1
|
Qin M, Evron E, Tran PT, Deng M, Nelson AM, Kim J, Agak GW. Immune Activation and Glycolytic Responses to Cutibacterium acnes Cell Wall Polysaccharides. J Invest Dermatol 2025:S0022-202X(25)00457-9. [PMID: 40335017 DOI: 10.1016/j.jid.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025]
Abstract
Carbohydrates are key components of many microbial cell walls and play a versatile role in immune recognition. In this study, we analyzed the carbohydrate cell wall composition of Cutibacterium acnes strains associated with healthy skin (denoted as CH) and acne-prone skin (denoted as CA) to understand their influence on host immune responses in acne. We identified glucose, mannose, and galactose as the primary monosaccharides, with minor amounts of fucose, N-acetylgalactosamine, and N-acetylglucosamine. Linkage analysis revealed structural variations between CH and CA strains: CH strains showed a balanced and diverse polysaccharide structure, whereas CA strains displayed a more rigid structure with 1→4 and branched 1→6 linkages, potentially contributing to inflammatory properties. Immunostimulatory assays revealed that C acnes carbohydrates induced IL-6 and IL-17 but not IL-1β, highlighting the role of carbohydrate structures in influencing cytokine responses. Treatment with sodium meta-periodate impaired this immunostimulatory activity, indicating that carbohydrate integrity is crucial for immune activation. In addition, analysis of single-cell RNA-sequencing data from acne lesions revealed elevated glycolytic activity in acne lesions in comparison with that in nonlesional skin, suggesting a Warburg-like effect that promotes inflammation. Our findings highlight the role of C acnes polysaccharides in immune modulation and inflammation, suggesting their potential as therapeutic targets for acne treatment.
Collapse
Affiliation(s)
- Min Qin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Evyatar Evron
- Department of Dermatology, Larkin Community Hospital, South Miami, Florida, USA
| | - Patrick Thanh Tran
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, West Carson, California, USA
| | - Min Deng
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Amanda M Nelson
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jenny Kim
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - George W Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
2
|
Cho MY, Eom JH, Choi EM, Yang SJ, Lee D, Kim YY, Kim HS, Hwang I. Recent advances in therapeutic probiotics: insights from human trials. Clin Microbiol Rev 2025:e0024024. [PMID: 40261032 DOI: 10.1128/cmr.00240-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
SUMMARYRecent advances in therapeutic probiotics have shown promising results across various health conditions, reflecting a growing understanding of the human microbiome's role in health and disease. However, comprehensive reviews integrating the diverse therapeutic effects of probiotics in human subjects have been limited. By analyzing randomized controlled trials (RCTs) and meta-analyses, this review provides a comprehensive overview of key developments in probiotic interventions targeting gut, liver, skin, vaginal, mental, and oral health. Emerging evidence supports the efficacy of specific probiotic strains and combinations in treating a wide range of disorders, from gastrointestinal (GI) and liver diseases to dermatological conditions, bacterial vaginosis, mental disorders, and oral diseases. We discuss the expanding understanding of microbiome-organ connections underlying probiotic mechanisms of action. While many clinical trials demonstrate significant benefits, we acknowledge areas requiring further large-scale studies to establish definitive efficacy and optimal treatment protocols. The review addresses challenges in standardizing probiotic research methodologies and emphasizes the importance of considering individual variations in microbiome composition and host genetics. Additionally, we explore emerging concepts such as the oral-gut-brain axis and future directions, including high-resolution microbiome profiling, host-microbe interaction studies, organoid models, and artificial intelligence applications in probiotic research. Overall, this review offers a comprehensive update on the current state of therapeutic probiotics across multiple domains of human health, providing insights into future directions and the potential for probiotics to revolutionize preventive and therapeutic medicine.
Collapse
Affiliation(s)
- Mu-Yeol Cho
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | - Je-Hyun Eom
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | - Eun-Mi Choi
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| | | | - Dahye Lee
- Department of Orthodontics, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Young Youn Kim
- Department of Oral and Maxillofacial Surgery, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Hye-Sung Kim
- Department of Oral and Maxillofacial Surgery, Apple Tree Dental Hospital, Goyang-si, South Korea
| | - Inseong Hwang
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang-si, South Korea
| |
Collapse
|
3
|
Huang Y, Liu C, Fu Z, Li C, Wu Y, Jia Q, Liu X, Kang Z, Li Y, Ni D, Wei Z, Ru Z, Peng Y, Liu X, Li Y, Xiao Z, Tang J, Wang Y, Yang X. The combination of RL-QN15 and OH-CATH30 promotes the repair of acne via the TLR2/NF-κB pathway. Eur J Pharmacol 2025; 989:177233. [PMID: 39740735 DOI: 10.1016/j.ejphar.2024.177233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Acne is a prevalent and chronic inflammatory skin disease, and its treatment remains a huge clinical challenge. In the present study, we evaluated the therapeutic potential of combining the peptides RL-QN15 and OH-CATH30 for the treatment of acne in mice. Results indicated that the topical application of RL-QN15 and OH-CATH30 significantly inhibited the proliferation of Propionibacterium acnes (P. acnes) and alleviated acne-induced edema. Furthermore, the combined treatment suppressed the overexpression of proinflammatory cytokines induced by P. acnes, including interleukin -1 beta (IL-1β), interleukin -6 (IL-6), interleukin -8 (IL-8), tumor necrosis factor-alpha (TNF-α) induced by P. acnes and facilitated collagen deposition, thereby effectively mitigating skin damage associated with acne. Mechanistically, the combination of RL-QN15 and OH-CATH30 inhibited the expression of toll-like receptor 2 (TLR2) and activation nuclear factor kappa-B (NF-κB) signaling pathway (phosphorylation of P65 and IκB) in both mice and RAW 264.7 cells. These results suggested that this combination may inhibit the excretion of inflammatory factors and facilitate the collagen deposition by TLR2/NF-κB signaling. Overall, our study demonstrates the potent therapeutic effects of the combined application of RL-QN15 and OH-CATH30, highlights the TLR2/NF-κB pathway as a key target in acne treatment, and provides a novel strategy for developing innovative acne therapeutics.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chengxing Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chao Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xue Liu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yun Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhaoxun Xiao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
4
|
Scharschmidt TC, Segre JA. Skin microbiome and dermatologic disorders. J Clin Invest 2025; 135:e184315. [PMID: 39895627 PMCID: PMC11785926 DOI: 10.1172/jci184315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Human skin acts as a physical barrier to prevent the entry of pathogenic microbes while simultaneously providing a home for commensal bacteria and fungi. Microbiome sequencing studies have demonstrated the unappreciated diversity and selectivity of these microbes. Functional studies have demonstrated the impact of specific strains to tune the immune system, sculpt the microbial community, provide colonization resistance, and promote epidermal barrier integrity. Recent studies have integrated the microbiome, immunity, and tissue integrity to understand their interplay in common disorders such as atopic dermatitis. In this Review, we explore microbiome shifts associated with cutaneous disorders with an eye toward how the microbiome can be mined to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Tiffany C. Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Julia A. Segre
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Hamann T, Brüggemann H, Feidenhansl C, Rruci E, Gallinger J, Gallinat S, Hüpeden J. Distinct Intraspecies Variation of Cutibacterium acnes and Staphylococcus epidermidis in Acne Vulgaris and Healthy Skin. Microorganisms 2025; 13:299. [PMID: 40005665 PMCID: PMC11858094 DOI: 10.3390/microorganisms13020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Human skin hosts a diverse array of microorganisms that contribute to its health. Key players in the facial skin microbiome include Cutibacterium acnes and staphylococci, whose colonization patterns may influence dermatological conditions like acne vulgaris. This study examined the facial microbiome composition of 29 individuals, including 14 with moderate to severe acne and 15 with healthy skin, using single locus sequence typing (SLST) amplicon sequencing. The results showed a shift in the relative abundances of C. acnes phylotypes: SLST types A, C, and F were increased in acne, while types H, K, and L were reduced compared to healthy skin. Among staphylococci, the relative abundance of S. epidermidis, S. capitis, and S. saphrophyticus increased in acne, while S. saccharolyticus and S. hominis decreased. The amplicon sequencing approach could also identify a population shift of S. epidermidis: a specific S. epidermidis phylogenetic lineage (type 3) was reduced in acne, while two abundant lineages (types 1 and 2) were elevated. These findings suggest that distinct phylogenetic lineages of both C. acnes and S. epidermidis are linked to healthy versus diseased skin, highlighting a potential role for both microorganisms in disease prevention and aggravation, respectively.
Collapse
Affiliation(s)
- Tina Hamann
- Beiersdorf AG Research & Development, Discovery, 20245 Hamburg, Germany; (J.G.); (S.G.); (J.H.)
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (H.B.); (C.F.); (E.R.)
| | - Cecilie Feidenhansl
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (H.B.); (C.F.); (E.R.)
| | - Erinda Rruci
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (H.B.); (C.F.); (E.R.)
| | - Julia Gallinger
- Beiersdorf AG Research & Development, Discovery, 20245 Hamburg, Germany; (J.G.); (S.G.); (J.H.)
| | - Stefan Gallinat
- Beiersdorf AG Research & Development, Discovery, 20245 Hamburg, Germany; (J.G.); (S.G.); (J.H.)
| | - Jennifer Hüpeden
- Beiersdorf AG Research & Development, Discovery, 20245 Hamburg, Germany; (J.G.); (S.G.); (J.H.)
| |
Collapse
|
6
|
Sun J, Hang G, Lv H, Li Y, Song Q, Zhong Z, Sun Z, Liu W. Genomic characteristics and phylogenetic relationships of Cutibacterium acnes breast milk isolates. BMC Microbiol 2025; 25:2. [PMID: 39762730 PMCID: PMC11702113 DOI: 10.1186/s12866-024-03717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cutibacterium acnes is one of the most commonly found microbes in breast milk. However, little is known about the genomic characteristics of C. acnes isolated from breast milk. In this study, the sequencing and assembly results of 10 C. acnes isolates from breast milk were compared with the genomic data of 454 strains downloaded from NCBI, and the characteristics of breast milk isolates from various perspectives, including phylogeny, genomic characteristics, virulence genes, drug resistance genes, and carbohydrate utilization, were elucidated. RESULTS The findings of this study revealed no differences between the breast milk isolates and other isolates in terms of genomic features, phylogenetic relationships, virulence, and resistance-related genes. However, breast milk-derived isolates exhibited significantly lower copies of the carbohydrate metabolic enzyme genes GT5 and GT51 (P < 0.05) and a higher copy number of the GH31 gene (P < 0.05) than others. C. acnes primarily consists of three genetic branches (A, B, and C), which correspond to the three subspecies of C. acnes (C. acnes subsp. elongatum, C. acnes subsp. defendens, C. acnes subsp. acnes). The genetic differences between branches B and C were smaller than that between branch A. Branches A and B carry a higher number of copies of carbohydrate enzymes, including CE1, CE10, GH3, and CBM32 than branch C. Branches B and C possess the carbohydrate enzymes PL8 and GH23, which are absent in branch A. Core genes, core intergenic regions, and concatenated sequences of core genes and core intergenic regions were compared to construct a phylogenetic tree, and it was found that core intergenic regions could be used to describe phylogenetic relationships. CONCLUSIONS It is therefore speculated that the C. acnes in breast milk originates from the nipple or breast surface. This study provides a novel genetic basis for genetic differentiation of C. acnes isolates from breast milk.
