1
|
Kundapura S, Craske D, Hickman G, Braim S. Enhanced siRNA delivery with novel smart chitosan-based formulations. J Pharm Sci 2025; 114:103670. [PMID: 39914729 DOI: 10.1016/j.xphs.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
This study aims to develop an innovative multifunctional and dual responsive drug formulation for precise siRNA delivery to breast cancer sites, addressing the challenges posed by conventional cancer treatments which often result in adverse side effects due to their non-specific nature. The formulation made by incorporating gold coated superparamagnetic iron oxide nanoparticles (Au-SPIONs) into chitosan microspheres, which were subsequently loaded with siRNA. Comprehensive characterization, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDS) confirmed the formulation's favourable morphology, particle size distribution, chemical composition, and stability, indicating its strong potential for effective siRNA drug delivery applications. The developed formulation demonstrated siRNA encapsulation efficiencies ranging from 27.4 % to 88.6 % and loading capacity from 0.291 % to 1.59 %, these values particularly higher for medium molecular weight chitosan. These results were compared across different formulations, showing that variations in chitosan type and crosslinker concentration significantly influenced encapsulation efficiency and drug release profiles. Additionally, our results were compared to previous studies on chitosan microspheres encapsulating organic drugs and siRNA, where the developed system demonstrated similar encapsulation and release properties.. The type of chitosan and the choice of crosslinker significantly influenced the drug release patterns. Diverse release profiles across batches highlighted the necessity for precise formulation control. Incorporating SPIONs into chitosan microspheres presents a promising strategy for magnetically driven, site-specific drug delivery. The dual pH-responsive and magnetic properties enable rapid and targeted siRNA release, leveraging the acidic tumor microenvironment as an internal stimulus in addition to external magnetic stimuli. This novel combination of SPIONs, chitosan microspheres, and siRNA encapsulation represents a new approach for targeted drug delivery. While further research is needed to refine and optimize this approach, our study provides a proof of concept for advancing targeted cancer therapies.
Collapse
Affiliation(s)
- Srujan Kundapura
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Dominic Craske
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Graham Hickman
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Shwana Braim
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
2
|
Lu Y, Wang X, Jia Y, Zhang S, Yang JK, Li Q, Li Y, Wang Y. PAD4 Inhibitor-Loaded Magnetic Fe 3O 4 Nanoparticles for Magnetic Targeted Chemotherapy and Magnetic Resonance Imaging of Lung Cancer. Int J Nanomedicine 2025; 20:3031-3044. [PMID: 40093545 PMCID: PMC11910961 DOI: 10.2147/ijn.s502814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Lung cancer is a major health concern worldwide owing to its high incidence and mortality rates. Therefore, identification of new therapeutic targets and strategies for lung cancer is critical for improving patient outcomes. Peptidyl arginine deiminase 4 (PAD4) promotes tumor growth and metastasis by catalyzing the citrullination of histones, making it a potential therapeutic target. Although PAD4 inhibitors have shown potential in the treatment of a variety of tumors, existing PAD4 inhibitors lack sufficient specificity and cause substantial systemic adverse reactions. To overcome these challenges, we developed novel YW403@Fe3O4-oxidized carboxymethyl chitosan (OCMC) magnetic nanoparticles (MNPs) that enabled magnetically targeted drug delivery by binding the PAD4 inhibitor YW403 to a ferric oxide magnetic carrier. Methods In vitro experiments were conducted using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, Transwell assays, and flow cytometry to evaluate the activity of the MNPs. In vivo experiments involved magnetic resonance imaging (MRI) assessments and inductively coupled plasma mass spectrometry (ICP-MS) analyses to confirm the tumor targeting and iron metabolism of MNPs. Additionally, immunofluorescence staining was employed to further validate the expression of citrullinated histone H3 (H3cit). Results The implementation of this approach enhanced the targeting efficiency of PAD4 inhibitors, consequently reducing the required dosage of chemotherapy and potentially facilitating MRI monitoring. In vitro experiments demonstrated that MNPs exhibited superior activity compared to free drugs when subjected to an applied magnetic field, due to increased uptake of MNPs by tumor cells. In vivo experiments revealed that the application of magnetic fields significantly improved the tumor targeting of MNPs without impacting iron metabolism. By suppressing the expression of citrullinated histone (H3cit), MNPs effectively inhibited tumor growth and metastasis. Discussion These findings provide new research ideas for the development of novel anti-tumor nanomaterials and are expected to yield breakthroughs in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Xin Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yijiang Jia
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Shuai Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People’s Republic of China
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People’s Republic of China
| | - Yuanming Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
3
|
CaterinaValentino, Perucchini M, Vigani B, Ruggeri M, Pellegrini A, Pietrocola G, Varacca G, Bettini R, Milanese C, Sandri G, Rossi S. Development of chitosan/hydrolyzed collagen interaction product-based microparticles for the treatment of respiratory tract infections. Int J Biol Macromol 2025; 288:138674. [PMID: 39672427 DOI: 10.1016/j.ijbiomac.2024.138674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Respiratory tract infections (RTIs) represent a significant global health issue, particularly for vulnerable population, such as children, the elderly, or patients with immunosuppression. In this context, the aim of the present work was the development of Chitosan/Hydrolyzed Collagen-based microparticles (Mps) as a pulmonary drug delivery system (PDDS) for the treatment of RTIs. Mps were produced via spray-drying and composed of chitosan (Cs), one of the most widely used polysaccharides in PDDS, and hydrolyzed collagen (HC), another promising material for the development of PDDS that has not yet been fully explored. The formation of an interaction product between Cs and HC occurred during the spray-drying process and was confirmed by infrared spectroscopy and thermal analysis. Mps were characterized in terms of morphology, particle size, zeta potential, aerodynamic performance, swelling behavior and biodegradation profile in simulated lung fluid. Mps biocompatibility was also assessed on adenocarcinomic human alveolar basal epithelial (A549) cells. Finally, Mps were characterized in vitro for antibacterial properties and their ability to inhibit bacterial adhesion to S. aureus and P. aeruginosa. An enhanced antibacterial effect was observed for Mps with respect to the pristine materials (Cs and HC) and their physical mixture. Moreover, Mps were also able to inhibit bacteria adhesion to epithelial cells.
Collapse
Affiliation(s)
- CaterinaValentino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Mariasofia Perucchini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | | | | | - Giada Varacca
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Ruggero Bettini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Chiara Milanese
- Department of Chemistry, Physical Chemistry Section, University of Pavia and C.S.G.I., Via Taramelli 16, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
4
|
Zhao H, He X, Tan C, Jakhar AM, He F, Ma J. Chitosan-melanin complex microsphere: A potential colonic delivery system for protein drugs. Carbohydr Polym 2025; 348:122886. [PMID: 39567164 DOI: 10.1016/j.carbpol.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The characteristics and performance of chitosan-based colon delivery systems are significantly influenced by the method of preparation. Insect chitosan-melanin complex (CMC) may offer superior attributes over traditional shrimp and crab chitosan (CS) for colon-targeted administration. This study used dung beetle CMC as the carrier matrix and comprehensively examined the impact of various crosslinking techniques on the colonic drug delivery efficacy of microspheres, encompassing drug loading, swelling, drug release behavior, adhesion, enzymatic degradation, and absorption enhancement. The results indicate that F-TPPLC microspheres, crosslinked with a combination of formaldehyde and sodium tripolyphosphate, exhibit superior drug loading capabilities, optimal swelling behavior, and controlled in vitro drug release profiles in the colonic environment, along with excellent adhesion and enzymatic degradation properties within intestinal tract. Notably, these F-TPPLC microspheres increase paracellular permeability, possibly by disrupting the calcium-dependent adhesion junctions. In comparison to commercial CS, CMC demonstrates superior drug encapsulation efficiency, enhanced colonic drug release, adhesion, and absorption promotion, rendering it a favorable candidate as a carrier in colon-targeted drug delivery systems. Consequently, F-TPPLC microspheres derived from CMC are highly suitable for colon drug delivery applications and show promising potential for the oral delivery of peptide and protein-based therapeutics to the colon.
