1
|
Martin N, Thibeault A, Varadzinová L, Usai D, Ambrose SH, Antoine D, Brukner Havelková P, Honegger M, Irish JD, Jesse F, Maréchal L, Osypińska M, Osypiński P, Santos F, Vanderesse N, Varadzin L, Whiting RJ, Zanolli C, Velemínský P, Crevecoeur I. Enamel-dentine junction morphology reveals population replacement and mobility in the late prehistoric Middle Nile Valley. Proc Natl Acad Sci U S A 2025; 122:e2419122122. [PMID: 40163762 PMCID: PMC12012513 DOI: 10.1073/pnas.2419122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Transitions from foraging to food-production represent a worldwide turning point in recent human history. In the Middle Nile Valley this cultural shift occurred between the sixth and beginning of the fifth millennium BCE. Significant craniodental morphological differences remain inadequately tested by biometric analyses of ancestry and may reflect population origins or diet change between the last hunter-fisher-gatherers (Mesolithic) and first food-producers (Neolithic). Moreover, with no ancient DNA data for this region and very few morphological studies including large samples of Mesolithic individuals, the late prehistoric population history of the Nile Valley remains unclear. Here, we present enamel-dentine junction (EDJ) morphological analyses (based on X-ray microtomography) and biological affinities for 88 individuals spanning 14,000 y from Sudan and southern Egypt. Significant EDJ morphological differences between the last foragers and first food-producers suggest major biological discontinuity at the Neolithic transition. Nevertheless, the persistence of the earlier forager population in the Sudanese Eastern Sahara indicates settlement and population replacement mainly along the Nile. We also present biological evidence of interaction and mobility between these contemporaneous populations during the middle Holocene in the region. It supports the phylogenetic value of EDJ morphology for investigating population affinities at a microevolutionary scale. These results yield insights into the deep population history of the Nile Valley. They provide firm evidence for population replacement and migration toward the region at the onset of the Neolithic transition, attesting that these key changes were not solely triggered by cultural diffusion and diet change.
Collapse
Affiliation(s)
- Nicolas Martin
- De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie, Ministère de la Culture, UMR 5199, CNRS, University of Bordeaux, Pessac33600, France
| | - Adrien Thibeault
- De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie, Ministère de la Culture, UMR 5199, CNRS, University of Bordeaux, Pessac33600, France
| | - Lenka Varadzinová
- Czech Institute of Egyptology, Faculty of Arts, Charles University, Prague116 38, Czech Republic
| | - Donatella Usai
- Centro Studi Sudanesi e Sub-Sahariani - Ente Terzo Settore, Treviso31100, Italy
| | | | - Daniel Antoine
- Department of Egypt and Sudan, The British Museum, LondonWC1B 3DG, United Kingdom
| | - Petra Brukner Havelková
- Czech Institute of Egyptology, Faculty of Arts, Charles University, Prague116 38, Czech Republic
- Department of Anthropology, Natural History Museum, National Museum, Prague193 00, Czech Republic
| | - Matthieu Honegger
- Institute of Archaeology, University of Neuchâtel, Hauterive2068, Switzerland
| | - Joel D. Irish
- Research Centre in Evolutionary Anthropology and Paleoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, LiverpoolL3 3AF, United Kingdom
| | - Friederike Jesse
- University Archives, University of Wuppertal, Wuppertal42119, Germany
| | - Laura Maréchal
- Laboratory of Archaeology of Africa and Anthropology, Department of Anthropology, University of Geneva, Geneva1205, Switzerland
| | - Marta Osypińska
- Department of Non-European Archaeology, Institute of Archaeology, University of Wrocław, Wrocław 50-139, Poland
| | - Piotr Osypiński
- Institute of Archaeology and Ethnology, Polish Academy of Sciences, Poznan61-612, Poland
| | - Frédéric Santos
- De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie, Ministère de la Culture, UMR 5199, CNRS, University of Bordeaux, Pessac33600, France
| | - Nicolas Vanderesse
- De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie, Ministère de la Culture, UMR 5199, CNRS, University of Bordeaux, Pessac33600, France
| | - Ladislav Varadzin
- Institute of Archaeology, Czech Academy of Sciences, Prague118 00, Czech Republic
| | - Rebecca J. Whiting
- Department of Egypt and Sudan, The British Museum, LondonWC1B 3DG, United Kingdom
| | - Clément Zanolli
- De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie, Ministère de la Culture, UMR 5199, CNRS, University of Bordeaux, Pessac33600, France
| | - Petr Velemínský
- Department of Anthropology, Natural History Museum, National Museum, Prague193 00, Czech Republic
| | - Isabelle Crevecoeur
- De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie, Ministère de la Culture, UMR 5199, CNRS, University of Bordeaux, Pessac33600, France
| |
Collapse
|
2
|
Zanolli C, Hublin JJ, Kullmer O, Schrenk F, Kgasi L, Tawane M, Xing S. Taxonomic revision of the SK 15 mandible based on bone and tooth structural organization. J Hum Evol 2025; 200:103634. [PMID: 39752989 DOI: 10.1016/j.jhevol.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025]
Abstract
The hominin mandible SK 15 was discovered in April 1949 in Swartkrans Member 2, dated to ∼1.4 Ma. Albeit distorted on the right side, the left and right corpus of SK 15 are relatively low and thick, even compared to most Early to Middle Pleistocene Homo specimens. It preserves the left molar row and the right M2 and M3 that show a distalward increase in mesiodistal diameter. SK 15 was originally attributed to Telanthropus capensis but is now generally attributed to Homo erectus/Homo ergaster, even if it was previously suggested to possibly belong to Australopithecus. Similarities between SK 15 and Homo naledi mandible and tooth morphology were also claimed. To clarify the taxonomy of SK 15, we used X-ray microtomography to investigate aspects of bone and tooth structural organization. Geometric morphometric analyses of the dental arcade shape, mandible symphysis outline, and the M2 and M3 enamel-dentine junction shape were conducted. For mandibular symphysis shape, SK 15 exhibits an australopith signal, whereas for both the dental arcade and enamel-dentine junction analyses, the specimen is statistically classified as Paranthropus. Altogether, the results show that SK 15 unambiguously falls outside the variation of H. erectus/H. ergaster and that it is most compatible with the morphology of Paranthropus, albeit showing smaller dimensions and an absence of some dental morphological features (e.g., developed protostylid, distally tapering M3, short molar roots) typically found in specimens of Paranthropus aethiopicus, Paranthropus boisei, and Paranthropus robustus. In particular, SK 15 differs markedly in size and morphology from mandibular remains of P. robustus from Swartkrans Member 2. We thus tentatively attribute SK 15 to Paranthropus capensis, a more gracile species of Paranthropus than the other three currently recognized species of this genus and discuss the implications for the existence of another species of Paranthropus in southern Africa during the Early Pleistocene.
Collapse
Affiliation(s)
- Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, Pessac F-33600, France; Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, Johannesburg 2000, South Africa.
| | - Jean-Jacques Hublin
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, 11, Place Marcelin-Berthelot, Cedex 05, Paris 75231, France
| | - Ottmar Kullmer
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Friedemann Schrenk
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Lazarus Kgasi
- Ditsong National Museum of Natural History, Pretoria 0001, South Africa; Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria 0001, South Africa
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| |
Collapse
|
3
|
Wrangham RW, Worthington S. Apparent Stasis of Endocranial Volume in Two Chimpanzee Subspecies. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e25048. [PMID: 39718299 DOI: 10.1002/ajpa.25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVES Self-domestication theory and preliminary data suggest that western chimpanzees (Pan troglodytes verus) could have smaller brains than eastern chimpanzees (P. t. schweinfurthii), but no large-scale studies of chimpanzee endocranial volume (ECV) have tested this. This study compares ECV of wild adult P. t. verus and P. t. schweinfurthii, along with femoral head diameter (FHD; an index of body size), bizygomatic breadth (BZB) and palate length (PAL). MATERIALS AND METHODS Adult crania of P. t. schweinfurthii (60 females, 90 males, from Uganda and Democratic Republic of Congo) and P. t. verus (43 females, 37 males, from Liberia and Ivory Coast) were sampled. ECV was measured using 3 mm diameter glass beads, and FHD, PAL, and BZB with digital calipers. Quantities of interest were estimated using Bayesian inference. RESULTS No meaningful differences were found between subspecies on average in ECV, FHD, or the relationship between ECV and FHD. Within countries and subspecies, ECV varied widely among individuals, partly because males had higher ECV on average than females. When sex was controlled for, ECV was unrelated to FHD. Within subspecies there was no evidence of meaningful differences in average ECV among countries. PAL was the only measure that differed between subspecies on average, being shorter in P. t. verus females. DISCUSSION Current data show that within sexes, mean ECV is similar between P. t. verus and P. t. schweinfurthii. This suggests that average brain size in chimpanzees has remained unchanged for ~0.7 million years, in contrast to orangutans (Pongo) and humans.
Collapse
Affiliation(s)
- Richard W Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Steven Worthington
- Institute for Quantitative Social Science, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Taylor PJ, Nengovhela A, Denys C, Scott GR, Ivy CM. Adaptation in brain structure and respiratory and olfactory structures across environmental gradients in African and North American muroid rodents. Integr Zool 2024; 19:165-181. [PMID: 38044327 DOI: 10.1111/1749-4877.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Morphometric studies of 3D micro CT-scanned images can provide insights into the evolution of the brain and sensory structures but such data are still scarce for the most diverse mammalian order of rodents. From reviewed and new data, we tested for convergence to extreme aridity and high elevation in the sensory and brain morphology of rodents, from morphometric data from micro-CT X-ray scans of 174 crania of 16 species of three distantly related African murid (soft-furred mice, Praomyini, laminate-toothed rats, Otomyini, and gerbils, Gerbillinae) clades and one North American cricetid (deer mice and white-footed mice, Peromyscus) clade. Recent studies demonstrated convergent evolution acting on the oval window area of the cochlea (enlarged in extremely arid-adapted species of Otomyini and Gerbillinae) and on endocranial volume (reduced in high elevation taxa of Otomyini and Peromyscus). However, contrary to our predictions, we did not find evidence of convergence in brain structure to aridity, or in the olfactory/respiratory system (turbinate bones) to high elevation. Brain structure differed, particularly in the petrosal lobules of the cerebellum and the olfactory bulbs, between Otomyini and Gerbillinae, with extreme arid-adapted species in each clade being highly divergent (not convergent) from other species in the same clade. We observed greater "packing" of the maxillary turbinate bones, which have important respiratory functions, in Peromyscus mice from high and low elevations compared to the high-elevation African Praomyini, but more complex patterns within Peromyscus, probably related to trade-offs in respiratory physiology and heat exchange in the nasal epithelium associated with high-elevation adaptation.
