1
|
Fortin BM, Mahieu AL, Fellows RC, Kang Y, Lewis AN, Ead AS, Lamia KA, Cao Y, Pannunzio NR, Masri S. The diverse roles of the circadian clock in cancer. NATURE CANCER 2025:10.1038/s43018-025-00981-8. [PMID: 40419761 DOI: 10.1038/s43018-025-00981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/03/2025] [Indexed: 05/28/2025]
Abstract
A growing part of the human population is affected by circadian misalignment caused by deregulated sleep, increased nighttime light exposure and erratic eating patterns. Thus, circadian rhythms are a key research area, with compelling links to cancer. Here, we review the circadian regulation of critical cellular processes, including immunity, metabolism, cell cycle control and DNA repair, under physiological homeostasis and in cancer. We discuss the divergent evidence indicating tissue-specific roles of the circadian clock in different cancer types and the potential link between circadian misalignment and early-onset cancers. Finally, we outline how understanding the circadian clock can improve cancer prevention and chronomedicine-based therapies.
Collapse
Affiliation(s)
- Bridget M Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Alisa L Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Rachel C Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Yi Kang
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Amber N Lewis
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Aya S Ead
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Katja A Lamia
- Department of Molecular and Cellular Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas R Pannunzio
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA.
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Lin L, Huang Y, Li A, Cai Y, Yan Y, Huang Y, He L, Chen Y, Wang S. Circadian clock controlled glycolipid metabolism and its relevance to disease management. Biochem Pharmacol 2025; 238:116967. [PMID: 40312018 DOI: 10.1016/j.bcp.2025.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/14/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
The circadian clock is a critical regulator of physiological rhythms, orchestrating metabolic processes to adapt to daily environmental changes. This review focuses on the intricate relationship between circadian regulation and glycolipid metabolism, with implications for metabolic diseases. Central and peripheral clocks coordinate the rhythmic expression of key enzymes and transporters, ensuring glycolipid homeostasis. Disruptions to these rhythms can result in metabolic disorders characterized by altered glucose utilization, insulin sensitivity, and lipid storage. The molecular mechanisms underlying these processes include transcriptional-translational feedback loops involving clock factors that regulate glycolipid metabolism. Emerging therapeutic strategies, such as pharmacological and dietary interventions, highlight the translational potential of circadian biology. This review underscores the importance of circadian rhythm maintenance for glycolipid metabolism and its role in preventing metabolic disorders. Further elucidation of the molecular mechanisms linking circadian regulation to glycolipid metabolism could pave the way for precision medicine approaches tailored to individual circadian profiles.
Collapse
Affiliation(s)
- Luomin Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Chinese Medicine Guangdong Laboratory, Hengqin, China
| | - Yuwei Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijing Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuting Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Yan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanqi Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Yijun Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Chinese Medicine Guangdong Laboratory, Hengqin, China.
| | - Shuai Wang
- Chinese Medicine Guangdong Laboratory, Hengqin, China.
| |
Collapse
|
3
|
Gachon F, Bugianesi E, Castelnuovo G, Oster H, Pendergast JS, Montagnese S. Potential bidirectional communication between the liver and the central circadian clock in MASLD. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:15. [PMID: 40225783 PMCID: PMC11981938 DOI: 10.1038/s44324-025-00058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Most aspects of physiology and behaviour fluctuate every 24 h in mammals. These circadian rhythms are orchestrated by an autonomous central clock located in the suprachiasmatic nuclei that coordinates the timing of cellular clocks in tissues throughout the body. The critical role of this circadian system is emphasized by increasing evidence associating disruption of circadian rhythms with diverse pathologies. Accordingly, mounting evidence suggests a bidirectional relationship where disruption of rhythms by circadian misalignment may contribute to liver diseases while liver diseases alter the central clock and circadian rhythms in other tissues. Therefore, liver pathophysiology may broadly impact the circadian system and may provide a mechanistic framework for understanding and targeting metabolic diseases and adjust metabolic setpoints.
