1
|
Tian Y, Liu S, Shi H, Li J, Wan X, Sun Y, Li H, Cao N, Feng Z, Zhang T, Wang J, Shen W. Revealing the Transcriptional and Metabolic Characteristics of Sebocytes Based on the Donkey Cell Transcriptome Atlas. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413819. [PMID: 40013957 PMCID: PMC12021041 DOI: 10.1002/advs.202413819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/15/2025] [Indexed: 02/28/2025]
Abstract
Worldwide, donkeys (Equus asinus) are valued for their meat and milk, and in China also for the medical value of their skin. Physiological characteristics are key to the donkey's adaptability, including their digestive, respiratory, and reproductive systems, which enable them to survive and work in a variety of environments. However, the understanding of donkey physiological characteristics at the cellular level remains poor. Thus, single-cell transcriptome sequencing is used to construct a detailed transcriptional atlas based on 20 tissues from the Dezhou donkey (in total 84 cell types and 275 050 high quality cells) to perform an in-depth investigation of molecular physiology. Cross-species and cross-tissue comparative analyses reveal SOX10 to be an evolutionally conserved regulon in oligodendrocytes and illuminate the distinctive transcriptional patterns of donkey sebocytes. Moreover, through multispecies skin metabolomics, highly abundant, species-specific metabolites in donkey skin are identified, such as arachidonic acid and gamma-glutamylcysteine, and the pivotal role of sebocytes in donkey skin metabolism is highlighted. In summary, this work offers new insights into the unique metabolic patterns of donkey skin and provides a valuable resource for the conservation of donkey germplasm and the advancement of selective breeding programs.
Collapse
Affiliation(s)
- Yu Tian
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL)College of Life SciencesInner Mongolia UniversityHohhot010070China
| | - Shuqin Liu
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
| | - Hongtao Shi
- School of Science and Information ScienceQingdao Agricultural UniversityQingdao266109China
| | - Jianjun Li
- National Dezhou Donkey Original Breeding FarmBinzhou251903China
| | - Xinglong Wan
- School of Science and Information ScienceQingdao Agricultural UniversityQingdao266109China
| | - Yujiang Sun
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
| | - Huayun Li
- Annoroad Gene TechnologyBeijing100176China
| | - Ning Cao
- Annoroad Gene TechnologyBeijing100176China
| | - Zhixi Feng
- Annoroad Gene TechnologyBeijing100176China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL)College of Life SciencesInner Mongolia UniversityHohhot010070China
| | - Junjie Wang
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
| | - Wei Shen
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
| |
Collapse
|
2
|
Zhao W, Li Z, Ma S, Chen W, Wan Z, Zhu L, Li L, Wang D. Identification of pro-fibrotic cellular subpopulations in fascia of gluteal muscle contracture using single-cell RNA sequencing. J Transl Med 2025; 23:192. [PMID: 39962491 PMCID: PMC11834283 DOI: 10.1186/s12967-024-05889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/15/2024] [Indexed: 02/20/2025] Open
Abstract
Fibrosis is a common and integral pathological feature in various chronic diseases, capable of affecting any tissue or organ. Fibrosis within deep fascia is implicated in many myofascial disorders, including gluteal muscle contracture (GMC), Dupuytren's disease, plantar fasciitis, iliotibial band syndrome, and chronic muscle pain. Despite its clinical significance, deep fascia fibrosis remains considerably under-researched compared to other fibrotic conditions. Single-cell RNA-sequencing (scRNA-seq) has been used to investigate cellular heterogeneity in fibrotic tissues. However, to our knowledge, only a few studies have applied scRNA-seq to explore cellular heterogeneity in deep fascia, and none have specifically examined fibrotic fascia. In this study, we performed scRNA-seq analysis on fibrotic fascia associated with GMC and compared them to nonfibrotic control fascial samples. Our findings show that fibroblast and macrophage cells play critical roles in pathological tissue remodeling within fibrotic deep fascia. We observed an upregulation of various collagens, proteoglycans, and extracellular matrix (ECM) glycoproteins in contracture deep fascia, attributed to the widespread activation of fibroblast subclusters. Additionally, two pro-fibrotic macrophage subpopulations, SPP1+ MP and ECM-like MP, appear to facilitate ECM deposition in fibrotic deep fascia by either regulating fibroblast activation or directly contributing to ECM production. The SPP1+ MP and ECM-like MP cells, as well as the signal interaction between SPP1+ MP and fibroblast cells, present potential therapeutic target for treating GMC and other related myofascial disorders.
Collapse
Affiliation(s)
- Weizhi Zhao
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Zongchao Li
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Suzhen Ma
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Wen Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Zhengqing Wan
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Lin Zhu
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China
- Institute for Future Sciences, University of South China, Changsha, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China
| | - Liangjun Li
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| | - Danling Wang
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421200, China.
