1
|
Yang TT, Lan CCE. Photocarcinogenesis of the skin: Current status and future trends. Kaohsiung J Med Sci 2025; 41:e12946. [PMID: 39907400 DOI: 10.1002/kjm2.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Solar radiation is essential for life on Earth but is also a major contributor to skin carcinogenesis. Solar radiation, particularly ultraviolet (UV) B (280-320 nm) and UVA (320-400 nm), induces photocarcinogenesis via various pathways. UV light can directly cause DNA damage, resulting in genetic mutations if not repaired correctly. UV light can also induce photocarcinogenesis by generating reactive oxygen species, inducing immunosuppression and inflammation. Recently, visible light (400-760 nm) has been shown to contribute to photocarcinogenesis by activating oxidative pathways. In addition to the irradiation dose (fluence, J/m2), UVB irradiance (W/m2) is also considered a factor influencing photocarcinogenesis. In this review, we summarize the mechanisms of photocarcinogenesis and provide strategies to prevent skin cancer.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Gangshan Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Che E Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Yamamoto H, Okada M, Sawaguchi Y, Yamada T. Expression of opsin and visual cycle-related enzymes in fetal rat skin keratinocytes and cellular response to blue light. Biochem Biophys Rep 2024; 39:101789. [PMID: 39104840 PMCID: PMC11298612 DOI: 10.1016/j.bbrep.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The mechanism by which the skin, a non-visual tissue, responds to light remains unknown. To date, opsin expression has been demonstrated in keratinocytes, melanocytes, and fibroblasts, all of which are skin-derived cells. In this study, we examined whether the visual cycle, by which opsin activity is maintained, is present in skin keratinocytes. We also identified the wavelengths of light to which opsin in keratinocytes responds and explored their effects on skin keratinocytes. The fetal rat skin keratinocytes used in this study expressed OPN2, 3, and 5 in addition to enzymes involved in the visual cycle, and all-trans-retinal, which is produced by exposure to light, was reconverted to 11-cis-retinal, resulting in opsin activation. Using the production of all-trans-retinal after light exposure as an indicator, we discovered that keratinocytes responded to light at 450 nm. Furthermore, actin alpha cardiac muscle 1 expression in keratinocytes was enhanced and cell migration was suppressed by exposure to light at these wavelengths. These results indicate that keratinocytes express various opsins and have a visual cycle that keeps opsin active. Moreover, keratinocytes were shown to respond to the blue/UV region of the light spectrum, suggesting that opsin plays a role in the light response of the skin.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Health and Nutritional Sciences, Faculty of Food and Health Sciences, Aichi Shukutoku University, Nagakute City, Aichi, 480-1197, Japan
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Momo Okada
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Yoshikazu Sawaguchi
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Toshiyuki Yamada
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| |
Collapse
|
3
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
4
|
Tonolli PN, Baptista MS. An important step towards the comprehensive sun protection: Blue-light exposure inhibits DNA repair in reconstituted human skin and a broadband sunscreen avoids this inhibition. Photochem Photobiol 2024; 100:1527-1530. [PMID: 38828502 DOI: 10.1111/php.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
The field of sun protection is quickly changing and the research article by Douki et al., published in the current issue of Photochemistry and Photobiology, reported key experimental data that will certainly help the development of better sun care products. Mutagenic photoproducts (CPDs, cyclobutane pyrimidine dimers and 6-4PPs, pyrimidine-6-4-pyrimidone photoproducts) were formed in the reconstructed human epidermis (RHE) by UVB (312 nm) irradiation, and their concentrations were detected by HPLC-MS/MS as a function of time after the UVB treatment. RHE had been previously exposed or not (control) to blue light (427 nm). Both CPDs and 6-4PPs were shown to last longer in blue-light irradiated RHE, proving the inhibition of the DNA repair by blue light exposure. This is a highly relevant information because sunscreens allow people to enjoy longer periods under the sun and consequently, to endure very high doses of blue light. The work also reported results obtained with RHEs previously treated with a sunscreen formulation containing a broadband filter that offers blue-light protection. Interestingly, authors observed that the DNA repair was not significantly inhibited in RHE previously treated with the sunscreen offering broadband protection. Readers will find a scientifically sound proof of the importance of blue-light protection in sun care products.