Collapse
Affiliation(s)
- Frédéric Gachon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | | | | | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | | | - Sara Montagnese
- Department of Medicine, University of Padova, Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
4
|
Lu J, Liu X, Fan K, Lin X. Traditional Chinese Medicine as a Tool for the Treatment of Hepatocellular Carcinoma by Targeting Pathophysiological Mechanism. Cancer Manag Res 2025; 17:779-792. [PMID: 40225699 PMCID: PMC11993174 DOI: 10.2147/cmar.s513729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Liver cancer is a significant global health concern, with projections indicating that the incidence of morbidity may surpass one million cases by 2025. Hepatocellular carcinoma (HCC) is the predominant subtype of liver cancer, constituting approximately 90% of all liver cancer diagnoses. Infections caused by the hepatitis B virus (HBV) and hepatitis C virus (HCV) are recognized as primary risk factors for the development of HCC. However, non-alcoholic steatohepatitis (NASH), which is often linked to metabolic syndrome or diabetes, is increasingly being recognized as a prevalent risk factor in Western populations. Furthermore, HCC associated with NASH exhibits distinct molecular pathogenesis. Patients diagnosed with HCC have access to a range of therapeutic interventions, including liver transplantation, surgical resection, percutaneous ablation, radiation therapy, and transarterial and systemic therapies. Consequently, effective clinical decision-making requires a multidisciplinary approach to adapt individualized treatment plans based on the patient's tumor stage, liver function, and overall performance status. The approval of new first- and second-line pharmacological agents, along with the establishment of immune checkpoint inhibitor therapies as standard treatment modalities, has contributed to an improved prognosis for patients with HCC. Nevertheless, the optimal sequencing of these therapeutic agents remains to be elucidated, highlighting the urgent need for predictive biomarkers to inform treatment selections. Traditional Chinese Medicine (TCM) has demonstrated potential as a complementary and alternative therapeutic approach for liver cancer, warranting further investigation. This review aimed to examine the comprehensive treatment of HCC through the lens of TCM, informed by the current understanding of its epidemiology, diagnosis, and pathophysiology.
Collapse
Affiliation(s)
- Jialin Lu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Xiaoyu Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Kaiyan Fan
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Xiaofeng Lin
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
5
|
Su K, Zeng D, Zhang W, Peng F, Cui B, Liu Q. Integrating cancer medicine into metabolic rhythms. Trends Endocrinol Metab 2025:S1043-2760(25)00053-0. [PMID: 40199622 DOI: 10.1016/j.tem.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Circadian rhythms are cell-intrinsic time-keeping mechanisms that allow organisms to adapt to 24-h environmental changes, ensuring coordinated physiological functions by aligning internal metabolic oscillations with external timing cues. Disruption of daily metabolic rhythms is associated with pathological events such as cancer development, yet the mechanisms by which perturbed metabolic rhythms contribute to tumorigenesis remain unclear. Herein we review how circadian clocks drive balanced rhythmic metabolism which in turn governs physiological functions of locomotor, immune, and neuroendocrine systems. Misaligned metabolic rhythms cause pathological states which further drive cancer initiation, progression, and metastasis. Restoring the balance of metabolic rhythms with chemical, hormonal, and behavioral interventions serves as a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Deshun Zeng
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiru Zhang
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Zhang Q, Litwin C, Dietert K, Tsialtas I, Chen WH, Li Z, Koronowski KB. Frequent Shifts During Chronic Jet Lag Uncouple Liver Rhythms From the Light Cycle in Male Mice. J Biol Rhythms 2025; 40:194-207. [PMID: 39773136 PMCID: PMC11915764 DOI: 10.1177/07487304241311328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Circadian disruption is pervasive in modern society and associated with increased risk of disease. Chronic jet lag paradigms are popular experimental tools aiming to emulate human circadian disruption experienced during rotating and night shift work. Chronic jet lag induces metabolic phenotypes tied to liver and systemic functions, yet lack of a clear definition for how rhythmic physiology is impaired under these conditions hinders the ability to identify the underlying molecular mechanisms. Here, we compared 2 common chronic jet lag paradigms and found that neither induced arrythmicity of the liver and each had distinct effects on rhythmicity. Instead, more frequent 8-h forward shifts of the light schedule induced more severe misalignment and non-fasted hyperglycemia. Every other day shifts eventually uncoupled behavioral and hepatic rhythms from the light cycle, reminiscent of free-running conditions. These results point to misalignment, not arrhythmicity, as the initial disturbance tied to metabolic dysfunction in environmental circadian disruption and highlight considerations for the interpretation and design of chronic jet lag studies.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Christopher Litwin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Kristi Dietert
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Ioannis Tsialtas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Wan Hsi Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Zhihong Li
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| | - Kevin B. Koronowski
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
7
|
Ogunlusi O, Ghosh A, Sarkar M, Carter K, Davuluri H, Chakraborty M, Eckel-Mahan K, Keene A, Menet JS, Bell-Pedersen D, Sarkar TR. Rhythm is essential: Unraveling the relation between the circadian clock and cancer. Crit Rev Oncol Hematol 2025; 208:104632. [PMID: 39864535 DOI: 10.1016/j.critrevonc.2025.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Physiological processes such as the sleep-wake cycle, metabolism, hormone secretion, neurotransmitter release, sensory capabilities, and a variety of behaviors, including sleep, are controlled by a circadian rhythm adapted to 24-hour day-night periodicity. Disruption of circadian rhythm may lead to the risks of numerous diseases, including cancers. Several epidemiological and clinical data reveal a connection between the disruption of circadian rhythms and cancer. On the contrary, oncogenic processes may suppress the homeostatic balance imposed by the circadian clock. The integration of circadian biology into cancer research offers new options for making cancer treatment more effective, and the pharmacological modulation of core clock genes is a new approach in cancer therapy. This review highlights the role of the circadian clock in tumorigenesis, how clock disruption alters the tumor microenvironment, and discusses how pharmacological modulation of circadian clock genes can lead to new therapeutic options.
