 15:3031. [PMID: 38589411 PMCID: PMC11001886 DOI: 10.1038/s41467-024-47280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.
Collapse
Affiliation(s)
- Amélie Roehrig
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | - Aurore Pire
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Pathology, Robert Debré and Necker-Enfants Malades Hospitals, APHP, Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | | | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | | | - Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
- Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Florent Guérin
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Monique Fabre
- Department of Pathology, Hôpital Universitaire Necker-Enfants malades, AP-HP, Paris, France
| | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, Paris, France
| | - Sophie Taque
- Département de Pédiatrie, CHU Fontenoy, Rennes, France
| | - Véronique Laithier
- Department of Children Oncology, Centre Hospitalier Universitaire Besançon, Besançon, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Catherine Guettier
- Department of Pathology Hôpital Bicêtre-AP-HP, INSERM U1193, Paris-Saclay University, Orsay, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France.
- Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France.
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France.
- CRCI2NA, Nantes Université, INSERM, CNRS, Nantes, France.
- University Hospital Hôtel-Dieu, Nantes, France.
| |
Collapse
|
27
|
Sanceau J, Poupel L, Joubel C, Lagoutte I, Caruso S, Pinto S, Desbois-Mouthon C, Godard C, Hamimi A, Montmory E, Dulary C, Chantalat S, Roehrig A, Muret K, Saint-Pierre B, Deleuze JF, Mouillet-Richard S, Forné T, Grosset CF, Zucman-Rossi J, Colnot S, Gougelet A. DLK1/DIO3 locus upregulation by a β-catenin-dependent enhancer drives cell proliferation and liver tumorigenesis. Mol Ther 2024; 32:1125-1143. [PMID: 38311851 PMCID: PMC11163201 DOI: 10.1016/j.ymthe.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
The CTNNB1 gene, encoding β-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained β-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (ApcΔhep) or Ctnnb1-exon 3 (β-cateninΔExon3) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/β-catenin complexes in an open conformation upon sustained β-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in β-catenin-mutated human HB and mouse models. DLK1-WRE editing by CRISPR-Cas9 approach impaired DLK1/DIO3 locus expression and slowed tumor growth in subcutaneous CTNNB1-mutated tumor cell grafts, ApcΔhep HB and β-cateninΔExon3 HCC. Tumor growth inhibition resulted either from increased FADD expression and subsequent caspase-3 cleavage in the first case or from decreased expression of cell cycle actors regulated by FoxM1 in the others. Therefore, the DLK1/DIO3 locus is an essential determinant of FoxM1-dependent cell proliferation during β-catenin-driven liver tumorigenesis. Targeting the DLK1-WRE enhancer to silence the DLK1/DIO3 locus might thus represent an interesting therapeutic strategy to restrict tumor growth in primary liver cancers with CTNNB1 mutations.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Lucie Poupel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France; Inovarion, F-75005 Paris, France
| | - Camille Joubel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Isabelle Lagoutte
- University Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sandra Pinto
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France
| | - Christèle Desbois-Mouthon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Godard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Akila Hamimi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Enzo Montmory
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Dulary
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Sophie Chantalat
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Kevin Muret
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | | | | | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Thierry Forné
- IGMM, University Montpellier, CNRS, F-34293 Montpellier, France
| | - Christophe F Grosset
- University Bordeaux, INSERM, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancer, BMGIC, U1035, MIRCADE team, F-33076 Bordeaux, France; University Bordeaux, INSERM, Bordeaux Institute in Oncology, BRIC, U1312, MIRCADE team, F-33076 Bordeaux, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sabine Colnot
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France.
| |
Collapse
|
28
|
Lee WG, Kim ES. Precision Oncology in Pediatric Cancer Surgery. Surg Oncol Clin N Am 2024; 33:409-446. [PMID: 38401917 DOI: 10.1016/j.soc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Pediatric precision oncology has provided a greater understanding of the wide range of molecular alterations in difficult-to-treat or rare tumors with the aims of increasing survival as well as decreasing toxicity and morbidity from current cytotoxic therapies. In this article, the authors discuss the current state of pediatric precision oncology which has increased access to novel targeted therapies while also providing a framework for clinical implementation in this unique population. The authors evaluate the targetable mutations currently under investigation-with a focus on pediatric solid tumors-and discuss the key surgical implications associated with novel targeted therapies.
Collapse
Affiliation(s)
- William G Lee
- Department of Surgery, Cedars-Sinai Medical Center, 116 North Robertson Boulevard, Suite PACT 700, Los Angeles, CA 90048, USA. https://twitter.com/william_ghh_lee
| | - Eugene S Kim
- Division of Pediatric Surgery, Department of Surgery, Cedars-Sinai Medical Center, 116 North Robertson Boulevard, Suite PACT 700, Los Angeles, CA 90048, USA.
