1
|
Kalankariyan S, Thottapillil A, Saxena A, Srivatsn S M, Kadamkode V, Kapoor R, Mitra R, Raut J, Venkatesh KV. An in silico approach deciphering the commensal dynamics in the cutaneous milieu. NPJ Syst Biol Appl 2025; 11:42. [PMID: 40335508 PMCID: PMC12058978 DOI: 10.1038/s41540-025-00524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
The skin microbiota, particularly coagulase-negative staphylococci (CoNS) such as S. epidermidis, plays a crucial role in maintaining skin health and immunity. S. epidermidis, a predominant commensal species, interacts intimately with keratinocytes to regulate immune responses and antimicrobial defence mechanisms. Metabolic byproducts like short-chain fatty acids (SCFAs) influence keratinocyte activation, while cell wall components engage Toll-like receptors (TLRs) to modulate inflammation. These interactions are fundamental for preserving skin homeostasis and combating pathogenic invaders. Our comprehensive mathematical model, integrating commensal dynamics, immune responses, and skin microenvironment variables, provides insights into these intricate interactions. The model delves into the complexities of skin scenarios and perturbations, aiming to understand the colonization dynamics of S. epidermidis and its influence on skin barrier functions. It examines how disruptions in key factors such as AMP, growth factor-mediated repair pathways, and filaggrin mutations influence the behaviour of the system. The study depicts the skin microenvironment as a highly dynamic one, highlighting the critical role of S. epidermidis and capturing its role in barrier dysfunction caused by internal and external factors. By offering insights into skin barrier function and immune responses, the model illuminates key interactions of commensals within the skin microenvironment which can ultimately benefit skin health.
Collapse
Affiliation(s)
| | | | - Abha Saxena
- MetFlux Research Private Limited, Bengaluru, India
| | | | | | | | | | | | - K V Venkatesh
- MetFlux Research Private Limited, Bengaluru, India.
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
2
|
Luo YF, Deng Y, Yang F, Meiduosiji, Xiong X, Yuan YL, Ao SH. The role of ILC2s in asthma combined with atopic dermatitis: bridging the gap from research to clinical practice. Front Immunol 2025; 16:1567817. [PMID: 40236701 PMCID: PMC11996653 DOI: 10.3389/fimmu.2025.1567817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
Asthma, a complex and heterogeneous respiratory disease, is often accompanied by various comorbidities, notably atopic dermatitis (AD). AD characterized by recurrent eczematous lesions and severe itching, can trigger or exacerbate asthma. Individuals with AD are 2.16 times more likely to develop asthma compared to the reference population. Furthermore, asthmatics with AD experience more severe and frequent emergency department visits and hospital admissions compared to patients with asthma alone. The close connection between asthma and AD indicates there are overlap pathophysiologic mechanisms. It is well-known that dysregulated type 2 (T2) immune inflammation is pivotal in the development of both AD and asthma, traditionally attributed to CD4+ type 2 helper T (Th2) cells. Over the past decade, group 2 innate lymphoid cells (ILC2s), as potent innate immune cells, have been demonstrated to be the key drivers of T2 inflammation, playing a crucial role in the pathogenesis of both asthma and AD. ILC2s not only trigger T2 immune-inflammation but also coordinate the recruitment and activation of innate and adaptive immune cells, thereby intensifying the inflammatory response. They are rapidly activated by epithelium alarmins producing copious amounts of T2 cytokines such as interleukin (IL) -5 and IL-13 that mediate the airway inflammation, hyperresponsiveness, and cutaneous inflammation in asthma and AD, respectively. The promising efficiency of targeted ILC2s in asthma and AD has further proven their essential roles in the pathogenesis of both conditions. However, to the best of our knowledge, there is currently no review article specifically exploring the role of ILC2s in asthma combined with AD and their potential as future therapeutic targets. Hence, we hypothesize that ILC2s may play a role in the pathogenesis of asthma combined with AD, and targeting ILC2s could be a promising therapeutic approach for this complex condition in the future. In this review, we discuss recent insights in ILC2s biology, focus on the current knowledge of ILC2s in asthma, AD, particularly in asthma combined with AD, and suggest how this knowledge might be used for improved treatments of asthma combined with AD.