Collapse
Affiliation(s)
- Paulo Newton Tonolli
- Department of Microbiologia, Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquimica, Universidade de São Paulo, Instituto de Quimica, São Paulo, Brazil
| |
Collapse
|
5
|
Yip L. Anti-aging trends in Australia. J Eur Acad Dermatol Venereol 2024; 38 Suppl 4:45-52. [PMID: 38881437 DOI: 10.1111/jdv.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 06/18/2024]
Abstract
Anti-aging trends in Australia have changed considerably since the country emerged from the lockdowns associated with the SARS-Cov2 pandemic. People now rely on social media influencers for skin care advice and skin care products, including professional skin care treatments that can be purchased on Internet platforms. The quest for the perfect 'zoom face' led to a 300% rise in cosmetic procedures across Australia in the year to April 2021. People now want to use less products on their skin, while looking healthy and natural (termed 'skin minimalism'). The popularity of retinoid derivatives for preventing wrinkles has been superseded by non-irritating actives like hyaluronic acid (HA) and niacinamide that provide skin barrier protection, skin hydration, plumping and anti-inflammatory effects. Botulinum toxin injections remain the most popular non-surgical cosmetic procedure, followed by HA fillers, and biostimulators that promote the synthesis of collagen and give longer lasting but more gradual results than HA fillers. Laser resurfacing is widely used for epidermal resurfacing and skin tightening, as well as non-ablative lasers, intense pulsed light and radiofrequency or ultrasound skin tightening devices. Superficial chemical peels are still popular because they are relatively gentle, inexpensive, and require no downtime, whereas medium-to-deep chemical peels have largely been superseded by laser technology. However, the most efficient approach to prevent skin aging is adopting a healthy lifestyle and taking action against all factors of the skin aging exposome.
Collapse
Affiliation(s)
- Leona Yip
- Skin Partners, West End, Queensland, Australia
| |
Collapse
|
6
|
Yaya-Candela AP, Ravagnani FG, Dietrich N, Sousa R, Baptista MS. Specific photodamage on HT-29 cancer cells leads to endolysosomal failure and autophagy blockage by cathepsin depletion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112919. [PMID: 38677261 DOI: 10.1016/j.jphotobiol.2024.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.
Collapse
Affiliation(s)
| | | | - Natasha Dietrich
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rafaela Sousa
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
7
|
Yu L, Liu Z, Xu W, Jin K, Liu J, Zhu X, Zhang Y, Wu Y. Towards overcoming obstacles of type II photodynamic therapy: Endogenous production of light, photosensitizer, and oxygen. Acta Pharm Sin B 2024; 14:1111-1131. [PMID: 38486983 PMCID: PMC10935104 DOI: 10.1016/j.apsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 03/17/2024] Open
Abstract
Conventional photodynamic therapy (PDT) approaches face challenges including limited light penetration, low uptake of photosensitizers by tumors, and lack of oxygen in tumor microenvironments. One promising solution is to internally generate light, photosensitizers, and oxygen. This can be accomplished through endogenous production, such as using bioluminescence as an endogenous light source, synthesizing genetically encodable photosensitizers in situ, and modifying cells genetically to express catalase enzymes. Furthermore, these strategies have been reinforced by the recent rapid advancements in synthetic biology. In this review, we summarize and discuss the approaches to overcome PDT obstacles by means of endogenous production of excitation light, photosensitizers, and oxygen. We envision that as synthetic biology advances, genetically engineered cells could act as precise and targeted "living factories" to produce PDT components, leading to enhanced performance of PDT.