| |
Collapse
|
29
|
Xiang X, Hao Y, Cheng C, Hu H, Chen H, Tan J, Wang Y, Liu X, Peng B, Liao J, Wang J, Xie Y, Liu J, Chen S, Xu L, Xie W, Xue R, Kuang M, Xu Z, Jiang H, Peng S. A TGF-β-dominant chemoresistant phenotype of hepatoblastoma associated with aflatoxin exposure in children. Hepatology 2024; 79:650-665. [PMID: 37459556 DOI: 10.1097/hep.0000000000000534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/03/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the most common liver cancer in children, posing a serious threat to children's health. Chemoresistance is the leading cause of mortality in patients with HB. A more explicit definition of the features of chemotherapy resistance in HB represents a fundamental urgent need. APPROACH AND RESULTS We performed an integrative analysis including single-cell RNA sequencing, whole-exome sequencing, and bulk RNA sequencing in 180 HB samples, to reveal genomic features, transcriptomic profiles, and the immune microenvironment of HB. Multicolor immunohistochemistry staining and in vitro experiments were performed for validation. Here, we reported four HB transcriptional subtypes primarily defined by differential expression of transcription factors. Among them, the S2A subtype, characterized by strong expression of progenitor ( MYCN , MIXL1 ) and mesenchymal transcription factors ( TWIST1 , TBX5 ), was defined as a new chemoresistant subtype. The S2A subtype showed increased TGF-β cancer-associated fibroblast and an immunosuppressive microenvironment induced by the upregulated TGF-β of HB. Interestingly, the S2A subtype enriched SBS24 signature and significantly higher serum aflatoxin B1-albumin (AFB1-ALB) level in comparison with other subtypes. Functional assays indicated that aflatoxin promotes HB to upregulate TGF-β. Furthermore, clinical prognostic analysis showed that serum AFB1-ALB is a potential indicator of HB chemoresistance and prognosis. CONCLUSIONS Our studies offer new insights into the relationship between aflatoxin and HB chemoresistance and provide important implications for its diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao Xiang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yijie Hao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cheng Cheng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanjing Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiehui Tan
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuanqi Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Liu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juncheng Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuling Chen
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenxuan Xie
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruidong Xue
- Peking University First Hospital, Translational Cancer Research, Beijing, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Zhe Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Clinical Trial Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Glembocki AI, Somers GR. Prognostic and predictive biomarkers in paediatric solid tumours. Pathology 2024; 56:283-296. [PMID: 38216399 DOI: 10.1016/j.pathol.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Characterisation of histological, immunohistochemical and molecular prognostic and predictive biomarkers has contributed significantly to precision medicine and better outcomes in the management of paediatric solid tumours. Prognostic biomarkers allow predictions to be made regarding a tumour's aggressiveness and clinical course, whereas predictive biomarkers help determine responses to a specific treatment. This review summarises prognostic biomarkers currently used in the more common paediatric solid tumours, with a brief commentary on the most relevant less common predictive biomarkers. MYCN amplification is the most important genetic alteration in neuroblastoma prognosis, and the histological classification devised by Shimada in 1999 is still used in routine diagnosis. Moreover, a new subgrouping of unfavourable histology neuroblastoma enables immunohistochemical characterisation of tumours with markedly different genetic features and prognosis. The predominant histology and commonly observed cytogenetic abnormalities are recognised outcome predictors in Wilms tumour. Evaluation for anaplasia, which is tightly associated with TP53 gene mutations and poor outcomes, is central in both the International Society of Paediatric Oncology and the Children's Oncology Group approaches to disease classification. Characterisation of distinct genotype-phenotype subclasses and critical mutations has expanded overall understanding of hepatoblastoma outcomes. The C1 subclass hepatoblastoma and CTNNB1 mutations are associated with good prognosis. In contrast, the C2 subclass, NFE2L2 mutations, TERT promoter mutations and high expression of oncofetal proteins and stem cell markers are associated with poor outcomes. Risk stratification in sarcomas is highly variable depending on the entity. The prognosis of rhabdomyosarcoma, for example, primarily depends on histological and molecular characteristics. Advances in our understanding of clinically significant biomarkers will translate into more precise diagnoses, improved risk stratification and more effective and less toxic treatment in this challenging group of patients.
Collapse
Affiliation(s)
- Aida I Glembocki
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Gino R Somers
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Kato Y, Fukazawa T, Tanimoto K, Kanawa M, Kojima M, Saeki I, Kurihara S, Touge R, Hirohashi N, Okada S, Hiyama E. Achaete-scute family bHLH transcription factor 2 activation promotes hepatoblastoma progression. Cancer Sci 2024; 115:847-858. [PMID: 38183173 PMCID: PMC10921009 DOI: 10.1111/cas.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
Achaete-scute family bHLH transcription factor 2 (ASCL2) is highly expressed in hepatoblastoma (HB) tissues, but its role remains unclear. Thus, biological changes in the HB cell line HepG2 in response to induced ASCL2 expression were assessed. ASCL2 expression was induced in HepG2 cells using the Tet-On 3G system, which includes doxycycline. Cell viability, proliferation activity, mobility, and stemness were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony-formation, migration, invasion, and sphere-formation assays. Quantitative reverse-transcription polymerase chain reaction was used to assess the expression of markers for proliferation (CCND1 and MYC), epithelial-mesenchymal transition (EMT; SNAI1, TWIST1, and ZEB1), mesenchymal-epithelial transition (CDH1), and stemness (KLF4, POU5F1, and SOX9). Compared with the non-induced HepG2 cells, cells with induced ASCL2 expression showed significant increases in viability, colony number, migration area (%), and sphere number on days 7, 14, 8, and 7, respectively, and invasion area (%) after 90 h. Furthermore, induction of ASCL2 expression significantly upregulated CCND1, MYC, POU5F1, SOX9, and KLF4 expression on days 2, 2, 3, 3, and 5, respectively, and increased the ratios of SNAI1, TWIST1, and ZEB1 to CDH1 on day 5. ASCL2 promoted the formation of malignant phenotypes in HepG2 cells, which may be correlated with the upregulation of the Wnt signaling pathway-, EMT-, and stemness-related genes. ASCL2 activation may therefore be involved in the progression of HB.
Collapse
Affiliation(s)
- Yutaka Kato
- Department of Pediatrics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Takahiro Fukazawa
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Division of Medical Research Support, Advanced Research Support CenterEhime UniversityToonJapan
| | - Keiji Tanimoto
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Masami Kanawa
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
| | - Masato Kojima
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Isamu Saeki
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Sho Kurihara
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Ryo Touge
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| | - Nobuyuki Hirohashi
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Eiso Hiyama
- Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHiroshimaJapan
- Department of Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Pediatric SurgeryHiroshima University HospitalHiroshimaJapan
| |
Collapse
|
32
|
Pire A, Hirsch TZ, Morcrette G, Imbeaud S, Gupta B, Pilet J, Cornet M, Fabre M, Guettier C, Branchereau S, Brugières L, Guerin F, Laithier V, Coze C, Nagae G, Hiyama E, Laurent-Puig P, Rebouissou S, Sarnacki S, Chardot C, Capito C, Faure-Conter C, Aerts I, Taque S, Fresneau B, Zucman-Rossi J. Mutational signature, cancer driver genes mutations and transcriptomic subgroups predict hepatoblastoma survival. Eur J Cancer 2024; 200:113583. [PMID: 38330765 DOI: 10.1016/j.ejca.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Hepatoblastoma is the most frequent pediatric liver cancer. The current treatments lead to 80% of survival rate at 5 years. In this study, we evaluated the clinical relevance of molecular features to identify patients at risk of chemoresistance, relapse and death of disease. METHODS All the clinical data of 86 children with hepatoblastoma were retrospectively collected. Pathological slides were reviewed, tumor DNA sequencing (by whole exome, whole genome or target) and transcriptomic profiling with RNAseq or 300-genes panel were performed. Associations between the clinical, pathological, mutational and transcriptomic data were investigated. RESULTS High-risk patients represented 44% of our series and the median age at diagnosis was 21.9 months (range: 0-208). Alterations of the WNT/ß-catenin pathway and of the 11p15.5 imprinted locus were identified in 98% and 74% of the tumors, respectively. Other cancer driver genes mutations were only found in less than 11% of tumors. After neoadjuvant chemotherapy, disease-specific survival and poor response to neoadjuvant chemotherapy were associated with 'Liver Progenitor' (p = 0.00049, p < 0.0001) and 'Immune Cold' (p = 0.0011, p < 0.0001) transcriptomic tumor subtypes, SBS35 cisplatin mutational signature (p = 0.018, p = 0.001), mutations in rare cancer driver genes (p = 0.0039, p = 0.0017) and embryonal predominant histological type (p = 0.0013, p = 0.0077), respectively. Integration of the clinical and molecular features revealed a cluster of molecular markers associated with resistance to chemotherapy and survival, enlightening transcriptomic 'Immune Cold' and Liver Progenitor' as a predictor of survival independent of the clinical features. CONCLUSIONS Response to neoadjuvant chemotherapy and survival in children treated for hepatoblastoma are associated with genomic and pathological features independently of the clinical features.