Collapse
Affiliation(s)
| | - Abantika Ghosh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Kayla Carter
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Harshini Davuluri
- The Master of Biotechnology Program, Texas A&M University, College Station, TX, USA
| | - Mahul Chakraborty
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, The University of Texas Health Science Centre, Houston, TX, USA
| | - Alex Keene
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Jerome S Menet
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Deborah Bell-Pedersen
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA.
| |
Collapse
|
8
|
Xiong X, Zheng LW, Ding Y, Chen YF, Cai YW, Wang LP, Huang L, Liu CC, Shao ZM, Yu KD. Breast cancer: pathogenesis and treatments. Signal Transduct Target Ther 2025; 10:49. [PMID: 39966355 PMCID: PMC11836418 DOI: 10.1038/s41392-024-02108-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/27/2024] [Accepted: 12/08/2024] [Indexed: 02/20/2025] Open
Abstract
Breast cancer, characterized by unique epidemiological patterns and significant heterogeneity, remains one of the leading causes of malignancy-related deaths in women. The increasingly nuanced molecular subtypes of breast cancer have enhanced the comprehension and precision treatment of this disease. The mechanisms of tumorigenesis and progression of breast cancer have been central to scientific research, with investigations spanning various perspectives such as tumor stemness, intra-tumoral microbiota, and circadian rhythms. Technological advancements, particularly those integrated with artificial intelligence, have significantly improved the accuracy of breast cancer detection and diagnosis. The emergence of novel therapeutic concepts and drugs represents a paradigm shift towards personalized medicine. Evidence suggests that optimal diagnosis and treatment models tailored to individual patient risk and expected subtypes are crucial, supporting the era of precision oncology for breast cancer. Despite the rapid advancements in oncology and the increasing emphasis on the clinical precision treatment of breast cancer, a comprehensive update and summary of the panoramic knowledge related to this disease are needed. In this review, we provide a thorough overview of the global status of breast cancer, including its epidemiology, risk factors, pathophysiology, and molecular subtyping. Additionally, we elaborate on the latest research into mechanisms contributing to breast cancer progression, emerging treatment strategies, and long-term patient management. This review offers valuable insights into the latest advancements in Breast Cancer Research, thereby facilitating future progress in both basic research and clinical application.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Le-Wei Zheng
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yu Ding
- Department of Breast and Thyroid, Guiyang Maternal and Child Health Care Hospital & Guiyang Children's Hospital, Guiyang, P. R. China
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yu-Fei Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yu-Wen Cai
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Lei-Ping Wang
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Liang Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
9
|
Cui X, Li H, Li L, Xie C, Gao J, Chen Y, Zhang H, Hao W, Fu J, Guo H. Rodent model of metabolic dysfunction-associated fatty liver disease: a systematic review. J Gastroenterol Hepatol 2025; 40:48-66. [PMID: 39322221 PMCID: PMC11771679 DOI: 10.1111/jgh.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Although significant progress has been made in developing preclinical models for metabolic dysfunction-associated steatotic liver disease (MASLD), few have encapsulated the essential biological and clinical outcome elements reflective of the human condition. We conducted a comprehensive literature review of English-language original research articles published from 1990 to 2023, sourced from PubMed, Embase, and Web of Science, aiming to collate studies that provided a comparative analysis of physiological, metabolic, and hepatic histological characteristics between MASLD models and control groups. The establishment of a robust metabolic dysfunction-associated steatotic liver rodent model hinges on various factors, including animal species and strains, sex, induction agents and methodologies, and the duration of induction. Through this review, we aim to guide researchers in selecting suitable induction methods and animal species for constructing preclinical models aligned with their specific research objectives and laboratory conditions. Future studies should strive to develop simple, reliable, and reproducible models, considering the model's sensitivity to factors such as light-dark cycles, housing conditions, and environmental temperature. Additionally, the potential of diverse in vitro models, including 3D models and liver organ technology, warrants further exploration as valuable tools for unraveling the cellular mechanisms underlying fatty liver disease.