Collapse
Affiliation(s)
- Peter J Taylor
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa
- Afromontane Unit, Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| | | | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université Des Antilles, Paris, France
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Catherine M Ivy
- Guglielmo and Shoemaker Labs, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Braga J, Wood BA, Zimmer VA, Moreno B, Miller C, Thackeray JF, Zipfel B, Grine FE. Hominin fossils from Kromdraai and Drimolen inform Paranthropus robustus craniofacial ontogeny. SCIENCE ADVANCES 2023; 9:eade7165. [PMID: 37134165 PMCID: PMC10156105 DOI: 10.1126/sciadv.ade7165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ontogeny provides critical information about the evolutionary history of early hominin adult morphology. We describe fossils from the southern African sites of Kromdraai and Drimolen that provide insights into early craniofacial development in the Pleistocene robust australopith Paranthropus robustus. We show that while most distinctive robust craniofacial features appear relatively late in ontogeny, a few do not. We also find unexpected evidence of independence in the growth of the premaxillary and maxillary regions. Differential growth results in a proportionately larger and more postero-inferiorly rotated cerebral fossa in P. robustus infants than in the developmentally older Australopithecus africanus juvenile from Taung. The accumulated evidence from these fossils suggests that the iconic SK 54 juvenile calvaria is more likely early Homo than Paranthropus. It is also consistent with the hypothesis that P. robustus is more closely related to Homo than to A. africanus.
Collapse
Affiliation(s)
- José Braga
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 37 allées Jules Guesde, Toulouse, France
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Bernard A Wood
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC 20052, USA
| | | | - Benjamin Moreno
- SARL IMA Solutions, 19 rue Jean Mermoz, 31100 Toulouse, France
| | - Catherine Miller
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - John F Thackeray
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Bernhard Zipfel
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Zanolli C, Bouchet F, Fortuny J, Bernardini F, Tuniz C, Alba DM. A reassessment of the distinctiveness of dryopithecine genera from the Iberian Miocene based on enamel-dentine junction geometric morphometric analyses. J Hum Evol 2023; 177:103326. [PMID: 36863301 DOI: 10.1016/j.jhevol.2023.103326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 03/04/2023]
Abstract
A vast diversity of catarrhines primates has been uncovered in the Middle to Late Miocene (12.5-9.6 Ma) of the Vallès-Penedès Basin (northeastern Spain), including several hominid species (Pierolapithecus catalaunicus, Anoiapithecus brevirostris, Dryopithecus fontani, Hispanopithecus laietanus, and Hispanopithecus crusafonti) plus some remains attributed to 'Sivapithecus' occidentalis (of uncertain taxonomic validity). However, Pierolapithecus and Anoiapithecus have also been considered junior synonyms of Dryopithecus by some authors, which entail a lower generic diversity and an inflated intrageneric variation of the latter genus. Since the distinction of these taxa partly relies on dental features, the detailed and quantitative analysis of tooth shape might help disentangling the taxonomic diversity of these Miocene hominids. Using diffeomorphic surface matching and three-dimensional geometric morphometrics, we investigate the enamel-dentine junction shape (which is a reliable taxonomic proxy) of these Miocene hominids, with the aim of investigating their degree of intra- and intergeneric variation compared with that of extant great ape genera. We conducted statistical analyses, including between-group principal component analyses, canonical variate analyses, and permutation tests, to investigate whether the individual and combined (i.e., Dryopithecus s.l.) variation of the extinct genera exceeds that of the extant great apes. Our results indicate that Pierolapithecus, Anoiapithecus, Dryopithecus, and Hispanopithecus show morphological differences of enamel-dentine junction shape relative to the extant great apes that are consistent with their attribution to different genera. Specifically, the variation displayed by the Middle Miocene taxa combined exceeds that of extant great ape genera, thus undermining the single-genus hypothesis. 'Sivapithecus' occidentalis specimens fall close to Dryopithecus but in the absence of well-preserved comparable teeth for Pierolapithecus and Anoiapithecus, their taxonomic attribution remains uncertain. Among the Hispanopithecus sample, IPS1802 from Can Llobateres stands out and might either be an outlier in terms of morphology, or represent another dryopithecine taxon.
Collapse
Affiliation(s)
- Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France.
| | - Florian Bouchet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Josep Fortuny
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Federico Bernardini
- Department of Humanistic Studies, Università Ca'Foscari, Venezia, Italy; Multidisciplinary Laboratory, 'Abdus Salam' International Centre for Theoretical Physics, Via Beirut 31, 34151 Trieste, Italy
| | - Claudio Tuniz
- Multidisciplinary Laboratory, 'Abdus Salam' International Centre for Theoretical Physics, Via Beirut 31, 34151 Trieste, Italy
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
7
|
Smith CM, Curthoys IS, Laitman JT. First evidence of the link between internal and external structure of the human inner ear otolith system using 3D morphometric modeling. Sci Rep 2023; 13:4840. [PMID: 36964237 PMCID: PMC10039035 DOI: 10.1038/s41598-023-31235-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
Our sense of balance is among the most central of our sensory systems, particularly in the evolution of human positional behavior. The peripheral vestibular system (PVS) comprises the organs responsible for this sense; the semicircular canals (detecting angular acceleration) and otolith organs (utricle and saccule; detecting linear acceleration, vibration, and head tilt). Reconstructing vestibular evolution in the human lineage, however, is problematic. In contrast to considerable study of the canals, relationships between external bone and internal membranous otolith organs (otolith system) remain largely unexplored. This limits our understanding of vestibular functional morphology. This study combines spherical harmonic modeling and landmark-based shape analyses to model the configuration of the human otolith system. Our approach serves two aims: (1) test the hypothesis that bony form covaries with internal membranous anatomy; and (2) create a 3D morphometric model visualizing bony and membranous structure. Results demonstrate significant associations between bony and membranous tissues of the otolith system. These data provide the first evidence that external structure of the human otolith system is directly related to internal anatomy, suggesting a basic biological relationship. Our results visualize this structural relationship, offering new avenues into vestibular biomechanical modeling and assessing the evolution of the human balance system.
Collapse
Affiliation(s)
- Christopher M Smith
- Department of Anthropology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- New York Consortium in Evolutionary Primatology, New York, NY, 10016, USA.
| | - Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jeffrey T Laitman
- Department of Anthropology, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- New York Consortium in Evolutionary Primatology, New York, NY, 10016, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
8
|
Bruner E, Beaudet A. The brain of Homo habilis: Three decades of paleoneurology. J Hum Evol 2023; 174:103281. [PMID: 36455402 DOI: 10.1016/j.jhevol.2022.103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
In 1987, Phillip Tobias published a comprehensive anatomical analysis of the endocasts attributed to Homo habilis, discussing issues dealing with brain size, sulcal patterns, and vascular traces. He suggested that the neuroanatomy of this species evidenced a clear change toward many cerebral traits associated with our genus, mostly when concerning the morphology of the frontal and parietal cortex. After more than 30 years, the fossil record associated with this taxon has not grown that much, but we have much more information on cranial and brain biology, and we are using a larger array of digital methods to investigate the paleoneurological variation observed in the human genus. Brain volume, the size of the frontal lobe, or the gross hemispheric asymmetries are still relevant issues, but they are considered to be less central than before. More attention is instead being paid to the cortical organization, the relationships with the cranial architecture, and the influence of molecular or ecological factors. Although the field of paleoneurology can currently count on a larger range of tools and principles, there is still a general lack of anatomical information on many endocranial traits. This aspect is probably crucial for the agenda of paleoneurology. More importantly, the whole science is undergoing a delicate change, because of the growing influence of the social environment. In this sense, the disciplines working with fossils (and, in particular, with brain evolution) should take particular care to maintain a healthy professional situation, avoiding an excess of speculation and overstatement.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain.
| | - Amélie Beaudet
- University of Cambridge, Henry Wellcome Building, Fitzwilliam St, Cambridge CB2 1QH, UK; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Carrer de l'Escola Industrial, 23, 08201 Sabadell, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
9
|
Mitteroecker P, Schaefer K. Thirty years of geometric morphometrics: Achievements, challenges, and the ongoing quest for biological meaningfulness. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:181-210. [PMID: 36790612 PMCID: PMC9545184 DOI: 10.1002/ajpa.24531] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
The foundations of geometric morphometrics were worked out about 30 years ago and have continually been refined and extended. What has remained as a central thrust and source of debate in the morphometrics community is the shared goal of meaningful biological inference through a tight connection between biological theory, measurement, multivariate biostatistics, and geometry. Here we review the building blocks of modern geometric morphometrics: the representation of organismal geometry by landmarks and semilandmarks, the computation of shape or form variables via superimposition, the visualization of statistical results as actual shapes or forms, the decomposition of shape variation into symmetric and asymmetric components and into different spatial scales, the interpretation of various geometries in shape or form space, and models of the association between shape or form and other variables, such as environmental, genetic, or behavioral data. We focus on recent developments and current methodological challenges, especially those arising from the increasing number of landmarks and semilandmarks, and emphasize the importance of thorough exploratory multivariate analyses rather than single scalar summary statistics. We outline promising directions for further research and for the evaluation of new developments, such as "landmark-free" approaches. To illustrate these methods, we analyze three-dimensional human face shape based on data from the Avon Longitudinal Study of Parents and Children (ALSPAC).
