1
|
Rickelton K, Ely JJ, Hopkins WD, Hof PR, Sherwood CC, Bauernfeind AL, Babbitt CC. Transcriptomic changes across subregions of the primate cerebellum support the evolution of uniquely human behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641249. [PMID: 40093170 PMCID: PMC11908169 DOI: 10.1101/2025.03.03.641249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Compared to other primates, humans display unique behaviors including language and complex tool use. These abilities are made possible in part by the cerebellum. This region of the hindbrain, comprising the flocculus, vermis, and lateral hemispheres, has expanded throughout primate evolution, particularly in great apes. Given the cerebellum's architecture-differing in connectivity, neuron content, and functions across subregions-examining subregional differences is crucial to understanding its evolutionary trajectory. Results We performed bulk RNA-seq across samples from six primate species, representing 40-50 million years of evolutionary history, across four subregions of the cerebellum (vermis, flocculus, right lateral hemisphere, left lateral hemisphere). We analyzed changes in gene expression with respect to evolutionary relationships via the Ornstein-Uhlenbeck model and found that, on average, 8.5% of orthologous genes are differentially expressed in humans relative to other non-human primates. Subregion-specific gene expression patterns reveal that the primate lateral hemispheres exhibit significant differences in synaptic activity and glucose metabolism, which in turn are highly implicated in neural processing. Conclusions This study provides a novel perspective on gene expression divergences across cerebellar subregions in multiple primate species, offering valuable insights into the evolution of this brain structure. Our findings reveal distinct subregional transcriptomic patterns, with the lateral hemispheres emerging as key sites of divergence across the six primate species. The enrichment of genes related to synaptic activity, glucose metabolism, locomotion, and vocalization highlights the cerebellum's crucial role in supporting the neural complexity underlying uniquely human and other species-specific primate behaviors.
Collapse
Affiliation(s)
- Katherine Rickelton
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - John J Ely
- Alamogordo Primate Facility, Holloman Air Force Base, NM 88330, USA
| | - William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas M D Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10124, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Amy L Bauernfeind
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Zintel TM, Ely JJ, Raghanti MA, Hopkins WD, Hof PR, Sherwood CC, Kamilar JM, Bauernfeind AL, Babbitt CC. Ecological Trait Differences Are Associated with Gene Expression in the Primary Visual Cortex of Primates. Genes (Basel) 2025; 16:117. [PMID: 40004446 PMCID: PMC11855002 DOI: 10.3390/genes16020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Primate species differ drastically from most other mammals in how they visually perceive their environments, which is particularly important for foraging, predator avoidance, and detection of social cues. BACKGROUND/OBJECTIVES Although it is well established that primates display diversity in color vision and various ecological specializations, it is not understood how visual system characteristics and ecological adaptations may be associated with gene expression levels within the primary visual cortex (V1). METHODS We performed RNA-Seq on V1 tissue samples from 28 individuals, representing 13 species of primates, including hominoids, cercopithecoids, and platyrrhines. We explored trait-dependent differential expression (DE) by contrasting species with differing visual system phenotypes and ecological traits. RESULTS Between 4-25% of genes were determined to be differentially expressed in primates that varied in type of color vision (trichromatic or polymorphic di/trichromatic), habitat use (arboreal or terrestrial), group size (large or small), and primary diet (frugivorous, folivorous, or omnivorous). CONCLUSIONS Interestingly, our DE analyses revealed that humans and chimpanzees showed the most marked differences between any two species, even though they are only separated by 6-8 million years of independent evolution. These results show a combination of species-specific and trait-dependent differences in the evolution of gene expression in the primate visual cortex.
Collapse
Affiliation(s)
- Trisha M. Zintel
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | | - Mary Ann Raghanti
- Department of Anthropology, Kent State University, Kent, OH 44242, USA;
| | - William D. Hopkins
- Keeling Center for Comparative Medicine and Research, The University of Texas, MD Anderson Cancer Center, Bastrop, TX 78602, USA;
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- New York Consortium in Evolutionary Primatology, New York, NY 10065, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA;
| | - Jason M. Kamilar
- Department of Anthropology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Amy L. Bauernfeind
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Courtney C. Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| |
Collapse
|
3
|
Zintel TM, Pizzollo J, Claypool CG, Babbitt CC. Astrocytes Drive Divergent Metabolic Gene Expression in Humans and Chimpanzees. Genome Biol Evol 2024; 16:evad239. [PMID: 38159045 PMCID: PMC10829071 DOI: 10.1093/gbe/evad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/13/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
The human brain utilizes ∼20% of all of the body's metabolic resources, while chimpanzee brains use <10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell type-specific interspecies differences in brain gene expression, we conducted RNA-seq on neural progenitor cells, neurons, and astrocytes generated from induced pluripotent stem cells from humans and chimpanzees. Interspecies differential expression analyses revealed that twice as many genes exhibit differential expression in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans.