Collapse
Affiliation(s)
- Aurore Pire
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France; Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Bruxelles, Belgium
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France; Pathology Department, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Jill Pilet
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Marianna Cornet
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Monique Fabre
- Pathology Department, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Catherine Guettier
- Department of Pathology, AP-HP Bicêtre Hospital, F-94270 Le Kremlin-Bicêtre, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, AP-HP Bicêtre Hospital, F-94270 Le Kremlin-Bicêtre, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif F-94805, France
| | - Florent Guerin
- Department of Pediatric Surgery, AP-HP Bicêtre Hospital, F-94270 Le Kremlin-Bicêtre, France
| | | | - Carole Coze
- Department of Pediatric and Oncology, Hopital de La Timone, Aix Marseille University, F-13005 Marseille, France
| | - Genta Nagae
- Genome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan; Department of Biomedical Science, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, Hiroshima, Japan
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France
| | - Sabine Sarnacki
- Department of Pediatric Surgery, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Christophe Chardot
- Department of Pediatric Surgery, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Carmen Capito
- Department of Pediatric Surgery, AP-HP Necker Enfants Malades Hospital, F-75015 Paris, France
| | - Cécile Faure-Conter
- Institut d'hématologie et d'oncologie pédiatrique de Lyon, F-69008 Lyon, France
| | - Isabelle Aerts
- Institut Curie, Oncology Center SIREDO, F-75005 Paris, France
| | - Sophie Taque
- Pediatric Department hemato-oncology, CHU Rennes, F-35033 Rennes, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif F-94805, France; Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, Cancer and Radiation Team, F-94805 Villejuif, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Labex Onco-Immunology, Institute du Cancer Paris CARPEM, AP-HP, F-75015 Paris, France; AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, F-75015 Paris, France.
| |
Collapse
|
33
|
Wang HS, Lao J, Jiang RS, Wang B, Ma XP, Wang JY. Summary of biological research on hepatoblastoma: a scoping review. Front Pediatr 2024; 12:1309693. [PMID: 38390281 PMCID: PMC10881832 DOI: 10.3389/fped.2024.1309693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background Hepatoblastoma is the most prevalent primary hepatic malignancy in children, comprising 80% of pediatric hepatic malignancies and 1% of all pediatric malignancies. However, traditional treatments have proven inadequate in effectively curing hepatoblastoma, leading to a poor prognosis. Methods A literature search was conducted on multiple electronic databases (PubMed and Google Scholar). A total of 86 articles were eligible for inclusion in this review. Result This review aims to consolidate recent developments in hepatoblastoma research, focusing on the latest advances in cancer-associated genomics, epigenetic studies, transcriptional programs and molecular subtypes. We also discuss the current treatment approaches and forthcoming strategies to address cancer-associated biological challenges. Conclusion To provide a comprehensive summary of the molecular mechanisms associated with hepatoblastoma occurrence, this review highlights three key aspects: genomics, epigenetics, and transcriptomics. Our review aims to facilitate the exploration of novel molecular mechanisms and the development of innovative clinical treatment strategies for hepatoblastoma.
Collapse
Affiliation(s)
- Huan-sheng Wang
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Jing Lao
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Ren-sen Jiang
- Department of General Surgery, Shenzhen Children’s Hospital of ShanTou University, Shenzhen, Guangdong Province, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiao-peng Ma
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Jian-yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
34
|
Demir S, Razizadeh N, Indersie E, Branchereau S, Cairo S, Kappler R. Targeting G9a/DNMT1 methyltransferase activity impedes IGF2-mediated survival in hepatoblastoma. Hepatol Commun 2024; 8:e0378. [PMID: 38285887 PMCID: PMC10830081 DOI: 10.1097/hc9.0000000000000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND As the variable clinical outcome of patients with hepatoblastoma (HB) cannot be explained by genetics alone, the identification of drugs with the potential to effectively reverse epigenetic alterations is a promising approach to overcome poor therapy response. The gene ubiquitin like with PHD and ring finger domains 1 (UHRF1) represents an encouraging epigenetic target due to its regulatory function in both DNA methylation and histone modifications and its clinical relevance in HB. METHODS Patient-derived xenograft in vitro and in vivo models were used to study drug response. The mechanistic basis of CM-272 treatment was elucidated using RNA sequencing and western blot experiments. RESULTS We validated in comprehensive data sets that UHRF1 is highly expressed in HB and associated with poor outcomes. The simultaneous pharmacological targeting of UHRF1-dependent DNA methylation and histone H3 methylation by the dual inhibitor CM-272 identified a selective impact on HB patient-derived xenograft cell viability while leaving healthy fibroblasts unaffected. RNA sequencing revealed downregulation of the IGF2-activated survival pathway as the main mode of action of CM-272 treatment, subsequently leading to loss of proliferation, hindered colony formation capability, reduced spheroid growth, decreased migration potential, and ultimately, induction of apoptosis in HB cells. Importantly, drug response depended on the level of IGF2 expression, and combination assays showed a strong synergistic effect of CM-272 with cisplatin. Preclinical testing of CM-272 in a transplanted patient-derived xenograft model proved its efficacy but also uncovered side effects presumably caused by its strong antitumor effect in IGF2-driven tumors. CONCLUSIONS The inhibition of UHRF1-associated epigenetic traces, such as IGF2-mediated survival, is an attractive approach to treat high-risk HB, especially when combined with the standard-of-care therapeutic cisplatin.