Collapse
Affiliation(s)
- Lin Yu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Zhen Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Wei Xu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| |
Collapse
|
8
|
Bender M, Chen IP, Henning S, Degenhardt S, Mhamdi-Ghodbani M, Starzonek C, Volkmer B, Greinert R. Knockdown of Simulated-Solar-Radiation-Sensitive miR-205-5p Does Not Induce Progression of Cutaneous Squamous Cell Carcinoma In Vitro. Int J Mol Sci 2023; 24:16428. [PMID: 38003618 PMCID: PMC10671527 DOI: 10.3390/ijms242216428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Solar radiation is the main risk factor for cSCC development, yet it is unclear whether the progression of cSCC is promoted by solar radiation in the same way as initial tumorigenesis. Additionally, the role of miRNAs, which exert crucial functions in various tumors, needs to be further elucidated in the context of cSCC progression and connection to solar radiation. Thus, we chronically irradiated five cSCC cell lines (Met-1, Met-4, SCC-12, SCC-13, SCL-II) with a custom-built irradiation device mimicking the solar spectrum (UVB, UVA, visible light (VIS), and near-infrared (IRA)). Subsequently, miRNA expression of 51 cancer-associated miRNAs was scrutinized using a flow cytometric multiplex quantification assay (FirePlex®, Abcam). In total, nine miRNAs were differentially expressed in cell-type-specific as well as universal manners. miR-205-5p was the only miRNA downregulated after SSR-irradiation in agreement with previously gathered data in tissue samples. However, inhibition of miR-205-5p with an antagomir did not affect cell cycle, cell growth, apoptosis, or migration in vitro despite transient upregulation of oncogenic target genes after miR-205-5p knockdown. These results render miR-205-5p an unlikely intracellular effector in cSCC progression. Thus, effects on intercellular communication in cSCC or the simultaneous examination of complementary miRNA sets should be investigated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rüdiger Greinert
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Kliniken Stade-Buxtehude, 21614 Buxtehude, Germany; (M.B.); (I.-P.C.); (S.H.); (M.M.-G.); (C.S.); (B.V.)
| |
Collapse
|
9
|
Le Digabel J, Filiol J, Lauze C, Redoulès D, Josse G. In vivo method for evaluating sunscreen protection against high-energy visible light. J Eur Acad Dermatol Venereol 2023; 37 Suppl 6:6-11. [PMID: 37671998 DOI: 10.1111/jdv.19243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Overexposure to sunlight can have many harmful biological effects on the skin, leading to skin cancer and photoaging. As ultraviolet (UV) radiation has been identified as a cause of DNA damage and oxidative stress in the skin, the photoprotection provided by sunscreens is evaluated through their ability to filter UV light, using the sun protection factor (SPF). However, recent data have shown that high-energy visible (HEV) light can also cause biological skin damage. OBJECTIVES To develop a new in vivo method for evaluating the protection provided by sunscreens across a broad range of wavelengths, including the HEV band, based on multispectral image analysis. METHODS This study evaluated the absorption properties of six commercially available sunscreens (five SPF 50+ products containing organic UV filters, and one product containing the wide spectrum filter, phenylene bis-diphenyltriazine [TriAsorB™]) and of a control product containing no filter. Multispectral images were acquired from the skin on the forearms of healthy volunteers, before and after application of the test products. Images taken with LEDs emitting light at wavelengths ranging from UV to infrared were used to generate light reflectance maps for each product. The levels of absorbance of light in the UV and visible bands were then calculated. RESULTS The product containing the wide spectrum filter exhibited significantly higher absorbance over the HEV band (380-450 nm) than the control product and the other commercial sunscreens. All the sunscreens tested showed the same level of absorbance at 365 nm (UVA). CONCLUSIONS Multispectral imaging provides a simple and reliable in vivo method for assessing the real-world protection provided by sunscreens against all forms of photo-induced skin damage, including that induced by HEV radiation.
Collapse
Affiliation(s)
- J Le Digabel
- R&D, Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| | - J Filiol
- R&D, Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| | - C Lauze
- R&D, Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| | - D Redoulès
- Laboratoires Dermatologiques Avène, Lavaur, France
| | - G Josse
- R&D, Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| |
Collapse
|
10
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
de Faria Lopes L, Jandova J, Justiniano R, Perer J, Baptista MS, Wondrak GT. The Glycolysis-derived α-Dicarbonyl Metabolite Methylglyoxal is a UVA-photosensitizer Causing the Photooxidative Elimination of HaCaT Keratinocytes with Induction of Oxidative and Proteotoxic Stress Response Gene Expression †. Photochem Photobiol 2023; 99:826-834. [PMID: 36109156 PMCID: PMC10321145 DOI: 10.1111/php.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/28/2022] [Indexed: 12/01/2022]
Abstract
Cellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue. Here, we undertook a photophysical and photochemical characterization of MG substantiating its fluorescence properties (Stokes shift), phosphorescence lifetime, and quantum yield of singlet oxygen (1 O2 ) formation. Strikingly, upon UV-excitation (290 nm), a clear emission (around 490 nm) was observed (phosphorescence-lifetime: 224.2 milliseconds). At micromolar concentrations, MG acts as a UVA-photosensitizer targeting human HaCaT-keratinocytes inducing photooxidative stress and caspase-dependent cell death substantiated by zVADfmk-rescue and Alexa-488 caspase-3 flow cytometry. Transcriptomic analysis indicated that MG (photoexcited by noncytotoxic doses of UVA) elicits expression changes not observable upon isolated MG- or UVA-treatment, with upregulation of the proteotoxic (CRYAB, HSPA6) and oxidative (HMOX1) stress response. Given the metabolic origin of MG and its role in human pathology, future investigations should address the potential involvement of MG-photosensitizer activity in human skin photodamage.