Collapse
Affiliation(s)
- Xiao‐Shan Cui
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hong‐Zheng Li
- Guang'an men HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Liang Li
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Cheng‐Zhi Xie
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Jia‐Ming Gao
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuan‐Yuan Chen
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hui‐Yu Zhang
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Wei Hao
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Jian‐Hua Fu
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hao Guo
- Safety Laboratory, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
10
|
Verdelho Machado M. Circadian Deregulation: Back Facing the Sun Toward Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Development. Nutrients 2024; 16:4294. [PMID: 39770915 PMCID: PMC11679855 DOI: 10.3390/nu16244294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Earth's rotation around its axis has pressured its inhabitants to adapt to 24 h cycles of day and night. Humans adapted their own circadian rhythms to the Earth's rhythms with a light-aligned awake-sleep cycle. As a consequence, metabolism undergoes drastic changes throughout the circadian cycle and needs plasticity to cope with opposing conditions in the day (when there is an increase in energy demands and food availability), and during the night (when prolonged fasting couples with cyclic changes in the energy demands across the sleep stages). In the last century, human behavior changed dramatically with a disregard for the natural circadian cycles. This misalignment in sleep and eating schedules strongly modulates the metabolism and energy homeostasis, favoring the development of obesity, metabolic syndrome, and metabolic dysfunction-associated steatotic liver disease (MASLD). This review summarizes the effects of circadian disruption, with a particular focus on the feeding and sleep cycles in the development of MASLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Gastroenterology Department, Hospital de Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal; ; Tel.: +351-912620306
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
11
|
Schaeffer S, Bogdanovic A, Hildebrandt T, Flint E, Geng A, Pecenko S, Lussier P, Strumberger MA, Meyer M, Weber J, Heim MH, Cajochen C, Bernsmeier C. Significant nocturnal wakefulness after sleep onset in metabolic dysfunction-associated steatotic liver disease. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1458665. [PMID: 39698501 PMCID: PMC11652136 DOI: 10.3389/fnetp.2024.1458665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multisystemic disease with a multifactorial pathogenesis involving dietary, environmental, and genetic factors. Previous mouse models suggested that circadian misalignment may additionally influence its development as it influences metabolism in diverse organs including the liver. Further, data from sleep questionnaires proved sleep-wake disruption in patients with MASLD. We objectively assessed sleep-wake rhythms in patients with biopsy-proven MASLD (n = 35) and healthy controls (HC, n = 16) using actigraphy 24/7 for 4 weeks. With the aim to re-align sleep rhythms a single standardized sleep hygiene education session was performed after 2 weeks. Actigraphy data revealed that MASLD patients had more awakenings per night (MASLD vs. HC 8.5 vs. 5.5, p = 0.0036), longer wakefulness after sleep onset (MASLD vs. HC 45.4 min vs. 21.3 min, p = 0.0004), and decreased sleep efficiency (MASLD vs. HC 86.5% vs. 92.8%, p = 0.0008) compared with HC despite comparable sleep duration. Patients with MASLD self-reported shorter sleep duration (MASLD vs. HC 6 h vs. 6 h 45 min, p = 0.01) and prolonged sleep latency contributing to poorer sleep quality. Standardized sleep hygiene education did not produce significant changes in sleep parameters. Our findings indicate fragmented nocturnal sleep in patients with MASLD, characterized by increased wakefulness and reduced sleep efficiency, perceived subjectively as shortened sleep duration and delayed onset. A single sleep hygiene education session did not improve sleep parameters.