Collapse
Affiliation(s)
- Salih Demir
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| | - Negin Razizadeh
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| | | | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, AP-HP Paris Saclay University, France
| | - Stefano Cairo
- XenTech, Evry, France
- Champions Oncology, Inc., Rockville, Maryland, USA
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| |
Collapse
|
35
|
Glaser K, Schepers EJ, Zwolshen HM, Lake CM, Timchenko NA, Karns RA, Cairo S, Geller JI, Tiao GM, Bondoc AJ. EZH2 is a key component of hepatoblastoma tumor cell growth. Pediatr Blood Cancer 2024; 71:e30774. [PMID: 37990130 PMCID: PMC10842061 DOI: 10.1002/pbc.30774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2) catalyzes the trimethylation of histone H3 at lysine 27 via the polycomb recessive complex 2 (PRC2) and plays a time-specific role in normal fetal liver development. EZH2 is overexpressed in hepatoblastoma (HB), an embryonal tumor. EZH2 can also promote tumorigenesis via a noncanonical, PRC2-independent mechanism via proto-oncogenic, direct protein interaction, including β-catenin. We hypothesize that the pathological activation of EZH2 contributes to HB propagation in a PRC2-independent manner. METHODS AND RESULTS We demonstrate that EZH2 promotes proliferation in HB tumor-derived cell lines through interaction with β-catenin. Although aberrant EZH2 expression occurs, we determine that both canonical and noncanonical EZH2 signaling occurs based on specific gene-expression patterns and interaction with SUZ12, a PRC2 component, and β-catenin. Silencing and inhibition of EZH2 reduce primary HB cell proliferation. CONCLUSIONS EZH2 overexpression promotes HB cell proliferation, with both canonical and noncanonical function detected. However, because EZH2 directly interacts with β-catenin in human tumors and EZH2 overexpression is not equal to SUZ12, it seems that a noncanonical mechanism is contributing to HB pathogenesis. Further mechanistic studies are necessary to elucidate potential pathogenic downstream mechanisms and translational potential of EZH2 inhibitors for the treatment of HB.
Collapse
Affiliation(s)
- Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily J Schepers
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Harrison M Zwolshen
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charissa M Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nikolai A Timchenko
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rebekah A Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stefano Cairo
- Champions Oncology, US Research Headquarters, Rockville, Maryland, USA
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gregory M Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexander J Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
36
|
Zhu Y, Wang Q, Xie X, Ma C, Qiao Y, Zhang Y, Wu Y, Gao Y, Jiang J, Liu X, Chen J, Li C, Ge G. ZBTB7B is a permissive regulator of hepatocellular carcinoma initiation by repressing c-Jun expression and function. Cell Death Dis 2024; 15:55. [PMID: 38225233 PMCID: PMC10789742 DOI: 10.1038/s41419-024-06441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Hepatocarcinogenesis is a multi-step process. However, the regulators of hepatocellular carcinoma (HCC) initiation are understudied. Adult liver-specific gene expression was globally downregulated in HCC. We hypothesize that adult liver-specific genes, especially adult liver-enriched transcription factors may exert tumor-suppressive functions in HCC. In this study, we identify ZBTB7B, an adult liver-enriched transcription factor as a permissive regulator of HCC initiation. ZBTB7B is highly expressed in hepatocytes in adult livers, compared to fetal livers. To evaluate the functions of ZBTB7B in hepatocarcinogenesis, we performed hepatocyte-specific ZBTB7B knockout in hydrodynamic oncogene transfer-induced mouse liver cancer models. Hepatocyte-specific knockout of ZBTB7B promotes activated Akt and N-Ras-induced HCC development. Moreover, ZBTB7B deficiency sensitizes hepatocytes to a single oncogene Akt-induced oncogenic transformation and HCC initiation, which is otherwise incompetent in inducing HCC. ZBTB7B deficiency accelerates HCC initiation by down-regulating adult liver-specific gene expression and priming livers to a fetal-like state. The molecular mechanism underlying ZBTB7B functions in hepatocytes was investigated by integrated transcriptomic, phosphoproteomic, and chromatin immunoprecipitation-sequencing analyses. Integrative multi-omics analyses identify c-Jun as the core signaling node in ZBTB7B-deficient liver cancer initiation. c-Jun is a direct target of ZBTB7B essential to accelerated liver cancer initiation in ZBTB7B-deficient livers. Knockdown of c-Jun expression or dominant negative c-Jun expression delays HCC development in ZBTB7B-deficient livers. In addition, ZBTB7B competes with c-Jun for chromatin binding. Ectopic ZBTB7B expression attenuates the tumor-promoting functions of c-Jun. Expression of ZBTB7B signature, composed of 140 genes co-regulated by ZBTB7B and c-Jun, is significantly downregulated in early-stage HCCs compared to adjacent normal tissues, correlates to liver-specific gene expression, and is associated with good prognosis in human HCC. Thus, ZBTB7B functions as a permissive regulator of HCC initiation by directly regulating c-Jun expression and function.
Collapse
Affiliation(s)
- Yue Zhu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qinqin Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyu Xie
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cuihong Ma
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuemei Qiao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Zhang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanjun Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan Gao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Jiang
- Genome Tagging Project (GTP) Center, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin Liu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chen Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Gaoxiang Ge
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
37
|
Chen Y, Froelich MF, Tharmaseelan H, Jiang H, Wang Y, Li H, Tao M, Gao Y, Wang J, Liu J, Schoenberg SO, Feng S, Weis M. Computed tomography imaging phenotypes of hepatoblastoma identified from radiomics signatures are associated with the efficacy of neoadjuvant chemotherapy. Pediatr Radiol 2024; 54:58-67. [PMID: 37982901 PMCID: PMC10776468 DOI: 10.1007/s00247-023-05793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Though neoadjuvant chemotherapy has been widely used in the treatment of hepatoblastoma, there still lacks an effective way to predict its effect. OBJECTIVE To characterize hepatoblastoma based on radiomics image features and identify radiomics-based lesion phenotypes by unsupervised machine learning, intended to build a classifier to predict the response to neoadjuvant chemotherapy. MATERIALS AND METHODS In this retrospective study, we segmented the arterial phase images of 137 cases of pediatric hepatoblastoma and extracted the radiomics features using PyRadiomics. Then unsupervised k-means clustering was applied to cluster the tumors, whose result was verified by t-distributed stochastic neighbor embedding (t-SNE). The least absolute shrinkage and selection operator (LASSO) regression was used for feature selection, and the clusters were visually analyzed by radiologists. The correlations between the clusters, clinical and pathological parameters, and qualitative radiological features were analyzed. RESULTS Hepatoblastoma was clustered into three phenotypes (homogenous type, heterogenous type, and nodulated type) based on radiomics features. The clustering results had a high correlation with response to neoadjuvant chemotherapy (P=0.02). The epithelial ratio and cystic components in radiological features were also associated with the clusters (P=0.029 and 0.008, respectively). CONCLUSIONS This radiomics-based cluster system may have the potential to facilitate the precise treatment of hepatoblastoma. In addition, this study further demonstrated the feasibility of using unsupervised machine learning in a disease without a proper imaging classification system.