Collapse
Affiliation(s)
- Lohanna de Faria Lopes
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jana Jandova
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Rebecca Justiniano
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Jessica Perer
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Maurício S. Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
12
|
Tonolli PN, Vera Palomino CM, Junqueira HC, Baptista MS. The phototoxicity action spectra of visible light in HaCaT keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2023; 243:112703. [PMID: 37023538 DOI: 10.1016/j.jphotobiol.2023.112703] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Visible light (VL) surely affects human skin in several ways, exerting positive (tissue regeneration, pain relief) and negative (oxidation, inflammation) effects, depending on the radiation dose and wavelength. Nevertheless, VL continues to be largely disregarded in photoprotection strategies, perhaps because the molecular mechanisms occurring during the interaction of VL with endogenous photosensitizers (ePS) and the subsequent biological responses are still poorly understood. Besides, VL encompass photons with different properties and interaction capacities with the ePS, but there are no quantitative comparisons of their effects on humans. Here, we studied the effects of physiologically relevant doses of four wavelengths ranges of VL, i.e. (in nm), 408-violet, 466/478-blue, 522-green, 650-red, in immortalized human skin keratinocytes (HaCaT). The level of cytotoxicity/damage follows the order: violet>blue >green>red. Violet and blue light induced the highest levels of Fpg-sensitive lesions in nuclear DNA, oxidative stress, lysosomal and mitochondrial damage, disruption of the lysosomal-mitochondrial axis of cell homeostasis, blockade of the autophagic flux, as well as lipofuscin accumulation, greatly increasing the toxicity of wideband VL to human skin. We hope this work will stimulate in development of optimized sun protection strategies.
Collapse
|
13
|
Chiarelli-Neto O, Garcez ML, Pavani C, Martins W, de Abreu Quintela Castro FC, Ambrosio RP, Meotti FC, Baptista MS. Inflammatory stimulus worsens the effects of UV-A exposure on J774 cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112647. [PMID: 36634432 DOI: 10.1016/j.jphotobiol.2023.112647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/18/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
UV-A radiation affects skin homeostasis by promoting oxidative distress. Endogenous photosensitizers in the dermis and epidermis of human skin absorb UV-A radiation forming excited states (singlet and triplet) and reactive oxygen species (ROS) producing oxidized compounds that trigger biological responses. The activation of NF-kB induces the expression of pro-inflammatory cytokines and can intensify the generation of ROS. However, there is no studies evaluating the cross talks between inflammatory stimulus and UV-A exposure on the levels of redox misbalance and inflammation. In here, we evaluated the effects of UV-A exposure on J774 macrophage cells previously challenged with LPS in terms of oxidative distress, release of pro-inflammatory cytokines, and activation of regulated cell death pathways. Our results showed that LPS potentiates the dose-dependent UV-A-induced oxidative distress and cytokine release, in addition to amplifying the regulated (autophagy and apoptosis) and non-regulated (necrosis) mechanisms of cell death, indicating that a previous inflammatory stimulus potentiates UV-A-induced cell damage. We discuss these results in terms of the current-available skin care strategies.
Collapse
Affiliation(s)
- Orlando Chiarelli-Neto
- Departamento de Bioquimica, Instituto de Química IQUSP, Universidade de São Paulo, Brazil; Centro Universitário do Espírito Santo-UNESC, Brazil
| | | | - Christiane Pavani
- Biophotonics Applied to Health Sciences, Uninove, São Paulo, SP, Brazil
| | - Waleska Martins
- Universidade Anhanguera de São Paulo, Stricto-sensu, Kroton, Brazil
| | | | | | - Flavia Carla Meotti
- Departamento de Bioquimica, Instituto de Química IQUSP, Universidade de São Paulo, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquimica, Instituto de Química IQUSP, Universidade de São Paulo, Brazil.