Collapse
Affiliation(s)
- Sofia Schaeffer
- Department of Biomedicine and Department of Clinical Research, University of Basel, Basel, Switzerland
- University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Andrijana Bogdanovic
- Department of Biomedicine and Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Talitha Hildebrandt
- Department of Biomedicine and Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Emilio Flint
- Department of Biomedicine and Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Anne Geng
- Department of Biomedicine and Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Sylvia Pecenko
- Department of Biomedicine and Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Paul Lussier
- Department of Biomedicine and Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Michael A. Strumberger
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Martin Meyer
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | | | - Markus H. Heim
- Department of Biomedicine and Department of Clinical Research, University of Basel, Basel, Switzerland
- University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Christine Bernsmeier
- Department of Biomedicine and Department of Clinical Research, University of Basel, Basel, Switzerland
- University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
12
|
Li Q, Lin Y, Ni B, Geng H, Wang C, Zhao E, Zhu C. Circadian system disorder induced by aberrantly activated EFNB2-EPHB2 axis leads to facilitated liver metastasis in gastric cancer. Cell Oncol (Dordr) 2024; 47:2113-2134. [PMID: 39298082 DOI: 10.1007/s13402-024-00991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Liver is one of the most preferred destinations for distant metastasis of gastric cancer (GC) and liver metastasis usually predicts poor prognosis. The achievement of liver metastasis requires continued cross-talk of complex members in tumor microenvironment (TME) including tumor associated macrophages (TAMs). METHODS Results from 35 cases of ex vivo cultured living tissues of GC liver metastasis have elucidated that circadian rhythm disorder (CRD) of key molecules involved in circadian timing system (CTS) facilitates niche outgrowth. We next analyzed 69 cases of liver metastasis from patients bearing GC and designed co-culture or 3D cell culture, discovering that TAMs expressing EFNB2 could interact with tumor cell expressing EPHB2 for forward downstream signaling and lead to CRD of tumor cells. Moreover, we performed intrasplenic injection models assessed by CT combined 3D organ reconstruction bioluminescence imaging to study liver metastasis and utilized the clodronate treatment, bone marrow transplantation or EPH inhibitor for in vivo study followed by exploring the clinical therapeutic value of which in patient derived xenograft (PDX) mouse model. RESULTS Ex vivo studies demonstrated that CRD of key CTS molecules facilitates niche outgrowth in liver metastases. In vitro studies revealed that TAMs expressing EFNB2 interact with tumor cells expressing EPHB2, leading to CRD and downstream signaling activation. The underlying mechanism is the enhancement of the Warburg effect in metastatic niches. CONCLUSION Overall, we aim to uncover the mechanism in TAMs induced CRD which promotes liver metastasis of GC and provide novel ideas for therapeutic strategies.
Collapse
Affiliation(s)
- Qing Li
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Yuxuan Lin
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Chaojie Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| | - Enhao Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| |
Collapse
|
13
|
Yang Z, Zarbl H, Kong B, Taylor R, Black K, Kipen H, Basaly V, Fang M, Guo GL. Liver-gut axis signaling regulates circadian energy metabolism in shift workers. FASEB J 2024; 38:e70203. [PMID: 39588921 PMCID: PMC11590413 DOI: 10.1096/fj.202402102r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Circadian rhythm is critical to maintaining the whole-body metabolic homeostasis of an organism. Chronic disruption of circadian rhythm by shift work is an important risk factor for metabolic diseases. Fibroblast growth factor 15/19 (FGF15/19), a key component in the liver-gut axis, potently suppresses bile acid (BA) synthesis and improves insulin sensitivity. FGF15/19 emerges as a novel pharmaceutical target for prevention and treatment of metabolic diseases. The nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin 1 (SIRT1) deacetylase plays an important role in the maintenance of hepatic homeostasis by linking hepatic metabolism to circadian rhythm. Here, our clinical study identified that circadian rhythmicity and levels of plasma FGF19 and BA profiling, and cellular NAD+-dependent SIRT1 signaling were disturbed in night shift (NS, n = 10) compared to day shift (DS, n = 12) nurses. Our in vitro data showed that recombinant FGF19 protein rescued cellular circadian rhythm disrupted by SIRT1 inhibitors. Furthermore, we determined the effect of FGF15 on circadian rhythm and hepatic metabolism in wild-type (WT), Fgf15 knockout (KO), and Fgf15 transgenic (TG) mice. The expressions of circadian-controlled genes (CCGs) involved in SIRT1 signaling, BA and lipid metabolism, and inflammation were disrupted in Fgf15 KO compared to WT and/or Fgf15 TG mice. Moreover, systemic FGF15 deficiency led to the circadian disturbance of NAD+-dependent SIRT1 signaling and significant reduction during nighttime in mice. These findings suggest that FGF15/19 regulates the circadian energy metabolism, which warrants further studies as a putative prognostic biomarker and pharmaceutical target for preventing against metabolic diseases associated with chronic shift work.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- VA New Jersey Health Care SystemVeterans Administration Medical CenterEast OrangeNew JerseyUSA