Collapse
Affiliation(s)
- Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Lu, Guangzhou, 510080, China
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Hishan Tharmaseelan
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Hong Jiang
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuanqi Wang
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haitao Li
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mingyao Tao
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Gao
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Lu, Guangzhou, 510080, China
| | - Jifei Wang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Lu, Guangzhou, 510080, China
| | - Juncheng Liu
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Stefan O Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Shiting Feng
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Lu, Guangzhou, 510080, China.
| | - Meike Weis
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
38
|
Pilet J, Hirsch TZ, Gupta B, Roehrig A, Morcrette G, Pire A, Letouzé E, Fresneau B, Taque S, Brugières L, Branchereau S, Chardot C, Aerts I, Sarnacki S, Fabre M, Guettier C, Rebouissou S, Zucman-Rossi J. Preneoplastic liver colonization by 11p15.5 altered mosaic cells in young children with hepatoblastoma. Nat Commun 2023; 14:7122. [PMID: 37932266 PMCID: PMC10628292 DOI: 10.1038/s41467-023-42418-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
Pediatric liver tumors are very rare tumors with the most common diagnosis being hepatoblastoma. While hepatoblastomas are predominantly sporadic, around 15% of cases develop as part of predisposition syndromes such as Beckwith-Wiedemann (11p15.5 locus altered). Here, we identify mosaic genetic alterations of 11p15.5 locus in the liver of hepatoblastoma patients without a clinical diagnosis of Beckwith-Wiedemann syndrome. We do not retrieve these alterations in children with other types of pediatric liver tumors. We show that mosaic 11p15.5 alterations in liver FFPE sections of hepatoblastoma patients display IGF2 overexpression and H19 downregulation together with an alteration of the liver zonation. Moreover, mosaic livers' microenvironment is enriched in extracellular matrix and angiogenesis. Spatial transcriptomics and single-nucleus RNAseq analyses identify a 60-gene signature in 11p15.5 altered hepatocytes. These data provide insights for 11p15.5 mosaicism detection and its functional consequences during the early steps of carcinogenesis.
Collapse
Grants
- FunGeST team (FUNctional GEnomics of Solid Tumors) is supported by Ligue contre le cancer (équipe labellisée), SFCE (Société Française de Lutte Contre les Cancers et les Leucémies de l’Enfant), the SIRIC CARPEM, PeLiCan.Resist InCa (Pediatric LIver CANcer database to combat RESISTance to treatment, Institut National du Cancer), France Génomique, association Etoile de Martin, Fédération Enfants et Santé, association Hubert Gouin “Enfance et Cancer,” INSERM Plan Cancer, CisMutHep InCa High-Risk High_Gain (Institut National du Cancer, grant number PEDIAHR22-009). This work was also supported by the Fondation pour la Recherche Médicale, grant number ECO201906008977 to AR and grant number ECO20170637540 to JP. AP received a funding from Fondation Nuovo-Soldati.
Collapse
Affiliation(s)
- Jill Pilet
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Aurore Pire
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Sophie Taque
- Department of Paediatrics, CHU Rennes, Rennes, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, AP-HP, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Christophe Chardot
- Department of Pediatric Surgery, Hôpital Necker-Enfants Malades, AP-HP, Université Paris Cité, Paris, France
| | - Isabelle Aerts
- Institut Curie, PSL Research University, Oncology Center SIREDO, Paris, France
| | - Sabine Sarnacki
- Department of Pediatric Surgery, Hôpital Necker-Enfants Malades, AP-HP, Université Paris Cité, Paris, France
| | - Monique Fabre
- Pathology Department, Necker Enfants Malades Hospital, Université Paris Cité, AP-HP, Paris, France
| | - Catherine Guettier
- Department of Pathology Hôpital Bicêtre-AP-HP, INSERM U1193, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, F-75006, Paris, France.
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, F-75015, Paris, France.
| |
Collapse
|
39
|
López-Pérez A, Remeseiro S, Hörnblad A. Diet-induced rewiring of the Wnt gene regulatory network connects aberrant splicing to fatty liver and liver cancer in DIAMOND mice. Sci Rep 2023; 13:18666. [PMID: 37907668 PMCID: PMC10618177 DOI: 10.1038/s41598-023-45614-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
Several preclinical models have been recently developed for metabolic associated fatty liver disease (MAFLD) and associated hepatocellular carcinoma (HCC) but comprehensive analysis of the regulatory and transcriptional landscapes underlying disease in these models are still missing. We investigated the regulatory and transcriptional landscape in fatty livers and liver tumours from DIAMOND mice that faithfully mimic human HCC development in the context of MAFLD. RNA-sequencing and ChIP-sequencing revealed rewiring of the Wnt/β-catenin regulatory network in DIAMOND tumours, as manifested by chromatin remodelling and associated switching in the expression of the canonical TCF/LEF downstream effectors. We identified splicing as a major mechanism leading to constitutive oncogenic activation of β-catenin in a large subset of DIAMOND tumours, a mechanism that is independent on somatic mutations in the locus and that has not been previously shown. Similar splicing events were found in a fraction of human HCC and hepatoblastoma samples.