- Institute for Future Sciences, University of South China, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, University of South China, Changsha, Hunan, China.
| |
Collapse
|
3
|
Alías-Segura S, Pazos F, Chagoyen M. Differential expression and co-expression reveal cell types relevant to genetic disorder phenotypes. Bioinformatics 2024; 40:btae646. [PMID: 39468724 PMCID: PMC11549017 DOI: 10.1093/bioinformatics/btae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024] Open
Abstract
MOTIVATION Knowledge of the specific cell types affected by genetic alterations in rare diseases is crucial for advancing diagnostics and treatments. Despite significant progress, the cell types involved in the majority of rare disease manifestations remain largely unknown. In this study, we integrated scRNA-seq data from non-diseased samples with known genetic disorder genes and phenotypic information to predict the specific cell types disrupted by pathogenic mutations for 482 disease phenotypes. RESULTS We found significant phenotype-cell type associations focusing on differential expression and co-expression mechanisms. Our analysis revealed that 13% of the associations documented in the literature were captured through differential expression, while 42% were elucidated through co-expression analysis, also uncovering potential new associations. These findings underscore the critical role of cellular context in disease manifestation and highlight the potential of single-cell data for the development of cell-aware diagnostics and targeted therapies for rare diseases. AVAILABILITY AND IMPLEMENTATION All code generated in this work is available at https://github.com/SergioAlias/sc-coex.
Collapse
Affiliation(s)
- Sergio Alías-Segura
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
- Department of Molecular Biology and Biochemistry, Science Faculty, University of Málaga, Málaga, 29071, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Monica Chagoyen
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
4
|
Cates WT, Denbeigh JM, Salvagno RT, Kakar S, van Wijnen AJ, Eaton C. Inflammatory Markers Involved in the Pathogenesis of Dupuytren's Contracture. Crit Rev Eukaryot Gene Expr 2024; 34:1-35. [PMID: 38912961 DOI: 10.1615/critreveukaryotgeneexpr.2024052889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dupuytren's disease is a common fibroproliferative disease that can result in debilitating hand deformities. Partial correction and return of deformity are common with surgical or clinical treatments at present. While current treatments are limited to local procedures for relatively late effects of the disease, the pathophysiology of this connective tissue disorder is associated with both local and systemic processes (e.g., fibrosis, inflammation). Hence, a better understanding of the systemic circulation of Dupuytren related cytokines and growth factors may provide important insights into disease progression. In addition, systemic biomarker analysis could yield new concepts for treatments of Dupuytren that attenuate circulatory factors (e.g., anti-inflammatory agents, neutralizing antibodies). Progress in the development of any disease modifying biologic treatment for Dupuytren has been hampered by the lack of clinically useful biomarkers. The characterization of nonsurgical Dupuytren biomarkers will permit disease staging from diagnostic and prognostic perspectives, as well as allows evaluation of biologic responses to treatment. Identification of such markers may transcend their use in Dupuytren treatment, because fibrotic biological processes fundamental to Dupuytren are relevant to fibrosis in many other connective tissues and organs with collagen-based tissue compartments. There is a wide range of potential Dupuytren biomarker categories that could be informative, including disease determinants linked to genetics, collagen metabolism, as well as immunity and inflammation (e.g., cytokines, chemokines). This narrative review provides a broad overview of previous studies and emphasizes the importance of inflammatory mediators as candidate circulating biomarkers for monitoring Dupuytren's disease.
Collapse
Affiliation(s)
- William T Cates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
5
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Bai X, Mei L, Shi Y, Huang H, Guo Y, Liang C, Yang M, Wu R, Zhang Y, Chen Q. The Cellular Mechanism of Acupuncture for Ulcerative Colitis based on the Communication of Telocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1190-1204. [PMID: 37749671 DOI: 10.1093/micmic/ozad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 09/27/2023]
Abstract
Acupuncture can ameliorate or treat diseases according to the meridian theory in traditional Chinese medicine (TCM); however, its mechanism has not been scientifically clarified. On the other hand, telocytes (TCs) are morphologically in accordance with the meridian system, which needs further cytological investigations and acupuncture confirmation. The present study showed that acupuncture could activate TCs in several ways, alleviating rabbit ulcerative colitis. TCs could cytologically communicate the acupoints, the acupuncture sites in skin with their corresponding large intestine by TC homo-cellular junctions, exosomes around TCs, and TC-mediated nerves or blood vessels. TCs expressed transient receptor potential vanilloid type 4, the mechanosensitive channel protein that can transduce the mechanical stimulation of acupuncture into biochemical signals transferring along the extremely thin and long TCs. Collectively, a cellular mechanism diagram of acupuncture was concluded based on TC characteristics. Those results also confirmed the viewpoint that TCs were the key cells of meridian essence in TCM.