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Department of Evolutionary Biology, Unit for Theoretical BiologyUniversity of ViennaViennaAustria
| | - Katrin Schaefer
- Department of Evolutionary AnthropologyUniversity of ViennaViennaAustria
- Human Evolution and Archaeological Sciences (HEAS)University of ViennaViennaAustria
| |
Collapse
|
10
|
Asymmetry of Endocast Surface Shape in Modern Humans Based on Diffeomorphic Surface Matching. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain asymmetry is associated with handedness and cognitive function, and is also reflected in the shape of endocasts. However, comprehensive quantification of the asymmetry in endocast shapes is limited. Here, we quantify and visualize the variation of endocast asymmetry in modern humans using diffeomorphic surface matching. Our results show that two types of lobar fluctuating asymmetry contribute most to global asymmetry variation. A dominant pattern of local directional asymmetry is shared in the majority of the population: (1) the left occipital pole protrudes more than the right frontal pole in the left-occipital and right-frontal petalial asymmetry; (2) the left Broca’s cap appears to be more globular and bulges laterally, anteriorly, and ventrally compared to the right side; and (3) the asymmetrical pattern of the parietal is complex and the posterior part of the right temporal lobes are more bulbous than the contralateral sides. This study confirms the validity of endocasts for obtaining valuable information on encephalic asymmetries and reveals a more complicated pattern of asymmetry of the cerebral lobes than previously reported. The endocast asymmetry pattern revealed here provides more shape information to explore the relationships between brain structure and function, to re-define the uniqueness of human brains related to other primates, and to trace the timing of the human asymmetry pattern within hominin lineages.
Collapse
|
11
|
Abstract
The origins of Homo, as well as the diversity and biogeographic distribution of early Homo species, remain critical outstanding issues in paleoanthropology. Debates about the recognition of early Homo, first appearance dates, and taxonomic diversity within Homo are particularly important for determining the role that southern African taxa may have played in the origins of the genus. The correct identification of Homo remains also has implications for reconstructing phylogenetic relationships between species of Australopithecus and Paranthropus, and the links between early Homo species and Homo erectus. We use microcomputed tomography and landmark-free deformation-based three-dimensional geometric morphometrics to extract taxonomically informative data from the internal structure of postcanine teeth attributed to Early Pleistocene Homo in the southern African hominin-bearing sites of Sterkfontein, Swartkrans, Drimolen, and Kromdraai B. Our results indicate that, from our sample of 23 specimens, only 4 are unambiguously attributed to Homo, 3 of them coming from Swartkrans member 1 (SK 27, SK 847, and SKX 21204) and 1 from Sterkfontein (Sts 9). Three other specimens from Sterkfontein (StW 80 and 81, SE 1508, and StW 669) approximate the Homo condition in terms of overall enamel-dentine junction shape, but retain Australopithecus-like dental traits, and their generic status remains unclear. The other specimens, including SK 15, present a dominant australopith dental signature. In light of these results, previous dietary and ecological interpretations can be reevaluated, showing that the geochemical signal of one tooth from Kromdraai (KB 5223) and two from Swartkrans (SK 96 and SKX 268) is consistent with that of australopiths.
Collapse
|
12
|
Early Pleistocene hominin teeth from Gongwangling of Lantian, Central China. J Hum Evol 2022; 168:103212. [DOI: 10.1016/j.jhevol.2022.103212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022]
|
13
|
A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos. Nat Commun 2022; 13:2557. [PMID: 35581187 PMCID: PMC9114389 DOI: 10.1038/s41467-022-29923-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The Pleistocene presence of the genus Homo in continental Southeast Asia is primarily evidenced by a sparse stone tool record and rare human remains. Here we report a Middle Pleistocene hominin specimen from Laos, with the discovery of a molar from the Tam Ngu Hao 2 (Cobra Cave) limestone cave in the Annamite Mountains. The age of the fossil-bearing breccia ranges between 164–131 kyr, based on the Bayesian modelling of luminescence dating of the sedimentary matrix from which it was recovered, U-series dating of an overlying flowstone, and U-series–ESR dating of associated faunal teeth. Analyses of the internal structure of the molar in tandem with palaeoproteomic analyses of the enamel indicate that the tooth derives from a young, likely female, Homo individual. The close morphological affinities with the Xiahe specimen from China indicate that they belong to the same taxon and that Tam Ngu Hao 2 most likely represents a Denisovan. Evidence for the presence of Homo during the Middle Pleistocene is limited in continental Southeast Asia. Here, the authors report a hominin molar from Tam Ngu Hao 2 (Cobra Cave), dated to 164–131 kyr. They use morphological and paleoproteomic analysis to show that it likely belonged to a female Denisovan.
Collapse
|
14
|
Beaudet A, Dumoncel J, Heaton JL, Pickering TR, Clarke RJ, Carlson KJ, Bam L, Van Hoorebeke L, Stratford D. Shape analysis of the StW 578 calotte from Jacovec Cavern, Gauteng (South Africa). S AFR J SCI 2022. [DOI: 10.17159/sajs.2022/11743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The fossiliferous deposits within the lower-lying Jacovec Cavern in the locality of Sterkfontein yielded valuable hominin remains, including the StW 578 specimen. Because StW 578 mainly preserves the calotte, the taxonomic status of this specimen has been a matter of discussion. Within this context, here we employed high-resolution microtomography and a landmark-free registration method to explore taxonomically diagnostic features in the external surface of the StW 578 calotte. Our comparative sample included adult humans and common chimpanzees as well as one Australopithecus africanus specimen (Sts 5). We partially restored the StW 578 calotte digitally and compared it to extant specimens and Sts 5 using a landmark-free registration based on smooth and invertible surface deformation. Our comparative shape analysis reveals morphological differences with extant humans, especially in the frontal bones, and with extant chimpanzees, as well as intriguing specificities in the morphology of the StW 578 parietal bones. Lastly, our study suggests morphological proximity between StW 578 and Sts 5. Given the intimate relationship between the brain and the braincase, as well as the integration of the hominin face and neurocranium, we suggest that cranial vault shape differences between StW 578 and extant humans, if confirmed by further analyses, could be either explained by differences in brain surface morphology or in the face. Besides providing additional information about the morphology of the Jacovec calotte that will be useful in future taxonomic discussion, this study introduces a new protocol for the landmark-free analysis of fossil hominin cranial shape.
Collapse
Affiliation(s)
- Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
- Catalan Institute of Palaeontology Miquel Crusafont, Autonomous University of Barcelona, Barcelona, Spain
| | - Jean Dumoncel
- French National Centre for Scientific Research (CNRS), Paris, France
| | - Jason L. Heaton
- Department of Biology, Birmingham- Southern College, Birmingham, Alabama, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Travis R. Pickering
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History, Pretoria, South Africa
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald J. Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristian J. Carlson
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, California, USA
| | - Lunga Bam
- South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa
| | - Luc Van Hoorebeke
- UCGT Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Zanolli C, Kaifu Y, Pan L, Xing S, Mijares AS, Kullmer O, Schrenk F, Corny J, Dizon E, Robles E, Détroit F. Further analyses of the structural organization of Homo luzonensis teeth: Evolutionary implications. J Hum Evol 2022; 163:103124. [PMID: 34998272 DOI: 10.1016/j.jhevol.2021.103124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/13/2023]
Abstract
The species Homo luzonensis has recently been described based on a set of dental and postcranial elements found at Callao Cave (Northern Luzon, Philippines) and dated to at least 50-67 ka. Seven postcanine maxillary teeth are attributed to this taxon, five of them belonging to the same individual (CCH6) and representing the holotype of H. luzonensis, whereas the isolated upper premolar CCH8 and the upper third molar CCH9 are paratypes of the species. The teeth are characterized by their small dimensions associated with primitive features, as also found in Homo floresiensis, another hominin having evolved in an insular environment of Southeast Asia. Postcranial bones of the hands and feet of H. luzonensis and H. floresiensis show Homo habilis-like or australopith-like features, whereas cranial and dental morphology are more consistent with the Asian Homo erectus morphology. Due to this mosaic morphology, the origin and phylogenetic relationships of both H. luzonensis and H. floresiensis are still debated. To test the hypotheses that H. luzonensis derives from H. erectus or from an earlier small-brained hominin, we analyzed the µCT scans of the teeth. We investigated both external and internal tooth structure using morphometric methods including: crown outline shape, tooth crown tissue proportions, enamel-dentine junction shape, and pulp morphology. Homo luzonensis external crown morphology aligns more with H. erectus than with H. habilis/H. rudolfensis. The internal structural organization of H. luzonensis teeth exhibits more affinities with that of H. erectus and H. floresiensis than with Neanderthals and modern humans. Our results suggest that both H. floresiensis and H. luzonensis likely evolved from some H. erectus groups that dispersed in the various islands of this region and became isolated until endemic speciation events occurred at least twice during the Pleistocene in insular environments.