Collapse
Affiliation(s)
- Hongmei Zhao
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xi He
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chengjia Tan
- School of Life Science and Technology, Mianyang Teachers' College, Mianyang 621000, China
| | - Ali Murad Jakhar
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Fuyuan He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiahua Ma
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
5
|
Yu X, Hu E, Liu F, Zhang Y, Li W, Lyu Y, Li F, Wang D, Jin W. Preparation and characterization of polyphenol-chitosan conjugate-eugenol essential oil microcapsule and its effect on storage behavior of cherry tomato. J Food Sci 2024; 89:9577-9594. [PMID: 39617749 DOI: 10.1111/1750-3841.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 12/28/2024]
Abstract
Given the high volatility, low water solubility, and oxidative sensitivity of essential oils, this study synthesized microcapsules of essential oil (EEO) (quercetin-chitosan-EEO [QE-CS-EEO]) using a QE-CS graft copolymer as the wall material and EEO as the core material. Research findings indicate that QE-CS exhibits superior in vitro antioxidant activity, with scavenging abilities for 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) ABTS+ radicals being 58.71% and 77.03% greater than those of CS, respectively, thereby providing more effective protection for the essential oil. In comparison to CS essential oil, microcapsules (CS-EEO), QE-CS-EEO demonstrated an 18.65% increase in EEO encapsulation efficiency, achieving a total encapsulation efficiency of 41.29%. Based on these results, various edible coating solutions were formulated, including Control, E1 (1% CS), E2 (0.5% CS + 0.5% CS-EEO), E3 (0.5% CS + 0.5% QE-CS-EEO), and E4 (1% EEO), to extend the shelf life of cherry tomatoes. Notably, cherry tomatoes treated with the E3 formulation maintained superior freshness indicators, exhibiting an extended shelf life of approximately 9-12 days compared to the control group. This study aims to explore a novel microcapsule wall material and provide a strategy for extending the shelf life of fruits and vegetables, thereby minimizing food waste.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Erhu Hu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Fengyi Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Yan Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Wangwang Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, P. R. China
| | - Wenbin Jin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, P. R. China
| |
Collapse
|
6
|
shaikh R, Bhattacharya S, Saoji SD. Development, optimization, and characterization of polymeric micelles to improve dasatinib oral bioavailability: Hep G2 cell cytotoxicity and in vivo pharmacokinetics for targeted liver cancer therapy. Heliyon 2024; 10:e39632. [PMID: 39559212 PMCID: PMC11570312 DOI: 10.1016/j.heliyon.2024.e39632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
The efficacy of dasatinib (DAS) in treating hepatocellular carcinoma (HCC) is hindered by its poor bioavailability, limiting its clinical potential. In this study, we explored the use of TPGS-Soluplus micelles as an innovative drug delivery platform to enhance DAS solubility, stability, and therapeutic impact. A series of TPGS-Soluplus copolymers were synthesized, varying the D-α-tocopheryl polyethylene glycol succinate (TPGS) forms (1000, 2000, and 3500) and adjusting the TPGS to Soluplus weight ratios (1:1, 1:2, and 1:3). Our goal was to identify the optimal formulation with the highest entrapment efficiency, smallest particle size, and enhanced drug loading. The TPGS1000-Soluplus copolymer, with a DAS-to-polymer ratio of 1:30 and a TPGS ratio of 1:2, demonstrated superior performance, achieving an entrapment efficiency of 64.479 ± 1.45 % and drug loading of 5.05 ± 1.01 %. The DAS-loaded micelles (DAS-PMs) exhibited a notably small particle size of 64.479 ± 1.45 nm and demonstrated controlled release kinetics, with 85.60 ± 5.4 % of the drug released over 72 h. Cellular uptake studies using Hep G2 cells revealed significantly enhanced absorption of DAS-PMs compared to free DAS, reflected in lower IC50 values in MTT assays at 24 and 48 h. Pharmacokinetic analysis further highlighted the benefits of the DAS-PMs, with an AUC0-∞ 2.16 times higher and mean residual time (MRT) 1.3 times longer than free DAS, a statistically significant improvement (p < 0.01). These findings suggest that TPGS-Soluplus micelles offer a promising strategy for improving the bioavailability and efficacy of DAS in HCC treatment, presenting a potential new therapeutic avenue for patients with limited options. This innovative formulation could significantly enhance DAS delivery, potentially leading to improved clinical outcomes in liver cancer therapy.
Collapse
Affiliation(s)
- Rehan shaikh
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Suprit D. Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur, Mahatma Jyotiba Fuley Shaikshanik Parisar, University Campus, Amravati Road, Nagpur, 440033, Maharashtra, India
| |
Collapse
|
7
|
Wang Q, Sun X, Wang R, Aslam R, Zhao J, Sun Y, Yan Z, Li X. Development of pH-sensitive chitosan/plant extract microcapsules: Enhanced corrosion protection for carbon steel in HCl solution. Int J Biol Macromol 2024; 282:137461. [PMID: 39528181 DOI: 10.1016/j.ijbiomac.2024.137461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In recent years, controlled-release green corrosion inhibitors have become a research hotspot in the field of corrosion. In this study, chitosan/plant extract microcapsules (GCI@CS) loaded with Ambrosia artemisiifolia extract (green corrosion inhibitor, GCI) were prepared by emulsification cross-linking. Both the functional groups and micromorphology of GCI@CS were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical microscopy (OM). The loading capacity and encapsulation efficiency of GCI@CS were analyzed using UV-Vis spectroscopy. The corrosion inhibition performance of GCI@CS on carbon steel (C-steel) in 1.0 mol/L HCl was investigated using electrochemical impedance spectroscopy (EIS). The results indicated that GCI@CS, as a pH-sensitive microcapsule, can provide effective corrosion protection for C-steel in HCl solution. Notably, the corrosion resistance of GCI@CS improved with increasing concentration and time. The corrosion inhibition efficiency (ηEIS) of C-steel immersed in 1.0 mol/L HCl (with 500 mg/L GCI@CS) for 24 h reached 93.48 %. This study provides important insights for the industrial deployment of green corrosion inhibitors with controlled release properties.