Collapse
Affiliation(s)
- Trisha M Zintel
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jason Pizzollo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christopher G Claypool
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
4
|
Theriault JE, Shaffer C, Dienel GA, Sander CY, Hooker JM, Dickerson BC, Barrett LF, Quigley KS. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci Biobehav Rev 2023; 153:105373. [PMID: 37634556 PMCID: PMC10591873 DOI: 10.1016/j.neubiorev.2023.105373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
In aerobic glycolysis, oxygen is abundant, and yet cells metabolize glucose without using it, decreasing their ATP per glucose yield by 15-fold. During task-based stimulation, aerobic glycolysis occurs in localized brain regions, presenting a puzzle: why produce ATP inefficiently when, all else being equal, evolution should favor the efficient use of metabolic resources? The answer is that all else is not equal. We propose that a tradeoff exists between efficient ATP production and the efficiency with which ATP is spent to transmit information. Aerobic glycolysis, despite yielding little ATP per glucose, may support neuronal signaling in thin (< 0.5 µm), information-efficient axons. We call this the efficiency tradeoff hypothesis. This tradeoff has potential implications for interpretations of task-related BOLD "activation" observed in fMRI. We hypothesize that BOLD "activation" may index local increases in aerobic glycolysis, which support signaling in thin axons carrying "bottom-up" information, or "prediction error"-i.e., the BIAPEM (BOLD increases approximate prediction error metabolism) hypothesis. Finally, we explore implications of our hypotheses for human brain evolution, social behavior, and mental disorders.
Collapse
Affiliation(s)
- Jordan E Theriault
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Clare Shaffer
- Northeastern University, Department of Psychology, Boston, MA, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Northeastern University, Department of Psychology, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Northeastern University, Department of Psychology, Boston, MA, USA; VA Bedford Healthcare System, Bedford, MA, USA
| |
Collapse
|
5
|
Poblete RA, Yaceczko S, Aliakbar R, Saini P, Hazany S, Breit H, Louie SG, Lyden PD, Partikian A. Optimization of Nutrition after Brain Injury: Mechanistic and Therapeutic Considerations. Biomedicines 2023; 11:2551. [PMID: 37760993 PMCID: PMC10526443 DOI: 10.3390/biomedicines11092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Emerging science continues to establish the detrimental effects of malnutrition in acute neurological diseases such as traumatic brain injury, stroke, status epilepticus and anoxic brain injury. The primary pathological pathways responsible for secondary brain injury include neuroinflammation, catabolism, immune suppression and metabolic failure, and these are exacerbated by malnutrition. Given this, there is growing interest in novel nutritional interventions to promote neurological recovery after acute brain injury. In this review, we will describe how malnutrition impacts the biomolecular mechanisms of secondary brain injury in acute neurological disorders, and how nutritional status can be optimized in both pediatric and adult populations. We will further highlight emerging therapeutic approaches, including specialized diets that aim to resolve neuroinflammation, immunodeficiency and metabolic crisis, by providing pre-clinical and clinical evidence that their use promotes neurologic recovery. Using nutrition as a targeted treatment is appealing for several reasons that will be discussed. Given the high mortality and both short- and long-term morbidity associated with acute brain injuries, novel translational and clinical approaches are needed.