Collapse
Affiliation(s)
- Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Guoxuan Hang
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Huimin Lv
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Yu Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Qiujie Song
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China.
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China.
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
7
|
Deng M, Farahani K, Agak GW. Insights into early acne pathogenesis: Exploring intercellular dynamics and key dysregulated genes. CELL SIGNALING 2025; 3:32-39. [PMID: 40401196 PMCID: PMC12094670 DOI: 10.46439/signaling.3.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
The comprehensive changes and shared dysregulated signaling pathways in early stage acne remains largely unexplored. In our recently published paper entitled "Analysis of Intracellular Communication Reveals Consistent Gene Changes Associated with Early-Stage Acne Skin," we utilized single-cell RNA sequencing and spatial transcriptomics datasets from acne patients to analyze cell communication. We identified dysregulated genes linked to inflammatory responses and hyperkeratinization. This commentary discusses potential new markers across major skin cell types, including endothelial cells, fibroblasts, lymphocytes, myeloid cells, keratinocytes, and smooth muscle cells. Additionally, we discuss key dysregulated genes in acne lesions, focusing on the intricate interplay between inflammation and hyperkeratinization. Based on our findings, we explore potential FDA-approved treatments targeting two key pathways involved in acne pathogenesis. These insights provide new therapeutic targets for acne treatment.
Collapse
Affiliation(s)
- Min Deng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Kiana Farahani
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Lesiak A, Paprocka P, Wnorowska U, Mańkowska A, Król G, Głuszek K, Piktel E, Spałek J, Okła S, Fiedoruk K, Durnaś B, Bucki R. Significance of host antimicrobial peptides in the pathogenesis and treatment of acne vulgaris. Front Immunol 2024; 15:1502242. [PMID: 39744637 PMCID: PMC11688235 DOI: 10.3389/fimmu.2024.1502242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e., genetically distinct bacterial subgroups that play different roles in skin health and disease) diversity of the predominant skin bacterial commensal - Cutinbacterium acnes. Like in other dysbiotic disorders, an elevated expression of endogenous antimicrobial peptides (AMPs) is a hallmark of AV. AMPs, such as human β-defensins, cathelicidin LL-37, dermcidin, or RNase-7, due to their antibacterial and immunomodulatory properties, function as the first line of defense and coordinate the host-microbiota interactions. Therefore, AMPs are potential candidates for pharmaceutical prophylaxis or treating this condition. This study outlines the current knowledge regarding the importance of AMPs in AV pathomechanism in light of recent transcriptomic studies. In particular, their role in improving the tight junctions (TJs) skin barrier by activating the fundamental cellular proteins, such as PI3K, GSK-3, aPKC, and Rac1, is discussed. We hypothesized that the increased expression of AMPs and their patterns in AV act as a compensatory mechanism to protect the skin with an impaired permeability barrier. Therefore, AMPs could be key determinants in regulating AV development and progression, linking acne-associated immune responses and metabolic factors, like insulin/IGF-1 and PI3K/Akt/mTOR/FoxO1 signaling pathways or glucotoxicity. Research and development of anti-acne AMPs are also addressed.
Collapse
Affiliation(s)
- Agata Lesiak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Paulina Paprocka
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Angelika Mańkowska
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Grzegorz Król
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Katarzyna Głuszek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Clinical Microbiology, Holy-Cross Oncology Center of Kielce, Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
9
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 PMCID: PMC11920965 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
10
|
Piazzesi A, Scanu M, Ciprandi G, Putignani L. Modulations of the skin microbiome in skin disorders: A narrative review from a wound care perspective. Int Wound J 2024; 21:e70087. [PMID: 39379177 PMCID: PMC11461044 DOI: 10.1111/iwj.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The cutaneous microbiome represents a highly dynamic community of bacteria, fungi and viruses. Scientific evidence, particularly from the last two decades, has revealed that these organisms are far from being inconsequential microscopic hitchhikers on the human body, nor are they all opportunistic pathogens waiting for the chance to penetrate the skin barrier and cause infection. In this review, we will describe how dermatological diseases have been found to be associated with disruptions and imbalances in the skin microbiome and how this new evidence had shaped the diagnosis and clinical practice relating to these disorders. We will identify the microbial agents which have been found to directly exacerbate skin diseases, as well as those which can ameliorate many of the symptoms associated with dermatological disorders. Furthermore, we will discuss the studies which suggest that bacteriotherapy, either by topical use of probiotics or by bacteria-derived compounds, can rectify skin microbial imbalances, thereby offering a promising alternative to antibiotic treatment and reducing the risks of antibiotic resistance.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Guido Ciprandi
- Research Institute Division of Plastic and Maxillofacial Surgery, Department of SurgeryBambino Gesu' Children's Hospital, IRCCSRomeItaly
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics; and Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
11
|
Shafiuddin M, Prather GW, Huang WC, Anton JR, Martin AL, Sillart SB, Tang JZ, Vittori MR, Prinsen MJ, Ninneman JJ, Manithody C, Henderson JP, Aleem AW, Ilagan MXG, McCoy WH. Cutibacterium adaptation to life on humans provides a novel biomarker of C. acnes infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613542. [PMID: 39345635 PMCID: PMC11429735 DOI: 10.1101/2024.09.18.613542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The domestication of cattle provided Propionibacteriaceae the opportunity to adapt to human skin. These bacteria constitute a distinct genus ( Cutibacterium ), and a single species within that genus ( C. acnes ) dominates 25% of human skin. C. acnes protects humans from pathogen colonization, but it can also infect indwelling medical devices inserted through human skin. Proteins that help Cutibacteria live on our skin may also act as virulence factors during an opportunistic infection, like a shoulder periprosthetic joint infection (PJI). To better understand the evolution of this commensal and opportunistic pathogen, we sought to extensively characterize one of these proteins, RoxP. This secreted protein is only found in the Cutibacterium genus, helps C. acnes grow in oxic environments, and is required for C. acnes to colonize human skin. Structure-based sequence analysis of twenty-one RoxP orthologs (71-100% identity to C. acnes strain KPA171202 RoxP_1) revealed a high-degree of molecular surface conservation and helped identify a potential heme-binding interface. Biophysical evaluation of a subset of seven RoxP orthologs (71-100% identity) demonstrated that heme-binding is conserved. Computational modeling of these orthologs suggests that RoxP heme-binding is mediated by an invariant molecular surface composed of a surface-exposed tryptophan (W66), adjacent cationic pocket, and nearby potential heme axial ligands. Further, these orthologs were found to undergo heme-dependent oligomerization. To further probe the role of this protein in C. acnes biology, we developed four monoclonal anti-RoxP antibodies, assessed the binding of those antibodies to a subset of ten RoxP orthologs (71-100% identity), developed an anti-RoxP sandwich ELISA (sELISA) with sub-nanogram sensitivity, and adapted that sELISA to quantitate RoxP in human biofluids that can be infected by C. acnes (serum, synovial fluid, cerebrospinal fluid). This study expands our understanding of how an environmental bacterium evolved to live on humans, and the assays developed in this work can now be used to identify this organism when it gains access to sterile sites to cause opportunistic infections. Author Summary The longer humans live, the more they require internal "replacement parts," like prosthetic joints. Increased placement of these and other medical devices has increased their complications, which frequently are infections caused by microbes that live on humans. One of these microbes is Cutibacterium acnes , which dominates 25% of human skin. It appears that when humans domesticated cattle, a C. acnes ancestor adapted from living in cows to living on people. One of these adaptations was RoxP, a protein only found in Cutibacterium and carried by all C. acnes . Here, we describe our extensive characterization of RoxP. We found that distantly related RoxP conserve high stability at the low pH found on human skin. They also conserve the ability to bind heme, a source of iron used by microbes when they infect humans. As a part of this work, we developed tests that measure RoxP to identify C. acnes growth. In a clinic or hospital, these tests could allow a doctor to rapidly identify C. acnes infections, which would improve patient outcomes and lower healthcare costs. This work has helped us better understand how C. acnes adapted to live on humans and to identify C. acnes infections of medical devices.
Collapse
|
12
|
Min TT, Choowongkomon K, Htoo HH, Nonejuie P, Haltrich D, Yamabhai M. Anti-CAMP1 IgG promotes macrophage phagocytosis of Cutibacterium acnes type II. Microbiol Res 2024; 285:127749. [PMID: 38761490 DOI: 10.1016/j.micres.2024.127749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Among 5 types of the Christie-Atkins-Munch-Petersen factor (CAMP) of Cutibacterium acnes, CAMP1 is highly expressed in phylotype II as well as IB, and thought to be a virulence factor of opportunistic but fatal blood, soft tissue, and implant-related infections. The target of a human single-chain variable antibody fragment (scFv), recently isolated from a phage display library, has been identified as CAMP1 of phylotype II, using immunoprecipitation followed by mass spectrometry, phage display peptide biopanning, 3D-modelling, and ELISA. The IgG1 format of the antibody could enhance phagocytosis of C. acnes DMST 14916 by THP-1 human monocytes. Our results suggest that the antibody-dependent phagocytosis process is mediated by the caveolae membrane system and involves the induction of IL-1β. This is the first report on the study of a human antibody against CAMP1 of C. acnes phylotype II, of which a potential use as therapeutic antibody against virulence C. acnes infection is postulated.