Collapse
Affiliation(s)
- Qihui Wang
- School of Mechanical and Intelligent Manufacturing, Chongqing University of Science and Technology, Chongqing 401331, China; School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Key Laboratory of Energy Engineering Mechanics & Disaster Prevention and Mitigation, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Xiaofeng Sun
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ruozhou Wang
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ruby Aslam
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jinmei Zhao
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yi Sun
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Key Laboratory of Energy Engineering Mechanics & Disaster Prevention and Mitigation, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Zhitao Yan
- Chongqing Industry & Trade Polytechnic, Chongqing 408000, China
| | - Xueming Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Zhang K, Zheng J, Xu Y, Liao Z, Huang Y, Lu L. Enhanced fabrication of size-controllable chitosan-genipin nanoparticles using orifice-induced hydrodynamic cavitation: Process optimization and performance evaluation. ULTRASONICS SONOCHEMISTRY 2024; 106:106899. [PMID: 38733852 PMCID: PMC11103574 DOI: 10.1016/j.ultsonch.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Chitosan nanoparticles (NPs) possess great potential in biomedical fields. Orifice-induced hydrodynamic cavitation (HC) has been used for the enhancement of fabrication of size-controllable genipin-crosslinked chitosan (chitosan-genipin) NPs based on the emulsion cross-linking (ECLK). Experiments have been performed using various plate geometries, chitosan molecular weight and under different operational parameters such as inlet pressure (1-3.5 bar), outlet pressure (0-1.5 bar) and cross-linking temperature (40-70 °C). Orifice plate geometry was a crucial factor affecting the properties of NPs, and the optimized geometry of orifice plate was with single hole of 3.0 mm diameter. The size of NPs with polydispersity index of 0.359 was 312.6 nm at an optimized inlet pressure of 3.0 bar, and the maximum production yield reached 84.82 %. Chitosan with too high or too low initial molecular weight (e.g., chitosan oligosaccharide) was not applicable for producing ultra-fine and narrow-distributed NPs. There existed a non-linear monotonically-increasing relationship between cavitation number (Cv) and chitosan NP size. Scanning electron microscopy (SEM) test indicated that the prepared NPs were discrete with spherical shape. The study demonstrated the superiority of HC in reducing particle size and size distribution of NPs, and the energy efficiency of orifice type HC-processed ECLK was two orders of magnitude than that of ultrasonic horn or high shear homogenization-processed ECLK. In vitro drug-release studies showed that the fabricated NPs had great potential as a drug delivery system. The observations of this study can offer strong support for HC to enhance the fabrication of size-controllable chitosan-genipin NPs.
Collapse
Affiliation(s)
- Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Jianbin Zheng
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yun Xu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Zicheng Liao
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Lijin Lu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| |
Collapse
|
9
|
Spogli R, Faffa C, Ambrogi V, D’Alessandro V, Pastori G. Ozonated Sunflower Oil Embedded within Spray-Dried Chitosan Microspheres Cross-Linked with Azelaic Acid as a Multicomponent Solid Form for Broad-Spectrum and Long-Lasting Antimicrobial Activity. Pharmaceutics 2024; 16:502. [PMID: 38675163 PMCID: PMC11054446 DOI: 10.3390/pharmaceutics16040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Multicomponent solid forms for the combined delivery of antimicrobials can improve formulation performance, especially for poorly soluble drugs, by enabling the modified release of the active ingredients to better meet therapeutic needs. Chitosan microspheres incorporating ozonated sunflower oil were prepared by a spray-drying method and using azelaic acid as a biocompatible cross-linker to improve the long time frame. Two methods were used to incorporate ozonated oil into microspheres during the atomization process: one based on the use of a surfactant to emulsify the oil and another using mesoporous silica as an oil absorbent. The encapsulation efficiency of the ozonated oil was evaluated by measuring the peroxide value in the microspheres, which showed an efficiency of 75.5-82.1%. The morphological aspects; particle size distribution; zeta potential; swelling; degradation time; and thermal, crystallographic and spectroscopic properties of the microspheres were analyzed. Azelaic acid release and peroxide formation over time were followed in in vitro analyses, which showed that ozonated oil embedded within chitosan microspheres cross-linked with azelaic acid is a valid system to obtain a sustained release of antimicrobials. In vitro tests showed that the microspheres exhibit synergistic antimicrobial activity against P. aeruginosa, E. coli, S. aureus, C. albicans and A. brasiliensis. This makes them ideal for use in the development of biomedical devices that require broad-spectrum and prolonged antimicrobial activity.
Collapse
Affiliation(s)
- Roberto Spogli
- Prolabin & Tefarm Srl, via dell’Acciaio N°9, 06136 Perugia, Italy; (C.F.); (G.P.)
| | - Caterina Faffa
- Prolabin & Tefarm Srl, via dell’Acciaio N°9, 06136 Perugia, Italy; (C.F.); (G.P.)
| | - Valeria Ambrogi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy;
| | | | - Gabriele Pastori
- Prolabin & Tefarm Srl, via dell’Acciaio N°9, 06136 Perugia, Italy; (C.F.); (G.P.)
| |
Collapse
|
10
|
Cho HW, Shin DU, Kim SW, Kim ES, Park BJ, Kim DH, Jung YW, Lee SJ. Enzymatic time-temperature indicator with cysteine-loaded chitosan microspheres/silver nanoparticles. Food Sci Biotechnol 2023; 32:1873-1881. [PMID: 37781051 PMCID: PMC10541388 DOI: 10.1007/s10068-023-01369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 10/03/2023] Open
Abstract
A time-temperature indicator (TTI) based on acid-base reaction was developed by applying a new pH dye composed of cysteine-loaded chitosan (Cys-CS) microspheres and silver nanoparticles (AgNPs). It was hypothesized that cysteine released by the disintegration of Cys-CS microspheres at a critical pH would cause AgNPs to aggregate, leading to color change. Cys-CS microspheres were produced as water-in-oil (paraffin oil, MCT oil, soybean oil) emulsions according to the KOH addition method. An enzymatic TTI was made using glucose oxidase, glucose, and catalase. Only paraffin oil produced Cys-CS microspheres (average diameter, 335 ± 100 µm), whereas the others did not, probably due to saponification with KOH. FTIR analysis confirmed that cysteine was encapsulated in the microspheres. The microspheres disintegrated at pH 6.18 in a titration test. The TTI pH gradually decreased and showed a sudden color change at pH 6.10, which was similar to the critical pH of microsphere disintegration.
Collapse
Affiliation(s)
- Hye Won Cho
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do 10326 Republic of Korea
| | - Dong Un Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do 10326 Republic of Korea
| | - Sang Won Kim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do 10326 Republic of Korea
| | - Eun Seol Kim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do 10326 Republic of Korea
| | - Byeong Jae Park
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do 10326 Republic of Korea
| | - Dong Hwa Kim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do 10326 Republic of Korea
| | - Yong Woon Jung
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do 10326 Republic of Korea
| | - Seung Ju Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do 10326 Republic of Korea
| |
Collapse
|
11
|
Ghalayani Esfahani A, Sartori M, Bregoli C, Fiocchi J, Biffi CA, Tuissi A, Giavaresi G, Presentato A, Alduina R, De Luca A, Cabrini A, De Capitani C, Fini M, Gruppioni E, Lavorgna M, Ronca A. Bactericidal Activity of Silver-Doped Chitosan Coatings via Electrophoretic Deposition on Ti 6Al 4V Additively Manufactured Substrates. Polymers (Basel) 2023; 15:4130. [PMID: 37896373 PMCID: PMC10610813 DOI: 10.3390/polym15204130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Prosthetic reconstruction can serve as a feasible alternative, delivering both functional and aesthetic benefits to individuals with hand and finger injuries, frequent causes of emergency room visits. Implant-related infections pose significant challenges in arthroplasty and osteosynthesis procedures, contributing to surgical failures. As a potential solution to this challenge, this study developed a new class of silver (Ag)-doped chitosan (CS) coatings via electrophoretic deposition (EPD) on osseointegrated prostheses for infection therapy. These coatings were successfully applied to additively manufactured Ti6Al4V ELI samples. In the initial phase, the feasibility of the composite coating was assessed using the Thermogravimetric Analysis (TGA) and Attenuated Total Reflection (ATR) techniques. The optimized structures exhibited impressive water uptake in the range of 300-360%. Codeposition with an antibacterial agent proved effective, and scanning electron microscopy (SEM) was used to examine the coating morphology. Biologically, CS coatings demonstrated cytocompatibility when in direct contact with a fibroblast cell line (L929) after 72 h. When exposed to the Staphylococcus epidermidis strain (ATCC 12228), these coatings inhibited bacterial growth and biofilm formation within 24 h. These findings underscore the significant potential of this approach for various applications, including endoprostheses like hip implants, internal medical devices, and transcutaneous prostheses such as osseointegrated limb prosthetics for upper and lower extremities.