| |
Collapse
|
14
|
Huyen VT, Echizen K, Yamagishi R, Kumagai M, Nonaka Y, Kodama T, Ando T, Yano M, Takada N, Takasugi M, Kamachi F, Ohtani N. Regular exercise suppresses steatosis-associated liver cancer development by degrading E2F1 and c-Myc via circadian gene upregulation. Genes Cells 2024; 29:1012-1025. [PMID: 39357875 DOI: 10.1111/gtc.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Regular exercise is believed to suppress cancer progression. However, the precise molecular mechanisms by which exercise prevents cancer development remain unclear. In this study, using a steatosis-associated liver cancer mouse model, we found that regular exercise at a speed of 18 m/min for 20 min daily suppressed liver cancer development. To explore the underlying mechanisms, we examined the gene expression profiles in the livers of the exercise and non-exercise groups. The expressions of circadian genes, such as Per1 and Cry2, were upregulated in the exercise group. As circadian rhythm disruption is known to cause various diseases, including cancer, improving circadian rhythm through exercise could contribute to cancer prevention. We further found that the expression of a series of E2F1 and c-Myc target genes that directly affect the proliferation of cancer cells was downregulated in the exercise group. However, the expression of E2F1 and c-Myc was transcriptionally unchanged but degraded at the post-translational level by exercise. Cry2, which is regulated by the Skp1-Cul1-FBXL3 (SCFFBXL3) ubiquitin ligase complex by binding to FBXL3, can form a complex with E2F1 and c-Myc, which we think is the mechanism to degrade them. Our study revealed a previously unknown mechanism by which exercise prevents cancer development.
Collapse
Affiliation(s)
- Vu Thuong Huyen
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Pediatrics, Hanoi Medical University, Hanoi, Vietnam
| | - Kanae Echizen
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ryota Yamagishi
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Miho Kumagai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yoshiki Nonaka
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuya Ando
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Megumu Yano
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naoki Takada
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Orthopedic Surgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Masaki Takasugi
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Fumitaka Kamachi
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
15
|
Singh A, Anjum B, Naz Q, Raza S, Sinha RA, Ahmad MK, Mehdi AA, Verma N. Night shift-induced circadian disruption: links to initiation of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and risk of hepatic cancer. HEPATOMA RESEARCH 2024:2394-5079.2024.88. [PMID: 39525867 PMCID: PMC7616786 DOI: 10.20517/2394-5079.2024.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The circadian system plays a crucial role in regulating metabolic homeostasis at both systemic and tissue levels by synchronizing the central and peripheral clocks with exogenous time cues, known as zeitgebers (such as the light/dark cycle). Our body's behavioral rhythms, including sleep-wake cycles and feeding-fasting patterns, align with these extrinsic time cues. The body cannot effectively rest and repair itself when circadian rhythms are frequently disrupted. In many shift workers, the internal rhythms fail to fully synchronize with the end and start times of their shifts. Additionally, exposure to artificial light at night (LAN), irregular eating patterns, and sleep deprivation contribute to circadian disruption and misalignment. Shift work and jet lag disrupt the normal circadian rhythm of liver activity, resulting in a condition known as "circadian disruption". This disturbance adversely affects the metabolism and homeostasis of the liver, contributing to excessive fat accumulation and abnormal liver function. Additionally, extended working hours, such as prolonged night shifts, may worsen the progression of non-alcoholic fatty liver disease (NAFLD) toward non-alcoholic steatohepatitis (NASH) and increase disease severity. Studies have demonstrated a positive correlation between night shift work (NSW) and elevated liver enzymes, indicative of hepatic metabolic dysfunction, potentially increasing the risk of hepatocellular carcinoma (HCC) related to NAFLD. This review consolidates research findings on circadian disruption caused by NSW, late chronotype, jet lag, and social jet lag, drawing insights from studies involving both humans and animal models that investigate the effects of these factors on circadian rhythms in liver metabolism.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Physiology, King George’s Medical University, Lucknow226003, India
| | - Baby Anjum
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Qulsoom Naz
- Department of Medicine, King George’s Medical University, Lucknow226003, India