Collapse
Affiliation(s)
- Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France.
| | - Yousuke Kaifu
- The University Museum, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Lei Pan
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Armand S Mijares
- Archaeological Studies Program, University of the Philippines, Quezon City 1101, Philippines; National Museum of the Philippines, Manila 1000, Philippines
| | - Ottmar Kullmer
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Friedemann Schrenk
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Department of Palaeobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Julien Corny
- UMR 7194, CNRS, Département Homme & Environnement, Muséum National D'Histoire Naturelle, Musée de L'Homme, 75016 Paris, France
| | - Eusebio Dizon
- National Museum of the Philippines, Manila 1000, Philippines
| | - Emil Robles
- Archaeological Studies Program, University of the Philippines, Quezon City 1101, Philippines
| | - Florent Détroit
- UMR 7194, CNRS, Département Homme & Environnement, Muséum National D'Histoire Naturelle, Musée de L'Homme, 75016 Paris, France.
| |
Collapse
|
16
|
Grine FE, Gonzalvo E, Rossouw L, Holt S, Black W, Braga J. Variation in Middle Stone Age mandibular molar enamel-dentine junction topography at Klasies River Main Site assessed by diffeomorphic surface matching. J Hum Evol 2021; 161:103079. [PMID: 34739985 DOI: 10.1016/j.jhevol.2021.103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
The morphology and variability of the Middle Stone Age (MSA) hominin fossils from Klasies River Main Site have been the focus of investigation for more than four decades. The mandibular remains have figured prominently in discussions relating to robusticity, size dimorphism, and symphyseal morphology. Variation in corpus size between the robust SAM-AP 6223 and the diminutive SAM-AP 6225 mandibles is particularly impressive, and the difference between the buccolingual diameters of their M2s significantly exceeds recent human sample variation. SAM-AP 6223 and SAM-AP 6225 are the only Klasies specimens with homologous teeth (M2 and M3) that permit comparisons of crown morphology. While the differences in dental trait expression at the outer enamel surfaces of these molars are slight, diffeomorphic surface analyses of their underlying enamel-dentine junction (EDJ) topographies reveal differences that are well beyond the means of pairwise differences among comparative samples of Later Stone Age (LSA) Khoesan and recent African homologues. The EDJs of both SAM-AP 6225 molars and the SAM-AP 6223 M3 fall outside the envelopes that define the morphospace of these two samples. Although the radiocarbon dated LSA individuals examined here differ by a maximum of some 7000 years, and the two Klasies jaws may differ by perhaps as much as 18,000 years, it is difficult to ascribe their differences to time alone. With reference to the morphoscopic traits by which the SAM-AP 6223 and SAM-AP 6225 EDJs differ, the most striking is the expression of the protoconid cingulum. This is very weakly developed on the SAM-AP 6223 molars and distinct in SAM-AP 6225. As such, this diminutive fossil exhibits a more pronounced manifestation of what is likely a plesiomorphic feature, thus adding to the morphological mosaicism that is evident in the Klasies hominin assemblage. Several possible explanations for the variation and mosaicism in this MSA sample are discussed.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | - Elsa Gonzalvo
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier Toulouse III, Faculté de Médecine Purpan, 37 Allées Jules Guesde, Toulouse, France
| | - Lloyd Rossouw
- Florisbad Quaternary Research Department, The National Museum, 36 Aliwal Street, Bloemfontein 9300, South Africa
| | - Sharon Holt
- Florisbad Quaternary Research Department, The National Museum, 36 Aliwal Street, Bloemfontein 9300, South Africa
| | - Wendy Black
- Archaeology Unit, Research and Exhibitions Department, Iziko Museums of South Africa, Cape Town, South Africa
| | - José Braga
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier Toulouse III, Faculté de Médecine Purpan, 37 Allées Jules Guesde, Toulouse, France; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
17
|
Braga J, Samir C, Fradi A, Feunteun Y, Jakata K, Zimmer VA, Zipfel B, Thackeray JF, Macé M, Wood BA, Grine FE. Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies. Sci Rep 2021; 11:17018. [PMID: 34426640 PMCID: PMC8382707 DOI: 10.1038/s41598-021-96543-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Insights into potential differences among the bony labyrinths of Plio-Pleistocene hominins may inform their evolutionary histories and sensory ecologies. We use four recently-discovered bony labyrinths from the site of Kromdraai to significantly expand the sample for Paranthropus robustus. Diffeomorphometry, which provides detailed information about cochlear shape, reveals size-independent differences in cochlear shape between P. robustus and Australopithecus africanus that exceed those among modern humans and the African apes. The cochlea of P. robustus is distinctive and relatively invariant, whereas cochlear shape in A. africanus is more variable, resembles that of early Homo, and shows a degree of morphological polymorphism comparable to that evinced by modern species. The curvature of the P. robustus cochlea is uniquely derived and is consistent with enhanced sensitivity to low-frequency sounds. Combined with evidence for selection, our findings suggest that sound perception shaped distinct ecological adaptations among southern African early hominins.
Collapse
Affiliation(s)
- J. Braga
- grid.15781.3a0000 0001 0723 035XCentre d’Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier Toulouse III, Faculté de Médecine Purpan, 37 allées Jules Guesde, Toulouse, France ,grid.11951.3d0000 0004 1937 1135Evolutionary Studies Institute, University of the Witwatersrand, PO WITS, Johannesburg, 2050 South Africa
| | - C. Samir
- grid.503317.30000 0000 9971 4898LIMOS, UMR 6158 CNRS-Université Clermont Auvergne, 63173 Aubière, France
| | - A. Fradi
- grid.503317.30000 0000 9971 4898LIMOS, UMR 6158 CNRS-Université Clermont Auvergne, 63173 Aubière, France
| | - Y. Feunteun
- grid.503317.30000 0000 9971 4898LIMOS, UMR 6158 CNRS-Université Clermont Auvergne, 63173 Aubière, France
| | - K. Jakata
- grid.11951.3d0000 0004 1937 1135Evolutionary Studies Institute, University of the Witwatersrand, PO WITS, Johannesburg, 2050 South Africa
| | - V. A. Zimmer
- grid.6936.a0000000123222966Faculty of Informatics, Technical University of Munich, Munich, Germany
| | - B. Zipfel
- grid.11951.3d0000 0004 1937 1135Evolutionary Studies Institute, University of the Witwatersrand, PO WITS, Johannesburg, 2050 South Africa
| | - J. F. Thackeray
- grid.11951.3d0000 0004 1937 1135Evolutionary Studies Institute, University of the Witwatersrand, PO WITS, Johannesburg, 2050 South Africa
| | - M. Macé
- Véto 31, 73 Avenue du Général de Gaulle, 47000 Agen, France
| | - B. A. Wood
- grid.253615.60000 0004 1936 9510Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC 20052 USA
| | - F. E. Grine
- grid.36425.360000 0001 2216 9681Department of Anthropology, Stony Brook University, Stony Brook, NY 11794 USA ,grid.36425.360000 0001 2216 9681Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
18
|
Beaudet A, Holloway R, Benazzi S. A comparative study of the endocasts of OH 5 and SK 1585: Implications for the paleoneurology of eastern and southern African Paranthropus. J Hum Evol 2021; 156:103010. [PMID: 34020294 DOI: 10.1016/j.jhevol.2021.103010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Ralph Holloway
- Department of Anthropology, Columbia University, New York, USA
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
19
|
Urciuoli A, Zanolli C, Beaudet A, Pina M, Almécija S, Moyà-Solà S, Alba DM. A comparative analysis of the vestibular apparatus in Epipliopithecus vindobonensis: Phylogenetic implications. J Hum Evol 2021; 151:102930. [PMID: 33422741 DOI: 10.1016/j.jhevol.2020.102930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Pliopithecoids are an extinct group of catarrhine primates from the Miocene of Eurasia. More than 50 years ago, they were linked to hylobatids due to some morphological similarities, but most subsequent studies have supported a stem catarrhine status, due to the retention of multiple plesiomorphic features (e.g., the ectotympanic morphology) relative to crown catarrhines. More recently, some morphological similarities to hominoids have been noted, raising the question of whether they could be stem members of this clade. To re-evaluate these competing hypotheses, we examine the morphology of the semicircular canals of the bony labyrinth of the middle Miocene pliopithecid Epipliopithecus vindobonensis. The semicircular canals are suitable to test between these hypotheses because (1) they have been shown to embed strong phylogenetic signal and reliably discriminate among major clades; (2) several potential hominoid synapomorphies have been identified previously in the semicircular canals; and (3) semicircular canal morphology has not been previously described for any pliopithecoid. We use a deformation-based (landmark-free) three-dimensional geometric morphometric approach to compare Epipliopithecus with a broad primate sample of extant and extinct anthropoids. We quantify similarities in semicircular canal morphology using multivariate analyses, reconstruct ancestral morphotypes by means of a phylomorphospace approach, and identify catarrhine and hominoid synapomorphies based on discrete characters. Epipliopithecus semicircular canal morphology most closely resembles that of platyrrhines and Aegyptopithecus due to the retention of multiple anthropoid symplesiomorphies. However, Epipliopithecus is most parsimoniously interpreted as a stem catarrhine more derived than Aegyptopithecus due to the possession of a crown catarrhine synapomorphy (i.e., the rounded anterior canal), combined with the lack of other catarrhine and any hominoid synapomorphies. Some similarities with hylobatids and atelids are interpreted as homoplasies likely related to positional behavior. The semicircular canal morphology of Epipliopithecus thus supports the common view that pliopithecoids are stem catarrhines.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600, Pessac, France
| | - Amélie Beaudet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa; Department of Anatomy, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| | - Marta Pina
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, 176 Oxford Road, Manchester, M13 9PL, UK
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, Central Park West at 79(th) Street, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain; Unitat d'Antropologia (Departament de Biologia Animal, Biologia Vegetal i Ecologia), Universitat Autònoma de Barcelona, Campus de la UAB s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
20
|
Kovalaskas S, Rilling JK, Lindo J. Comparative analyses of the Pan lineage reveal selection on gene pathways associated with diet and sociality in bonobos. GENES BRAIN AND BEHAVIOR 2020; 20:e12715. [PMID: 33200560 DOI: 10.1111/gbb.12715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 01/15/2023]
Abstract
Chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) diverged into distinct species approximately 1.7 million years ago when the ancestors of modern-day bonobo populations were separated by the Congo River. This geographic boundary separates the two species today and the associated ecological factors, including resource distribution and feeding competition, have likely shaped the divergent social behavior of both species. The most striking behavioral differences pertain to between group interactions in which chimpanzees behave aggressively towards unfamiliar conspecifics, while bonobos display remarkable tolerance. Several hypotheses attempt to explain how different patterns of social behavior have come to exist in the two species, some with specific genetic predictions, likening the evolution of bonobos to a process of domestication. Here, we utilize 73 ape genomes and apply linkage haplotype homozygosity and structure informed allele frequency differentiation methods to identify positively selected regions in bonobos since their split from a common pan ancestor to better understand the environment and processes that resulted in the behavioral differences observed today. We find novel evidence of selection in genetic regions that aid in starch digestion (AMY2) along with support for two genetic predictions related to self-domestication processes hypothesized to have occurred in the bonobo. We also find evidence for selection on neuroendocrine pathways associated with social behavior including the oxytocin, serotonin, and gonadotropin releasing hormone pathways.