Collapse
Affiliation(s)
- Thae Thae Min
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Dietmar Haltrich
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
13
|
Eguren C, Navarro-Blasco A, Corral-Forteza M, Reolid-Pérez A, Setó-Torrent N, García-Navarro A, Prieto-Merino D, Núñez-Delegido E, Sánchez-Pellicer P, Navarro-López V. A Randomized Clinical Trial to Evaluate the Efficacy of an Oral Probiotic in Acne Vulgaris. Acta Derm Venereol 2024; 104:adv33206. [PMID: 38751177 PMCID: PMC11110809 DOI: 10.2340/actadv.v104.33206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
The relevance of the gut microbiota in some skin inflammatory diseases, including acne vulgaris, has been emphasized. Probiotics could play a role in the modulation of the microbiota, improving the clinical course of this disease. A 12-week randomized, double-blind, placebo-controlled, clinical trial with patients aged 12 to 30 years with acne vulgaris was conducted. The study product was a capsule composed of the probiotic Lacticaseibacillus rhamnosus (CECT 30031) and the cyanobacterium Arthrospira platensis (BEA_IDA_0074B). Patients with improvement in the Acne Global Severity Scale were 10/34 (29.41%) in the placebo group compared with 20/40 (50%) in the probiotic group (p = 0.03). A significant reduction (p = 0.03) in the number of non-inflammatory acne lesions was observed in the probiotic group (-18.60 [-24.38 to -12.82]) vs the placebo group (-10.54 [-17.43 to -3.66]). Regarding the number of total lesions, a reduction almost reaching statistical significance (p = 0.06) was observed in the probiotic group (-27.94 [-36.35 to -19.53]) compared with the placebo group (-18.31 [-28.21 to -8.41]). In addition, patients with improvement attending the Global Acne Grading System were 7/34 (20.58%) in the placebo group vs 17/40 (42.50%) in the probiotic group (p = 0.02). The number of adverse events was similar in both groups. The probiotic used in this study was effective and well tolerated, and it should be considered for acne vulgaris patients.
Collapse
Affiliation(s)
- Cristina Eguren
- Department of Dermatology, Eguren Dermatology and Aesthetics Clinic, Madrid, Spain
| | | | | | | | - Núria Setó-Torrent
- Department of Dermatology, University Hospital Sagrat Cor, Barcelona, Spain
| | | | | | - Eva Núñez-Delegido
- Faculty of Medicine, Catholic University of Murcia (UCAM), Murcia, Spain
| | | | - Vicente Navarro-López
- Faculty of Medicine, Catholic University of Murcia (UCAM), Murcia, Spain; Department of Internal Medicine, University Hospital Vinalopó-Fisabio, Elche, Spain.
| |
Collapse
|
14
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
15
|
Boby A, Lee G, Natarelli N, Correa L. Using probiotics to treat acne vulgaris: systematic review. Arch Dermatol Res 2024; 316:101. [PMID: 38472474 DOI: 10.1007/s00403-024-02836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Aleena Boby
- USF Health Morsani College of Medicine, 560 Channelside Drive, Tampa, FL, 33602, USA.
| | - Grace Lee
- USF Health Morsani College of Medicine, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Nicole Natarelli
- USF Health Morsani College of Medicine, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Lilia Correa
- Department of Dermatology and Cutaneous Surgery, USF Health Morsani College of Medicine, Tampa, FL, 33612, USA
| |
Collapse
|
16
|
Zhang XE, Zheng P, Ye SZ, Ma X, Liu E, Pang YB, He QY, Zhang YX, Li WQ, Zeng JH, Guo J. Microbiome: Role in Inflammatory Skin Diseases. J Inflamm Res 2024; 17:1057-1082. [PMID: 38375021 PMCID: PMC10876011 DOI: 10.2147/jir.s441100] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.
Collapse
Affiliation(s)
- Xue-Er Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Pai Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Sheng-Zhen Ye
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yao-Bin Pang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Qing-Ying He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yu-Xiao Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Wen-Quan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Jin-Hao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| |
Collapse
|
17
|
Liang J, Chen Y, Wang Z, Wang Y, Mu S, Zhang D, Wang Z, Zeng W. Exploring the association between rosacea and acne by integrated bioinformatics analysis. Sci Rep 2024; 14:3065. [PMID: 38321132 PMCID: PMC10847114 DOI: 10.1038/s41598-024-53453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024] Open
Abstract
Clinically, rosacea occurs frequently in acne patients, which hints the existence of shared signals. However, the connection between the pathophysiology of rosacea and acne are not yet fully understood. This study aims to unveil molecular mechanism in the pathogenesis of rosacea and acne. We identified differentially expressed genes (DEGs) by limma and weighted gene co-expression network analysis and screened hub genes by constructing a protein-protein interaction network. The hub genes were verified in different datasets. Then, we performed a correlation analysis between the hub genes and the pathways. Finally, we predicted and verified transcription factors of hub genes, performed the immune cell infiltration analysis using CIBERSORT, and calculated the correlation between hub genes and immune cells. A total of 169 common DEGs were identified, which were mainly enriched in immune-related pathways. Finally, hub genes were identified as IL1B, PTPRC, CXCL8, MMP9, CCL4, CXCL10, CD163, CCR5, CXCR4, and TLR8. 9 transcription factors that regulated the expression of hub genes were identified. The infiltration of γδT cells was significantly increased in rosacea and acne lesions and positively linked with almost all hub genes. These identified hub genes and immune cells may play a crucial role in the development of rosacea and acne.
Collapse
Affiliation(s)
- Jingchen Liang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zihao Wang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yawen Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengzhi Mu
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dewu Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhao Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
18
|
Huang L, Yang S, Yu X, Fang F, Zhu L, Wang L, Zhang X, Yang C, Qian Q, Zhu T. Association of different cell types and inflammation in early acne vulgaris. Front Immunol 2024; 15:1275269. [PMID: 38357543 PMCID: PMC10864487 DOI: 10.3389/fimmu.2024.1275269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Acne vulgaris, one of the most common skin diseases, is a chronic cutaneous inflammation of the upper pilosebaceous unit (PSU) with complex pathogenesis. Inflammation plays a central role in the pathogenesis of acne vulgaris. During the inflammatory process, the innate and adaptive immune systems are coordinately activated to induce immune responses. Understanding the infiltration and cytokine secretion of differential cells in acne lesions, especially in the early stages of inflammation, will provide an insight into the pathogenesis of acne. The purpose of this review is to synthesize the association of different cell types with inflammation in early acne vulgaris and provide a comprehensive understanding of skin inflammation and immune responses.
Collapse
Affiliation(s)
- Lei Huang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, Yunnan, China
| | - Xiuqin Yu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fumin Fang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liping Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Wang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Zhang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changzhi Yang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qihong Qian
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
O'Neill AM, Cavagnero KJ, Seidman JS, Zaramela L, Chen Y, Li F, Nakatsuji T, Cheng JY, Tong YL, Do TH, Brinton SL, Hata TR, Modlin RL, Gallo RL. Genetic and Functional Analyses of Cutibacterium Acnes Isolates Reveal the Association of a Linear Plasmid with Skin Inflammation. J Invest Dermatol 2024; 144:116-124.e4. [PMID: 37478901 PMCID: PMC11137742 DOI: 10.1016/j.jid.2023.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 07/23/2023]
Abstract
Cutibacterium acnes is a commensal bacterium on the skin that is generally well-tolerated, but different strain types have been hypothesized to contribute to the disease acne vulgaris. To understand how some strain types might contribute to skin inflammation, we generated a repository of C. acnes isolates from skin swabs of healthy subjects and subjects with acne and assessed their strain-level identity and capacity to stimulate cytokine release. Phylotype II K-type strains were more frequent on healthy and nonlesional skin of subjects with acne than those isolated from lesions. Phylotype IA-1 C-type strains were increased on lesional skin compared with those on healthy skin. The capacity to induce cytokines from cultured monocyte-derived dendritic cells was opposite to this action on sebocytes and keratinocytes and did not correlate with the strain types associated with the disease. Whole-genome sequencing revealed a linear plasmid in high-inflammatory isolates within similar strain types that had different proinflammatory responses. Single-cell RNA sequencing of mouse skin after intradermal injection showed that strains containing this plasmid induced a higher inflammatory response in dermal fibroblasts. These findings revealed that C. acnes strain type is insufficient to predict inflammation and that carriage of a plasmid could contribute to disease.
Collapse
Affiliation(s)
- Alan M O'Neill
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Kellen J Cavagnero
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Jason S Seidman
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Livia Zaramela
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yang Chen
- Department of Dermatology, University of California San Diego, La Jolla, California, USA; Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Fengwu Li
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Joyce Y Cheng
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Yun L Tong
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Tran H Do
- Division of Dermatology, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Samantha L Brinton
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Tissa R Hata
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Robert L Modlin
- Division of Dermatology, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
20
|
Hajam IA, Katiki M, McNally R, Lázaro-Díez M, Kolar S, Chatterjee A, Gonzalez C, Paulchakrabarti M, Choudhury B, Caldera JR, Desmond T, Tsai CM, Du X, Li H, Murali R, Liu GY. Functional divergence of a bacterial enzyme promotes healthy or acneic skin. Nat Commun 2023; 14:8061. [PMID: 38052825 PMCID: PMC10697930 DOI: 10.1038/s41467-023-43833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Acne is a dermatologic disease with a strong pathologic association with human commensal Cutibacterium acnes. Conspicuously, certain C. acnes phylotypes are associated with acne, whereas others are associated with healthy skin. Here we investigate if the evolution of a C. acnes enzyme contributes to health or acne. Two hyaluronidase variants exclusively expressed by C. acnes strains, HylA and HylB, demonstrate remarkable clinical correlation with acne or health. We show that HylA is strongly pro-inflammatory, and HylB is modestly anti-inflammatory in a murine (female) acne model. Structural and phylogenic studies suggest that the enzymes evolved from a common hyaluronidase that acquired distinct enzymatic activity. Health-associated HylB degrades hyaluronic acid (HA) exclusively to HA disaccharides leading to reduced inflammation, whereas HylA generates large-sized HA fragments that drive robust TLR2-dependent pathology. Replacing an amino acid, Serine to Glycine near the HylA catalytic site enhances the enzymatic activity of HylA and produces an HA degradation pattern intermediate to HylA and HylB. Selective targeting of HylA using peptide vaccine or inhibitors alleviates acne pathology. We suggest that the functional divergence of HylA and HylB is a major driving force behind C. acnes health- and acne- phenotype and propose targeting of HylA as an approach for acne therapy.