Collapse
Affiliation(s)
- Roy A. Poblete
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Shelby Yaceczko
- UCLA Health, University of California, 100 Medical Plaza, Suite 345, Los Angeles, CA 90024, USA;
| | - Raya Aliakbar
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Pravesh Saini
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Saman Hazany
- Department of Radiology, Keck School of Medicine, The University of Southern California, 1500 San Pablo Street, Los Angeles, CA 90033, USA;
| | - Hannah Breit
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Stan G. Louie
- Department of Clinical Pharmacy, School of Pharmacy, The University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA;
| | - Patrick D. Lyden
- Department of Neurology, Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA;
| | - Arthur Partikian
- Department of Neurology, Department of Pediatrics, Keck School of Medicine, The University of Southern California, 2010 Zonal Avenue, Building B, 3P61, Los Angeles, CA 90033, USA;
| |
Collapse
|
6
|
Aït-Ali N, Léveillard T. The Emergence of Rod-Cone Cellular Interaction. Front Genet 2022; 13:900849. [PMID: 36017494 PMCID: PMC9396122 DOI: 10.3389/fgene.2022.900849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
We studied the origin of rod-derived cone viability factor (RdCVF) during evolution. In mammals, the nucleoredoxin-like 1 gene (NXNL1) produces a truncated thioredoxin-like protein, RdCVF, by intron retention in rod photoreceptors of the retina. This protein prevents the secondary cone degeneration in animal models of rod-cone degeneration. Extracellular RdCVF binds to a complex at the surface of the cones, composed of the basigin-1, a photoreceptor specific alternative splicing product of the basigin gene, and GLUT1, the glucose transporter. RdCVF accelerates glucose uptake allosterically. Glucose is either metabolized by aerobic glycolysis to sustain cone outer segment renewal or by the pentose phosphate pathway to support redox power to the thioredoxin RdCVFL. RdCVF signaling predates the appearance of the eye and evolved through two alternative splicing events. RdCVF signaling is observed first in hydra where it regulates an unknown signaling. A scallop RdCVF protein is produced by ciliated photoreceptors of the retina and binds its receptor, BSG1, the first occurrence of RdCVF/BSG1 signaling. In the lamprey, RdCVF metabolic signaling between rod and cones is fully operational. In the mouse, the production of BSG1 is regulated through alternative splicing. This signaling was extended to other regions of the brain, via its paralogue NXNL2.
Collapse
|
7
|
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022; 14:2923. [PMID: 35889882 PMCID: PMC9322498 DOI: 10.3390/nu14142923] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Biochemistry Post-Graduate Program, Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
8
|
Martini AC, Gross TJ, Head E, Mapstone M. Beyond amyloid: Immune, cerebrovascular, and metabolic contributions to Alzheimer disease in people with Down syndrome. Neuron 2022; 110:2063-2079. [PMID: 35472307 PMCID: PMC9262826 DOI: 10.1016/j.neuron.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
People with Down syndrome (DS) have increased risk of Alzheimer disease (AD), presumably conferred through genetic predispositions arising from trisomy 21. These predispositions necessarily include triplication of the amyloid precursor protein (APP), but also other Ch21 genes that confer risk directly or through interactions with genes on other chromosomes. We discuss evidence that multiple genes on chromosome 21 are associated with metabolic dysfunction in DS. The resulting dysregulated pathways involve the immune system, leading to chronic inflammation; the cerebrovascular system, leading to disruption of the blood brain barrier (BBB); and cellular energy metabolism, promoting increased oxidative stress. In combination, these disruptions may produce a precarious biological milieu that, in the presence of accumulating amyloid, drives the pathophysiological cascade of AD in people with DS. Critically, mechanistic drivers of this dysfunction may be targetable in future clinical trials of pharmaceutical and/or lifestyle interventions.