Collapse
Affiliation(s)
- Sarah Kovalaskas
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
| | - James K Rilling
- Department of Anthropology, Emory University, Atlanta, Georgia, USA.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia, USA.,Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, Georgia, USA
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Pan L, Dumoncel J, Mazurier A, Zanolli C. Hominin diversity in East Asia during the Middle Pleistocene: A premolar endostructural perspective. J Hum Evol 2020; 148:102888. [PMID: 33039881 DOI: 10.1016/j.jhevol.2020.102888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
Following the recent studies of East Asian mid-Middle to early Late Pleistocene hominin material, a large spectrum of morphological diversity has been recognized and the coexistence of archaic ('Homo erectus-like') and derived ('modern-like') dental morphological patterns has been highlighted. In fact, for most of these Chinese fossils, generally categorized as 'archaic Homo sapiens' or 'post-H. erectus Homo', the taxonomic attribution is a matter of contention. With the help of μCT techniques and a deformation-based 3D geometric morphometric approach, we focused on the morphological variation in the enamel-dentine junction (EDJ) of 18 upper and lower premolars from Chinese Middle Pleistocene hominins. We then compared our results with a number of fossil and modern human groups, including Early Pleistocene H. erectus from Sangiran; late Early Pleistocene hominins from Tighenif, Algeria; classic Neanderthals; and modern humans. Our results highlight an evolutionary/chronological trend of crown base reduction, elevation of EDJ topography, and EDJ surface simplification in the hominin groups studied here. Moreover, this study brings insights to the taxonomy/phylogeny of 6 late Middle Pleistocene specimens whose evolutionary placement has been debated for decades. Among these specimens, Changyang premolars show features that can be aligned with the Asian H. erectus hypodigm, whereas Panxian Dadong and Tongzi premolars are more similar to Late Pleistocene Homo. Compared with early to mid-Middle Pleistocene hominins in East Asia, late Middle Pleistocene hominins evince an enlarged morphological variation. A persistence of archaic morphotypes and possible admixture among populations during the late Middle Pleistocene are discussed.
Collapse
Affiliation(s)
- Lei Pan
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing, China; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Jean Dumoncel
- Laboratoire AMIS, UMR 5288 CNRS, Université Toulouse III, Paul Sabatier, France
| | - Arnaud Mazurier
- Institut de Chimie des Milieux et Matériaux, UMR 7285 CNRS, Université de Poitiers, 86073, Poitiers, France
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France.
| |
Collapse
|
22
|
Beaudet A, Clarke RJ, Heaton JL, Pickering TR, Carlson KJ, Crompton RH, Jashashvili T, Bruxelles L, Jakata K, Bam L, Van Hoorebeke L, Kuman K, Stratford D. The atlas of StW 573 and the late emergence of human-like head mobility and brain metabolism. Sci Rep 2020; 10:4285. [PMID: 32179760 PMCID: PMC7075956 DOI: 10.1038/s41598-020-60837-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
Functional morphology of the atlas reflects multiple aspects of an organism’s biology. More specifically, its shape indicates patterns of head mobility, while the size of its vascular foramina reflects blood flow to the brain. Anatomy and function of the early hominin atlas, and thus, its evolutionary history, are poorly documented because of a paucity of fossilized material. Meticulous excavation, cleaning and high-resolution micro-CT scanning of the StW 573 (‘Little Foot’) skull has revealed the most complete early hominin atlas yet found, having been cemented by breccia in its displaced and flipped over position on the cranial base anterolateral to the foramen magnum. Description and landmark-free morphometric analyses of the StW 573 atlas, along with other less complete hominin atlases from Sterkfontein (StW 679) and Hadar (AL 333-83), confirm the presence of an arboreal component in the positional repertoire of Australopithecus. Finally, assessment of the cross-sectional areas of the transverse foramina of the atlas and the left carotid canal in StW 573 further suggests there may have been lower metabolic costs for cerebral tissues in this hominin than have been attributed to extant humans and may support the idea that blood perfusion of these tissues increased over the course of hominin evolution.
Collapse
Affiliation(s)
- Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa. .,Department of Anatomy, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa.
| | - Ronald J Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa
| | - Jason L Heaton
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa.,Department of Biology, Birmingham-Southern College, 900 Arkadelphia Road, Birmingham, AL, 35254, United States.,Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History (Transvaal Museum), 432 Paul Kruger Street, Pretoria Central, Pretoria, South Africa
| | - Travis R Pickering
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa.,Department of Biology, Birmingham-Southern College, 900 Arkadelphia Road, Birmingham, AL, 35254, United States.,Department of Anthropology, University of Wisconsin, Madison, WI, 53706, United States
| | - Kristian J Carlson
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa.,Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, United States
| | - Robin H Crompton
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa.,Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, W Derby Street, Liverpool, L7 8TX, United Kingdom
| | - Tea Jashashvili
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa.,Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, CA, 90033, United States.,Department of Geology and Paleontology, Georgian National Museum, 3 Shota Rustaveli Ave, T'bilisi, 0105, Georgia
| | - Laurent Bruxelles
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa.,French National Institute for Preventive Archaeological Researches (INRAP), 561 rue Etienne Lenoir, 30900, Nîmes, France.,French Institute of South Africa (IFAS), USR 3336 CNRS, 62 Juta Street, Braamfontein, Johannesburg, 2001, South Africa
| | - Kudakwashe Jakata
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa
| | - Lunga Bam
- South African Nuclear Energy Corporation SOC Ltd. (Necsa), Elias Motsoaledi Street Ext. (Church Street West), R104, Pelindaba, North West Province, South Africa
| | - Luc Van Hoorebeke
- UGCT Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86/N12, B-9000, Gent, Belgium
| | - Kathleen Kuman
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS, 2050, South Africa
| |
Collapse
|
23
|
Urciuoli A, Zanolli C, Beaudet A, Dumoncel J, Santos F, Moyà-Solà S, Alba DM. The evolution of the vestibular apparatus in apes and humans. eLife 2020; 9:e51261. [PMID: 32122463 PMCID: PMC7054002 DOI: 10.7554/elife.51261] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022] Open
Abstract
Phylogenetic relationships among extinct hominoids (apes and humans) are controversial due to pervasive homoplasy and the incompleteness of the fossil record. The bony labyrinth might contribute to this debate, as it displays strong phylogenetic signal among other mammals. However, the potential of the vestibular apparatus for phylogenetic reconstruction among fossil apes remains understudied. Here we test and quantify the phylogenetic signal embedded in the vestibular morphology of extant anthropoids (monkeys, apes and humans) and two extinct apes (Oreopithecus and Australopithecus) as captured by a deformation-based 3D geometric morphometric analysis. We also reconstruct the ancestral morphology of various hominoid clades based on phylogenetically-informed maximum likelihood methods. Besides revealing strong phylogenetic signal in the vestibule and enabling the proposal of potential synapomorphies for various hominoid clades, our results confirm the relevance of vestibular morphology for addressing the controversial phylogenetic relationships of fossil apes.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
| | - Clément Zanolli
- Laboratoire PACEA, UMR 5199 CNRS, Université de BordeauxPessacFrance
| | - Amélie Beaudet
- School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
- Department of AnatomyUniversity of PretoriaPretoriaSouth Africa
| | - Jean Dumoncel
- Laboratoire AMIS, UMR 5288 CNRS, Université de ToulouseToulouseFrance
| | - Frédéric Santos
- Laboratoire PACEA, UMR 5199 CNRS, Université de BordeauxPessacFrance
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Unitat d’Antropologia (Departament de Biologia Animal, Biologia Vegetal i Ecologia)Universitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
| | - David M Alba
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
| |
Collapse
|
24
|
Shilton D, Breski M, Dor D, Jablonka E. Human Social Evolution: Self-Domestication or Self-Control? Front Psychol 2020; 11:134. [PMID: 32116937 PMCID: PMC7033472 DOI: 10.3389/fpsyg.2020.00134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/17/2020] [Indexed: 01/02/2023] Open
Abstract
The self-domestication hypothesis suggests that, like mammalian domesticates, humans have gone through a process of selection against aggression - a process that in the case of humans was self-induced. Here, we extend previous proposals and suggest that what underlies human social evolution is selection for socially mediated emotional control and plasticity. In the first part of the paper we highlight general features of human social evolution, which, we argue, is more similar to that of other social mammals than to that of mammalian domesticates and is therefore incompatible with the notion of human self-domestication. In the second part, we discuss the unique aspects of human evolution and propose that emotional control and social motivation in humans evolved during two major, partially overlapping stages. The first stage, which followed the emergence of mimetic communication, the beginnings of musical engagement, and mimesis-related cognition, required socially mediated emotional plasticity and was accompanied by new social emotions. The second stage followed the emergence of language, when individuals began to instruct the imagination of their interlocutors, and to rely even more extensively on emotional plasticity and culturally learned emotional control. This account further illustrates the significant differences between humans and domesticates, thus challenging the notion of human self-domestication.