Collapse
Affiliation(s)
- Yan-fang Luo
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Deng
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Yang
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Meiduosiji
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Dermatology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-lai Yuan
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Su-hua Ao
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Cha J, Kim TG, Ryu JH. Conversation between skin microbiota and the host: from early life to adulthood. Exp Mol Med 2025; 57:703-713. [PMID: 40164684 PMCID: PMC12045987 DOI: 10.1038/s12276-025-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
Host life is inextricably linked to commensal microbiota, which play a crucial role in maintaining homeostasis and immune activation. A diverse array of commensal microbiota on the skin interacts with the host, influencing the skin physiology in various ways. Early-life exposure to commensal microbiota has long-lasting effects, and disruption of the epidermal barrier or transient exposure to these microorganisms can lead to skin dysbiosis and inflammation. Several commensal skin microbiota have the potential to function as either commensals or pathogens, both influencing and being influenced by the pathogenesis of skin inflammatory diseases. Here we explore the impact of various commensal skin microbiota on the host and elucidate the interactions between skin microbiota and host systems. A deeper understanding of these interactions may open new avenues for developing effective strategies to address skin diseases.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Scharschmidt TC, Segre JA. Skin microbiome and dermatologic disorders. J Clin Invest 2025; 135:e184315. [PMID: 39895627 PMCID: PMC11785926 DOI: 10.1172/jci184315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Human skin acts as a physical barrier to prevent the entry of pathogenic microbes while simultaneously providing a home for commensal bacteria and fungi. Microbiome sequencing studies have demonstrated the unappreciated diversity and selectivity of these microbes. Functional studies have demonstrated the impact of specific strains to tune the immune system, sculpt the microbial community, provide colonization resistance, and promote epidermal barrier integrity. Recent studies have integrated the microbiome, immunity, and tissue integrity to understand their interplay in common disorders such as atopic dermatitis. In this Review, we explore microbiome shifts associated with cutaneous disorders with an eye toward how the microbiome can be mined to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Tiffany C. Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Julia A. Segre
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Braun C, Badiou C, Guironnet-Paquet A, Iwata M, Lenief V, Mosnier A, Beauclair C, Renucci E, Bouschon P, Cuzin R, Briend Y, Patra V, Patot S, Scharschmidt TC, van Wamel W, Lemmens N, Nakajima S, Vandenesh F, Nicolas JF, Lina G, Nosbaum A, Vocanson M. Staphylococcus aureus-specific skin resident memory T cells protect against bacteria colonization but exacerbate atopic dermatitis-like flares in mice. J Allergy Clin Immunol 2024; 154:355-374. [PMID: 38734386 DOI: 10.1016/j.jaci.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 03/26/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The contribution of Staphylococcus aureus to the exacerbation of atopic dermatitis (AD) is widely documented, but its role as a primary trigger of AD skin symptoms remains poorly explored. OBJECTIVES This study sought to reappraise the main bacterial factors and underlying immune mechanisms by which S aureus triggers AD-like inflammation. METHODS This study capitalized on a preclinical model, in which different clinical isolates were applied in the absence of any prior experimental skin injury. RESULTS The development of S aureus-induced dermatitis depended on the nature of the S aureus strain, its viability, the concentration of the applied bacterial suspension, the production of secreted and nonsecreted factors, as well as the activation of accessory gene regulatory quorum sensing system. In addition, the rising dermatitis, which exhibited the well-documented AD cytokine signature, was significantly inhibited in inflammasome adaptor apoptosis-associated speck-like protein containing a CARD domain- and monocyte/macrophage-deficient animals, but not in T- and B-cell-deficient mice, suggesting a major role for the innate response in the induction of skin inflammation. However, bacterial exposure generated a robust adaptive immune response against S aureus, and an accumulation of S aureus-specific γδ and CD4+ tissue resident memory T cells at the site of previous dermatitis. The latter both contributed to worsen the flares of AD-like dermatitis on new bacteria exposures, but also, protected the mice from persistent bacterial colonization. CONCLUSIONS These data highlight the induction of unique AD-like inflammation, with the generation of proinflammatory but protective tissue resident memory T cells in a context of natural exposure to pathogenic S aureus strains.