| |
Collapse
|
14
|
Plitta-Michalak B, Stricker N, Pavez Loriè E, Chen I, Pollet M, Krutmann J, Volkmer B, Greinert R, Boukamp P, Rapp A. Development and characterisation of an irradiation device for biomedical studies covering the solar spectrum with individual regulated spectral bands. Photochem Photobiol Sci 2022; 21:1701-1717. [PMID: 35749054 DOI: 10.1007/s43630-022-00252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
To understand the importance of terrestrial solar exposure on human skin, not only individual spectral components need to be considered in biomedical studies, but also the relevance of the combined action profile of the complete solar spectrum (cSS) must be established. We therefore developed a novel irradiation device that combines the emission of four individual lamps (UVB, UVA, VIS and nIR) to achieve exposure from 280 to 1400 nm with individual controllable lamps. The integrated irradiance of each spectral band is similar to the solar spectrum. The lamps can be utilised individually or in any desired combination. Here we present the design, realisation, and validation of this irradiation device as well as biological results on cellular metabolism (MTT assay), cell cycle alterations, and clonogenic growth in HaCaT cells after exposures to the individual spectral bands as well as their simultaneous combinations. Thereby, we demonstrate that UVB combined with UVA is the main determinant for the metabolic activity within cSS. Also, UVB-dependent effects dominate cell cycle regulation in cSS, whilst UVA and nIR have little influence. Lastly, also clonogenic growth is dominated by the UVB action profile in cSS, despite nIR showing modulatory activity when applied in combination with UVB. Together, this highlights the regulatory influence of the different spectral bands on the three biological endpoints and demonstrates their modulation when being part of the complete solar spectrum.
Collapse
Affiliation(s)
- B Plitta-Michalak
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany.,Department of Chemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - N Stricker
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - E Pavez Loriè
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Ludwig Boltzmann Institute for Traumatology, the Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200, Vienna, Austria
| | - I Chen
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, 21614, Buxtehude, Germany
| | - M Pollet
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - J Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - B Volkmer
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, 21614, Buxtehude, Germany
| | - R Greinert
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, 21614, Buxtehude, Germany
| | - P Boukamp
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - A Rapp
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany.
| |
Collapse
|
15
|
Tasso TT, Baptista MS. Photosensitized Oxidation of Intracellular Targets: Understanding the Mechanisms to Improve the Efficiency of Photodynamic Therapy. Methods Mol Biol 2022; 2451:261-283. [PMID: 35505023 DOI: 10.1007/978-1-0716-2099-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of improved photosensitizers is a key aspect in the establishment of photodynamic therapy (PDT) as a reliable treatment modality. In this chapter, we discuss how molecular design can lead to photosensitizers with higher selectivity and better efficiency, with focus on the importance of specific intracellular targeting in determining the cell death mechanism and, consequently, the PDT outcome.
Collapse
Affiliation(s)
- Thiago Teixeira Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Maurício S Baptista
- Biochemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Schalka S, Silva MS, Lopes LF, de Freitas LM, Baptista MS. The skin redoxome. J Eur Acad Dermatol Venereol 2021; 36:181-195. [PMID: 34719068 DOI: 10.1111/jdv.17780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Redoxome is the network of redox reactions and redox active species (ReAS) that affect the homeostasis of cells and tissues. Due to the intense and constant interaction with external agents, the human skin has a robust redox signalling framework with specific pathways and magnitudes. The establishment of the skin redoxome concept is key to expanding knowledge of skin disorders and establishing better strategies for their prevention and treatment. This review starts with its definition and progress to propose how the master redox regulators are maintained and activated in the different conditions experienced by the skin and how the lack of redox regulation is involved in the accumulation of several oxidation end products that are correlated with various skin disorders.