Collapse
Affiliation(s)
- Dor Shilton
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Tel-Aviv, Israel
| | - Mati Breski
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Tel-Aviv, Israel
| | - Daniel Dor
- The Department of Communication, Tel-Aviv University, Tel-Aviv, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Tel-Aviv, Israel
- Centre for Philosophy of Natural and Social Science (CPNSS), London School of Economics, London, United Kingdom
| |
Collapse
|
25
|
Pan L, Dumoncel J, Mazurier A, Zanolli C. Structural analysis of premolar roots in Middle Pleistocene hominins from China. J Hum Evol 2019; 136:102669. [DOI: 10.1016/j.jhevol.2019.102669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022]
|
26
|
Pereira-Pedro AS, Beaudet A, Bruner E. Parietal lobe variation in cercopithecid endocasts. Am J Primatol 2019; 81:e23025. [PMID: 31241198 DOI: 10.1002/ajp.23025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/10/2019] [Accepted: 06/02/2019] [Indexed: 01/20/2023]
Abstract
In extant primates, the posterior parietal cortex is involved in visuospatial integration, attention, and eye-hand coordination, which are crucial functions for foraging and feeding behaviors. Paleoneurology studies brain evolution through the analysis of endocasts, that is molds of the inner surface of the braincase. These may preserve imprints of cortical structures, such as sulci, which might be of interest for locating the boundaries of major cortical regions. Old World monkeys (Cercopithecidae) represent an interesting zoological group for evolutionary studies, because of their diverse ecologies and locomotor behaviors. In this study, we quantify parietal lobe variation within the cercopithecid family, in a sample of 30 endocasts including 11 genera and 17 species, by combining landmark-based and landmark-free geometric morphometric analyses. More specifically, we quantitatively assess variation of the parietal proportions based on landmarks placed on reliable anatomical references and of parietal lobe surface morphology through deformation-based methods. The main feature associated with the cercopithecid endocranial variation regards the inverse proportions of parietal and occipital lobes, with colobines, Theropithecus, and Papio displaying relatively larger parietal lobes and smaller occipital lobes compared with cercopithecins. The parietal surface is anteroposteriorly longer and mediolaterally flatter in colobines, while longitudinally shorter but laterally bulging in baboons. Large parietal lobes in colobines and baboons are likely to be independent evolutionary traits, and not necessarily associated with analogous functions or morphogenetic mechanisms.
Collapse
Affiliation(s)
- Ana Sofia Pereira-Pedro
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | - Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
27
|
|
28
|
Braga J, Zimmer V, Dumoncel J, Samir C, de Beer F, Zanolli C, Pinto D, Rohlf FJ, Grine FE. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J Hum Evol 2019; 130:21-35. [PMID: 31010541 DOI: 10.1016/j.jhevol.2019.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022]
Abstract
Morphometric assessments of the dentition have played significant roles in hypotheses relating to taxonomic diversity among extinct hominins. In this regard, emphasis has been placed on the statistical appraisal of intraspecific variation to identify morphological criteria that convey maximum discriminatory power. Three-dimensional geometric morphometric (3D GM) approaches that utilize landmarks and semi-landmarks to quantify shape variation have enjoyed increasingly popular use over the past twenty-five years in assessments of the outer enamel surface (OES) and enamel-dentine junction (EDJ) of fossil molars. Recently developed diffeomorphic surface matching (DSM) methods that model the deformation between shapes have drastically reduced if not altogether eliminated potential methodological inconsistencies associated with the a priori identification of landmarks and delineation of semi-landmarks. As such, DSM has the potential to better capture the geometric details that describe tooth shape by accounting for both homologous and non-homologous (i.e., discrete) features, and permitting the statistical determination of geometric correspondence. We compare the discriminatory power of 3D GM and DSM in the evaluation of the OES and EDJ of mandibular permanent molars attributed to Australopithecus africanus, Paranthropus robustus and early Homo sp. from the sites of Sterkfontein and Swartkrans. For all three molars, classification and clustering scores demonstrate that DSM performs better at separating the A. africanus and P. robustus samples than does 3D GM. The EDJ provided the best results. P. robustus evinces greater morphological variability than A. africanus. The DSM assessment of the early Homo molar from Swartkrans reveals its distinctiveness from either australopith sample, and the "unknown" specimen from Sterkfontein (Stw 151) is notably more similar to Homo than to A. africanus.
Collapse
Affiliation(s)
- José Braga
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Veronika Zimmer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; Department of Biomedical Engineering, King's College London, London, UK.
| | - Jean Dumoncel
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - Chafik Samir
- LIMOS, UMR 6158 CNRS-Université Clermont Auvergne, 63173 Aubière, France.
| | - Frikkie de Beer
- South African Nuclear Energy Corporation (NECSA), Pelindaba, North West Province, South Africa.
| | - Clément Zanolli
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - Deborah Pinto
- Computer-assisted Palaeoanthropology Team, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31000 Toulouse, France.
| | - F James Rohlf
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
29
|
The bony labyrinth of StW 573 (“Little Foot”): Implications for early hominin evolution and paleobiology. J Hum Evol 2019; 127:67-80. [DOI: 10.1016/j.jhevol.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
|
30
|
Beaudet A, Du A, Wood B. Evolution of the modern human brain. PROGRESS IN BRAIN RESEARCH 2019; 250:219-250. [DOI: 10.1016/bs.pbr.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Nye J, Laayouni H, Kuhlwilm M, Mondal M, Marques-Bonet T, Bertranpetit J. Selection in the Introgressed Regions of the Chimpanzee Genome. Genome Biol Evol 2018; 10:1132-1138. [PMID: 29635458 PMCID: PMC5905441 DOI: 10.1093/gbe/evy077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
During the demographic history of the Pan clade, there has been gene-flow between species, likely >200,000 years ago. Bonobo haplotypes in three subspecies of chimpanzee have been identified to be segregating in modern-day chimpanzee populations, suggesting that these haplotypes, with increased differentiation, may be a target of natural selection. Here, we investigate signatures of adaptive introgression within the bonobo-like haplotypes in chimpanzees using site frequency spectrum-based tests. We find evidence for subspecies-specific adaptations in introgressed regions involved with male reproduction in central chimpanzees, the immune system in eastern chimpanzees, female reproduction and the nervous system in Nigeria-Cameroon chimpanzees. Furthermore, our results indicate signatures of balancing selection in some of the putatively introgressed regions. This might be the product of long-term balancing selection resulting in a similar genomic signature as introgression, or possibly balancing selection acting on alleles reintroduced through gene flow.
Collapse
Affiliation(s)
- Jessica Nye
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| | - Martin Kuhlwilm
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Estonian Biocentre, Tartu, Estonia
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| |
Collapse
|
32
|
Al-Amery SM, Nambiar P, John J, Purmal K, Ngeow WC, Mohamed NH, Vellayan S. Unusual Dental Morphology in a Chimpanzee: A Case Report Utilizing Cone-Beam Computed Tomography. J Vet Dent 2018; 35:96-102. [DOI: 10.1177/0898756418776448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This case report illustrates the teeth morphology of a chimpanzee and its anatomical variations. A well-preserved skull of a male Pan troglodytes troglodyte chimpanzee was scanned using a cone-beam computed tomography machine. Measurements included tooth and crown height, root length, root canal length and width (posterior teeth), and pulp cavity length (anterior teeth). Nonmetrical parameters included number of canals and foramina per root of every root. Interestingly, the mandibular central incisor was longer than the lateral incisor, and all the mandibular anterior teeth presented with a solitary flame-shaped or conical-calcified structure in their pulp cavity. The premolars are usually dual rooted except for the first maxillary premolar that displayed 3 roots. Other unusual discoveries were the presence of bilateral radicular dens invaginatus in the mandibular first premolars and the possibility of having 2 canals and 2 foramina in the roots of the posterior teeth. The presence of conical stone mineralizations at the pulp cavity and the presence of dens invaginatus were of particular interest.
Collapse
Affiliation(s)
- Samah M. Al-Amery
- Faculty of Dentistry, Department of Oro-Maxillofacial Surgical and Medical Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Phrabhakaran Nambiar
- Faculty of Dentistry, Department of Oro-Maxillofacial Surgical and Medical Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Dentistry, MAHSA University, Saujana Putra, Malaysia
| | - Jacob John
- Faculty of Dentistry, Department of Restorative Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Wei Cheong Ngeow
- Faculty of Dentistry, Department of Oro-Maxillofacial Surgical and Medical Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Himazian Mohamed
- Faculty of Dentistry, Department of Restorative Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Subramaniam Vellayan
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Kuala Selangor, Selangor, Malaysia
| |
Collapse
|
33
|
Sakai S, Whitt B, Arsznov B, Lundrigan B. Endocranial Development in the Coyote (Canis latrans) and Gray Wolf (Canis lupus): A Computed Tomographic Study. BRAIN, BEHAVIOR AND EVOLUTION 2018; 91:65-81. [DOI: 10.1159/000487427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/02/2018] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to examine the pattern of postnatal brain growth in two wild canid species: the coyote (Canis latrans) and gray wolf (Canis lupus). Adult regional and total brain volume differences were also compared between the two species as well as within each species by sex. Three-dimensional virtual endocasts of endocranial airspace were created from computed tomography scans of 52 coyote skulls (28 female, 24 male; 1 day to 13.4 years) and 46 gray wolf skulls (25 female, 21 male; 1 day to 7.9 years). Age was known in coyotes or estimated from dentition patterns in wolves. The 95% asymptotic growth of the endocranium is completed by 21 weeks in male and 17.5 weeks in female coyotes and by 27 weeks in male and 18.5 weeks in female wolves. These ages are well before age at first reproduction (coyote – 40.4 weeks; wolf – 91.25 weeks). Skull growth as measured by centroid size lags behind endocranial growth but is also completed before sexual maturity. Intra- and interspecific comparisons of brain volumes in the adult wolves and coyotes revealed that relative anterior cerebrum (AC) volume was greater in males than females in both species. Relative brain size was greater in the coyote than in the wolf as was relative cerebrum volume. However, relative AC volume and relative cerebellum and brainstem volume was greater in the wolf than coyote. One explanation for the increased AC volume in males compared to females may be related to the role of social information processing. However, additional data are needed to determine the correspondence between regional volumes and functional differences either between or within these species. Nonetheless, these findings provide important baseline data for further studies on wild canid brain variations and development.