Collapse
Affiliation(s)
- Irshad A Hajam
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Madhusudhanarao Katiki
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Randall McNally
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Vault Pharma Inc., 570 Westwood Plaza, Los Angeles, CA, 90025, USA
| | - María Lázaro-Díez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- AIDS Research Institute (IrsiCaixa). VIRus Immune Escape and VACcine Design (VIRIEVAC) Universitary Hospital German Trias i Pujol Crta Canyet s/n 08916, Badalona, Barcelona, Spain
| | - Stacey Kolar
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Pharmacology at Armata Pharmaceuticals, Inc., Marina del Rey, CA, 90292, USA
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | | | - Biswa Choudhury
- GlycoAnalytics Core, University of California San Diego, San Diego, CA, 92093, USA
| | - J R Caldera
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Pathology & Laboratory Medicine, UCLA Health & David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Trieu Desmond
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- School of Pharmacy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Xin Du
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - George Y Liu
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA.
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
21
|
Nolan ZT, Banerjee K, Cong Z, Gettle SL, Longenecker AL, Kawasawa YI, Zaenglein AL, Thiboutot DM, Agak GW, Zhan X, Nelson AM. Treatment response to isotretinoin correlates with specific shifts in Cutibacterium acnes strain composition within the follicular microbiome. Exp Dermatol 2023; 32:955-964. [PMID: 36999947 PMCID: PMC11107415 DOI: 10.1111/exd.14798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
There are no drugs as effective as isotretinoin for acne. Deciphering the changes in the microbiome induced by isotretinoin in the pilosebaceous follicle of successfully treated patients can pave the way to identify novel therapeutic alternatives. We determined how the follicular microbiome changes with isotretinoin and identified which alterations correlate with a successful treatment response. Whole genome sequencing was done on casts from facial follicles of acne patients sampled before, during and after isotretinoin treatment. Alterations in the microbiome were assessed and correlated with treatment response at 20 weeks as defined as a 2-grade improvement in global assessment score. We investigated the α-diversity, β-diversity, relative abundance of individual taxa, Cutibacterium acnes strain composition and bacterial metabolic profiles with a computational approach. We found that increased β-diversity of the microbiome coincides with a successful treatment response to isotretinoin at 20 weeks. Isotretinoin selectively altered C. acnes strain diversity in SLST A and D clusters, with increased diversity in D1 strains correlating with a successful clinical response. Isotretinoin significantly decreased the prevalence of KEGG Ontology (KO) terms associated with four distinct metabolic pathways inferring that follicular microbes may have limited capacity for growth or survival following treatment. Importantly, these alterations in microbial composition or metabolic profiles were not observed in patients that failed to achieve a successful response at 20 weeks. Alternative approaches to recapitulate this shift in the balance of C. acnes strains and microbiome metabolic function within the follicle may be beneficial in the future treatment of acne.
Collapse
Affiliation(s)
- Zachary T. Nolan
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kalins Banerjee
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zhaoyuan Cong
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Samantha L. Gettle
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Amy L. Longenecker
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yuka I. Kawasawa
- Departments of Biochemistry and Molecular Biology; Pharmacology; The Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Andrea L. Zaenglein
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Diane M. Thiboutot
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiang Zhan
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Amanda M. Nelson
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
22
|
Huang C, Zhuo F, Han B, Li W, Jiang B, Zhang K, Jian X, Chen Z, Li H, Huang H, Dou X, Yu B. The updates and implications of cutaneous microbiota in acne. Cell Biosci 2023; 13:113. [PMID: 37344849 DOI: 10.1186/s13578-023-01072-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Acne is a chronic inflammatory skin disorder that profoundly impacts the quality of life of patients worldwide. While it is predominantly observed in adolescents, it can affect individuals across all age groups. Acne pathogenesis is believed to be a result of various endogenous and exogenous factors, but the precise mechanisms remain elusive. Recent studies suggest that dysbiosis of the skin microbiota significantly contributes to acne development. Specifically, Cutibacterium acnes, the dominant resident bacterial species implicated in acne, plays a critical role in disease progression. Various treatments, including topical benzoyl peroxide, systemic antibiotics, and photodynamic therapy, have demonstrated beneficial effects on the skin microbiota composition in acne patients. Of particular interest is the therapeutic potential of probiotics in acne, given its direct influence on the skin microbiota. This review summarizes the alterations in skin microbiota associated with acne, provides insight into its pathogenic role in acne, and emphasizes the potential of therapeutic interventions aimed at restoring microbial homeostasis for acne management.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Fan Zhuo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Wenting Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bin Jiang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Kaoyuan Zhang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xingling Jian
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Zhenzhen Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Hui Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Haiyan Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xia Dou
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
23
|
Bråten LCH, Gjefsen E, Gervin K, Pripp AH, Skouen JS, Schistad E, Pedersen LM, Wigemyr M, Selmer KK, Aass HCD, Goll G, Brox JI, Espeland A, Grøvle L, Zwart JA, Storheim K, On behalf of The AIM-study group. Cytokine Patterns as Predictors of Antibiotic Treatment Effect in Chronic Low Back Pain with Modic Changes: Subgroup Analyses of a Randomized Trial (AIM Study). J Pain Res 2023; 16:1713-1724. [PMID: 37252109 PMCID: PMC10224727 DOI: 10.2147/jpr.s406079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Randomized trials testing the effect of antibiotics for chronic low back pain (LBP) with vertebral bone marrow changes on MRI (Modic changes) report inconsistent results. A proposed explanation is subgroups with low grade discitis where antibiotics are effective, but there is currently no method to identify such subgroups. The objective of the present study was to evaluate whether distinct patterns of serum cytokine levels predict any treatment effect of oral amoxicillin at one-year follow-up in patients with chronic low back pain and Modic changes at the level of a previous lumbar disc herniation. Design We used data from an overpowered, randomized, placebo-controlled trial (the AIM study) that tested 100 days of oral 750 mg amoxicillin vs placebo three times daily in hospital outpatients with chronic (>6 months) LBP with pain intensity ≥5 on a 0-10 numerical rating scale and Modic changes type 1 (oedema type) or 2 (fatty type). We measured serum levels of 40 inflammatory cytokines at baseline and analysed six predefined potential predictors of treatment effect based on cytokine patterns in 78 randomized patients; three analyses with recursive partitioning, one based on cluster analysis and two based on principal component analyses. The primary outcome was the Roland-Morris Disability Questionnaire score at one-year follow-up in the intention to treat population. The methodology and overall results of the AIM study were published previously. Results The 78 patients were 25-62 years old and 47 (60%) were women. None of the three recursive partitioning analyses resulted in any suggested subgroups. Of all main analyses, the largest effect estimate (mean difference between antibiotic and placebo groups) was seen in a subgroup not predefined as of main interest (Cluster category 3+4; -2.0, 95% CI: -5.2-1.3, RMDQ points; p-value for interaction 0.54). Conclusion Patterns of inflammatory serum cytokine levels did not predict treatment effect of amoxicillin in patients with chronic LBP and Modic changes. Clinical Trial Registration Number ClinicalTrials.gov (identifier: NCT02323412).
Collapse
Affiliation(s)
- Lars Christian Haugli Bråten
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital HF, Oslo, Norway
| | - Elisabeth Gjefsen
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital HF, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital HF, Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology Research Support Services, Oslo University Hospital Ulleval, Oslo, Norway
| | - Jan Sture Skouen
- Department of Physical Medicine and Rehabilitation, Haukeland University Hospital, Bergen, Norway
| | - Elina Schistad
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital HF, Oslo, Norway
| | - Linda Margareth Pedersen
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital HF, Oslo, Norway
| | - Monica Wigemyr
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital HF, Oslo, Norway
| | - Kaja Kristine Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital HF, Oslo, Norway
| | | | - Guro Goll
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Jens Ivar Brox
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital HF, Oslo, Norway
| | - Ansgar Espeland
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Grøvle
- Department of Rheumatology, Østfold Hospital Trust, Grålum, Norway
| | - John-Anker Zwart
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital HF, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjersti Storheim
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital HF, Oslo, Norway
- Oslo Metropolitan University, Department of Physiotherapy, Oslo, Norway
| | | |
Collapse
|
24
|
Mustari AP, Agarwal I, Das A, Vinay K. Role of Cutaneous Microbiome in Dermatology. Indian J Dermatol 2023; 68:303-312. [PMID: 37529462 PMCID: PMC10389128 DOI: 10.4103/ijd.ijd_560_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
The cutaneous microflora consists of various microorganisms which interact with host epithelial cells and innate and acquired immunity. This microbial milieu and its interaction with host cells prevent the growth of pathogenic organisms and educate host immunity to fight against harmful microorganisms. The microbial composition depends on various intrinsic and extrinsic factors and an imbalance in the cutaneous microflora predisposes the individual to both infectious and non-infectious diseases. Even though probiotics have been extensively studied in various diseases, their efficacy and safety profile are still unclear. A better understanding of the cutaneous microflora is required to develop newer therapeutic targets. In this review, we describe the commensal microbiome and its variation, the current role of the cutaneous microbiome in the pathogenesis of various dermatological diseases, and their therapeutic implications.