Collapse
Affiliation(s)
- Arash Ghalayani Esfahani
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (G.G.); (A.D.L.)
| | - Chiara Bregoli
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Jacopo Fiocchi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Carlo Alberto Biffi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Ausonio Tuissi
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (C.B.); (J.F.); (C.A.B.); (A.T.)
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (G.G.); (A.D.L.)
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bd. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Bd. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Angela De Luca
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy; (M.S.); (G.G.); (A.D.L.)
| | - Alessia Cabrini
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Cristina De Capitani
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Milena Fini
- Scientific Directorate, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136 Bologna, Italy;
| | - Emanuele Gruppioni
- INAIL Centro Protesi, Via Rabuina 14, Vigorso di Budrio, 40054 Bologna, Italy;
| | - Marino Lavorgna
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| | - Alfredo Ronca
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (Consiglio Nazionale delle Ricerche) (CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy; (A.C.); (C.D.C.); (M.L.); (A.R.)
| |
Collapse
|
12
|
Li Y, Luo XE, Tan MJ, Yue FH, Yao RY, Zeng XA, Woo MW, Wen QH, Han Z. Preparation of carboxymethylcellulose / ZnO / chitosan composite hydrogel microbeads and its drug release behaviour. Int J Biol Macromol 2023; 247:125716. [PMID: 37419258 DOI: 10.1016/j.ijbiomac.2023.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this study, a novel carboxymethylcellulose / ZnO / chitosan (CMC / ZnO / Cs) hydrogel microbeads loaded with crosslinked porous starch / curcumin (CPS / Cur) were designed and prepared to improve the encapsulation efficiency of curcumin for drug delivery to specific sites. It was found that the total pore volume of crosslinked porous starch (CPS) was increased by 1150 % when compared to the native starch (NS), and the adsorption ratio of curcumin by CPS was enhanced by 27 % when compared to NS. Secondly, the swelling ratio of composite hydrogel microbeads was within 25 % in an acidic environment at pH 1.2, and the swelling ratio of hydrogel microbeads sharply increased to 320 % ~ 370 % at pH 6.8 and 7.4. In addition, the results of in vitro simulated release experiments showed that the released amount of hydrogel microbeads loaded with NS/Cur and CPS/Cur in SGF were within 7 % in simulated gastric fluid (SGF). The highest released amount of curcumin was 65.26 % for hydrogel beads loaded with CPS/Cur, which was 26 % lower than that of hydrogel microbeads loaded with Cur in simulated intestinal fluid (SIF). In simulated colonic fluid (SCF), the released amount of hydrogel microbeads loaded with CPS/Cur and Cur were 73.96 % and 91.69 %, respectively. In conclusion, pH-sensitive drug delivery system with good drug stability and bioavailability were successfully prepared with carboxymethylcellulose / ZnO / chitosan bead, suitable targeting drug delivery to the small intestine.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiu-Er Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ming-Jun Tan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fu-Hao Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Run-Yu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528000, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
| | - Meng-Wai Woo
- Department of chemical and materials engineering, University of Auckland, Auckland 1010, New Zealand
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
13
|
Pareja Tello R, Wang S, Fontana F, Correia A, Molinaro G, López Cerdà S, Hietala S, Hirvonen J, Barreto G, Santos HA. Fabrication of hydrogel microspheres via microfluidics using inverse electron demand Diels-Alder click chemistry-based tetrazine-norbornene for drug delivery and cell encapsulation applications. Biomater Sci 2023. [PMID: 37334482 DOI: 10.1039/d3bm00292f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Microfluidic on-chip production of polymeric hydrogel microspheres (MPs) can be designed for the loading of different biologically active cargos and living cells. Among different gelation strategies, ionically crosslinked microspheres generally show limited mechanical properties, meanwhile covalently crosslinked microspheres often require the use of crosslinking agents or initiators with limited biocompatibility. Inverse electron demand Diels Alder (iEDDA) click chemistry is a promising covalent crosslinking method with fast kinetics, high chemoselectivity, high efficiency and no cross-reactivity. Herein, in situ gellable iEDDA-crosslinked polymeric hydrogel microspheres are developed via water-in-oil emulsification (W/O) glass microfluidics. The microspheres are composed of two polyethylene glycol precursors modified with either tetrazine or norbornene as functional moieties. Using a single co-flow glass microfluidic platform, homogenous MPs of sizes 200-600 μm are developed and crosslinked within 2 minutes. The rheological properties of iEDDA crosslinked bulk hydrogels are maintained with a low swelling degree and a slow degradation behaviour under physiological conditions. Moreover, a high-protein loading capacity can be achieved, and the encapsulation of mammalian cells is possible. Overall, this work provides the possibility of developing microfluidics-produced iEDDA-crosslinked MPs as a potential drug vehicle and cell encapsulation system in the biomedical field.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sandra López Cerdà
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00014, Helsinki, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280, Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
14
|
Sarmah D, Rather MA, Sarkar A, Mandal M, Sankaranarayanan K, Karak N. Self-cross-linked starch/chitosan hydrogel as a biocompatible vehicle for controlled release of drug. Int J Biol Macromol 2023; 237:124206. [PMID: 36990413 DOI: 10.1016/j.ijbiomac.2023.124206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
A facile one-pot approach was adopted to prepare a polysaccharide-based hydrogel of oxidized starch (OS)-chitosan. The synthetic monomer-free, eco-friendly hydrogel was prepared in an aqueous solution and employed for controlled drug release application. The starch was first oxidized under mild conditions to prepare its bialdehydic derivative. Subsequently, the amino group-containing a modified polysaccharide, "chitosan" was introduced on the backbone of OS via a dynamic Schiff-base reaction. The bio-based hydrogel was obtained via a one-pot in-situ reaction, where functionalized starch acts as a macro-cross-linker that contributes structural stability and integrity to the hydrogel. The introduction of chitosan contributes stimuli-responsive properties and thus pH-sensitive swelling behavior was obtained. The hydrogel showed its potential as a pH-dependent controlled drug release system and a maximum of 29 h sustained release period was observed for ampicillin sodium salt drug. In vitro studies confirmed that the prepared drug-loaded hydrogels showed excellent antibacterial ability. Most importantly, the hydrogel could find potential use in the biomedical field due to its facile reaction conditions, biocompatibility along with the controlled releasing ability of the encapsulated drug.
Collapse
Affiliation(s)
- Dimpee Sarmah
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anupama Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Kamatchi Sankaranarayanan
- Biophysics-Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Niranjan Karak
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
15
|
Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, Chen Y, Lv Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 2022; 16:100394. [PMID: 36042853 PMCID: PMC9420381 DOI: 10.1016/j.mtbio.2022.100394] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023] Open
Abstract
Sustained-release drug-loaded microspheres provide a long-acting sustained release, with targeted and other effects. There are many types of sustained-release drug microspheres and various preparation methods, and they are easy to operate. For these reasons, they have attracted widespread interest and are widely used in tissue engineering and other fields. In this paper, we provide a systematic review of the application of sustained-release drug microspheres in tissue engineering. First, we introduce this new type of drug delivery system (sustained-release drug carriers), describe the types of sustained-release drug microspheres, and summarize the characteristics of different microspheres. Second, we summarize the preparation methods of sustained-release drug microspheres and summarize the materials required for preparing microspheres. Third, various applications of sustained-release drug microspheres in tissue engineering are summarized. Finally, we summarize the shortcomings and discuss future prospects in the development of sustained-release drug microspheres. The purpose of this paper was to provide a further systematic understanding of the application of sustained-release drug microspheres in tissue engineering for the personnel engaged in related fields and to provide inspiration and new ideas for studies in related fields.