Collapse
Affiliation(s)
- Alessandra C Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas J Gross
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
9
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
10
|
Effects of aging on protein expression in mice brain microvessels: ROS scavengers, mRNA/protein stability, glycolytic enzymes, mitochondrial complexes, and basement membrane components. GeroScience 2021; 44:371-388. [PMID: 34708300 PMCID: PMC8811117 DOI: 10.1007/s11357-021-00468-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Differentially expressed (DE) proteins in the cortical microvessels (MVs) of young, middle-aged, and old male and female mice were evaluated using discovery-based proteomics analysis (> 4,200 quantified proteins/group). Most DE proteins (> 90%) showed no significant differences between the sexes; however, some significant DE proteins showing sexual differences in MVs decreased from young (8.3%), to middle-aged (3.7%), to old (0.5%) mice. Therefore, we combined male and female data for age-dependent comparisons but noted sex differences for examination. Key proteins involved in the oxidative stress response, mRNA or protein stability, basement membrane (BM) composition, aerobic glycolysis, and mitochondrial function were significantly altered with aging. Relative abundance of superoxide dismutase-1/-2, catalase and thioredoxin were reduced with aging. Proteins participating in either mRNA degradation or pre-mRNA splicing were significantly increased in old mice MVs, whereas protein stabilizing proteins decreased. Glycolytic proteins were not affected in middle age, but the relative abundance of these proteins decreased in MVs of old mice. Although most of the 41 examined proteins composing mitochondrial complexes I–V were reduced in old mice, six of these proteins showed a significant reduction in middle-aged mice, but the relative abundance increased in fourteen proteins. Nidogen, collagen, and laminin family members as well as perlecan showed differing patterns during aging, indicating BM reorganization starting in middle age. We suggest that increased oxidative stress during aging leads to adverse protein profile changes of brain cortical MVs that affect mRNA/protein stability, BM integrity, and ATP synthesis capacity.
Collapse
|
11
|
Steiner P. Brain Fuel Utilization in the Developing Brain. ANNALS OF NUTRITION AND METABOLISM 2020; 75 Suppl 1:8-18. [PMID: 32564020 DOI: 10.1159/000508054] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 11/19/2022]
Abstract
During pregnancy and infancy, the human brain is growing extremely fast; the brain volume increases significantly, reaching 36, 72, and 83% of the volume of adults at 2-4 weeks, 1 year, and 2 years of age, respectively, which is essential to establish the neuronal networks and capacity for the development of cognitive, motor, social, and emotional skills that will be continually refined throughout childhood and adulthood. Such dramatic changes in brain structure and function are associated with very large energetic demands exceeding by far those of other organs of the body. It has been estimated that during childhood the brain may account for up to 60% of the body basal energetic requirements. While the main source of energy for the adult brain is glucose, it appears that it is not sufficient to sustain the dramatic metabolic demands of the brain during its development. Recently, it has been proposed that this energetic challenge is solved by the ability of the brain to use ketone bodies (KBs), produced from fatty acid oxidation, as a complement source of energy. Here, we first describe the main cellular and physiological processes that drive brain development along time and how different brain metabolic pathways are engaged to support them. It has been assumed that the majority of energetic substrates are used to support neuronal activity and signal transmission. We discuss how glucose and KBs are metabolized to provide the carbon backbones used to synthesize lipids, nucleic acid, and cholesterol, which are indispensable building blocks of neuronal cell proliferation and are also used to establish and refine brain connectivity through synapse formation/elimination and myelination. We conclude that glucose and KBs are not only important to support the energy needs of the brain under development, but they are also essential substrates for the biosynthesis of macromolecules underlying structural brain growth and reorganization. We emphasize that glucose and fatty acids supporting the production of KBs are provided in complex food matrices, such as breast milk, and understanding how their availability impacts the brain will be key to promote adequate nutrition to support brain metabolism and, therefore, optimal brain development.
Collapse
Affiliation(s)
- Pascal Steiner
- Société des Produits Nestlé SA, Nestlé Research, Brain Health Department, Lausanne, Switzerland,
| |
Collapse
|
12
|
Bauernfeind AL, Babbitt CC. Metabolic changes in human brain evolution. Evol Anthropol 2020; 29:201-211. [PMID: 32329960 DOI: 10.1002/evan.21831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/30/2019] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
Because the human brain is considerably larger than those of other primates, it is not surprising that its energy requirements would far exceed that of any of the species within the order. Recently, the development of stem cell technologies and single-cell transcriptomics provides novel ways to address the question of what specific genomic changes underlie the human brain's unique phenotype. In this review, we consider what is currently known about human brain metabolism using a variety of methods from brain imaging and stereology to transcriptomics. Next, we examine novel opportunities that stem cell technologies and single-cell transcriptomics provide to further our knowledge of human brain energetics. These new experimental approaches provide the ability to elucidate the functional effects of changes in genetic sequence and expression levels that potentially had a profound impact on the evolution of the human brain.