Collapse
Affiliation(s)
- Camille Braun
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service de Pédiatrie, Pneumologie, Allergologie, Mucoviscidose, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Cédric Badiou
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Aurélie Guironnet-Paquet
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Etablissement Français du Sang Auvergne Rhône-Alpes, Apheresis Unit, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Masashi Iwata
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Vanina Lenief
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Amandine Mosnier
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Charlotte Beauclair
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Emilie Renucci
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Pauline Bouschon
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Roxane Cuzin
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Yoann Briend
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Vijaykumar Patra
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Sabine Patot
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Willem van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nicole Lemmens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - François Vandenesh
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service de Microbiologie Clinique, Groupement Hospitalier Nord, Hospices Civils de Lyon, Bron, France; Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Jean-François Nicolas
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service d'Allergologie et Immunologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Gérard Lina
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service de Microbiologie Clinique, Groupement Hospitalier Nord, Hospices Civils de Lyon, Bron, France; Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Audrey Nosbaum
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service d'Allergologie et Immunologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
6
|
Paller AS, Scharschmidt TC, Kezic S, Irvine AD. Preclinical Atopic Dermatitis Skin in Infants: An Emerging Research Area. J Invest Dermatol 2024; 144:1001-1009. [PMID: 38573278 DOI: 10.1016/j.jid.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
Whereas clinically apparent atopic dermatitis (AD) can be confirmed by validated diagnostic criteria, the preclinical phenotype of infants who eventually develop AD is less well-characterized. Analogous to unaffected or nonlesional skin in established AD, clinically normal-appearing skin in infants who will develop clinical AD has distinct changes. Prospective studies have revealed insights into this preclinical AD phenotype. In this study, we review the structural, immunologic, and microbiome nature of the preclinical AD phenotype. Determination of markers that predict the development of AD will facilitate targeting of interventions to prevent the development or reduce the severity of AD in infants.
Collapse
Affiliation(s)
- Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Sanja Kezic
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Saheb Kashaf S, Kong HH. Adding Fuel to the Fire? The Skin Microbiome in Atopic Dermatitis. J Invest Dermatol 2024; 144:969-977. [PMID: 38530677 PMCID: PMC11034722 DOI: 10.1016/j.jid.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 03/28/2024]
Abstract
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease characterized by epidermal barrier dysfunction, immune system dysregulation, and skin microbiome alterations. Skin microbiome studies in AD have demonstrated that disease flares are associated with microbial shifts, particularly Staphylococcus aureus predominance. AD-associated S. aureus strains differ from those in healthy individuals across various genomic loci, including virulence factors, adhesion proteins, and proinflammatory molecules-which may contribute to complex microbiome barrier-immune system interactions in AD. Different microbially based treatments for AD have been explored, and their future therapeutic successes will depend on a deeper understanding of the potential microbial contributions to the disease.
Collapse
Affiliation(s)
- Sara Saheb Kashaf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Heidi H Kong
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
8
|
Schmuth M, Eckmann S, Moosbrugger-Martinz V, Ortner-Tobider D, Blunder S, Trafoier T, Gruber R, Elias PM. Skin Barrier in Atopic Dermatitis. J Invest Dermatol 2024; 144:989-1000.e1. [PMID: 38643989 DOI: 10.1016/j.jid.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
A compromised permeability barrier is a hallmark of atopic dermatitis (AD). Localized to the outermost skin layer, the stratum corneum (SC) is critically dependent on terminal differentiation of epidermal keratinocytes, which transform into protein-rich corneocytes surrounded by extracellular lamellae of unique epidermal lipids, conferring permeability barrier function. These structures are disrupted in AD. A leaky barrier is prone to environmental insult, which in AD elicits type 2-dominant inflammation, in turn resulting in a vicious cycle further impairing the SC structure. Therapies directed at enforcing SC structure and anti-inflammatory strategies administered by topical and systemic route as well as UV therapy have differential effects on the permeability barrier. The expanding armamentarium of therapeutic modalities for AD treatment warrants optimization of their effects on permeability barrier function.
Collapse
Affiliation(s)
- Matthias Schmuth
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria.
| | - Sonja Eckmann
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Stefan Blunder
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Trafoier
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Dermatology, Venerology and Allergy, Medical University Innsbruck, Innsbruck, Austria; Institute for Pediatric Dermatology and Rare Diseases, Karl Landsteiner Society, Innsbruck, Austria
| | - Peter M Elias
- Dermatology, Veteran Affairs Health Care System, San Francisco, California, USA; University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Martin‐Piedra MA, Carmona G, Campos F, Carriel V, Fernández‐González A, Campos A, Cuende N, Garzón I, Gacto P, Alaminos M. Histological assessment of nanostructured fibrin-agarose skin substitutes grafted in burnt patients. A time-course study. Bioeng Transl Med 2023; 8:e10572. [PMID: 38023713 PMCID: PMC10658487 DOI: 10.1002/btm2.10572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 12/01/2023] Open
Abstract
A previously developed fibrin-agarose skin model-UGRSKIN-showed promising clinical results in severely burnt patients. To determine the histological parameters associated to the biocompatibility and therapeutic effects of this model, we carried out a comprehensive structural and ultrastructural study of UGRSKIN grafted in severely burnt patients after 3 months of follow-up. The grafted epidermis was analogue to native human skin from day 30th onward, revealing well-structured strata with well-differentiated keratinocytes expressing CK5, CK8, CK10, claudin, plakoglobin, filaggrin, and involucrin in a similar way to controls, suggesting that the epidermis was able to mature and differentiate very early. Melanocytes and Langerhans cells were found from day 30th onward, together with a basement membrane, abundant hemidesmosomes and lack of rete ridges. At the dermal layer, we found an interface between the grafted skin and the host tissue at day 30th, which tended to disappear with time. The grafted superficial dermis showed a progressive increase in properly-oriented collagen fibers, elastic fibers and proteoglycans, including decorin, similarly to control dermis at day 60-90th of in vivo follow-up. Blood vessels determined by CD31 and SMA expression were more abundant in grafted skin than controls, whereas lymphatic vessels were more abundant at day 90th. These results contribute to shed light on the histological parameters associated to biocompatibility and therapeutic effect of the UGRSKIN model grafted in patients and demonstrate that the bioengineered skin grafted in patients is able to mature and differentiate very early at the epithelial level and after 60-90 days at the dermal level.