Collapse
Affiliation(s)
- Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qingting Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China
| |
Collapse
|
16
|
Boddu A, Obireddy SR, Zhang D, Rao KSVK, Lai WF. ROS-generating, pH-responsive and highly tunable reduced graphene oxide-embedded microbeads showing intrinsic anticancer properties and multi-drug co-delivery capacity for combination cancer therapy. Drug Deliv 2022; 29:2481-2490. [PMID: 35912830 PMCID: PMC9347472 DOI: 10.1080/10717544.2022.2100512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The development of effective carriers enabling combination cancer therapy is of practical importance due to its potential to enhance the effectiveness of cancer treatment. However, most of the reported carriers are monofunctional in nature. The carriers that can be applied to concomitantly mediate multiple treatment modalities are highly deficient. This study fills this gap by reporting the design and fabrication of ROS-generating carbohydrate-based pH-responsive beads with intrinsic anticancer therapy and multidrug co-delivery capacity for combination cancer therapy. Sodium alginate (SA) microspheres and reduced graphene oxide (rGO)-embedded chitosan (CS) beads are developed via emulsion-templated ionic gelation for a combination therapy involving co-delivery of curcumin (CUR) and 5-fluororacil (5-FU). Drug-encapsulated microbeads are characterized by FTIR, DSC, TGA, XRD, and SEM. 5-FU and CUR-encapsulated microbeads are subjected to in vitro drug release studies at pH 6.8 and 1.2 at 37 °C. Various release kinetic parameters are evaluated. The results show that the Korsmeyer-Peppas model and non-Fickian release kinetics are best suited. The microspheres and microbeads are found to effectively act against MCF7 cells and show intrinsic anticancer capacity. These results indicate the promising performance of our beads in mediating combination drug therapy to improve the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Adilakshmi Boddu
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, India
| | - Sreekanth Reddy Obireddy
- Department of Chemistry, Sri Krishnadeveraya University, Anantapuramu, India.,Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - K S V Krishna Rao
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, India
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, China.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
17
|
Xu J, Lai H, You L, Zhao Z. Improvement of the stability and anti-AGEs ability of betanin through its encapsulation by chitosan-TPP coated quaternary ammonium-functionalized mesoporous silica nanoparticles. Int J Biol Macromol 2022; 222:1388-1399. [DOI: 10.1016/j.ijbiomac.2022.09.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
18
|
Rodríguez-Félix DE, Pérez-Caballero D, del Castillo-Castro T, Castillo-Ortega MM, Garmendía-Diago Y, Alvarado-Ibarra J, Plascencia-Jatomea M, Ledezma-Pérez AS, Burruel-Ibarra SE. Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potential use in drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Kim KJ, Hwang MJ, Yun YH, Yoon SD. Synthesis and drug release behavior of functional montelukast imprinted inulin-based biomaterials as asthma treatment. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Li C, He N, Zhao X, Zhang X, Li W, Zhao X, Qiao Y. Chitosan/ZIF‐8 Composite Beads Fabricated by In Situ Growth of MOFs Crystals on Chitosan Beads for CO
2
Adsorption. ChemistrySelect 2022. [DOI: 10.1002/slct.202103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Naipu He
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
- Research Institute Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Xiaozhu Zhao
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Xuehui Zhang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Wen Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Xuerui Zhao
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Yaoyu Qiao
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| |
Collapse
|
21
|
Zheng X, Lian Q, Liu H, Liu Z. Synthesis of PAMAM Dendrimer Encapsulated Polymer with Chitosan As Core and Its Application in Fe2+ Ion Probe. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024421150279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Deciphering the Molecular Mechanism of Water Interaction with Gelatin Methacryloyl Hydrogels: Role of Ionic Strength, pH, Drug Loading and Hydrogel Network Characteristics. Biomedicines 2021; 9:biomedicines9050574. [PMID: 34069533 PMCID: PMC8161260 DOI: 10.3390/biomedicines9050574] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
Water plays a primary role in the functionality of biomedical polymers such as hydrogels. The state of water, defined as bound, intermediate, or free, and its molecular organization within hydrogels is an important factor governing biocompatibility and hemocompatibility. Here, we present a systematic study of water states in gelatin methacryloyl (GelMA) hydrogels designed for drug delivery and tissue engineering applications. We demonstrate that increasing ionic strength of the swelling media correlated with the proportion of non-freezable bound water. We attribute this to the capability of ions to create ion–dipole bonds with both the polymer and water, thereby reinforcing the first layer of polymer hydration. Both pH and ionic strength impacted the mesh size, having potential implications for drug delivery applications. The mechanical properties of GelMA hydrogels were largely unaffected by variations in ionic strength or pH. Loading of cefazolin, a small polar antibiotic molecule, led to a dose-dependent increase of non-freezable bound water, attributed to the drug’s capacity to form hydrogen bonds with water, which helped recruit water molecules in the hydrogels’ first hydration layer. This work enables a deeper understanding of water states and molecular arrangement at the hydrogel–polymer interface and how environmental cues influence them.
Collapse
|
23
|
Li X, Xing R, Xu C, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effect of chitosan and quaternary chitosan: A review of potential vaccine adjuvants. Carbohydr Polym 2021; 264:118050. [PMID: 33910752 DOI: 10.1016/j.carbpol.2021.118050] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/25/2022]
Abstract
Vaccines have always been the most effective preventive treatment. Advancements in the field of vaccine is inseparable from adjuvants. Adjuvants are substances added to vaccines to enhance immunogenicity and induce a stronger immune response. Chitosan fascinated considerable attention as vaccine adjuvant due to its unique physicochemical and biological properties. Many studies have shown that chitosan and its derivatives can effectively activate antigen-presenting cells and induce cytokine stimulation to produce an effective immune response and promote the balance of Th1/Th2 response. Among many derivatives, the quaternized chitosan performs better. This review presents the main factors affecting the adjuvant performance of chitosan and quaternized chitosan firstly. Then, we introduced not only the immune response they may cause, but also their metabolic research in detail. Furthermore, their future prospects are forecasted. Overall, chitosan and quaternized chitosan are both promising adjuvant materials, and quaternized chitosan shows greater potential.
Collapse
Affiliation(s)
- Xiaomin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| |
Collapse
|
24
|
Mu XT, Li Y, Ju XJ, Yang XL, Xie R, Wang W, Liu Z, Chu LY. Microfluidic Fabrication of Structure-Controlled Chitosan Microcapsules via Interfacial Cross-Linking of Droplet Templates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57514-57525. [PMID: 33301686 DOI: 10.1021/acsami.0c14656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a simple and flexible method for the fabrication of chitosan microcapsules with controllable structures and functions via the interfacial cross-linking reaction of the water-in-oil (W/O) emulsion templates is developed. The interfacial cross-linking reactions of chitosan and terephthalaldehyde (TPA) in W/O emulsion templates are comprehensively studied. The interfacial cross-linking reactions of the droplet templates in both batchwise and continuous conditions are studied. A poly(dimethylsiloxane) (PDMS) droplet-capture microfluidic chip is fabricated to investigate the interfacial reaction in continuous conditions online. In this study, the size and shell thickness of the microcapsules are affected by the preparation condition, such as the template size, emulsifier concentration, TPA concentration, and cross-linking time. Moreover, the size and shell thickness changes of chitosan microcapsules prepared in continuous conditions are much faster than those prepared in batchwise conditions. By regulating the preparation parameters, the microcapsules with controllable structures are fabricated in both batchwise and continuous conditions. The drug release behaviors of the microcapsules with controllable structures are studied. Furthermore, by adding magnetic nanoparticles to the aqueous solution, magnetic-responsive microcapsules are fabricated easily. This work provides valuable guidance for the controllable fabrication of chitosan microcapsules with designed structures and functions via single emulsion templates.