Collapse
Affiliation(s)
- Akash P. Mustari
- From the Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ishan Agarwal
- Department of Dermatology, IMS and SUM Hospital, Bhubaneshwar, Orissa, India
| | - Anupam Das
- Department of Dermatology, KPC Medical College and Hospital, Kolkata, West Bengal, India
| | - Keshavamurthy Vinay
- From the Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
25
|
Both A, Huang J, Hentschke M, Tobys D, Christner M, Klatte TO, Seifert H, Aepfelbacher M, Rohde H. Genomics of Invasive Cutibacterium acnes Isolates from Deep-Seated Infections. Microbiol Spectr 2023; 11:e0474022. [PMID: 36976006 PMCID: PMC10100948 DOI: 10.1128/spectrum.04740-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Cutibacterium acnes, formerly known as Propionibacterium acnes, is a commensal of the human pilosebaceous unit but also causes deep-seated infection, especially in the context of orthopedic and neurosurgical foreign materials. Interestingly, little is known about the role of specific pathogenicity factors for infection establishment. Here, 86 infection-associated and 103 commensalism-associated isolates of C. acnes were collected from three independent microbiology laboratories. We sequenced the whole genomes of the isolates for genotyping and a genome-wide association study (GWAS). We found that C. acnes subsp. acnes IA1 was the most significant phylotype among the infection isolates (48.3% of all infection isolates; odds ratio [OR] = 1.98 for infection). Among the commensal isolates, C. acnes subsp. acnes IB was the most significant phylotype (40.8% of all commensal isolates; OR = 0.5 for infection). Interestingly, C. acnes subsp. elongatum (III) was rare overall and did not occur at all in infection. The open reading frame-based GWAS (ORF-GWAS) did not show any loci with a strong signal for infection association (no P values of ≤0.05 after adjustment for multiple testing; no logarithmic OR [logOR] of ≥|2|). We concluded that all subspecies and phylotypes of C. acnes, possibly with the exception of C. acnes subsp. elongatum, are able to cause deep-seated infection given favorable conditions, most importantly related to inserted foreign material. Genetic content appears to have a small effect on the likelihood of infection establishment, and functional studies are needed to understand the individual factors contributing to deep-seated infections caused by C. acnes. IMPORTANCE Opportunistic infections emerging from human skin microbiota are of ever-increasing importance. Cutibacterium acnes, being abundant on the human skin, may cause deep-seated infections (e.g., device-associated infections). Differentiation between invasive (i.e., clinically significant) C. acnes isolates and sole contaminants is often difficult. Identification of genetic markers associated with invasiveness not only would strengthen our knowledge related to pathogenesis but also could open ways to selectively categorize invasive and contaminating isolates in the clinical microbiology lab. We show that in contrast to other opportunistic pathogens (e.g., Staphylococcus epidermidis), invasiveness is apparently a broadly distributed ability across almost all C. acnes subspecies and phylotypes. Thus, our work strongly supports an approach in which clinical significance is judged from clinical context rather than by detecting specific genetic traits.
Collapse
Affiliation(s)
- Anna Both
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - David Tobys
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Martin Christner
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Orla Klatte
- Department for Trauma Surgery and Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Mias C, Mengeaud V, Bessou-Touya S, Duplan H. Recent advances in understanding inflammatory acne: Deciphering the relationship between Cutibacterium acnes and Th17 inflammatory pathway. J Eur Acad Dermatol Venereol 2023; 37 Suppl 2:3-11. [PMID: 36729400 DOI: 10.1111/jdv.18794] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Acne vulgaris is a common chronic inflammatory skin disease of the pilosebaceous units. Four factors contribute to acne: hyperseborrhea and dysseborrhea, follicular hyperkeratinisation, skin microbiome dysbiosis and local immuno-inflammation. Recent key studies have highlighted a better understanding of the important role of Cutibacterium acnes (C. acnes) in the development of acne. Three major findings in the last decade include: (1) the ability of C. acnes to self-organize in a biofilm associated with a more virulent activity, (2) the loss of the C. acnes phylotype diversity and (3) the central role of the Th17 pathway in acne inflammation. Indeed, there is a close link between C. acnes and the activation of the Th17 immuno-inflammatory pathway at the initiation of acne development. These mechanisms are directly linked to the loss of C. acnes phylotype diversity during acne, with a predominance of the pro-pathogenic phylotype IA1. This specifically contributes to the induction of the Th17-mediated immuno-inflammatory response involving skin cells, such as keratinocytes, monocytes and sebocytes. These advancements have led to new insights into the underlying mechanisms which can be harnessed to develop novel treatments and diagnostic biomarkers. A major disadvantage of traditional treatment with topical antibiotics is that they induce cutaneous dysbiosis and antimicrobial resistance. Thus, future treatments would no longer aim to 'kill' C. acnes, but to maintain the skin microbiota balance allowing for tissue homeostasis, specifically, the restoration of C. acnes phylotype diversity. Here, we provide an overview of some of the key processes involved in the pathogenesis of acne, with a focus on the prominent role of C. acnes and the Th17-inflammatory pathways involved.
Collapse
Affiliation(s)
- Céline Mias
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | | | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| |
Collapse
|
27
|
Mias C, Thouvenin MD, Gravier E, Dalmon S, Bouyer K, Alvarez S, Mengeaud V, Ribet V, Bessou-Touya S, Duplan H. Change in Cutibacterium acnes phylotype abundance and improvement of clinical parameters using a new dermocosmetic product containing Myrtus communis and Celastrol enriched plant cell culture extracts in patients with acne vulgaris. J Eur Acad Dermatol Venereol 2023; 37 Suppl 2:20-25. [PMID: 36729402 DOI: 10.1111/jdv.18792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/08/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acne is a multifactorial chronic inflammatory disease of the pilosebaceous unit, where Cutibacterium acnes plays a main role. Recent papers demonstrated that specific C. acnes phylotypes were correlated with the severity of inflammatory acne and reported a specific loss of C. acnes phylotype diversity in this context. OBJECTIVES The aim of this exploratory study was to evaluate the efficacy of a new dermocosmetic product containing Myrtus communis and Celastrol-enriched plant cell culture extracts on C. acnes phylotype abundance and clinical parameters in subjects with mild to moderate acne vulgaris. METHODS Cutibacterium acnes phylotype diversity was evaluated by single-locus sequence typing sequencing on the nonlesional areas of the forehead, that is, areas excluding inflammatory lesions (papules and pustules) on day 1 (D1) and after 56 days (D57) of twice daily application of the dermocosmetic product on the whole face. Clinical efficacy on acne was also assessed by acne lesion counting and Global Evaluation Acne (GEA) score on D1 and D57. RESULTS Our study confirmed the link between the presence of some C. acnes phylotypes and acne severity. The dermocosmetic cream was linked to a positive impact on C. acnes phylotypes: a significant decrease in pro-pathogen phylotype IC and increase in nonpathogen phylotype IB were observed in the nonlesional areas of acne on D57 compared to D1. In parallel, the clinical results showed a significant decrease in inflammatory and comedonal acne lesions and a significant improvement in the acne severity according to the GEA score. CONCLUSIONS This study showed that the application of a new dermocosmetic product containing M. communis and Celastrol-enriched plant cell culture extracts was linked to a change in the C. acnes phylotype abundance and an improvement in acne severity.
Collapse
Affiliation(s)
- Céline Mias
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | | | - Eleonore Gravier
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | - Sandrine Dalmon
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | - Karine Bouyer
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | - Sandrine Alvarez
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | | | - Virginie Ribet
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| | | | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique and, Personal Care, Toulouse, France
| |
Collapse
|
28
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
29
|
Yamamoto T, Miura K, Eishi Y. Detection of Propionibacterium acnes in cutaneous lichenoid sarcoidosis in a patient with Blau syndrome. Int J Dermatol 2023; 62:e353-e355. [PMID: 36633165 DOI: 10.1111/ijd.16583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Toshiyuki Yamamoto
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | - Keiko Miura
- Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
30
|
Guo Y, Zeng M, Yuan Y, Yuan M, Chen Y, Yu H, Liu R, Ruan Z, Xie Q, Jiao X, Lu T. Photodynamic therapy treats acne by altering the composition of the skin microbiota. Skin Res Technol 2023; 29:e13269. [PMID: 36704881 PMCID: PMC9838775 DOI: 10.1111/srt.13269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acne is the eighth-most prevalent inflammatory skin disease with no optimal treatment. Photodynamic therapy (PDT) is an effective treatment for severe acne. AIMS The effect of PDT on the composition and diversity of skin microflora in severe acne patients was studied. MATERIALS AND METHODS A total of 18 patients with severe acne and 8 healthy individuals were selected for this study. Patients were treated with 5-aminolevulinic acid-mediated PDT once a week three times in total; the skin microbiome was measured by 16S ribosomal RNA gene sequencing before and after treatment (1 week after each PDT). RESULTS The microflora composition was different between healthy controls and patients, and between patients before and after treatment. Alpha diversity indices were lower in patients than those in control. There were 15 bacterial genera with high relative abundance that had noticeable changes during treatment. At the genus level,particularly Cutibacterium acnes (C. acnes formerly Propionibacterium acnes), there was no statistically significant difference among different group. The abundances of Staphylococcus epidermidis and Staphylococcus aureus were low. DISCUSSION The microbial composition is different between severe acne patients acne patients and healthy individuals. The therapeutic efficacy of severe acne treated with PDT is associated with the composition and diversity of skin microbiota. CONCLUSION The skin microbial composition changes after PDT treatment. PDT is an effective method for the treatment of severe acne.
Collapse
Affiliation(s)
- Yangmin Guo
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Department of DermatologyHuizhou Dermatology HospitalHuizhouChina
| | - Mi Zeng
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Yumeng Yuan
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Mengsi Yuan
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yanxia Chen
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Haoyang Yu
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ruimin Liu
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Zhijie Ruan
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Qingdong Xie
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Xiaoyang Jiao
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Tao Lu
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
31
|
Kutlu Ö, Karadağ AS, Wollina U. Adult acne versus adolescent acne: a narrative review with a focus on epidemiology to treatment. An Bras Dermatol 2023; 98:75-83. [PMID: 36253244 PMCID: PMC9837660 DOI: 10.1016/j.abd.2022.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 01/21/2023] Open
Abstract
Acne vulgaris is one of the most common chronic inflammatory diseases and is characterized by papules, pustules, comedones, and nodules. Although adolescence is the preferential age group, acne may affect various age groups. Acne shares different properties in adults and adolescents. These differences extend from epidemiology to treatments. Increased awareness of these two subtypes will allow for better management of the disease. In this review, the authors examined all aspects of acne in adults and adolescents under the light of current literature.