Collapse
Affiliation(s)
- Miguel Angel Martin‐Piedra
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Gloria Carmona
- Andalusian Network for the Design and Translation of Advanced Therapies (former Andalusian Initiative for Advanced Therapies) ‐ Fundación Andaluza Progreso y Salud, Junta de Andalucía, Seville, Spain; Andalusian Transplant Coordination, Servicio Andaluz de SaludSevilleSpain
- Doctoral program in BiomedicineUniversity of GranadaGranadaSpain
| | - Fernando Campos
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Víctor Carriel
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Ana Fernández‐González
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
- Andalusian Network for the Design and Translation of Advanced Therapies (former Andalusian Initiative for Advanced Therapies) ‐ Fundación Andaluza Progreso y Salud, Junta de Andalucía, Seville, Spain; Andalusian Transplant Coordination, Servicio Andaluz de SaludSevilleSpain
- Unidad de Producción Celular e Ingeniería TisularHospital Universitario Virgen de las NievesGranadaSpain
| | - Antonio Campos
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Natividad Cuende
- Andalusian Network for the Design and Translation of Advanced Therapies (former Andalusian Initiative for Advanced Therapies) ‐ Fundación Andaluza Progreso y Salud, Junta de Andalucía, Seville, Spain; Andalusian Transplant Coordination, Servicio Andaluz de SaludSevilleSpain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | | | - Miguel Alaminos
- Tissue Engineering Group, Department of HistologyUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| |
Collapse
|
10
|
Dhariwala MO, DeRogatis AM, Okoro JN, Weckel A, Tran VM, Habrylo I, Ojewumi OT, Tammen AE, Leech JM, Merana GR, Carale RO, Barrere-Cain R, Hiam-Galvez KJ, Spitzer MH, Scharschmidt TC. Commensal myeloid crosstalk in neonatal skin regulates long-term cutaneous type 17 inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560039. [PMID: 37873143 PMCID: PMC10592812 DOI: 10.1101/2023.09.29.560039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Early life microbe-immune interactions at barrier surfaces have lasting impacts on the trajectory towards health versus disease. Monocytes, macrophages and dendritic cells are primary sentinels in barrier tissues, yet the salient contributions of commensal-myeloid crosstalk during tissue development remain poorly understood. Here, we identify that commensal microbes facilitate accumulation of a population of monocytes in neonatal skin. Transient postnatal depletion of these monocytes resulted in heightened IL-17A production by skin T cells, which was particularly sustained among CD4+ T cells into adulthood and sufficient to exacerbate inflammatory skin pathologies. Neonatal skin monocytes were enriched in expression of negative regulators of the IL-1 pathway. Functional in vivo experiments confirmed a key role for excessive IL-1R1 signaling in T cells as contributing to the dysregulated type 17 response in neonatal monocyte-depleted mice. Thus, a commensal-driven wave of monocytes into neonatal skin critically facilitates long-term immune homeostasis in this prominent barrier tissue.
Collapse
Affiliation(s)
- Miqdad O. Dhariwala
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Andrea M. DeRogatis
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Joy N. Okoro
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | - Antonin Weckel
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Victoria M. Tran
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | - Irek Habrylo
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | | | - Allison E. Tammen
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - John M. Leech
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Geil R. Merana
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | - Ricardo O. Carale
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Rio Barrere-Cain
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Kamir J. Hiam-Galvez
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Microbiology and Immunology, Parker Institute for Cancer Immunotherapy, University of California San Francisco; San Francisco, CA USA
| | - Matthew H. Spitzer
- Department of Otolaryngology-Head and Neck Surgery, Department of Microbiology and Immunology, Parker Institute for Cancer Immunotherapy, University of California San Francisco; San Francisco, CA USA
| | | |
Collapse
|