Collapse
Affiliation(s)
- Xiao-Ting Mu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yao Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiu-Lan Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
25
|
Niaz T, Sarkar A, Mackie A, Imran M. Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano-delivery systems under simulated gastro-intestinal conditions. Int J Biol Macromol 2020; 169:171-182. [PMID: 33340623 DOI: 10.1016/j.ijbiomac.2020.12.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Emerging antibiotic resistance in pathogens has posed considerable challenges to explore and examine the natural antimicrobials (NAMs). Due to the labile nature of NAMs, nano-delivery systems (NDS) are required to protect them from physiological degradation and allow controlled delivery to the targeted site of infection. In this study, corona modified NDS were developed using bovine serum albumin (BSA) on a chitosan core (CS) for sustained delivery of carvacrol (CAR), a natural antimicrobial agent, in the intestine. The optimal nano-formulations of the core (CS-NDS) and corona modified (BSA-CS-NDS) systems were fabricated with an average diameter of 52.4 ± 10.4 nm and 202.6 ± 6 nm, respectively. A shift in zeta-potential (ZP) from positive (+21 ± 3.6 mV) to negative values (-18 ± 2.6 mV) confirmed the electrostatic deposition of BSA corona on CS core. Under the influence of various simulated gastrointestinal conditions, BSA corona provided extra stability to NDS (ZP -38.5 mV), by ensuring delayed release and limited degradation in the gastric conditions. Mucoadhesive studies with quartz crystal microbalance with dissipation (QCM-D) revealed that BSA corona reduced the mucoadhesion of NDS at gastric pH, which enabled the effective delivery of CAR to the intestinal phase for successful eradication of Salmonella enterica.
Collapse
Affiliation(s)
- Taskeen Niaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park road, Islamabad, Pakistan; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Alan Mackie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Park road, Islamabad, Pakistan.
| |
Collapse
|
26
|
Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020; 12:pharmaceutics12121188. [PMID: 33297493 PMCID: PMC7762425 DOI: 10.3390/pharmaceutics12121188] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
Owing to their tunable properties, controllable degradation, and ability to protect labile drugs, hydrogels are increasingly investigated as local drug delivery systems. However, a lack of standardized methodologies used to characterize and evaluate drug release poses significant difficulties when comparing findings from different investigations, preventing an accurate assessment of systems. Here, we review the commonly used analytical techniques for drug detection and quantification from hydrogel delivery systems. The experimental conditions of drug release in saline solutions and their impact are discussed, along with the main mathematical and statistical approaches to characterize drug release profiles. We also review methods to determine drug diffusion coefficients and in vitro and in vivo models used to assess drug release and efficacy with the goal to provide guidelines and harmonized practices when investigating novel hydrogel drug delivery systems.
Collapse
|
27
|
Sadeghi D, Solouk A, Samadikuchaksaraei A, Seifalian AM. Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydr Polym 2020; 255:117336. [PMID: 33436179 DOI: 10.1016/j.carbpol.2020.117336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
In this study, the effects of various parameters of the water-in-oil emulsification/internal gelation method on the properties of calcium-alginate microparticles were evaluated and optimized. Results showed that the spherical-shaped microparticles with the highest circularity and high production yield can be produced by alginate solution with a concentration of 2 wt.%, calcium carbonate/alginate ratio of 10/1 (w/w), water/oil volume ratio of 1/20, emulsifier concentration of 5 % (v/v), and emulsification speed of 1000 rpm. Two model drugs including simvastatin lactone and simvastatin β-hydroxyacid were loaded into the microspheres with promising encapsulation efficiencies of 73 % and 69 %, respectively. The microspheres showed a pH-responsive swelling behavior with a percentage of 10.60 %, 352.65 %, 690.03 %, and 1211.46 % at the pH values of 2.0, 4.5, 7.4, and 8.5, respectively. The microspheres showed an increasing trend of release rate in direct proportion to pH. These findings would be useful for therapeutic applications which need pH-responsive drug carriers.
Collapse
Affiliation(s)
- Davoud Sadeghi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alexander M Seifalian
- Nanotechnology and Regenerative Medicine Centre (Ltd), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
28
|
Preparation and characterization of a controlled-release formulation based on carbofuran loaded in ionically cross-linked chitosan microparticles. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02274-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Effect of Formulation Variables on the Performance of Doxycycline-Loaded PLA Microsphere. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04592-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Sedyakina N, Kuskov A, Velonia K, Feldman N, Lutsenko S, Avramenko G. Modulation of Entrapment Efficiency and In Vitro Release Properties of BSA-Loaded Chitosan Microparticles Cross-Linked with Citric Acid as a Potential Protein-Drug Delivery System. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1989. [PMID: 32344606 PMCID: PMC7216016 DOI: 10.3390/ma13081989] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 11/20/2022]
Abstract
Microparticles, aimed for oral protein and peptide drug delivery, were prepared via emulsion cross-linking using citric acid as cross-linker and polyglycerol polyricinoleate as surfactant. A comparative study of the interaction between chitosan and citric acid and its effect on the resulting microparticle properties was performed using different chitosan-to-cross-linker mass ratios and pH-values during fabrication of the microparticles. Non-cross-linked and cross-linked microparticles were studied in terms of size (4-12 μm), zeta potential (-15.7 to 12.8 mV), erosion (39.7-75.6%), a model protein encapsulation efficiency (bovine serum albumin) (6.8-27.6%), and loading capacity (10.4-40%). Fourier transform infrared spectroscopy and X-ray diffraction confirmed the ionic interaction between the protonated amine groups of chitosan and the carboxylate ions of the cross-linking agent. Scanning electron microscopy revealed that the non-cross-linked microparticles had an uneven shape with wrinkled surfaces, while the cross-linked formulations were spherical in shape with smooth surfaces. On the basis of these data, the role of the surfactant and microparticle structure on the release mechanism was proposed. Control of the microparticle shape and release mechanisms is expected to be crucial in developing carriers for the controlled delivery of proteins and peptides.
Collapse
Affiliation(s)
- Natalia Sedyakina
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (N.S.); (N.F.); (S.L.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia;
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece;
| | - Nataliya Feldman
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (N.S.); (N.F.); (S.L.)
| | - Sergey Lutsenko
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (N.S.); (N.F.); (S.L.)
| | - Grigory Avramenko
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia;
| |
Collapse
|
31
|
Xu X, Zhao M, Han Q, Wang H, Zhang H, Wang Y. Effects of piceatannol on the structure and activities of bovine serum albumin: A multi-spectral and molecular modeling studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117706. [PMID: 31753657 DOI: 10.1016/j.saa.2019.117706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Piceatannol (PIC) displays a wide spectrum of biological activities, such as antioxidation, antibacterial activity and anti-inflammation, but the biochemical and molecular mechanism is not fully understood. In this study, the interaction of PIC with bovine serum albumin (BSA) was studied by fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, circular dichroism spectroscopy and molecular simulation. The effects of PIC on BSA non-enzymatic glycosylation, fibrillation, thermal stability, and structure information were also studied. The results showed that the formation of PIC-BSA complex by mainly hydrogen-bonding forces resulted in the conformational changes of protein. PIC inhibited the formation of β-sheets structures of BSA. BSA still maintained the esterase-like good activity in the presence of PIC. In addition, PIC significantly reduced the degree of BSA glycosylation. These results provided a basis for the molecular interaction between PIC and protein, and suggested the potential effect of PIC in preventing the progression of diabetes mellitus.