Collapse
Affiliation(s)
- Amy L Bauernfeind
- Department of Neuroscience, Washington University Medical School, St. Louis, Missouri, USA.,Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
13
|
Wang J, Li CL, Tu BJ, Yang K, Mo TT, Zhang RY, Cheng SQ, Chen CZ, Jiang XJ, Han TL, Peng B, Baker PN, Xia YY. Integrated Epigenetics, Transcriptomics, and Metabolomics to Analyze the Mechanisms of Benzo[a]pyrene Neurotoxicity in the Hippocampus. Toxicol Sci 2019; 166:65-81. [PMID: 30085273 DOI: 10.1093/toxsci/kfy192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a common environmental pollutant that is neurotoxic to mammals, which can cause changes to hippocampal function and result in cognitive disorders. The mechanisms of B[a]P-induced impairments are complex .To date there have been no studies on the association of epigenetic, transcriptomic, and metabolomic changes with neurotoxicity after B[a]P exposure. In the present study, we investigated the global effect of B[a]P on DNA methylation patterns, noncoding RNAs (ncRNAs) expression, coding RNAs expression, and metabolites in the rat hippocampus. Male Sprague Dawley rats (SD rats) received daily gavage of B[a]P (2.0 mg/kg body weight [BW]) or corn oil for 7 weeks. Learning and memory ability was analyzed using the Morris water maze (MWM) test and change to cellular ultrastructure in the hippocampus was analyzed using electron microscope observation. Integrated analysis of epigenetics, transcriptomics, and metabolomics was conducted to investigate the effect of B[a]P exposure on the signaling and metabolic pathways. Our results suggest that B[a]P could lead to learning and memory deficits, likely as a result of epigenetic and transcriptomic changes that further affected the expression of CACNA1C, Tpo, etc. The changes in expression ultimately affecting LTP, tyrosine metabolism, and other important metabolic pathways.
Collapse
Affiliation(s)
- Jing Wang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Chun-Lin Li
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Bai-Jie Tu
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Kai Yang
- Chengdu Center for Disease Control & Prevention, Chengdu, China
| | - Ting-Ting Mo
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Rui-Yuan Zhang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Shu-Qun Cheng
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Cheng-Zhi Chen
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Xue-Jun Jiang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Bin Peng
- Department of Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester LE1 9HN, UK
| | - Yin-Yin Xia
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Strachecka A, Grzybek M, Ptaszynska AA, Los A, Chobotow J, Rowinski R. Comparison of Lactate Dehydrogenase Activity in Hive and Forager Honeybees May Indicate Delayed Onset Muscle Soreness - Preliminary Studies. BIOCHEMISTRY (MOSCOW) 2019; 84:435-440. [PMID: 31228935 DOI: 10.1134/s0006297919040114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Active skeletal muscles produce lactate. H+ is generated during lactate neutralization in the Cori cycle, which leads to muscle acidosis and soreness (the so-called Delayed Onset Muscle Soreness, DOMS) in vertebrates. The aim of the study was to determine the activities/concentrations of compounds involved in the Cori cycle in worker and forager bees. Muscles, fat bodies, and hemolymph from 1- and 14-day-old workers and foragers were collected and assayed for the protein, lactate, glucose, NAD+, and NADH concentrations and lactate dehydrogenase (LDH) activity. Both lactate concentration and LDH activity in the hemolymph, muscles, and fat bodies increased with age. The concentrations of NAD+ and NADH in the tissues decreased with ageing/senescence, whereas protein concentrations increased until day 14 of bee's life and then decreased in foragers. The concentration of glucose decreased in the hemolymph and muscles and increased in the fat bodies. Elevated lactate concentrations in foragers may indicate transition from the aerobic to the anaerobic phase and development of metabolic acidosis that may eventually lead to muscle damage/soreness and shorter lifespan. When analyzing flight dynamics, load mass, and bee behavior, changes in the concentrations of Cori cycle compounds should be taken into account.