Collapse
Affiliation(s)
- Ana López-Pérez
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90187, Umeå, Sweden
| | - Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
40
|
Whitby A, Pabla P, Shastri B, Amugi L, Del Río-Álvarez Á, Kim DH, Royo L, Armengol C, Dandapani M. Characterisation of Aberrant Metabolic Pathways in Hepatoblastoma Using Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS). Cancers (Basel) 2023; 15:5182. [PMID: 37958356 PMCID: PMC10648437 DOI: 10.3390/cancers15215182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hepatoblastoma (HB) is a rare childhood tumour with an evolving molecular landscape. We present the first comprehensive metabolomic analysis using untargeted and targeted liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS) of paired tumour and non-tumour surgical samples in HB patients (n = 8 pairs). This study demonstrates that the metabolomic landscape of HB is distinct from that of non-tumour (NT) liver tissue, with 35 differentially abundant metabolites mapping onto pathways such as fatty acid transport, glycolysis, the tricarboxylic acid (TCA) cycle, branched-chain amino acid degradation and glutathione synthesis. Targeted metabolomics demonstrated reduced short-chain acylcarnitines and a relative accumulation of branched-chain amino acids. Medium- and long-chain acylcarnitines in HB were similar to those in NT. The metabolomic changes reported are consistent with previously reported transcriptomic data from tumour and non-tumour samples (49 out of 54 targets) as well as metabolomic data obtained using other techniques. Gene set enrichment analysis (GSEA) from RNAseq data (n = 32 paired HB and NT samples) demonstrated a downregulation of the carnitine metabolome and immunohistochemistry showed a reduction in CPT1a (n = 15 pairs), which transports fatty acids into the mitochondria, suggesting a lack of utilisation of long-chain fatty acids in HB. Thus, our findings suggest a reduced metabolic flux in HB which is corroborated at the gene expression and protein levels. Further work could yield novel insights and new therapeutic targets.
Collapse
Affiliation(s)
- Alison Whitby
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pardeep Pabla
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Bhoomi Shastri
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laudina Amugi
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- Phenome Centre Birmingham, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Álvaro Del Río-Álvarez
- Childhood Liver Oncology Group, Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Hepáticas y Digestivas, 28029 Madrid, Spain
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laura Royo
- Childhood Liver Oncology Group, Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Carolina Armengol
- Childhood Liver Oncology Group, Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Hepáticas y Digestivas, 28029 Madrid, Spain
| | - Madhumita Dandapani
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
41
|
Pihlajoki M, Eloranta K, Nousiainen R, Väyrynen V, Soini T, Kyrönlahti A, Parkkila S, Kanerva J, Wilson DB, Pakarinen MP, Heikinheimo M. Biology of childhood hepatoblastoma and the search for novel treatments. Adv Biol Regul 2023; 91:100997. [PMID: 39492287 DOI: 10.1016/j.jbior.2023.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Our research laboratory has a longstanding interest in developmental disorders and embryonic tumors, and recent efforts have focused on the pathogenesis of pediatric liver tumors. This review focuses on hepatoblastoma (HB), the most common pediatric liver malignancy. Despite advances in treatment, patients with metastatic HB have a poor prognosis, and survivors often have permanent side effects attributable to chemotherapy. In an effort to improve survival and lessen long-term complications of HB, we have searched for novel molecular vulnerabilities using a combination of patient derived cell lines, metabolomics, and RNA sequencing of human samples at diagnosis and follow-up. These studies have shed light on pathogenesis and identified putative targets for future therapies in children with advanced HB.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Katja Eloranta
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Väyrynen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tea Soini
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kyrönlahti
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; FICAN Mid, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Jukka Kanerva
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University in St. Louis, St. Louis, United States
| | - Mikko P Pakarinen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, Pediatric Research Department of Women's Health, Karolinska Institute, Stockholm, Sweden
| | - Markku Heikinheimo
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Pediatrics, Washington University in St. Louis, St. Louis, United States; Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
| |
Collapse
|
42
|
Clavería-Cabello A, Herranz JM, Latasa MU, Arechederra M, Uriarte I, Pineda-Lucena A, Prosper F, Berraondo P, Alonso C, Sangro B, García Marin JJ, Martinez-Chantar ML, Ciordia S, Corrales FJ, Francalanci P, Alaggio R, Zucman-Rossi J, Indersie E, Cairo S, Domingo-Sàbat M, Zanatto L, Sancho-Bru P, Armengol C, Berasain C, Fernandez-Barrena MG, Avila MA. Identification and experimental validation of druggable epigenetic targets in hepatoblastoma. J Hepatol 2023; 79:989-1005. [PMID: 37302584 DOI: 10.1016/j.jhep.2023.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of β-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.
Collapse
Affiliation(s)
| | - Jose Maria Herranz
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Ujue Latasa
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Arechederra
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Felipe Prosper
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Oncohematology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Program, CIMA, University of Navarra, Pamplona, Spain; CIBERonc, Madrid, Spain
| | | | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | - Jose Juan García Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria Luz Martinez-Chantar
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Fernando José Corrales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Paola Francalanci
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Sapienza University, Rome, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Stefano Cairo
- XenTech, Evry-Courcouronnes, France; Champions Oncology, Rockville, MD, USA
| | - Montserrat Domingo-Sàbat
- Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carolina Armengol
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite García Fernandez-Barrena
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| | - Matias Antonio Avila
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
43
|
Wang Q, Liang N, Liu C, Li J, Bai Y, Lei S, Huang Q, Sun L, Tang L, Zeng C, Tang Y, He X, Yang T, Wang G. BEX1 supports the stemness of hepatoblastoma by facilitating Warburg effect in a PPARγ/PDK1 dependent manner. Br J Cancer 2023; 129:1477-1489. [PMID: 37715024 PMCID: PMC10628275 DOI: 10.1038/s41416-023-02418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Hepatoblastoma (HB) is a highly aggressive paediatric malignancy that exhibits a high presence of cancer stem cells (CSCs), which related to tumour recurrence and chemotherapy resistance. Brain expressed X-linked protein 1 (BEX1) plays a pivotal role in ciliogenesis, axon regeneration and differentiation of neural stem cells. However, the role of BEX1 in metabolic and stemness programs in HB remains unclear. METHODS BEX1 expression in human and mouse HB was analyzed using gene expression profile data from NCBI GEO and immunohistochemical validation. Seahorse extracellular flux analyzer, ultra-high-performance liquid-chromatography mass spectrometry (LC-MS), flow cytometry, qRT-PCR, Western Blot, sphere formation assay, and diluted xenograft tumour formation assay were used to analyze metabolic and stemness features. RESULTS Our results indicated that overexpression of BEX1 significantly enhanced the Warburg effect in HB cells. Furthermore, glycolysis inhibition largely attenuated the effects of BEX1 on HB cell growth and self-renewal, suggesting that BEX1 promotes stemness maintenance of HB cells by regulating the Warburg effect. Mechanistically, BEX1 enhances Warburg effect through the downregulation of peroxisome proliferator-activated receptor-gamma (PPARγ). Furthermore, pyruvate dehydrogenase kinase isozyme 1 (PDK1) is required for PPARγ-induced inhibition of Warburg effect in HB. In addition, BEX1 supports the stemness of HB by enhancing Warburg effect in a PPARγ/PDK1 dependent manner. CONCLUSIONS HB patients with high BEX1 and PDK1 expression had a poor prognosis. BEX1 promotes the stemness maintenance of HB cells via modulating the Warburg effect, which depends on PPARγ/PDK1 axis. Pioglitazone could be used to target BEX1-mediated stemness properties in HB by upregulating PPARγ.