Collapse
Affiliation(s)
- Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, B508, No. 364 Building, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China.
| | - Mengshu Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, B508, No. 364 Building, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Qianqian Han
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Huijie Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Hongmei Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China
| | - Yanqing Wang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224002, People's Republic of China.
| |
Collapse
|
32
|
Preparation of pH-Responsive Alginate-Chitosan Microspheres for L-Valine Loading and Their Effects on the A40926 Production. Curr Microbiol 2020; 77:1016-1023. [PMID: 32002624 DOI: 10.1007/s00284-020-01894-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
The glycopeptide A40926 biosynthesized by Nonomuraea gerenzanensis is a precursor of the second generation glycopeptide antibiotic dalbavancin. The skeleton of this glycopeptide consists of seven amino acids and is biosynthesized by the NRPS gene module. L-valine, a branched amino acid, is also a significant precursor for A40926 production. This study details the use of pH-responsive alginate-chitosan microspheres loaded with L-valine prepared by internal emulsification gelation. The effects of process and formulation variables on microsphere size, loading capacity, and encapsulation efficiency were investigated. Then, effects on A40926 production by the pH-responsive microspheres were evaluated in a 10-L fermenter. Results demonstrated that use of the pH-responsive microspheres could improve A40926 yield from 465 to 602 mg L-1 in a 10-L scale fermenter.
Collapse
|
33
|
Younes NF, El Assasy AEHI, Makhlouf AIA. Microenvironmental pH-modified Amisulpride-Labrasol matrix tablets: development, optimization and in vivo pharmacokinetic study. Drug Deliv Transl Res 2020; 11:103-117. [PMID: 31900797 DOI: 10.1007/s13346-019-00706-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amisulpride (AMS) is atypical antipsychotic with a weak basic nature (pKa 9.37), which results in low solubility in the high pH of the intestine. It is also recognized as a substrate of P-glycoprotein efflux pump. Both factors lead to its low oral bioavailability (48%). The daily dose of AMS is between 200 and 1200 mg to be taken in divided doses which compromise patient compliance. Therefore, controlled release formulation of AMS is of clinical significance. AMS was formulated into matrix tablets containing Labrasol, P-glycoprotein efflux inhibitor, and a penetration enhancer, using direct compression technique. The tablets were prepared according to 21·41 factorial design using two polymers, namely, HPMC and Carbopol 934 at four concentrations (20%, 30%, 40%, 50%). Percentage AMS released after 2 h (Q2hr%) and 8 h (Q8hr%) were chosen as dependent variables. Two acidic pH modifiers (fumaric acid and tartaric acid) at two levels (15% and 30%) were incorporated in the tablet according to 22 factorial design. All formulae with acidic pH modifier had similarity factor (f2) ≥ 50 proving the pH independent release of AMS. The pharmacokinetic study in rabbits revealed 30% enhancement of the oral absorption AMS imparted by the pH-modified matrix tablet containing Labrasol. Graphical abstract.
Collapse
Affiliation(s)
- Nihal Farid Younes
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| | - Abd El-Halim I El Assasy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| | - Amal I A Makhlouf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| |
Collapse
|
34
|
Lian Q, Liu H, Zheng X, Jia D, Liu C, Wang D. Synthesis of polyacrylonitrile nanoflowers and their controlled pH-sensitive drug release behavior. RSC Adv 2020; 10:15715-15725. [PMID: 35493646 PMCID: PMC9052436 DOI: 10.1039/d0ra01427c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
A novel controlled drug release system based on pH sensitive polyacrylonitrile (PAN) nanoflowers in different kinds of solvents was successfully prepared with azobisisobutyronitrile (AIBN) as the initiator and without any emulsifier or stabilizer by a one step static polymerization method. The composition and structure of the PAN nanoflowers were analyzed by FTIR, XRD, SEM, TEM, and laser particle size analysis. The polymer particles consisted of a number of lamellae, with a sheet thickness of about 10 nm, and were similar to the shape of flowers with a particle diameter of about 350 nm. The mechanism of the polymerization reaction and the formation were studied. Moreover, the effects of monomer ratio, initiator concentration, reaction time, dispersion medium and co-monomer on the morphology and particle size of the nanoflowers were also discussed. A relatively large specific surface area was formed during the formation of the nanoflowers, which favored drug adsorption. The results of the in vitro experiments revealed that PAN(TBP) nanoflowers, containing BSA in buffer solution of pH 7.4, demonstrated good sustained-release and the cumulative release rate was about 83% after 260 h. The results also showed that the sustained-release from the PAN(TBP) nanoflowers best fitted the Riger-Peppas model. This study indicated that PAN(TBP) nanoflowers provided a theoretical base for the development of carriers for sustainable drug-release. The schematic preparation of a new kind of pH-sensitive PAN nanoflower and its potential application for UC therapy. PAN (TBP) nanoflowers at pH 7.4 showed good sustained-release (t83% = 260 h), which best fitted the Riger–Peppas model.![]()
Collapse
Affiliation(s)
- Qi Lian
- College of Chemical Engineering
- Hebei Normal University of Science and Technology
- Qinhuangdao 066004
- P. R. China
| | - Han Liu
- College of Chemical Engineering
- Hebei Normal University of Science and Technology
- Qinhuangdao 066004
- P. R. China
| | - Xuefang Zheng
- College of Chemical Engineering
- Hebei Normal University of Science and Technology
- Qinhuangdao 066004
- P. R. China
- School of Chemical Engineering and Technology
| | - Dandan Jia
- College of Chemical Engineering
- Hebei Normal University of Science and Technology
- Qinhuangdao 066004
- P. R. China
| | - Chun Liu
- College of Chemical Engineering
- Hebei Normal University of Science and Technology
- Qinhuangdao 066004
- P. R. China
| | - Dongjun Wang
- College of Chemical Engineering
- Hebei Normal University of Science and Technology
- Qinhuangdao 066004
- P. R. China
- Analysis and Testing Center
| |
Collapse
|
35
|
Quadrado RF, Fajardo AR. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Micelles modified with a chitosan-derived homing peptide for targeted intracellular delivery of ginsenoside compound K to liver cancer cells. Carbohydr Polym 2019; 230:115576. [PMID: 31887962 DOI: 10.1016/j.carbpol.2019.115576] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022]
Abstract
Ginsenoside compound K (CK), a major metabolite of protopanaxadiol ginsenosides, exhibits significant anticancer activities against various cancer cells. However, CK has poor water solubility and low bioavailability, which have limited its application. In this study, A54 peptide was utilized to fabricate CK-loaded micelles (APD-CK) for liver targeting, using deoxycholic acid-O-carboxymethyl chitosan as the vehicle. The average particle size of APD-CK micelles was about 171.4 nm by dynamic light scattering in the hydrated state and their morphology were spherical with good dispersion. An in vitro release assay indicated pH-responsive and sustained release behavior through a mechanism of non-Fickian diffusion. Moreover, the in vitro cytotoxicity of the APD-CK micelles against HepG2 and Huh-7 cells was significantly stronger than that of CK up to 20 μg/mL. Enhanced cellular uptake of micelles in both cell types was established using confocal fluorescence scanning microscopy and flow cytometry. In addition, western blot analysis revealed that APD-CK micelles could promote the protein expression levels of caspase-3, caspase-9, and poly (ADP-ribose) polymerase. Therefore, APD-CK micelles are a potential vehicle for delivering hydrophobic drugs in liver cancer therapy, enhancing drug targeting and anticancer activity.