Collapse
Affiliation(s)
- A Strachecka
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, 20-950, Poland.
| | - M Grzybek
- Department of Tropical Parasitology, Medical University of Gdansk, Gdynia, 81-519, Poland. .,Department of Zoology, Animal Ecology & Wildlife Management, Faculty of Biology and Animal Breeding, University of Life Sciences in Lublin, Lublin, 20-950, Poland
| | - A A Ptaszynska
- Department of Botany and Mycology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, 20-033, Poland.
| | - A Los
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, 20-950, Poland. .,Institute of Nature Conservation, Polish Academy of Sciences, Cracow, 31-120, Poland
| | - J Chobotow
- Zoological Museum/Laboratory, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, 20-033, Poland.
| | - R Rowinski
- Department of Tourism and Recreation, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Lublin, 20-950, Poland.
| |
Collapse
|
15
|
Saudubray JM, Garcia-Cazorla A. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936770 PMCID: PMC6436954 DOI: 10.31887/dcns.2018.20.4/jmsaudubray] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inborn errors of metabolism (IEMs) are particularly frequent as diseases of the nervous system. In the pediatric neurologic presentations of IEMs neurodevelopment is constantly disturbed and in fact, as far as biochemistry is involved, any kind of monogenic disease can become an IEM. Clinical features are very diverse and may present as a neurodevelopmental disorder (antenatal or late-onset), as well as an intermittent, a fixed chronic, or a progressive and late-onset neurodegenerative disorder. This also occurs within the same disorder in which a continuum spectrum of severity is frequently observed. In general, the small molecule defects have screening metabolic markers and many are treatable. By contrast only a few complex molecules defects have metabolic markers and most of them are not treatable so far. Recent molecular techniques have considerably contributed in the description of many new diseases and unexpected phenotypes. This paper provides a comprehensive list of IEMs that affect neurodevelopment and may also present with neurodegeneration.
Collapse
Affiliation(s)
- Jean-Marie Saudubray
- Department of Neurology, Neurometabolic Unit, Hopital Pitié Salpétrière, Paris, France
| | - Angela Garcia-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab (Department of Neurology), Institut Pediàtric de Recerca, Hospital Sant Joan de Déu and CIBERER (ISCIII), Barcelona, Spain
| |
Collapse
|
16
|
DiNuzzo M, Walls AB, Öz G, Seaquist ER, Waagepetersen HS, Bak LK, Nedergaard M, Schousboe A. State-Dependent Changes in Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:269-309. [PMID: 31667812 DOI: 10.1007/978-3-030-27480-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fundamental understanding of glycogen structure, concentration, polydispersity and turnover is critical to qualify the role of glycogen in the brain. These molecular and metabolic features are under the control of neuronal activity through the interdependent action of neuromodulatory tone, ionic homeostasis and availability of metabolic substrates, all variables that concur to define the state of the system. In this chapter, we briefly describe how glycogen responds to selected behavioral, nutritional, environmental, hormonal, developmental and pathological conditions. We argue that interpreting glycogen metabolism through the lens of brain state is an effective approach to establish the relevance of energetics in connecting molecular and cellular neurophysiology to behavior.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Benveniste H, Dienel G, Jacob Z, Lee H, Makaryus R, Gjedde A, Hyder F, Rothman DL. Trajectories of Brain Lactate and Re-visited Oxygen-Glucose Index Calculations Do Not Support Elevated Non-oxidative Metabolism of Glucose Across Childhood. Front Neurosci 2018; 12:631. [PMID: 30254563 PMCID: PMC6141825 DOI: 10.3389/fnins.2018.00631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022] Open
Abstract
Brain growth across childhood is a dynamic process associated with specific energy requirements. A disproportionately higher rate of glucose utilization (CMRglucose) compared with oxygen consumption (CMRO2) was documented in children's brain and suggestive of non-oxidative metabolism of glucose. Several candidate metabolic pathways may explain the CMRglucose-CMRO2 mismatch, and lactate production is considered a major contender. The ~33% excess CMRglucose equals 0.18 μmol glucose/g/min and predicts lactate release of 0.36 μmol/g/min. To validate such scenario, we measured the brain lactate concentration ([Lac]) in 65 children to determine if indeed lactate accumulates and is high enough to (1) account for the glucose consumed in excess of oxygen and (2) support a high rate of lactate efflux from the young brain. Across childhood, brain [Lac] was lower than predicted, and below the range for adult brain. In addition, we re-calculated the CMRglucose-CMRO2 mismatch itself by using updated lumped constant values. The calculated cerebral metabolic rate of lactate indicated a net influx of 0.04 μmol/g/min, or in terms of CMRglucose, of 0.02 μmol glucose/g/min. Accumulation of [Lac] and calculated efflux of lactate from brain are not consistent with the increase in non-oxidative metabolism of glucose. In addition, the value for the lumped constant for [18F]fluorodeoxyglucose has a high impact on calculated CMRglucose and use of updated values alters or eliminates the CMRglucose-CMRO2 mismatch in developing brain. We conclude that the presently-accepted notion of non-oxidative metabolism of glucose during childhood must be revisited and deserves further investigations.