Collapse
|
34
|
Zanolli C, Pan L, Dumoncel J, Kullmer O, Kundrát M, Liu W, Macchiarelli R, Mancini L, Schrenk F, Tuniz C. Inner tooth morphology of Homo erectus from Zhoukoudian. New evidence from an old collection housed at Uppsala University, Sweden. J Hum Evol 2018; 116:1-13. [DOI: 10.1016/j.jhevol.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/10/2023]
|
35
|
Beaudet A, Dumoncel J, de Beer F, Durrleman S, Gilissen E, Oettlé A, Subsol G, Thackeray JF, Braga J. The endocranial shape of Australopithecus africanus: surface analysis of the endocasts of Sts 5 and Sts 60. J Anat 2017; 232:296-303. [PMID: 29148040 DOI: 10.1111/joa.12745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 11/30/2022] Open
Abstract
Assessment of global endocranial morphology and regional neuroanatomical changes in early hominins is critical for the reconstruction of evolutionary trajectories of cerebral regions in the human lineage. Early evidence of cortical reorganization in specific local areas (e.g. visual cortex, inferior frontal gyrus) is perceptible in the non-human South African hominin fossil record. However, to date, little information is available regarding potential global changes in the early hominin brain. The introduction of non-invasive imaging techniques opens up new perspectives for the study of hominin brain evolution. In this context, our primary aim in this study is to explore the organization of the Australopithecus africanus endocasts, and highlight the nature and extent of the differences distinguishing A. africanus from the extant hominids at both local and global scales. By means of X-ray-based imaging techniques, we investigate two A. africanus specimens from Sterkfontein Member 4, catalogued as Sts 5 and Sts 60, respectively a complete cranium and a partial cranial endocast. Endocrania were virtually reconstructed and compared by using a landmark-free registration method based on smooth and invertible surface deformation. Both local and global information provided by our deformation-based approach are used to perform statistical analyses and topological mapping of inter-specific variation. Statistical analyses indicate that the endocranial shape of Sts 5 and Sts 60 approximates the Pan condition. Furthermore, our study reveals substantial differences with respect to the extant human condition, particularly in the parietal regions. Compared with Pan, the endocranial shape of the fossil specimens differs in the anterior part of the frontal gyri.
Collapse
Affiliation(s)
- Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | - Jean Dumoncel
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), Toulouse Cedex, France.,Institut de Recherche en Informatique de Toulouse, UMR 5505 CNRS-Université de Toulouse (Paul Sabatier), Toulouse Cedex, France
| | - Frikkie de Beer
- Radiation Science Department, South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa
| | - Stanley Durrleman
- Institut du Cerveau et de la Moelle épinière, Aramis Team, INRIA Paris, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Anna Oettlé
- Department of Anatomy, University of Pretoria, Pretoria, South Africa.,Department of Anatomy and Histology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Gérard Subsol
- Montpellier Laboratory of Informatics, Robotics and Microelectronics, UMR 5506 CNRS, Université de Montpellier, Montpellier, France
| | - John Francis Thackeray
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - José Braga
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), Toulouse Cedex, France.,Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
36
|
Rodriguez-Florez N, Bruse JL, Borghi A, Vercruysse H, Ong J, James G, Pennec X, Dunaway DJ, Jeelani NUO, Schievano S. Statistical shape modelling to aid surgical planning: associations between surgical parameters and head shapes following spring-assisted cranioplasty. Int J Comput Assist Radiol Surg 2017; 12:1739-1749. [PMID: 28550406 PMCID: PMC5608871 DOI: 10.1007/s11548-017-1614-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/16/2017] [Indexed: 12/04/2022]
Abstract
PURPOSE Spring-assisted cranioplasty is performed to correct the long and narrow head shape of children with sagittal synostosis. Such corrective surgery involves osteotomies and the placement of spring-like distractors, which gradually expand to widen the skull until removal about 4 months later. Due to its dynamic nature, associations between surgical parameters and post-operative 3D head shape features are difficult to comprehend. The current study aimed at applying population-based statistical shape modelling to gain insight into how the choice of surgical parameters such as craniotomy size and spring positioning affects post-surgical head shape. METHODS Twenty consecutive patients with sagittal synostosis who underwent spring-assisted cranioplasty at Great Ormond Street Hospital for Children (London, UK) were prospectively recruited. Using a nonparametric statistical modelling technique based on mathematical currents, a 3D head shape template was computed from surface head scans of sagittal patients after spring removal. Partial least squares (PLS) regression was employed to quantify and visualise trends of localised head shape changes associated with the surgical parameters recorded during spring insertion: anterior-posterior and lateral craniotomy dimensions, anterior spring position and distance between anterior and posterior springs. RESULTS Bivariate correlations between surgical parameters and corresponding PLS shape vectors demonstrated that anterior-posterior (Pearson's [Formula: see text]) and lateral craniotomy dimensions (Spearman's [Formula: see text]), as well as the position of the anterior spring ([Formula: see text]) and the distance between both springs ([Formula: see text]) on average had significant effects on head shapes at the time of spring removal. Such effects were visualised on 3D models. CONCLUSIONS Population-based analysis of 3D post-operative medical images via computational statistical modelling tools allowed for detection of novel associations between surgical parameters and head shape features achieved following spring-assisted cranioplasty. The techniques described here could be extended to other cranio-maxillofacial procedures in order to assess post-operative outcomes and ultimately facilitate surgical decision making.
Collapse
Affiliation(s)
- Naiara Rodriguez-Florez
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Jan L Bruse
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London, UK
| | - Alessandro Borghi
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Herman Vercruysse
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Juling Ong
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Greg James
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - David J Dunaway
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - N U Owase Jeelani
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Silvia Schievano
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Craniofacial Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London, UK
| |
Collapse
|
37
|
Beaudet A. The Emergence of Language in the Hominin Lineage: Perspectives from Fossil Endocasts. Front Hum Neurosci 2017; 11:427. [PMID: 28878641 PMCID: PMC5572361 DOI: 10.3389/fnhum.2017.00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the WitwatersrandJohannesburg, South Africa.,Department of Anatomy, University of PretoriaPretoria, South Africa
| |
Collapse
|
38
|
Beaudet A, Dumoncel J, de Beer F, Duployer B, Durrleman S, Gilissen E, Hoffman J, Tenailleau C, Thackeray JF, Braga J. Morphoarchitectural variation in South African fossil cercopithecoid endocasts. J Hum Evol 2016; 101:65-78. [PMID: 27886811 DOI: 10.1016/j.jhevol.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/24/2022]
Abstract
Despite the abundance of well-preserved crania and natural endocasts in the South African Plio-Pleistocene cercopithecoid record, which provide direct information relevant to the evolution of their endocranial characteristics, few studies have attempted to characterize patterns of external brain morphology in this highly successful primate Superfamily. The availability of non-destructive penetrating radiation imaging systems, together with recently developed computer-based analytical tools, allow for high resolution virtual imaging and modeling of the endocranial casts and thus disclose new perspectives in comparative paleoneurology. Here, we use X-ray microtomographic-based 3D virtual imaging and quantitative analyses to investigate the endocranial organization of 14 cercopithecoid specimens from the South African sites of Makapansgat, Sterkfontein, Swartkrans, and Taung. We present the first detailed comparative description of the external neuroanatomies that characterize these Plio-Pleistocene primates. Along with reconstruction of endocranial volumes, we combine a semi-automatic technique for extracting the neocortical sulcal pattern together with a landmark-free surface deformation method to investigate topographic differences in morphostructural organization. Besides providing and comparing for the first time endocranial volume estimates of extinct Plio-Pleistocene South African cercopithecoid taxa, we report additional information regarding the variation in the sulcal pattern of Theropithecus oswaldi subspecies, and notably of the central sulcus, and the neuroanatomical condition of the colobine taxon Cercopithecoides williamsi, suggested to be similar for some aspects to the papionin pattern, and discuss potential phylogenetic and taxonomic implications. Further research in virtual paleoneurology, applied to specimens from a wider geographic area, is needed to clarify the polarity, intensity, and timing of cortical surface evolution in cercopithecoid lineages.
Collapse
Affiliation(s)
- Amélie Beaudet
- Department of Anatomy, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa; Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31073 Toulouse Cedex 3, France.
| | - Jean Dumoncel
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31073 Toulouse Cedex 3, France; Institut de Recherche en Informatique de Toulouse, UMR 5505 CNRS-Université de Toulouse (Paul Sabatier), 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Frikkie de Beer
- Radiation Science Department, South African Nuclear Energy Corporation, Pelindaba, North West Province, South Africa
| | - Benjamin Duployer
- Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux, UMR 5085 CNRS-Université de Toulouse (Paul Sabatier), 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Stanley Durrleman
- Aramis Team, INRIA Paris, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, 47 boulevard de l'hôpital, 75013 Paris, France
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg, 3080 Tervuren, Belgium; Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jakobus Hoffman
- Radiation Science Department, South African Nuclear Energy Corporation, Pelindaba, North West Province, South Africa
| | - Christophe Tenailleau
- Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux, UMR 5085 CNRS-Université de Toulouse (Paul Sabatier), 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - John Francis Thackeray
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Private Bag 3, Wits, 2050 Johannesburg, South Africa
| | - José Braga
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), 37 Allées Jules Guesde, 31073 Toulouse Cedex 3, France; Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Private Bag 3, Wits, 2050 Johannesburg, South Africa
| |
Collapse
|
39
|
Three-Dimensional Handheld Scanning to Quantify Head-Shape Changes in Spring-Assisted Surgery for Sagittal Craniosynostosis. J Craniofac Surg 2016; 27:2117-2123. [DOI: 10.1097/scs.0000000000003108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Gruber T, Clay Z. A Comparison Between Bonobos and Chimpanzees: A Review and Update. Evol Anthropol 2016; 25:239-252. [DOI: 10.1002/evan.21501] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 01/07/2023]
|
41
|
Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids. J Hum Evol 2016; 95:104-20. [DOI: 10.1016/j.jhevol.2016.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022]
|
42
|
Rekik I, Li G, Lin W, Shen D. Multidirectional and Topography-based Dynamic-scale Varifold Representations with Application to Matching Developing Cortical Surfaces. Neuroimage 2016; 135:152-62. [PMID: 27138207 DOI: 10.1016/j.neuroimage.2016.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 01/22/2023] Open
Abstract
The human cerebral cortex is marked by great complexity as well as substantial dynamic changes during early postnatal development. To obtain a fairly comprehensive picture of its age-induced and/or disorder-related cortical changes, one needs to match cortical surfaces to one another, while maximizing their anatomical alignment. Methods that geodesically shoot surfaces into one another as currents (a distribution of oriented normals) and varifolds (a distribution of non-oriented normals) provide an elegant Riemannian framework for generic surface matching and reliable statistical analysis. However, both conventional current and varifold matching methods have two key limitations. First, they only use the normals of the surface to measure its geometry and guide the warping process, which overlooks the importance of the orientations of the inherently convoluted cortical sulcal and gyral folds. Second, the 'conversion' of a surface into a current or a varifold operates at a fixed scale under which geometric surface details will be neglected, which ignores the dynamic scales of cortical foldings. To overcome these limitations and improve varifold-based cortical surface registration, we propose two different strategies. The first strategy decomposes each cortical surface into its normal and tangent varifold representations, by integrating principal curvature direction field into the varifold matching framework, thus providing rich information of the orientation of cortical folding and better characterization of the complex cortical geometry. The second strategy explores the informative cortical geometric features to perform a dynamic-scale measurement of the cortical surface that depends on the local surface topography (e.g., principal curvature), thereby we introduce the concept of a topography-based dynamic-scale varifold. We tested the proposed varifold variants for registering 12 pairs of dynamically developing cortical surfaces from 0 to 6 months of age. Both variants improved the matching accuracy in terms of closeness to the target surface and the goodness of alignment with regional anatomical boundaries, when compared with three state-of-the-art methods: (1) diffeomorphic spectral matching, (2) conventional current-based surface matching, and (3) conventional varifold-based surface matching.