Collapse
Affiliation(s)
- Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lu Mei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Institute, Shanghai 200241, China
| | - Haixiang Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yanna Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Chunhua Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Min Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Ruizhi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yingxin Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
7
|
Hardy M, Feehan L, Savvides G, Wong J. How controlled motion alters the biophysical properties of musculoskeletal tissue architecture. J Hand Ther 2023; 36:269-279. [PMID: 37029054 DOI: 10.1016/j.jht.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 04/09/2023]
Abstract
INTRODUCTION Movement is fundamental to the normal behaviour of the hand, not only for day-to-day activity, but also for fundamental processes like development, tissue homeostasis and repair. Controlled motion is a concept that hand therapists apply to their patients daily for functional gains, yet the scientific understanding of how this works is poorly understood. PURPOSE OF THE ARTICLE To review the biology of the tissues in the hand that respond to movement and provide a basic science understanding of how it can be manipulated to facilitate better functionThe review outlines the concept of controlled motion and actions across the scales of tissue architecture, highlighting the the role of movement forces in tissue development, homeostasis and repair. The biophysical behaviour of mechanosensitve tissues of the hand such as skin, tendon, bone and cartilage are discussed. CONCLUSION Controlled motion during early healing is a form of controlled stress and can be harnessed to generate appropriate reparative tissues. Understanding the temporal and spatial biology of tissue repair allows therapists to tailor therapies that allow optimal recovery based around progressive biophysical stimuli by movement.
Collapse
Affiliation(s)
- Maureen Hardy
- Past Director Rehab Services and Hand Management Center, St. Dominic Hospital, Jackson, MS, USA
| | - Lynne Feehan
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgia Savvides
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
8
|
Layton TB, Williams L, Nanchahal J. Dupuytren's disease: a localised and accessible human fibrotic disorder. Trends Mol Med 2023; 29:218-227. [PMID: 36566101 DOI: 10.1016/j.molmed.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
We review the biology of Dupuytren's disease (DD), a common localised fibrotic disorder of the hand. The disease develops through a complex interplay of genetic and environmental factors, and epigenetic signalling. The early-stage disease nodules comprise a complex milieu of stromal and immune cells which interact to promote disease development. Recently, inhibition of tumour necrosis factor (TNF) locally resulted in softening and a decrease in nodule size, potentially controlling disease progression. Unlike fibrotic disorders of the visceral organs, the easy access to tissue in DD patients enables dissection of the cellular landscape and molecular signalling pathways. In addition, the study of DD may have wider benefits in enhancing our understanding of less-accessible fibrotic tissues.
Collapse
Affiliation(s)
- Thomas B Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 8FE, UK
| | - Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 8FE, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 8FE, UK.
| |
Collapse
|
9
|
Proteomic Analysis of Dupuytren's Contracture-Derived Sweat Glands Revealed the Synthesis of Connective Tissue Growth Factor and Initiation of Epithelial-Mesenchymal Transition as Major Pathogenetic Events. Int J Mol Sci 2023; 24:ijms24021081. [PMID: 36674597 PMCID: PMC9866571 DOI: 10.3390/ijms24021081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Dupuytren's contracture (DC) is a chronic and progressive fibroproliferative disorder restricted to the palmar fascia of the hands. Previously, we discovered the presence of high levels of connective tissue growth factor in sweat glands in the vicinity of DC nodules and hypothesized that sweat glands have an important role in the formation of DC lesions. Here, we shed light on the role of sweat glands in the DC pathogenesis by proteomic analysis and immunofluorescence microscopy. We demonstrated that a fraction of sweat gland epithelium underwent epithelial-mesenchymal transition illustrated by negative regulation of E-cadherin. We hypothesized that the increase in connective tissue growth factor expression in DC sweat glands has both autocrine and paracrine effects in sustaining the DC formation and inducing pathological changes in DC-associated sweat glands.