Collapse
Affiliation(s)
- Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Zvi Jacob
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Rany Makaryus
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Albert Gjedde
- Department of Translational Neurobiology, University of Southern Denmark, Odense, Denmark
| | - Fahmeed Hyder
- Department of Biomedical Engineering & Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Douglas L Rothman
- Department of Biomedical Engineering & Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
18
|
Schuppli C, Forss SIF, Meulman EJM, Zweifel N, Lee KC, Rukmana E, Vogel ER, van Noordwijk MA, van Schaik CP. Development of foraging skills in two orangutan populations: needing to learn or needing to grow? Front Zool 2016; 13:43. [PMID: 27708679 PMCID: PMC5041519 DOI: 10.1186/s12983-016-0178-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Orangutans have one of the slowest-paced life histories of all mammals. Whereas life-history theory suggests that the time to reach adulthood is constrained by the time needed to reach adult body size, the needing-to-learn hypothesis instead suggests that it is limited by the time needed to acquire adult-level skills. To test between these two hypotheses, we compared the development of foraging skills and growth trajectories of immature wild orangutans in two populations: at Tuanan (Pongo pygmaeus wurmbii), Borneo, and Suaq Balimbing (Pongo abelii), Sumatra. We collected behavioral data on diet repertoire, feeding rates and ranging competence during focal follows, and estimated growth through non-invasive laser photogrammetry. RESULTS We found that adult-like diet repertoires are attained around the age of weaning and that female immatures increase their repertoire size faster than their male peers. Adult-level feeding rates of easy techniques are reached just after weaning, but several years later for more difficult techniques, albeit always before adulthood (i.e. age at first reproduction). Independent immatures had faster feeding rates for easy to process items than their mothers, with male immatures achieving faster feeding rates earlier in development relative to females. Sumatran immatures reach adult-level feeding rates 2-3 years later than their Bornean peers, in line with their higher dietary complexity and later weaning. The range-use competence of independently ranging and weaned immatures is similar to that of adult females. Body size measurements showed, immatures grow until female age of first reproduction. CONCLUSIONS In conclusion, unlike in humans, orangutan foraging skills are in place prior to reproduction. Growth trajectories suggest that energetic constraints, rather than skills, best explain the length of immaturity. However, skill competence for dietary independence is reached later where the adult niche is more complex, which is consistent with the relatively later weaning age with increasing brain size found generally in primates, and apes in particular.
Collapse
Affiliation(s)
- Caroline Schuppli
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sofia I. F. Forss
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Ellen J. M. Meulman
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Nicole Zweifel
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kevin C. Lee
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Evasari Rukmana
- Fakultas Biologi, Universitas Nasional, Jl. Sawo Manila, RT.14/RW.3, Ps. Minggu, DKI Jakarta, Indonesia
| | - Erin R. Vogel
- Department of Anthropology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904 USA
| | - Maria A. van Noordwijk
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Carel P. van Schaik
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
19
|
Seymour RS, Bosiocic V, Snelling EP. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160305. [PMID: 27853608 PMCID: PMC5108958 DOI: 10.1098/rsos.160305] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/29/2016] [Indexed: 05/12/2023]
Abstract
The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.