Collapse
Affiliation(s)
- Qian Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310006, China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Stomatology, Shaanxi Province People's Hospital, Xi'an, 710068, China
| | - Yaxing Bai
- Department of Dermatology, XiJing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shuanghong Lei
- Anorectal Department, The First People's Hospital of Longnan, Longnan, 742500, China
| | - Qian Huang
- Department of Obstetrics and Gynecology, The 75th Group Army Hospital, Dali, Yunnan, 671000, China
| | - Ligang Sun
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Liangke Tang
- Department of General Surgery, Hospital of Integrated Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Chao Zeng
- Department of Neurology, The 74th Group Army Hospital, Guangzhou, 510318, China
| | - Yuqun Tang
- Minimally Invasive tumour Comprehensive Therapy Center, Second People's Hospital of Guangdong Province, Guangzhou, 510310, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
| | - Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China.
| | - Gang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
- Department of General Surgery, Affiliated Jiangmen Hospital, Southern Medical University, Jiangmen, 529000, China.
| |
Collapse
|
44
|
O'Neill AF, Meyers RL, Katzenstein HM, Geller JI, Tiao GM, López-Terrada D, Malogolowkin M. Children's Oncology Group's 2023 blueprint for research: Liver tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30576. [PMID: 37495540 PMCID: PMC10529117 DOI: 10.1002/pbc.30576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Liver tumors account for approximately 1%-2% of all pediatric malignancies, with the two most common tumors being hepatoblastoma (HB) and hepatocellular carcinoma (HCC). Previous Children's Oncology Group studies have meaningfully contributed to the current understanding of disease pathophysiology and treatment, laying groundwork for the ongoing prospective international study of both HB and HCC. Future work is focused on elucidating the biologic underpinnings of disease to support an evolution in risk categorization, advancements in the multidimensional care required to treat these patients, and the discovery of novel therapies.
Collapse
Affiliation(s)
- Allison F O'Neill
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecka L Meyers
- Division of Pediatric Surgery, University of Utah, Salt Lake City, Utah, USA
| | | | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Greg M Tiao
- Division of Surgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Dolores López-Terrada
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, Texas, USA
| | - Marcio Malogolowkin
- Pediatric Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, California, USA
| |
Collapse
|
45
|
Zhen N, Zhu J, Mao S, Zhang Q, Gu S, Ma J, Zhang Y, Yin M, Li H, Huang N, Wu H, Sun F, Ying B, Zhou L, Pan Q. Alternative Splicing of lncRNAs From SNHG Family Alters snoRNA Expression and Induces Chemoresistance in Hepatoblastoma. Cell Mol Gastroenterol Hepatol 2023; 16:735-755. [PMID: 37478905 PMCID: PMC10520360 DOI: 10.1016/j.jcmgh.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) is a common pediatric malignant liver tumor that is characterized by a low level of genetic mutations. Alternative splicing (AS) has been shown to be closely associated with cancer progression, especially in tumors with a low mutational burden. However, the role of AS in HB remains unknown. METHODS Transcriptome sequencing was performed on 5 pairs of HB tissues and matched non-tumor tissues to delineate the AS landscape in HB. AS events were validated in 92 samples from 46 patients. RNA pull-down and RNA immunoprecipitation assays were carried out to identify splicing factors that regulate the AS of small nucleolar RNA host genes (SNHG). Patient-derived organoids (PDOs) were established to investigate the role of the splicing factor polyadenylate-binding nuclear protein 1 (PABPN1). RESULTS This study uncovered aberrant alternative splicing in HB, including lncRNAs from SNHG family that undergo intron retention in HB. Further investigations revealed that PABPN1, a significantly upregulated RNA binding protein, interacts with splicing machinery in HB, inducing the intron retention of these SNHG RNAs and the downregulation of intronic small nucleolar RNAs (snoRNAs). Functionally, PABPN1 acts as an oncofetal splicing regulator in HB by promoting cell proliferation and DNA damage repair via inducing the intron retention of SNHG19. Knock-down of PABPN1 increases the cisplatin sensitivity of HB PDOs. CONCLUSIONS Our findings revealed the role of intron retention in regulating snoRNA expression in hepatoblastoma, explained detailed regulatory mechanism between PABPN1 and the intron retention of SNHG RNAs, and provided insight into the development of new HB treatment options.
Collapse
Affiliation(s)
- Ni Zhen
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiabei Zhu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siwei Mao
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Gu
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Ma
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haojie Li
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Nan Huang
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Han Wu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fenyong Sun
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Lin Zhou
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China; Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Hainan, China.
| |
Collapse
|
46
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
47
|
Li Z, Zhang H, Li Q, Feng W, Jia X, Zhou R, Huang Y, Li Y, Hu Z, Hu X, Zhu X, Huang S. GepLiver: an integrative liver expression atlas spanning developmental stages and liver disease phases. Sci Data 2023; 10:376. [PMID: 37301898 PMCID: PMC10257690 DOI: 10.1038/s41597-023-02257-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic liver diseases usually developed through stepwise pathological transitions under the persistent risk factors. The molecular changes during liver transitions are pivotal to improve liver diagnostics and therapeutics yet still remain elusive. Cumulative large-scale liver transcriptomic studies have been revealing molecular landscape of various liver conditions at bulk and single-cell resolution, however, neither single experiment nor databases enabled thorough investigations of transcriptomic dynamics along the progression of liver diseases. Here we establish GepLiver, a longitudinal and multidimensional liver expression atlas integrating expression profiles of 2469 human bulk tissues, 492 mouse samples, 409,775 single cells from 347 human samples and 27 liver cell lines spanning 16 liver phenotypes with uniformed processing and annotating methods. Using GepLiver, we have demonstrated dynamic changes of gene expression, cell abundance and crosstalk harboring meaningful biological associations. GepLiver can be applied to explore the evolving expression patterns and transcriptomic features for genes and cell types respectively among liver phenotypes, assisting the investigation of liver transcriptomic dynamics and informing biomarkers and targets for liver diseases.