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | | | | | - Narsingh Verma
- Hind Institute of Medical Sciences, Sitapur 261304, India
| |
Collapse
|
16
|
Kisamore C, Kisamore C, Walker W. Circadian Rhythm Disruption in Cancer Survivors: From Oncogenesis to Quality of Life. Cancer Med 2024; 13:e70353. [PMID: 39463009 PMCID: PMC11513439 DOI: 10.1002/cam4.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Circadian rhythms are approximately 24-hour cycles in physiological and behavioral processes. They are entrained to the external solar day via blue wavelength light. Disruptions in these intrinsic rhythms can lead to circadian dysfunction, which has several negative implications on human health, including cancer development and progression. AIMS Here we review the molecular mechanisms of circadian disruption and their impact on tumor development and progression, discuss the interplay between circadian dysfunction and cancer in basic scientific studies and clinical data, and propose the potential clinical implications of these data that may be used to improve patient outcomes and reduce cost of treatment. MATERIALS & METHODS Using scientific literature databases, relevant studies were analyzed to draw overarching conclusions of the relationship between circadian rhythm dysruption and cancer. CONCLUSIONS Circadian disruption can be mediated by a number of environmental factors such as exposure to light at night, shift work, jetlag, and social jetlag which drive oncogenesis. Tumor growth and progression, as well as treatment, can lead to long-term alterations in circadian rhythms that negatively affect quality of life in cancer survivors.
Collapse
Affiliation(s)
- Claire O. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Caleb A. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- West Virginia University Cancer InstituteMorgantownWest VirginiaUSA
| |
Collapse
|
17
|
Busebee B, Watt KD, Dupuy-McCauley K, DuBrock H. Sleep disturbances in chronic liver disease. Liver Transpl 2024; 30:1058-1071. [PMID: 38535627 DOI: 10.1097/lvt.0000000000000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/15/2024] [Indexed: 05/03/2024]
Abstract
Sleep disturbances are common in chronic liver disease and significantly impact patient outcomes and quality of life. The severity and nature of sleep disturbances vary by liver disease etiology and severity. While there is ongoing research into the association between liver disease and sleep-wake dysfunction, the underlying pathophysiology varies and, in many cases, is poorly understood. Liver disease is associated with alterations in thermoregulation, inflammation, and physical activity, and is associated with disease-specific complications, such as HE, that may directly affect sleep. In this article, we review the relevant pathophysiologic processes, disease-specific sleep-wake disturbances, and clinical management of CLD-associated sleep-wake disturbances.
Collapse
Affiliation(s)
- Bradley Busebee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kymberly D Watt
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kara Dupuy-McCauley
- Division of Pulmonology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Hilary DuBrock
- Division of Pulmonology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Yassine M, Hassan SA, Yücel LA, Purath FFA, Korf HW, von Gall C, Ali AAH. Hepatocellular Carcinoma in Mice Affects Neuronal Activity and Glia Cells in the Suprachiasmatic Nucleus. Biomedicines 2024; 12:2202. [PMID: 39457515 PMCID: PMC11504045 DOI: 10.3390/biomedicines12102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Chronic liver diseases such as hepatic tumors can affect the brain through the liver-brain axis, leading to neurotransmitter dysregulation and behavioral changes. Cancer patients suffer from fatigue, which can be associated with sleep disturbances. Sleep is regulated via two interlocked mechanisms: homeostatic regulation and the circadian system. In mammals, the hypothalamic suprachiasmatic nucleus (SCN) is the key component of the circadian system. It generates circadian rhythms in physiology and behavior and controls their entrainment to the surrounding light/dark cycle. Neuron-glia interactions are crucial for the functional integrity of the SCN. Under pathological conditions, oxidative stress can compromise these interactions and thus circadian timekeeping and entrainment. To date, little is known about the impact of peripheral pathologies such as hepatocellular carcinoma (HCC) on SCN. Materials and Methods: In this study, HCC was induced in adult male mice. The key neuropeptides (vasoactive intestinal peptide: VIP, arginine vasopressin: AVP), an essential component of the molecular clockwork (Bmal1), markers for activity of neurons (c-Fos), astrocytes (GFAP), microglia (IBA1), as well as oxidative stress (8-OHdG) in the SCN were analyzed by immunohistochemistry at four different time points in HCC-bearing compared to control mice. Results: The immunoreactions for VIP, Bmal1, GFAP, IBA1, and 8-OHdG were increased in HCC mice compared to control mice, especially during the activity phase. In contrast, c-Fos was decreased in HCC mice, especially during the late inactive phase. Conclusions: Our data suggest that HCC affects the circadian system at the level of SCN. This involves an alteration of neuropeptides, neuronal activity, Bmal1, activation of glia cells, and oxidative stress in the SCN.