Collapse
Affiliation(s)
- Roger S. Seymour
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Author for correspondence: Roger S. Seymour e-mail:
| | - Vanya Bosiocic
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Edward P. Snelling
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| |
Collapse
|
20
|
Maille A, Schradin C. Ecophysiology of cognition: How do environmentally induced changes in physiology affect cognitive performance? Biol Rev Camb Philos Soc 2016; 92:1101-1112. [PMID: 27020603 DOI: 10.1111/brv.12270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/29/2022]
Abstract
Cognitive performance is based on brain functions, which have energetic demands and are modulated by physiological parameters such as metabolic hormones. As both environmental demands and environmental energy availability change seasonally, we propose that cognitive performance in free-living animals might also change seasonally due to phenotypic plasticity. This is part of an emerging research field, the 'ecophysiology of cognition': environmentally induced changes in physiological traits, such as blood glucose and hormone levels, are predicted to influence cognitive performance in free-living animals. Energy availability for the brain might change, and as such cognition, with changing energetic demands (e.g. reproduction) and changes of energy availability in the environment (e.g. winter, drought). Individuals spending more energy than they can currently obtain from their environment (allostatic overload type I) are expected to trade off energy investment between cognition and other life-sustaining processes or even reproduction. Environmental changes reducing energy availability might thus impair cognition. However, selection pressures such as predation risk, mate choice or social demands may act on the trade-off between energy saving and cognition. We assume that different environmental conditions can lead to three different trade-off outcomes: cognitive impairment, resilience or enhancement. Currently we cannot understand these trade-offs, because we lack information about changes in cognitive performance due to seasonal changes in energy availability and both the resulting changes in homeostasis (for example, blood glucose levels) and the associated changes in the mechanisms of allostasis (for example, hormone levels). Additionally, so far we know little about the fitness consequences of individual variation in cognitive performance. General cognitive abilities, such as attention and associative learning, might be more important in determining fitness than complex and specialized cognitive abilities, and easier to use for comparative study in a large number of species. We propose to study seasonal changes in cognitive performance depending on energy availability in populations facing different predation risks, and the resulting fitness consequences.
Collapse
Affiliation(s)
- Audrey Maille
- IPHC-DEPE, Université de Strasbourg, Strasbourg, 67087, France.,CNRS, UMR7178, Strasbourg, 67087, France.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa.,UMR 7206 Eco-anthropologie et Ethnobiologie, Muséum National d'Histoire Naturelle, site du Musée de l'Homme, 17 place du trocadéro, Paris, 75016, France.,Département des Jardins Botaniques et Zoologiques, Muséum National d'Histoire Naturelle, 57 rue Cuvier, Paris, 75005, France
| | - Carsten Schradin
- IPHC-DEPE, Université de Strasbourg, Strasbourg, 67087, France.,CNRS, UMR7178, Strasbourg, 67087, France.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, F-67083, France
| |
Collapse
|
21
|
Prabhu D, Goldstein AC, El-Khoury R, Rak M, Edmunds L, Rustin P, Vockley J, Schiff M. ANT2-defective fibroblasts exhibit normal mitochondrial bioenergetics. Mol Genet Metab Rep 2015; 3:43-46. [PMID: 26000237 PMCID: PMC4435574 DOI: 10.1016/j.ymgmr.2015.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adenine nucleotide translocase 2 (ANT2) transports glycolytic ATP across the inner mitochondrial membrane. Patients with ANT2 deletion were recently reported. We aimed at characterizing mitochondrial functions in ANT2-defective fibroblasts. In spite of ANT2 expression in fibroblasts, we observed no difference between ANT2-defective and control fibroblasts for mitochondrial respiration, respiratory chain activities, mitochondrial membrane potential and intracellular ATP levels. This indicates that ANT2 insufficiency does not alter fibroblasts basal mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Dolly Prabhu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy C Goldstein
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA ; Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Riyad El-Khoury
- Inserm U1141, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France ; American University of Beirut Medical Center, Department of pathology and laboratory medicine, Cairo street, Hamra, Beirut, Lebanon
| | - Malgorzata Rak
- Inserm U1141, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Lia Edmunds
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pierre Rustin
- Inserm U1141, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA ; Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA ; Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, USA
| | - Manuel Schiff
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA ; Inserm U1141, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France ; Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
| |
Collapse
|
22
|
Salmina AB, Kuvacheva NV, Morgun AV, Komleva YK, Pozhilenkova EA, Lopatina OL, Gorina YV, Taranushenko TE, Petrova LL. Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol 2015; 64:174-84. [PMID: 25900038 DOI: 10.1016/j.biocel.2015.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/24/2015] [Accepted: 04/10/2015] [Indexed: 12/29/2022]
Abstract
The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.
Collapse
Affiliation(s)
- Alla B Salmina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Natalia V Kuvacheva
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Andrey V Morgun
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Yulia K Komleva
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Elena A Pozhilenkova
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Olga L Lopatina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Yana V Gorina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Tatyana E Taranushenko
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Lyudmila L Petrova
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| |
Collapse
|