Collapse
Affiliation(s)
- Ömer Kutlu
- Department of Dermatology and Venereology, School of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey,Corresponding author.
| | - Ayşe Serap Karadağ
- Department of Dermatology and Venereology, Memorial Ataşehir Hospital, İstanbul, Turkey
| | - Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden, Dresden, Germany
| |
Collapse
|
32
|
Schneider AM, Nolan ZT, Banerjee K, Paine AR, Cong Z, Gettle SL, Longenecker AL, Zhan X, Agak GW, Nelson AM. Evolution of the facial skin microbiome during puberty in normal and acne skin. J Eur Acad Dermatol Venereol 2023; 37:166-175. [PMID: 36165604 PMCID: PMC11134479 DOI: 10.1111/jdv.18616] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The composition of the skin microbiome varies from infancy to adulthood and becomes most stable in adulthood. Adult acne patients harbour an 'acne microbiome' dominated by specific strains of Cutibacterium acnes. However, the precise timing of skin microbiome evolution, the development of the acne microbiome, and the shift to virulent C. acnes strain composition during puberty is unknown. OBJECTIVES We performed a cross-sectional pilot study in a paediatric population to understand how and when the skin microbiome composition transitions during puberty and whether a distinct 'acne microbiome' emerges in paediatric subjects. METHODS Forty-eight volunteers including males and females, ages 7-17 years, with and without acne were enrolled and evaluated for pubertal development using the Tanner staging criteria. Sebum levels were measured, and skin microbiota were collected by sterile swab on the subject's forehead. DNA was sequenced by whole genome shotgun sequencing. RESULTS A significant shift in microbial diversity emerged between early (T1-T2) and late (T3-T5) stages of puberty, coinciding with increased sebum production on the face. The overall relative abundance of C. acnes in both normal and acne skin increased during puberty and individual C. acnes strains were uniquely affected by pubertal stage and the presence of acne. Further, an acne microbiome signature associated with unique C. acnes strain composition and metabolic activity emerges in late puberty in those with acne. This unique C. acnes strain composition is predicted to have increased porphyrin production, which may contribute to skin inflammation. CONCLUSIONS Our data suggest that the stage of pubertal development influences skin microbiome composition. As children mature, a distinct acne microbiome composition emerges in those with acne. Understanding how both puberty and acne influence the microbiome may support novel therapeutic strategies to combat acne in the paediatric population.
Collapse
Affiliation(s)
- Andrea M. Schneider
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Zachary T. Nolan
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kalins Banerjee
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Allison R. Paine
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Zhaoyuan Cong
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Samantha L. Gettle
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Amy L. Longenecker
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Xiang Zhan
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - George W. Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
33
|
Cui H, Guo C, Wang Q, Feng C, Duan Z. A pilot study on the efficacy of topical lotion containing anti-acne postbiotic in subjects with mild -to -moderate acne. Front Med (Lausanne) 2022; 9:1064460. [PMID: 36569166 PMCID: PMC9780477 DOI: 10.3389/fmed.2022.1064460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Acne can compromise facial esthetics and become a mental burden, especially when it occurs in puberty. Skincare cosmetics with anti-acne efficiency is more convenient than other treatment modalities, such as dietary supplements, in certain circumstances. The purpose of this study was to investigate the efficacy of an anti-acne lotion in alleviating acne. Methods In our study, an anti-acne lotion containing ferment lysate produced by Lactiplantibacillus plantarum VHProbi® E15 were applied to subjects with mild -to -moderate acne over 4 weeks. The efficacy was evaluated based on instrumental measurements using Visia®-CR and CK-MPA® system. Results and discussion The anti-acne lotion exhibited favorable safety, meeting the stringent criteria for the detection of microbes, heavy metals, toxicity, and irritation. After 2 weeks of treatment, a statistically significant improvement in acne lesions was observed compared to baseline (P < 0.01), and this continued to the end of the study. After 4 weeks of treatment, the transepidermal water loss (P < 0.05) and sebum production (P < 0.05) were significantly decreased in subjects compared to baseline. In addition, the pore/area of interest (AOI) and stratum corneum hydration displayed slightly positive changes throughout treatment. Thus, we conclude that applying topical anti-acne lotion may be safe and confer effective benefits in people with mild -to -moderate acne and represents a promising therapeutic option for acne.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Duan
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| |
Collapse
|
34
|
Kraaijvanger R, Veltkamp M. The Role of Cutibacterium acnes in Sarcoidosis: From Antigen to Treatable Trait? Microorganisms 2022; 10:1649. [PMID: 36014067 PMCID: PMC9415339 DOI: 10.3390/microorganisms10081649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium acnes (C. acnes, formerly Propionibacterium acnes) is considered to be a non-pathogenic resident of the human skin, as well as mucosal surfaces. However, it also has been demonstrated that C. acnes plays a pathogenic role in diseases such as acne vulgaris or implant infections after orthopedic surgery. Besides a role in infectious disease, this bacterium also seems to harbor immunomodulatory effects demonstrated by studies using C. acnes to enhance anti-tumor activity in various cancers or vaccination response. Sarcoidosis is a systemic inflammatory disorder of unknown causes. Cultures of C. acnes in biopsy samples of sarcoidosis patients, its presence in BAL fluid, tissue samples as well as antibodies against this bacterium found in serum of patients with sarcoidosis suggest an etiological role in this disease. In this review we address the antigenic as well as immunomodulatory potential of C. acnes with a focus on sarcoidosis. Furthermore, a potential role for antibiotic treatment in patients with sarcoidosis will be explored.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Marcel Veltkamp
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Division of Hearth and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
35
|
Acne, Microbiome, and Probiotics: The Gut–Skin Axis. Microorganisms 2022; 10:microorganisms10071303. [PMID: 35889022 PMCID: PMC9318165 DOI: 10.3390/microorganisms10071303] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this narrative review was to check the influence of the human microbiota in the pathogenesis of acne and how the treatment with probiotics as adjuvant or alternative therapy affects the evolution of acne vulgaris. Acne is a chronic inflammatory skin disease involving the pilosebaceous units. The pathogenesis of acne is complex and multifactorial involving genetic, metabolic, and hormonal factors in which both skin and gut microbiota are implicated. Numerous studies have shown the bidirectionality between the intestinal microbiota and skin homeostasis, a communication mainly established by modifying the immune system. Increased data on the mechanisms of action regarding the relevance of Cutibacterium acnes, as well as the importance of the gut–skin axis, are becoming known. Diverse and varied in vitro studies have shown the potential beneficial effects of probiotics in this context. Clinical trials with both topical and oral probiotics are scarce, although they have shown positive results, especially with oral probiotics through the modulation of the intestinal microbiota, generating an anti-inflammatory response and restoring intestinal integrity, or through metabolic pathways involving insulin-like growth factor I (IGF-1). Given the aggressiveness of some standard acne treatments, probiotics should continue to be investigated as an alternative or adjuvant therapy.
Collapse
|
36
|
Different Cutibacterium acnes Phylotypes Release Distinct Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms23105797. [PMID: 35628607 PMCID: PMC9147970 DOI: 10.3390/ijms23105797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial extracellular vesicles (EVs) perform various biological functions, including those that are critical to microbes. Determination of EVs composition allows for a deep understanding of their role in the bacterial community and communication among them. Cutibacterium acnes, formerly Propionibacterium acnes, are commensal bacteria responsible for various infections, e.g., prosthesis, sarcoidosis, soft-tissue infections, and the most known but still controversial—acnes lesion. In C. acnes, three major phylotypes represented variable disease associations. Herein, for the first time, we present a comparative analysis of EVs obtained from three C. acnes phylotypes (IA1, IB, and II) to demonstrate the existence of differences in their protein and lipid composition. In the following work, the morphological analysis of EVs was performed, and the SDS-PAGE protein profile and the lipid profile were presented using the TLC and MALDI-TOF MS methods. This study allowed us to show major differences between the protein and lipid composition of C. acnes EVs. This is a clear indication that EVs released by different phylotypes of the one species are not identical to each other in terms of composition and should be separately analyzed each time to obtain reliable results.
Collapse
|
37
|
Rojas C, Gálvez-Jirón F, De Solminihac J, Padilla C, Cárcamo I, Villalón N, Kurte M, Pino-Lagos K. Crosstalk between Body Microbiota and the Regulation of Immunity. J Immunol Res 2022; 2022:6274265. [PMID: 35647199 PMCID: PMC9135571 DOI: 10.1155/2022/6274265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
The microbiome corresponds to the genetic component of microorganisms (archaea, bacteria, phages, viruses, fungi, and protozoa) that coexist with an individual. During the last two decades, research on this topic has become massive demonstrating that in both homeostasis and disease, the microbiome plays an important role, and in some cases, a decisive one. To date, microbiota have been identified at different body locations, such as the eyes, lung, gastrointestinal and genitourinary tracts, and skin, and technological advances have permitted the taxonomic characterization of resident species and their metabolites, in addition to the cellular and molecular components of the host that maintain a crosstalk with local microorganisms. Here, we summarize recent studies regarding microbiota residing in different zones of the body and their relationship with the immune system. We emphasize the immune components underlying pathological conditions and how they interact with local (and distant) microbiota.