Collapse
Affiliation(s)
- S Schalka
- Medcin Skin Research Center, Osasco, Brazil
| | - M S Silva
- Medcin Skin Research Center, Osasco, Brazil
| | - L F Lopes
- Institute of Chemistry, Department of Biochemistry, Universidade de São Paulo, São Paulo, Brazil
| | - L M de Freitas
- Institute of Chemistry, Department of Biochemistry, Universidade de São Paulo, São Paulo, Brazil
| | - M S Baptista
- Institute of Chemistry, Department of Biochemistry, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Douki T, Buhot A. Synergistic or Antagonist Effects of Different UV Ranges Analyzed by the Combination Index: Application to DNA Photoproducts †. Photochem Photobiol 2021; 98:649-661. [PMID: 34555202 DOI: 10.1111/php.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022]
Abstract
Photobiological effects are known to greatly depend on the wavelength of the incident photons that define the nature of the activated chromophores. A growing number of experimental data show that considering the effect of complex light sources as a sum of the effects of monochromatic exposures can be misleading. Indeed, the combined exposure to several wavelength ranges may modulate photobiological responses or even induce novel processes. These observations are similar to a well-known topic in chemical toxicology: the nonadditivity of effects in mixtures where either antagonism or synergy are often observed. In the present work, we investigated whether a data analysis tool first developed for studying nonadditivity in mixtures of drugs, the combination index, could be applied to photobiological processes. We chose to work on the formation of UV-induced DNA photoproducts where additive, antagonist, and synergistic effects take place simultaneously. In addition to this application, we worked on the mathematical bases of the concept in order to broaden its applicability to phenomena exhibiting various dose-response patterns. We also addressed the question of the evaluation of the error on the determination of the combination index.
Collapse
Affiliation(s)
- Thierry Douki
- Univ. of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble Cedex 9, France
| | - Arnaud Buhot
- Univ. of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble Cedex 9, France
| |
Collapse
|
18
|
Melanin, lipofuscin and the effects of visible light in the skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
19
|
How does the skin sense sun light? An integrative view of light sensing molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Douki T. Wavelengths and temporal effects on the response of mammalian cells to UV radiation: Limitations of action spectra illustrated by genotoxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112169. [PMID: 33713895 DOI: 10.1016/j.jphotobiol.2021.112169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/17/2023]
Abstract
All photobiological events depend on the wavelength of the incident radiation. In real-life situations and in the vast majority of laboratory experiments, exposure always involves sources with various emission spectra spreading over a wide wavelength range. Action spectra are often used to describe the efficiency of a process at different wavelengths and to predict the effects of a given light source by summation of the individual effects at each wavelength. However, a full understanding of the biological effects of complex sources requires more than considering these concomitant events at each specific wavelength. Indeed, photons of different energies may not have additive but synergistic or inhibitory effects on photochemical processes and cellular responses. The evolution of a photobiological response with post-irradiation time must also be considered. These two aspects may represent some limitations to the use of action spectra. The present review, focused on mammalian cells, illustrates the concept of action spectrum and discusses its drawbacks using theoretical considerations and examples taken from the literature. Emphasis is placed on genotoxicity for which wavelength effects have been extensively studied. Other effects of UV exposure are also mentioned.
Collapse
Affiliation(s)
- Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France.
| |
Collapse
|
21
|
Tonolli PN, Martins WK, Junqueira HC, Silva MN, Severino D, Santacruz-Perez C, Watanabe I, Baptista MS. Lipofuscin in keratinocytes: Production, properties, and consequences of the photosensitization with visible light. Free Radic Biol Med 2020; 160:277-292. [PMID: 32810634 DOI: 10.1016/j.freeradbiomed.2020.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/03/2020] [Accepted: 08/01/2020] [Indexed: 12/15/2022]
Abstract
A dysfunction in the mitochondrial-lysosomal axis of cellular homeostasis is proposed to cause cells to age quicker and to accumulate lipofuscin. Typical protocols to mediate lipofuscinogenesis are based on the induction of the senescent phenotype either by allowing many consecutive cycles of cell division or by treating cells with physical/chemical agents such as ultraviolet (UV) light or hydrogen peroxide. Due to a direct connection with the physiopathology of age-related macular degeneration, lipofuscin that accumulates in retinal pigment epithelium (RPE) cells have been extensively studied, and the photochemical properties of RPE lipofuscin are considered as standard for this pigment. Yet, many other tissues such as the brain and the skin may prompt lipofuscinogenesis, and the properties of lipofuscin granules accumulated in these tissues are not necessarily the same as those of RPE lipofuscin. Here, we present a light-induced protocol that accelerates cell aging as judged by the maximization of lipofuscinogenesis. Photosensitization of cells previously incubated with nanomolar concentrations of 1,9-dimethyl methylene blue (DMMB), severely and specifically damages mitochondria and lysosomes, leading to a lipofuscin-related senescent phenotype. By applying this protocol in human immortalized non-malignant keratinocytes (HaCaT) cells, we observed a 2.5-fold higher level of lipofuscin accumulation compared to the level of lipofuscin accumulation in cells treated with a typical UV protocol. Lipofuscin accumulated in keratinocytes exhibited the typical red light emission, with excitation maximum in the blue wavelength region (~450 nm). Fluorescence lifetime image microscopy data showed that the keratinocyte lipofuscin has an emission lifetime of ~1.7 ns. Lipofuscin-loaded cells (but not control cells) generated a substantial amount of singlet oxygen (1O2) when irradiated with blue light (420 nm), but there was no 1O2 generation when excitation was performed with a green light (532 nm). These characteristics were compared with those of RPE cells, considering that keratinocyte lipofuscin lacks the bisretinoids derivatives present in RPE lipofuscin. Additionally, we showed that lipofuscin-loaded keratinocytes irradiated with visible light presented critical DNA damages, such as double-strand breaks and Fpg-sensitive sites. We propose that the DMMB protocol is an efficient way to disturb the mitochondrial-lysosomal axis of cellular homeostasis, and consequently, it can be used to accelerate aging and to induce lipofuscinogenesis. We also discuss the consequences of the lipofuscin-induced genotoxicity of visible light in keratinocytes.