Collapse
Affiliation(s)
- Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Huang H, Wu L, Lu L, Zhang Z, Qiu B, Mo J, Luo Y, Xi Z, Feng M, Wan P, Zhu J, Yu D, Wu W, Tan K, Liu J, Sheng Q, Xu T, Huang J, Lv Z, Tang Y, Xia Q. Single-cell transcriptomics uncovers cellular architecture and developmental trajectories in hepatoblastoma. Hepatology 2023; 77:1911-1928. [PMID: 36059151 DOI: 10.1002/hep.32775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the predominant type of childhood liver cancer. Treatment options for the clinically advanced HB remain limited. We aimed to dissect the cellular and molecular basis underlying HB oncogenesis and heterogeneity at the single-cell level, which could facilitate a better understanding of HB at both the biological and clinical levels. APPROACH AND RESULTS Single-cell transcriptome profiling of tumor and paired distal liver tissue samples from five patients with HB was performed. Deconvolution analysis was used for integrating the single-cell transcriptomic profiles with the bulk transcriptomes of our HB cohort of post-neoadjuvant chemotherapy tumor samples. A single-cell transcriptomic landscape of early human liver parenchymal development was established for exploring the cellular root and hierarchy of HB oncogenesis. As a result, seven distinct tumor cell subpopulations were annotated, and an effective HB subtyping method was established based on their compositions. A HB tumor cell hierarchy was further revealed to not only fit with the classical cancer stem cell (CSC) model but also mirror the early human liver parenchymal development. Moreover, FACT inhibition, which could disrupt the oncogenic positive feedback loop between MYC and SSRP1 in HB, was identified as a promising epigenetic-targeted therapeutic strategy against the CSC-like HB1-Pro-like1 subpopulation and its related high-risk "Pro-like1" subtype of HB. CONCLUSIONS Our findings illustrate the cellular architecture and developmental trajectories of HB via integrative bulk and single-cell transcriptome analyses, thus establishing a resourceful framework for the development of targeted diagnostics and therapeutics in the future.
Collapse
Affiliation(s)
- Hongting Huang
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Liang Wu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Li Lu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Zijie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Bijun Qiu
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Jialin Mo
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Mingxuan Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Dingye Yu
- Department of Gastrointestinal Surgery , Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Wei Wu
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Jiangbin Liu
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Ting Xu
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Jinyan Huang
- Biomedical Big Data Center , The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease , Zhejiang University School of Medicine First Affiliated Hospital , Hangzhou , China
- Zhejiang University Cancer Center , Zhejiang University , Hangzhou , China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Yujie Tang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
- Shanghai Engineering Research Centre of Transplantation and Immunology , Shanghai , China
- Shanghai Institute of Transplantation , Shanghai , China
| |
Collapse
|
49
|
Wang Y, Xiang X, Chen H, Zhou L, Chen S, Zhang G, Liu X, Ren X, Liu J, Kuang M, Jiang J, She J, Zhang Z, Xue R, Jiang H, Wang J, Peng S. Intratumoral erythroblastic islands restrain anti-tumor immunity in hepatoblastoma. Cell Rep Med 2023; 4:101044. [PMID: 37196629 DOI: 10.1016/j.xcrm.2023.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/28/2022] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Erythroblastic islands (EBIs) are the specialized structures for erythropoiesis, but they have never been found functional in tumors. As the most common pediatric liver malignancy, hepatoblastoma (HB) requires more effective and safer therapies to prevent progression and the lifelong impact of complications on young children. However, developing such therapies is impeded by a lack of comprehensive understanding of the tumor microenvironment. By single-cell RNA sequencing of 13 treatment-naive HB patients, we discover an immune landscape characterized by aberrant accumulation of EBIs, formed by VCAM1+ macrophages and erythroid cells, which is inversely correlated with survival of HB. Erythroid cells inhibit the function of dendritic cells (DCs) via the LGALS9/TIM3 axis, leading to impaired anti-tumor T cell immune responses. Encouragingly, TIM3 blockades relieve the inhibitory effect of erythroid cells on DCs. Our study provides an immune evasion mechanism mediated by intratumoral EBIs and proposes TIM3 as a promising therapeutic target for HB.
Collapse
Affiliation(s)
- Yuanqi Wang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Xiang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luyao Zhou
- Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuling Chen
- Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guopei Zhang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Liu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuxin Ren
- Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juncheng Liu
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinbiao She
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhichong Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruidong Xue
- Translational Cancer Research, Peking University First Hospital, Beijing, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Sui Peng
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
50
|
Guo T, Wang X, Zhang G, Xia T, Zhu R, Tou J. Dihydromyricetin functions as a tumor suppressor in hepatoblastoma by regulating SOD1/ROS pathway. Front Oncol 2023; 13:1160548. [PMID: 37256172 PMCID: PMC10225683 DOI: 10.3389/fonc.2023.1160548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Background Hepatoblastoma has an unsatisfactory prognosis, and traditional chemotherapy has strong side effects. Dihydromyricetin is a flavonoid extracted from a woody vine of the genus Serpentine in the family Vitaceae, with effects such as preventing alcoholic liver and reducing the incidence of liver cancer. However, the effect of DHM on hepatoblastoma and its specific pathway are still unclear. Purpose The purpose of this study was to investigate the effects of DHM on children's hepatoblastoma and its related mechanisms. Methods CCK-8 assays were used to measure proliferation. Apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry. Apoptotic cells were observed using Hoechst 33342 staining and fluorescence microscopy. Protein expression levels in HuH-6 and HepG2 cells were determined by western blotting. Results We found that DHM was able to inhibit the growth and increase cellular mortality in HuH-6 and HepG2 cells. Furthermore, DHM decreased the intracellular ROS level and increased the expression of SOD1. ROS scavenger NAC promoted apoptosis, while the use of SOD1 inhibitor LCS-1 weakened the ROS scavenging effect of DHM , and to some extent reduced the killing effect of DHM on hepatoblastoma cells. Conclusion These results suggest that regulating SOD1/ROS pathway to induce apoptosis is one of the potential mechanisms of DHM as a tumor suppressor in hepatoblastoma. Therefore, DHM may be a novel candidate for inhibiting hepatoblastoma growth and deserves further study.
Collapse
Affiliation(s)
- Tong Guo
- Department of Neonatal Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xitong Wang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gensheng Zhang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tian Xia
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Runzhi Zhu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinfa Tou
- Department of Neonatal Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|