Collapse
Affiliation(s)
- Carolina Rojas
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Felipe Gálvez-Jirón
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Javiera De Solminihac
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Cristina Padilla
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Ignacio Cárcamo
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Natalia Villalón
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Mónica Kurte
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Karina Pino-Lagos
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
38
|
Mayslich C, Grange PA, Castela M, Marcelin AG, Calvez V, Dupin N. Characterization of a Cutibacterium acnes Camp Factor 1-Related Peptide as a New TLR-2 Modulator in In Vitro and Ex Vivo Models of Inflammation. Int J Mol Sci 2022; 23:ijms23095065. [PMID: 35563458 PMCID: PMC9104286 DOI: 10.3390/ijms23095065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cutibacterium acnes (C. acnes) has been implicated in inflammatory acne where highly mutated Christie-Atkins-Munch-Petersen factor (CAMP)1 displays strong toll like receptor (TLR)-2 binding activity. Using specific antibodies, we showed that CAMP1 production was independent of C. acnes phylotype and involved in the induction of inflammation. We confirmed that TLR-2 bound both mutated and non-mutated recombinant CAMP1, and peptide array analysis showed that seven peptides (A14, A15, B1, B2, B3, C1 and C3) were involved in TLR-2 binding, located on the same side of the three-dimensional structure of CAMP1. Both mutated and non-mutated recombinant CAMP1 proteins induced the production of C-X-C motif chemokine ligand interleukin (CXCL)8/(IL)-8 in vitro in keratinocytes and that of granulocyte macrophage-colony stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, IL-1β and IL-10 in ex vivo human skin explants. Only A14, B1 and B2 inhibited the production of CXCL8/IL-8 by keratinocytes and that of (GM-CSF), TNF-α, IL-1β and IL-10 in human skin explants stimulated with rCAMP1 and C. acnes. Following pretreatment with B2, RNA sequencing on skin explants identified the 10 genes displaying the strongest differential expression as IL6, TNF, CXCL1, CXCL2, CXCL3, CXCL8, IL-1β, chemokine ligand (CCL)2, CCL4 and colony stimulating factor (CSF)2. We, thus, identified a new CAMP1-derived peptide as a TLR-2 modulator likely to be a good candidate for clinical evaluation.
Collapse
Affiliation(s)
- Constance Mayslich
- Département DRC, Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Cité, 75014 Paris, France; (C.M.); (P.A.G.); (M.C.)
| | - Philippe Alain Grange
- Département DRC, Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Cité, 75014 Paris, France; (C.M.); (P.A.G.); (M.C.)
- Service de Dermatologie-Vénéréologie et CeGIDD, Groupe Hospitalier APHP.centre, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
- Hôpital Cochin, U1016, Equipe Biologie Cutanée—CNR IST bactériennes—Syphilis 24, rue du faubourg Saint-Jacques, 75014 Paris, France
| | - Mathieu Castela
- Département DRC, Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Cité, 75014 Paris, France; (C.M.); (P.A.G.); (M.C.)
| | - Anne Geneviève Marcelin
- National Reference Centre for Herpesviruses, Virology Department, Team 3 THERAVIR, and AP-HP, Pitié-Salpêtrière—Charles Foix University Hospital, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.M.); (V.C.)
| | - Vincent Calvez
- National Reference Centre for Herpesviruses, Virology Department, Team 3 THERAVIR, and AP-HP, Pitié-Salpêtrière—Charles Foix University Hospital, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.M.); (V.C.)
| | - Nicolas Dupin
- Département DRC, Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016-CNRS UMR8104, Université Paris Cité, 75014 Paris, France; (C.M.); (P.A.G.); (M.C.)
- Service de Dermatologie-Vénéréologie et CeGIDD, Groupe Hospitalier APHP.centre, CNR IST Bactériennes—Laboratoire Associé Syphilis, 75014 Paris, France
- Hôpital Cochin, U1016, Equipe Biologie Cutanée—CNR IST bactériennes—Syphilis 24, rue du faubourg Saint-Jacques, 75014 Paris, France
- Correspondence: ; Tel.: +33-158-411-849; Fax: +33-158-411-55
| |
Collapse
|
39
|
Fujii T, Tochio T, Endo A. Ribotype-dependent growth inhibition and promotion by erythritol in Cutibacterium acnes. J Cosmet Dermatol 2022; 21:5049-5057. [PMID: 35364613 DOI: 10.1111/jocd.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The close balance between Cutibacterium acnes and the skin flora, particularly between C. acnes phylotypes, has been suggested to play an important role in the onset of acne. C. acnes has been classified into ribotypes (RTs) based on polymorphisms in its 16S rRNA sequence, with RT4 and RT5 being associated with the onset of acne and RT6 with healthy skin. AIMS The present study investigated the impact of erythritol on the growth of C. acnes strains classified into different RTs and attempted to elucidate the molecular mechanisms underlying its effects. METHODS Culturing tests were performed on several RTs of C. acnes with or without erythritol. A transcriptional analysis of HM554 (RT6) and HM514 (RT5) was also conducted. RESULTS The growth of RT2 and RT6, RTs associated with healthy skin, was significantly promoted in medium containing 10% (W/W) erythritol, whereas that of RT1, RT3, RT4, RT5, and RT8, RTs associated with the development of acne, was inhibited. A RNA-seq analysis of HM554 showed that the expression of six genes (EIGs) potentially involved in carbohydrate metabolism was strongly induced by the presence of 10% erythritol (Log2 fold change >2.0 and p-value <0.05). A comparative expression analysis by qPCR revealed that EIGs other than g3pD were strongly induced by erythritol in HM514, similar to HM554, whereas g3pD was only slightly induced. CONCLUSION Erythritol inhibited the growth of RTs associated with acne and promoted that of RTs associated with healthy skin. The enzyme encoded by g3pD may play an important role in the metabolism of erythritol and the dissolution of its growth inhibitory effects on C. acnes.
Collapse
Affiliation(s)
- Tadashi Fujii
- Research & Development Center, B Food Science Co., Ltd, Aichi, Japan
| | - Takumi Tochio
- Research & Development Center, B Food Science Co., Ltd, Aichi, Japan
| | - Akihito Endo
- Department of Food, Aroma, and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| |
Collapse
|
40
|
Microbiome and Probiotics in Acne Vulgaris—A Narrative Review. Life (Basel) 2022; 12:life12030422. [PMID: 35330173 PMCID: PMC8953587 DOI: 10.3390/life12030422] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Acne vulgaris is a chronic disease characterised by the appearance of eruptions such as whiteheads, blackheads, pustules, papules, and cysts. Among factors that cause acne vulgaris are the abnormal keratinisation of the sebaceous canal, bacterial colonisation (Cutibacterium acnes), increased sebum production, genotypic factors, and hormonal disorders. Treatment is often long and tedious, and can lead to a reduction in quality of life and social isolation. The intestinal microbiota is greatly important in the formation of acne lesions. It is also responsible for the proper immunity of the organism. Acne is a disease that can be related to the condition of the digestive tract and its microbiome. Research shows that the use of probiotics may reduce skin eruptions. The probiotic supplementation and cosmetics markets are very dynamically developing. The use of internal supplementation and probiotic-containing cosmetics gives hope for the improvement of the skin condition of people with acne.
Collapse
|
41
|
Lousada MB, Lachnit T, Edelkamp J, Paus R, Bosch TCG. Hydra and the hair follicle - An unconventional comparative biology approach to exploring the human holobiont. Bioessays 2022; 44:e2100233. [PMID: 35261041 DOI: 10.1002/bies.202100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The microbiome of human hair follicles (HFs) has emerged as an important player in different HF and skin pathologies, yet awaits in-depth exploration. This raises questions regarding the tightly linked interactions between host environment, nutrient dependency of host-associated microbes, microbial metabolism, microbe-microbe interactions and host immunity. The use of simple model systems facilitates addressing generally important questions and testing overarching, therapeutically relevant principles that likely transcend obvious interspecies differences. Here, we evaluate the potential of the freshwater polyp Hydra, to dissect fundamental principles of microbiome regulation by the host, that is the human HF. In particular, we focus on therapeutically targetable host-microbiome interactions, such as nutrient dependency, microbial interactions and host defence. Offering a new lens into the study of HF - microbiota interactions, we argue that general principles of how Hydra manages its microbiota can inform the development of novel, microbiome-targeting therapeutic interventions in human skin disease.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Janin Edelkamp
- Monasterium Laboratory Skin & Hair Research, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| |
Collapse
|
42
|
Sun Y, Meng Y, Ou Z, Li Y, Zhang M, Chen Y, Zhang Z, Chen X, Mu P, Norbäck D, Zhao Z, Zhang X, Fu X. Indoor microbiome, air pollutants and asthma, rhinitis and eczema in preschool children - A repeated cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 161:107137. [PMID: 35168186 DOI: 10.1016/j.envint.2022.107137] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Indoor microbiome exposure is associated with asthma, rhinitis and eczema. However, no studies report the interactions between environmental characteristics, indoor microbiome and health effects in a repeated cross-sectional framework. METHODS 1,279 and 1,121 preschool children in an industrial city (Taiyuan) of China were assessed for asthma, rhinitis and eczema symptoms in 2012 and 2019 by self-administered questionnaires, respectively. Bacteria and fungi in classroom vacuum dust were characterized by culture-independent amplicon sequencing. Multi-level logistic/linear regression was performed in two cross-sectional and two combined models to assess the associations. RESULTS The number of observed species in bacterial and fungal communities in classrooms increased significantly from 2012 to 2019, and the compositions of the microbial communities were drastically changed (p < 0.001). The temporal microbiome variation was significantly larger than the spatial variation within the city (p < 0.001). Annual average outdoor SO2 concentration decreased by 60.7%, whereas NO2 and PM10 concentrations increased by 63.3% and 40.0% from 2012 to 2019, which were both associated with indoor microbiome variation (PERMANOVA p < 0.001). The prevalence of asthma (2.0% to 3.3%, p = 0.06) and rhinitis (28.0% to 25.3%, p = 0.13) were not significantly changed, but the prevalence of eczema was increased (3.6% to 7.0%; p < 0.001). Aspergillus subversicolor, Collinsella and Cutibacterium were positively associated with asthma, rhinitis and eczema, respectively (p < 0.01). Prevotella, Lactobacillus iners and Dolosigranulum were protectively (negatively) associated with rhinitis (p < 0.01), consistent with previous studies in the human respiratory tract. NO2 and PM10 concentrations were negatively associated with rhinitis in a bivariate model, but a multivariate mediation analysis revealed that Prevotella fully mediated the health effects. CONCLUSIONS This is the first study to report the interactions between environmental characteristics, indoor microbiome and health in a repeated cross-sectional framework. The mediating effects of indoor microorganisms suggest incorporating biological with chemical exposure for a comprehensive exposure assessment.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yi Meng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yanling Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zefei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Xingyi Chen
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Dan Norbäck
- Occupational and Environmental Medicine, Dept. of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China.
| | - Xi Fu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, PR China.
| |
Collapse
|
43
|
Stødkilde K, Nielsen JT, Petersen SV, Paetzold B, Brüggemann H, Mulder FAA, Andersen CBF. Solution Structure of the Cutibacterium acnes-Specific Protein RoxP and Insights Into Its Antioxidant Activity. Front Cell Infect Microbiol 2022; 12:803004. [PMID: 35223541 PMCID: PMC8873378 DOI: 10.3389/fcimb.2022.803004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cutibacterium acnes is a predominant bacterium on human skin and is generally regarded as commensal. Recently, the abundantly secreted protein produced by C. acnes, RoxP, was shown to alleviate radical-induced cell damage, presumably via antioxidant activity, which could potentially be harnessed to fortify skin barrier function. The aim of this study was to determine the structure of RoxP and elucidate the mechanisms behind its antioxidative effect. Here, we present the solution structure of RoxP revealing a compact immunoglobulin-like domain containing a long flexible loop which, in concert with the core domain, forms a positively charged groove that could function as a binding site for cofactors or substrates. Although RoxP shares structural features with cell-adhesion proteins, we show that it does not appear to be responsible for adhesion of C. acnes bacteria to human keratinocytes. We identify two tyrosine-containing stretches located in the flexible loop of RoxP, which appear to be responsible for the antioxidant activity of RoxP.