Collapse
Affiliation(s)
- Paulo N Tonolli
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Waleska K Martins
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil; Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, SP, Brazil
| | - Helena C Junqueira
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Maryana N Silva
- Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, SP, Brazil
| | - Divinomar Severino
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Carolina Santacruz-Perez
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - I Watanabe
- Universidade de São Paulo, Instituto de Ciências Biométicas, São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Universidade de São Paulo, Instituto de Quimica, Departamento de Bioquímica, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
23
|
de Assis LVM, Mendes D, Silva MM, Kinker GS, Pereira-Lima I, Moraes MN, Menck CFM, Castrucci AMDL. Melanopsin mediates UVA-dependent modulation of proliferation, pigmentation, apoptosis, and molecular clock in normal and malignant melanocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118789. [PMID: 32645331 DOI: 10.1016/j.bbamcr.2020.118789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
Cutaneous melanocytes and melanoma cells express several opsins, of which melanopsin (OPN4) detects temperature and UVA radiation. To evaluate the interaction between OPN4 and UVA radiation, normal and malignant Opn4WT and Opn4KO melanocytes were exposed to three daily low doses (total 13.2 kJ/m2) of UVA radiation. UVA radiation led to a reduction of proliferation in both Opn4WT cell lines; however, only in melanoma cells this effect was associated with increased cell death by apoptosis. Daily UVA stimuli induced persistent pigment darkening (PPD) in both Opn4WT cell lines. Upon Opn4 knockout, all UVA-induced effects were lost in three independent clones of Opn4KO melanocytes and melanoma cells. Per1 bioluminescence was reduced after 1st and 2nd UVA radiations in Opn4WT cells. In Opn4KO melanocytes and melanoma cells, an acute increase of Per1 expression was seen immediately after each stimulus. We also found that OPN4 expression is downregulated in human melanoma compared to normal skin, and it decreases with disease progression. Interestingly, metastatic melanomas with low expression of OPN4 present increased expression of BMAL1 and longer overall survival. Collectively, our findings reinforce the functionality of the photosensitive system of melanocytes that may subsidize advancements in the understanding of skin related diseases, including cancer.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Davi Mendes
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Matheus Molina Silva
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Neuroimmunoendocrinology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Isabella Pereira-Lima
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- DNA Repair Lab, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
24
|
Justiniano R, de Faria Lopes L, Perer J, Hua A, Park SL, Jandova J, Baptista MS, Wondrak GT. The Endogenous Tryptophan-derived Photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) is a Nanomolar Photosensitizer that Can be Harnessed for the Photodynamic Elimination of Skin Cancer Cells in Vitro and in Vivo. Photochem Photobiol 2020; 97:180-191. [PMID: 32767762 DOI: 10.1111/php.13321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023]
Abstract
UV-chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan-derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol-1 cm-1 ), and fluorescence and singlet oxygen quantum yields of 0.15 and 0.5, respectively, in methanol. In a panel of cultured human squamous cell carcinoma and melanoma skin cancer cells (SCC-25, HaCaT-ras II-4, A375, G361, LOX), photodynamic induction of cell death was elicited by the combined action of solar simulated UVA (6.6 J cm-2 ) and FICZ (≥10 nm), preceded by the induction of oxidative stress as substantiated by MitoSOX Red fluorescence microscopy, comet detection of Fpg-sensitive oxidative genomic lesions and upregulated stress response gene expression (HMOX1, HSPA1A, HSPA6). In SKH1 "high-risk" mouse skin, an experimental FICZ/UVA photodynamic treatment regimen blocked the progression of UV-induced tumorigenesis suggesting feasibility of harnessing FICZ for the photooxidative elimination of malignant cells in vivo.