Collapse
Affiliation(s)
- Islem Rekik
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
43
|
Clay Z, Furuichi T, de Waal FB. Obstacles and catalysts to peaceful coexistence in chimpanzees and bonobos. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As our closest living relatives, comparisons of the social lives and behavioural ecologies of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) provide relevant insights into the evolutionary constraints of peaceful coexistence in Hominid societies. In this review, we compare and contrast findings from the two Pan species in order to examine some of the obstacles and catalysts for peaceful behaviour in our ape relatives. Through comparing the social structures, behavioural mechanisms and ecological drivers for peaceful behaviours in Pan, we develop hypotheses regarding the evolutionary constraints of peaceful co-existence in hominid societies.
Collapse
Affiliation(s)
- Zanna Clay
- aSchool of Psychology, University of Birmingham, Birmingham, UK
| | - Takeshi Furuichi
- bPrimate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Frans B.M. de Waal
- cLiving Links Center, Yerkes National Primate Research Center and Psychology Department, Emory University, Atlanta, GA, USA
| |
Collapse
|
44
|
Braga J, Loubes JM, Descouens D, Dumoncel J, Thackeray JF, Kahn JL, de Beer F, Riberon A, Hoffman K, Balaresque P, Gilissen E. Disproportionate Cochlear Length in Genus Homo Shows a High Phylogenetic Signal during Apes' Hearing Evolution. PLoS One 2015; 10:e0127780. [PMID: 26083484 PMCID: PMC4471221 DOI: 10.1371/journal.pone.0127780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/18/2015] [Indexed: 11/30/2022] Open
Abstract
Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species’ sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo),Gorilla) and (Pan,Homo) most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection) of its hearing organ. Premodern (Homo erectus) and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the “hypertrophied” cochlea in the genus Homo (as opposed to the australopiths) and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record.
Collapse
Affiliation(s)
- J. Braga
- Hominid Evolutionary Biology, AMIS-UMR 5288 CNRS, University of Toulouse (Paul Sabatier), Toulouse, France
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - J-M. Loubes
- Statistics and Probabilities Team, Institute of Mathematics of Toulouse, UMR 5219 CNRS-Université de Toulouse (Paul Sabatier), Toulouse, France
| | - D. Descouens
- Hominid Evolutionary Biology, AMIS-UMR 5288 CNRS, University of Toulouse (Paul Sabatier), Toulouse, France
| | - J. Dumoncel
- Hominid Evolutionary Biology, AMIS-UMR 5288 CNRS, University of Toulouse (Paul Sabatier), Toulouse, France
| | - J. F. Thackeray
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - J-L. Kahn
- Institut d'Anatomie Normale et Pathologique, Faculté de Médecine de Strasbourg, Strasbourg, France
| | - F. de Beer
- South African Nuclear Energy Corporation, Pelindaba, North West Province, South Africa
| | - A. Riberon
- Laboratoire Evolution et Diversité Biologique, UMR 5174 CNRS, University of Toulouse (Paul Sabatier), Toulouse, France
| | - K. Hoffman
- South African Nuclear Energy Corporation, Pelindaba, North West Province, South Africa
| | - P. Balaresque
- Hominid Evolutionary Biology, AMIS-UMR 5288 CNRS, University of Toulouse (Paul Sabatier), Toulouse, France
| | - E. Gilissen
- Royal Museum for Central Africa, Tervuren, Belgium and Laboratory of Histology and Neuropathology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
45
|
Neubauer S. Endocasts: possibilities and limitations for the interpretation of human brain evolution. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:117-34. [PMID: 25247826 DOI: 10.1159/000365276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brains are not preserved in the fossil record but endocranial casts are. These are casts of the internal bony braincase, revealing approximate brain size and shape, and they are also informative about brain surface morphology. Endocasts are the only direct evidence of human brain evolution, but they provide only limited data ('paleoneurology'). This review discusses some new fossil endocasts and recent methodological advances that have allowed novel analyses of old endocasts, leading to intriguing findings and hypotheses. The interpretation of paleoneurological data always relies on comparative information from living species whose brains and behavior can be directly investigated. It is therefore important that future studies attempt to better integrate different approaches. Only then will we be able to gain a better understanding about hominin brain evolution. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
46
|
Cieri RL, Churchill SE, Franciscus RG, Tan J, Hare B. Craniofacial Feminization, Social Tolerance, and the Origins of Behavioral Modernity. CURRENT ANTHROPOLOGY 2014. [DOI: 10.1086/677209] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Behringer V, Deschner T, Deimel C, Stevens JMG, Hohmann G. Age-related changes in urinary testosterone levels suggest differences in puberty onset and divergent life history strategies in bonobos and chimpanzees. Horm Behav 2014; 66:525-33. [PMID: 25086337 DOI: 10.1016/j.yhbeh.2014.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
Abstract
Research on age-related changes in morphology, social behavior, and cognition suggests that the development of bonobos (Pan paniscus) is delayed in comparison to chimpanzees (Pan troglodytes). However, there is also evidence for earlier reproductive maturation in bonobos. Since developmental changes such as reproductive maturation are induced by a number of endocrine processes, changes in hormone levels are indicators of different developmental stages. Age-related changes in testosterone excretion are an indirect marker for the onset of puberty in human and non-human primates. In this study we investigated patterns of urinary testosterone levels in male and female bonobos and chimpanzees to determine the onset of puberty. In contrast to other studies, we found that both species experience age-related changes in urinary testosterone levels. Older individuals of both sexes had significantly higher urinary testosterone levels than younger individuals, indicating that bonobos and chimpanzees experience juvenile pause. The males of both species showed a similar pattern of age-related changes in urinary testosterone levels, with a sharp increase in levels around the age of eight years. This suggests that species-differences in aggression and male mate competition evolved independently of developmental changes in testosterone levels. Females showed a similar pattern of age-related urinary testosterone increase. However, in female bonobos the onset was about three years earlier than in female chimpanzees. The earlier rise of urinary testosterone levels in female bonobos is in line with reports of their younger age of dispersal, and suggests that female bonobos experience puberty at a younger age than female chimpanzees.
Collapse
Affiliation(s)
- V Behringer
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - T Deschner
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - C Deimel
- Department of Anthropology, Indiana University Bloomington, 701 E Kirkwood Ave Bloomington, IN 47405, USA
| | - J M G Stevens
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, K. Astridplein 26, B 2018, Antwerp, Belgium
| | - G Hohmann
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
48
|
|
49
|
The human semicircular canals orientation is more similar to the bonobos than to the chimpanzees. PLoS One 2014; 9:e93824. [PMID: 24710502 PMCID: PMC3978048 DOI: 10.1371/journal.pone.0093824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
For some traits, the human genome is more closely related to either the bonobo or the chimpanzee genome than they are to each other. Therefore, it becomes crucial to understand whether and how morphostructural differences between humans, chimpanzees and bonobos reflect the well known phylogeny. Here we comparatively investigated intra and extra labyrinthine semicircular canals orientation using 260 computed tomography scans of extant humans (Homo sapiens), bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). Humans and bonobos proved more similarities between themselves than with chimpanzees. This finding did not fit with the well established chimpanzee – bonobo monophyly. One hypothesis was convergent evolution in which bonobos and humans produce independently similar phenotypes possibly in response to similar selective pressures that may be associated with postural adaptations. Another possibility was convergence following a “random walk” (Brownian motion) evolutionary model. A more parsimonious explanation was that the bonobo-human labyrinthine shared morphology more closely retained the ancestral condition with chimpanzees being subsequently derived. Finally, these results might be a consequence of genetic diversity and incomplete lineage sorting. The remarkable symmetry of the Semicircular Canals was the second major finding of this article with possible applications in taphonomy. It has the potential to investigate altered fossils, inferring the probability of post-mortem deformation which can lead to difficulties in understanding taxonomic variation, phylogenetic relationships, and functional morphology.
Collapse
|
50
|
Behringer V, Deschner T, Murtagh R, Stevens JM, Hohmann G. Age-related changes in Thyroid hormone levels of bonobos and chimpanzees indicate heterochrony in development. J Hum Evol 2014; 66:83-8. [DOI: 10.1016/j.jhevol.2013.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/19/2013] [Accepted: 09/01/2013] [Indexed: 11/27/2022]
|