Collapse
Affiliation(s)
- Mona Yassine
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Soha A. Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
- Department of Zoology, Faculty of Science, Suez University, P.O. Box 43221, Suez 43533, Egypt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lea Aylin Yücel
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Fathima Faiba A. Purath
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany;
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (M.Y.); (S.A.H.); (L.A.Y.); (F.F.A.P.); (A.A.H.A.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
19
|
Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024; 12:1496. [PMID: 39062068 PMCID: PMC11274472 DOI: 10.3390/biomedicines12071496] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The field of multi-omics has witnessed unprecedented growth, converging multiple scientific disciplines and technological advances. This surge is evidenced by a more than doubling in multi-omics scientific publications within just two years (2022-2023) since its first referenced mention in 2002, as indexed by the National Library of Medicine. This emerging field has demonstrated its capability to provide comprehensive insights into complex biological systems, representing a transformative force in health diagnostics and therapeutic strategies. However, several challenges are evident when merging varied omics data sets and methodologies, interpreting vast data dimensions, streamlining longitudinal sampling and analysis, and addressing the ethical implications of managing sensitive health information. This review evaluates these challenges while spotlighting pivotal milestones: the development of targeted sampling methods, the use of artificial intelligence in formulating health indices, the integration of sophisticated n-of-1 statistical models such as digital twins, and the incorporation of blockchain technology for heightened data security. For multi-omics to truly revolutionize healthcare, it demands rigorous validation, tangible real-world applications, and smooth integration into existing healthcare infrastructures. It is imperative to address ethical dilemmas, paving the way for the realization of a future steered by omics-informed personalized medicine.
Collapse
Affiliation(s)
- Alex E. Mohr
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Carmen P. Ortega-Santos
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Corrie M. Whisner
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Judith Klein-Seetharaman
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Paniz Jasbi
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
| |
Collapse
|
20
|
Das M, Kumar D, Sauceda C, Oberg A, Ellies LG, Zeng L, Jih LJ, Newton IG, Webster NJG. Time-Restricted Feeding Attenuates Metabolic Dysfunction-Associated Steatohepatitis and Hepatocellular Carcinoma in Obese Male Mice. Cancers (Basel) 2024; 16:1513. [PMID: 38672595 PMCID: PMC11048121 DOI: 10.3390/cancers16081513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has surpassed the hepatitis B virus and hepatitis C virus as the leading cause of chronic liver disease in most parts of the Western world. MASLD (formerly known as NAFLD) encompasses both simple steatosis and more aggressive metabolic dysfunction-associated steatohepatitis (MASH), which is accompanied by inflammation, fibrosis, and cirrhosis, and ultimately can lead to hepatocellular carcinoma (HCC). There are currently very few approved therapies for MASH. Weight loss strategies such as caloric restriction can ameliorate the harmful metabolic effect of MASH and inhibit HCC; however, it is difficult to implement and maintain in daily life, especially in individuals diagnosed with HCC. In this study, we tested a time-restricted feeding (TRF) nutritional intervention in mouse models of MASH and HCC. We show that TRF abrogated metabolic dysregulation induced by a Western diet without any calorie restriction or weight loss. TRF improved insulin sensitivity and reduced hyperinsulinemia, liver steatosis, inflammation, and fibrosis. Importantly, TRF inhibited liver tumors in two mouse models of obesity-driven HCC. Our data suggest that TRF is likely to be effective in abrogating MASH and HCC and warrant further studies of time-restricted eating in humans with MASH who are at higher risk of developing HCC.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
| | - Deepak Kumar
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
| | - Consuelo Sauceda
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexis Oberg
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
| | - Lesley G. Ellies
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liping Zeng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
| | - Lily J. Jih
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Isabel G. Newton
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas J. G. Webster
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (M.D.)
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Berasain C. When you eat and when you sleep matters: Circadian dysfunction revealed as a direct hepatic carcinogen in a humanized mouse model. J Hepatol 2024; 80:191-193. [PMID: 37981053 DOI: 10.1016/j.jhep.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Affiliation(s)
- Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain.
| |
Collapse
|