Collapse
Affiliation(s)
- Rebecca Justiniano
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Lohanna de Faria Lopes
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jessica Perer
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Maurício S Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Tsubone TM, Baptista MS, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophys Chem 2019; 254:106263. [DOI: 10.1016/j.bpc.2019.106263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
26
|
Bapary MAJ, Takano J, Soma S, Sankai T. Effect of blue light‐emitting diode light and antioxidant potential in a somatic cell. Cell Biol Int 2019; 43:1296-1306. [DOI: 10.1002/cbin.11131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/16/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Mohammad A. J. Bapary
- Tsukuba Primate Research CenterNational Institutes of Biomedical Innovation, Health and Nutrition 305‐0843 Ibaraki Japan
- Department of Fisheries Technology and Quality ControlFaculty of Fisheries, Sylhet Agricultural University 3100 Sylhet Bangladesh
| | - Jun‐ichiro Takano
- Tsukuba Primate Research CenterNational Institutes of Biomedical Innovation, Health and Nutrition 305‐0843 Ibaraki Japan
| | - Shogo Soma
- Tsukuba Primate Research CenterNational Institutes of Biomedical Innovation, Health and Nutrition 305‐0843 Ibaraki Japan
| | - Tadashi Sankai
- Tsukuba Primate Research CenterNational Institutes of Biomedical Innovation, Health and Nutrition 305‐0843 Ibaraki Japan
| |
Collapse
|
27
|
Delinasios GJ, Karbaschi M, Cooke MS, Young AR. Vitamin E inhibits the UVAI induction of "light" and "dark" cyclobutane pyrimidine dimers, and oxidatively generated DNA damage, in keratinocytes. Sci Rep 2018; 8:423. [PMID: 29323251 PMCID: PMC5764969 DOI: 10.1038/s41598-017-18924-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023] Open
Abstract
Solar ultraviolet radiation (UVR)-induced DNA damage has acute, and long-term adverse effects in the skin. This damage arises directly by absorption of UVR, and indirectly via photosensitization reactions. The aim of the present study was to assess the effects of vitamin E on UVAI-induced DNA damage in keratinocytes in vitro. Incubation with vitamin E before UVAI exposure decreased the formation of oxidized purines (with a decrease in intracellular oxidizing species), and cyclobutane pyrimidine dimers (CPD). A possible sunscreening effect was excluded when similar results were obtained following vitamin E addition after UVAI exposure. Our data showed that DNA damage by UVA-induced photosensitization reactions can be inhibited by the introduction of vitamin E either pre- or post-irradiation, for both oxidized purines and CPD (including so-called "dark" CPDs). These data validate the evidence that some CPD are induced by UVAI initially via photosensitization, and some via chemoexcitation, and support the evidence that vitamin E can intervene in this pathway to prevent CPD formation in keratinocytes. We propose the inclusion of similar agents into topical sunscreens and aftersun preparations which, for the latter in particular, represents a means to mitigate on-going DNA damage formation, even after sun exposure has ended.
Collapse
Affiliation(s)
- George J Delinasios
- King's College London, St John's Institute of Dermatology, 9th Floor, Tower Wing, Guy's Hospital; Great Maze Pond, London, SE1 9RT, UK
- International Institute of Anticancer Research, Kapandriti, 19014, Greece
| | - Mahsa Karbaschi
- Oxidative Stress Group, Department of Cancer Studies, University Hospitals of Leicester NHS Trust, Leicester, UK
- Oxidative Stress Group, Department of Environmental Health Sciences; and Biomolecular Sciences Institute, Florida International University, University Park, 11200 SW 8th Street, Miami, Fl, 33199, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cancer Studies, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Department of Genetics, University of Leicester, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Oxidative Stress Group, Department of Environmental Health Sciences; and Biomolecular Sciences Institute, Florida International University, University Park, 11200 SW 8th Street, Miami, Fl, 33199, USA.
| | - Antony R Young
- King's College London, St John's Institute of Dermatology, 9th Floor, Tower Wing, Guy's Hospital; Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|