Collapse
Affiliation(s)
| | | | | | | | | | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
44
|
Davidsson S, Carlsson J, Greenberg L, Wijkander J, Söderquist B, Erlandsson A. Cutibacterium acnes Induces the Expression of Immunosuppressive Genes in Macrophages and is Associated with an Increase of Regulatory T-Cells in Prostate Cancer. Microbiol Spectr 2021; 9:e0149721. [PMID: 34937192 PMCID: PMC8694172 DOI: 10.1128/spectrum.01497-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Tumors and infectious agents both benefit from an immunosuppressive environment. Cutibacterium acnes (C. acnes) is a bacterium in the normal skin microbiota, which has the ability to survive intracellularly in macrophages and is significantly more common in prostate cancer tissue compared with normal prostate tissue. This study investigated if prostate cancer tissue culture positive for C. acnes has a higher infiltration of regulatory T-cells (Tregs) and if macrophages stimulated with C. acnes induced the expression of immunosuppressive genes that could be linked to an increase of Tregs in prostate cancer. Real-time PCR and enzyme-linked immunosorbent spot assay (ELISA) were used to examine the expression of immunosuppressive genes in human macrophages stimulated in vitro with C. acnes, and associations between the presence of C. acnes and infiltration of Tregs were investigated by statistically analyzing data generated in two previous studies. The in vitro results demonstrated that macrophages stimulated with C. acnes significantly increased their expression of PD-L1, CCL17, and CCL18 mRNA and protein (p <0.05). In the cohort, Tregs in tumor stroma and tumor epithelia were positively associated with the presence of C. acnes (P = 0.0004 and P = 0.046, respectively). Since the macrophages stimulated with C. acnes in vitro increased the expression of immunosuppressive genes, and prostate cancer patients with prostatic C. acnes infection had higher infiltration of Tregs than their noninfected counterparts, we suggest that C. acnes may contribute to an immunosuppressive tumor environment that is vital for prostate cancer progression. IMPORTANCE In an immune suppressive tumor microenvironment constituted by immunosuppressive cells and immunosuppressive mediators, tumors may improve their ability to give rise to a clinically relevant cancer. In the present study, we found that C. acnes might contribute to an immunosuppressive environment by recruiting Tregs and by increasing the expression of immunosuppressive mediators such as PD-L1, CCL17, and CCL18. We believe that our data add support to the hypothesis of a contributing role of C. acnes in prostate cancer development. If established that C. acnes stimulates prostate cancer progression it may open up avenues for targeted prostate cancer treatment.
Collapse
Affiliation(s)
- Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Larry Greenberg
- Department of Environmental and Life Sciences/Biology, Faculty of Health, Science and Technology, Karlstad University, Karlstad, Sweden
| | - Jonny Wijkander
- Department of Health Sciences, Faculty of Health, Science and Technology, Karlstad University, Karlstad, Sweden
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ann Erlandsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Environmental and Life Sciences/Biology, Faculty of Health, Science and Technology, Karlstad University, Karlstad, Sweden
| |
Collapse
|
45
|
Abstract
The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.
Collapse
|
46
|
Fatima N, Bjarnsholt T, Bay L. Dynamics of skin microbiota in shoulder surgery infections. APMIS 2021; 129:665-674. [PMID: 34587324 DOI: 10.1111/apm.13185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/25/2021] [Indexed: 01/10/2023]
Abstract
Post-surgical infections arise due to various contributing factors. Most important is the presence of potential pathogenic microorganisms in the skin complemented by the patient´s health status. Cutibacterium acnes is commonly present in the pilosebaceous glands and hair follicle funnels in human skin. After surgical intervention, these highly prevalent, slow-growing bacteria can be found in the deeper tissues and in proximity of implants. C. acnes is frequently implicated in post-surgical infections, often resulting in the need for revision surgery. This review summarizes the current understanding of microbial dynamics in shoulder surgical infections. In particular, we shed light on the contribution of C. acnes to post-surgical shoulder infections as well as their colonization and immune-modulatory potential. Despite being persistently found in post-surgical tissues, C. acnes is often underestimated as a causative organism due to its slow growth and the inefficient detection methods. We discuss the role of the skin environment constituted by microbial composition and host cellular status in influencing C. acnes recolonization potential. Future mapping of the individual skin microbiome in shoulder surgery patients using advanced molecular methods would be a useful approach for determining the risk of post-operative infections.
Collapse
Affiliation(s)
- Naireen Fatima
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Lene Bay
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Thiboutot DM, Nelson AM. Keeping the peace: commensal Cutibacterium acnes trains CD4+ TH17 cells to trap and kill. J Clin Invest 2021; 131:145379. [PMID: 33463540 DOI: 10.1172/jci145379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Commensal or pathogenic bacterial communities of the skin interact with the host immune system to preserve homeostasis or sustain disease. In this issue of the JCI, Agak et al. substantially advance our conceptual understanding of TH17 cell biology. The researchers identified IL-26-independent mechanisms by which CD4+ TH17 clones directly kill bacteria. These CD4+ TH17 clones share antimicrobial properties with cytotoxic T cells and granulocytes as evidenced by secretion of granulysin, granzyme B, and histone-laden DNA extracellular traps. Interestingly, these clones emerged following monocyte education by Cutibacterium acnes strains associated with healthy skin, but not those associated with acne. Overall, the antimicrobial mechanisms employed by these TH17 subsets suggest a unique link between innate and adaptive immune responses.
Collapse
|
48
|
Espinoza-Monje M, Campos J, Alvarez Villamil E, Jerez A, Dentice Maidana S, Elean M, Salva S, Kitazawa H, Villena J, García-Cancino A. Characterization of Weissella viridescens UCO-SMC3 as a Potential Probiotic for the Skin: Its Beneficial Role in the Pathogenesis of Acne Vulgaris. Microorganisms 2021; 9:1486. [PMID: 34361921 PMCID: PMC8307422 DOI: 10.3390/microorganisms9071486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.
Collapse
Affiliation(s)
- Marcela Espinoza-Monje
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Jorge Campos
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Eduardo Alvarez Villamil
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Alonso Jerez
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| |
Collapse
|
49
|
Unravelling the eco-specificity and pathophysiological properties of Cutibacterium species in the light of recent taxonomic changes. Anaerobe 2021; 71:102411. [PMID: 34265438 DOI: 10.1016/j.anaerobe.2021.102411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
In 2016, a new species name Cutibacterium acnes was coined for the well-documented species, Propionibacterium acnes, one of the most successful and clinically important skin commensals. The nomenclatural changes were brought about through creation of the genus Cutibacterium, when a group of propionibacteria isolates from the skin were transferred from the genus Propionibacterium and placed in the phylum Actinobacteria. Almost simultaneously, the discovery of two novel species of Cutibacterium occurred and the proposal of three subspecies of C. acnes were reported. These dramatic changes that occurred in a long-established taxon made it challenging for the non-specialist to correlate the huge volume of hitherto published work with current findings. In this review, we aim to correlate the eco-specificity and pathophysiological properties of these newly circumscribed taxa. We envisage that this information will shed light on the pathogenic potential of new isolates and enable better assessment of their clinical importance in the foreseeable future. Currently, five species are recognized within the genus: Cutibacterium acnes, Cutibacterium avidum, Cutibacterium granulosum, Cutibacterium modestum (previously, "Propionibacterium humerusii"), and Cutibacterium namnetense. These reside in different niches reflecting their uniqueness in their genetic makeup. Their pathogenicity includes acne inflammation, sarcoidosis, progressive macular hypomelanosis, prostate cancer, and infections (bone, lumbar disc, and heart). This is also the case for the three newly described subspecies of C. acnes, which are C. acnes subspecies acnes (C. acnes type I), subspecies defendens (C. acnes type II), and subspecies elongatum (C. acnes type III). C. acnes subspecies acnes is related to inflamed acne and sarcoidosis, while subspecies defendens to prostate cancer and subspecies elongatum to progressive macular hypomelanosis. Because the current nomenclature is based upon polyphasic analyses of the biochemical and pathogenic characteristics and comparative genomics, it provides a sound basis studying the pathophysiological roles of these species.
Collapse
|
50
|
Brüggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol 2021; 12:673845. [PMID: 34135880 PMCID: PMC8200545 DOI: 10.3389/fmicb.2021.673845] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes) is tightly associated with humans. It is the dominant bacterium in sebaceous regions of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this review we summarize and discuss the current knowledge of C. acnes regarding bacterial properties and traits that allow host colonization and play major roles in host-bacterium interactions and also regarding the host responses that C. acnes can trigger. These responses can have beneficial or detrimental consequences for the host. In the first part of the review, we highlight and critically review disease associations of C. acnes, in particular acne vulgaris, implant-associated infections and native infections. Here, we also analyse the current evidence for a direct or indirect role of a C. acnes-related dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity and/or the predominance of a certain phylotype. In the second part of the review, we highlight historical and recent findings demonstrating beneficial aspects of colonization by C. acnes such as colonization resistance, immune system interactions, and oxidant protection, and discuss the molecular mechanisms behind these effects. This new insight led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as probiotic options to treat skin disorders.
Collapse
Affiliation(s)
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Harald P. M. Gollnick
- Department of Dermatology and Venerology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|