Collapse
|
10
|
Lendahl U, Muhl L, Betsholtz C. Identification, discrimination and heterogeneity of fibroblasts. Nat Commun 2022; 13:3409. [PMID: 35701396 PMCID: PMC9192344 DOI: 10.1038/s41467-022-30633-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fibroblasts, the principal cell type of connective tissue, secrete extracellular matrix components during tissue development, homeostasis, repair and disease. Despite this crucial role, the identification and distinction of fibroblasts from other cell types are challenging and laden with caveats. Rapid progress in single-cell transcriptomics now yields detailed molecular portraits of fibroblasts and other cell types in our bodies, which complement and enrich classical histological and immunological descriptions, improve cell class definitions and guide further studies on the functional heterogeneity of cell subtypes and states, origins and fates in physiological and pathological processes. In this review, we summarize and discuss recent advances in the understanding of fibroblast identification and heterogeneity and how they discriminate from other cell types. In this review, the authors look at how recent progress in single-cell transcriptomics complement and enrich the classical, largely morphological, portraits of fibroblasts. The detailed molecular information now available provides new insights into fibroblast identity, heterogeneity and function.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Neurobiology, Care sciences and Society, Karolinska Institutet, SE-14183, Huddinge, Sweden
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet, Blickagången 16, SE-141 57, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet, Blickagången 16, SE-141 57, Huddinge, Sweden. .,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
11
|
A role for metformin in the treatment of Dupuytren disease? Biomed Pharmacother 2022; 150:112930. [PMID: 35427821 DOI: 10.1016/j.biopha.2022.112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022] Open
Abstract
Dupuytren disease (DD) is a hand-localized fibrotic disorder characterized by a scar-like, collagen-rich cord. Treatment usually comprises surgical removal of the cord, but is associated with a high relapse rate, in some cases requiring finger amputation. There is currently no consensual medical approach for treating DD. Numerous preclinical studies have highlighted antifibrotic properties of metformin, and the aim of this study was to assess a potential antifibrotic role of metformin in DD. Fibroblasts from DD cords (DF) and phenotypically normal palmar fascia (PF) were extracted from surgical specimens and cultured. The fibrotic status of DF and PF was compared at baseline, and under profibrotic (TGF-β stimulation) and antifibrotic (metformin stimulation) conditions, using quantitative RT-PCR, western blot, immunocytochemistry, and a functional fibroblast contraction assay. At baseline, DF showed higher levels of fibrotic markers and contraction capacity compared with PF. Both types of fibroblasts responded to TGF-β stimulation. Treatment of DF and PF with metformin did not affect basal levels of fibrotic markers and contraction but largely prevented their induction by TGF-β. In conclusion, our data show that metformin inhibits TGF-β-induced expression of fibrotic markers and contraction in hand-derived fibroblasts. This supports the case for a clinical trial to assess the repurposing of metformin as an adjuvant to surgery, to prevent, reduce, or delay recurrence in at-risk DD patients.
Collapse
|
12
|
Wong J, Murphy M, Wu YF, Murphy R, Frueh FS, Farnebo S. Basic science approaches to common hand surgery problems. J Hand Surg Eur Vol 2022; 47:117-126. [PMID: 34472390 DOI: 10.1177/17531934211042697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of hand surgery is constantly evolving to meet challenges of populations with increasing age and higher demands for active living. While our surgical care has improved over the last decades, it seems that future major improvement in outcomes of clinical treatment will come through advances in biologics and the translation of major discoveries in basic science. This article aims to provide an update on where basic science solutions may answer some of the most critical issues in hand surgery, with a focus on augmentation of tissue repair.
Collapse
Affiliation(s)
- Jason Wong
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Matthew Murphy
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Ya Fang Wu
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ralph Murphy
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Fibroblast Activation Protein Targeted Photodynamic Therapy Selectively Kills Activated Skin Fibroblasts from Systemic Sclerosis Patients and Prevents Tissue Contraction. Int J Mol Sci 2021; 22:ijms222312681. [PMID: 34884484 PMCID: PMC8657852 DOI: 10.3390/ijms222312681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare, severe, auto-immune disease characterized by inflammation, vasculopathy and fibrosis. Activated (myo)fibroblasts are crucial drivers of this fibrosis. By exploiting their expression of fibroblast activation protein (FAP) to perform targeted photodynamic therapy (tPDT), we can locoregionally deplete these pathogenic cells. In this study, we explored the use of FAP-tPDT in primary skin fibroblasts from SSc patients, both in 2D and 3D cultures. Method: The FAP targeting antibody 28H1 was conjugated with the photosensitizer IRDye700DX. Primary skin fibroblasts were obtained from lesional skin biopsies of SSc patients via spontaneous outgrowth and subsequently cultured on plastic or collagen type I. For 2D FAP-tPDT, cells were incubated in buffer with or without the antibody-photosensitizer construct, washed after 4 h and exposed to λ = 689 nm light. Cell viability was measured using CellTiter Glo®®. For 3D FAP-tPDT, cells were seeded in collagen plugs and underwent the same treatment procedure. Contraction of the plugs was followed over time to determine myofibroblast activity. Results: FAP-tPDT resulted in antibody-dose dependent cytotoxicity in primary skin fibroblasts upon light exposure. Cells not exposed to light or incubated with an irrelevant antibody-photosensitizer construct did not show this response. FAP-tPDT fully prevented contraction of collagen plugs seeded with primary SSc fibroblasts. Even incubation with a very low dose of antibody (0.4 nM) inhibited contraction in 2 out of 3 donors. Conclusions: Here we have shown, for the first time, the potential of FAP-tPDT for the treatment of fibrosis in SSc skin.
Collapse
|