Collapse
|
37
|
Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine. Carbohydr Polym 2019; 229:115423. [PMID: 31826462 DOI: 10.1016/j.carbpol.2019.115423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/19/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022]
Abstract
Chitosan (CS) and its water-soluble derivatives, hydroxypropyltrimethyl ammonium chloride chitosan (HACC) and sulfated chitosan (SCS), were used as adjuvants of inactivated Newcastle disease (ND) vaccine. First, NDV-loaded and blank CS, HACC/CS and SCS nanoparticles were prepared. The particle sizes were respectively 343.43 ± 4.12, 320.03 ± 0.84, 156.2 ± 9.29 nm and the zeta potentials were respectively +19.67 ± 0.58, +18.3 ± 0.5, -17.8 ± 2.65 mV under the optimal conditions. Then chickens were immunized with nanoparticles or commercial inactivated oil emulsion vaccine. After immunization, the humoral immunity levels of the chickens were evaluated. The cellular immunity levels were determined by the quantification of cytokines, lymphocyte proliferation assay, the percentages of CD4+ and CD8+ T lymphocytes. Finally, the chickens were challenged with highly virulent virus. The results demonstrated that the humoral immunity levels in NDV-loaded CS and HACC/CS nanoparticles groups were lower than commercial vaccine but the cellular immunity levels are better. Moreover, the prevention effects of NDV-loaded CS and HACC/CS nanoparticles against highly virulent NDV are comparable to commercial vaccine. Our study provides the basis of developing HACC and CS as effective vaccine adjuvants.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
38
|
Niaz T, Ihsan A, Abbasi R, Shabbir S, Noor T, Imran M. Chitosan-albumin based core shell-corona nano-antimicrobials to eradicate resistant gastric pathogen. Int J Biol Macromol 2019; 138:1006-1018. [DOI: 10.1016/j.ijbiomac.2019.07.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
|
39
|
Shagholani H, Ghoreishi SM, Rahmatolahzadeh R. Influence of Cross-linking Agents on Drug Delivery Behavior of Magnetic Nanohydrogels Made of Polyvinyl Alcohol and Chitosan. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00666-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Cao XY, Liu D, Bi RC, He YL, He Y, Liu JL. The protective effects of a novel polysaccharide from Lentinus edodes mycelia on islet β (INS-1) cells damaged by glucose and its transportation mechanism with human serum albumin. Int J Biol Macromol 2019; 134:344-353. [DOI: 10.1016/j.ijbiomac.2019.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
|
41
|
Liu D, Yuan J, Li J, Zhang G. Preparation of Chitosan Poly(methacrylate) Composites for Adsorption of Bromocresol Green. ACS OMEGA 2019; 4:12680-12686. [PMID: 31460389 PMCID: PMC6682069 DOI: 10.1021/acsomega.9b01576] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/11/2019] [Indexed: 05/03/2023]
Abstract
In the present study, chitosan poly(methacrylate) composites were prepared and applied for adsorption of bromocresol green from aqueous solutions. The synthesized composites were characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The bromocresol green removal by the developed adsorbent was investigated, and the effects of experimental parameters, including sample pH and adsorption time, were also examined. Furthermore, the adsorption characteristics of the synthesized adsorbent, including kinetics, adsorption isotherms, and thermodynamics, were comprehensively studied. The adsorption isotherm was well described by the Freundlich model, and the maximum adsorption capacity was 39.84 μg mg-1 by shaking for 40 min at pH 2.0. Bromocresol green adsorption kinetics followed a pseudo-second-order kinetic model, indicating that adsorption was the rate-limiting step. Thermodynamic parameters and the negative values of Gibbs free energy change (ΔG°) showed that adsorption was a spontaneous process. The positive values of entropy change (ΔS°) implied that the adsorption of bromocresol green on chitosan poly(methacrylate) composites was an increasing random process. In addition, enthalpy change (ΔH°) values were positive, suggesting that the adsorption of bromocresol green was endothermic. The adsorption percentage of bromocresol green with chitosan poly(methacrylate) composites remained above 97% after three times of recycling test.
Collapse
|
42
|
Long J, Etxeberria AE, Kornelsen C, Nand AV, Ray S, Bunt CR, Seyfoddin A. Development of a Long-Term Drug Delivery System with Levonorgestrel-Loaded Chitosan Microspheres Embedded in Poly(vinyl alcohol) Hydrogel. ACS APPLIED BIO MATERIALS 2019; 2:2766-2779. [DOI: 10.1021/acsabm.9b00190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingjunjiao Long
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Alaitz Etxabide Etxeberria
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, BIOMAT Research Group, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 48080, Spain
| | - Caroline Kornelsen
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Ashveen V. Nand
- Health and Community, and Environmental and Animal Sciences Network, Unitec Institute of Technology, Auckland 1142, New Zealand
| | - Sudip Ray
- MBIE Biocide Toolbox and NZProduct Accelerator Programmes, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Craig R. Bunt
- Department of Agricultural Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury 7647, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
43
|
Wang A, Zhu Q, Xing Z. Design and synthesis of a calcium modified quaternized chitosan hollow sphere for efficient adsorption of SDBS. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:342-352. [PMID: 30784964 DOI: 10.1016/j.jhazmat.2019.02.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
In this study, a new pleated hollow sphere material (CS@Ca@CTA) was prepared by mixing chitosan (CS) and calcium chloride (CaCl2) in acetic acid solutions followed by crosslinking with glutaraldehyde (GA), and quaternized using (3-chloro-2 hydroxypropyl) trimethylammonium chloride (CTA). The natural biopolymer chitosan (CS) was used to prepare an environmentally friendly adsorbent material which can efficiently adsorb sodium dodecylbenzene sulfonate (SDBS). The adsorption of SDBS on CS@Ca@CTA can be efficiently improved by CTA at different pH values and Ca can promote the precipitation. The adsorption process of SDBS is as follows. First, SDBS can be adsorbed by electrostatic attraction and Cl- of CTA is used to ion exchange DBS- of SDBS. Then DBS- can bind stably with the Ca2+ in a bidentate form. Furthermore, CS contains NH2 and OH groups, which can provide enormous vacant active sites to adsorb SDBS, and a pleated surface have an ability to capture SDBS. The results indicated that the saturated adsorption capacity of CS@Ca@CTA up to 2300 mg g-1 at pH 3.0 within 240 min. Additionally, adsorption kinetics, isotherm and thermodynamic parameters were discussed. The aim of this article is to present CS@Ca@CTA, which has a great effect on adsorbing the SDBS.
Collapse
Affiliation(s)
- Aiwen Wang
- School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, Harbin, 150080, China
| | - Qi Zhu
- School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, Harbin, 150080, China.
| | - Zipeng Xing
- School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, Harbin, 150080, China.
| |
Collapse
|
44
|
Raju D, Jose J. Development and evaluation of novel topical gel of neem extract for the treatment of bacterial infections. J Cosmet Dermatol 2019; 18:1776-1783. [DOI: 10.1111/jocd.12965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/20/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Dhidhin Raju
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences NITTE Deemed to be University Mangalore India
| | - Jobin Jose
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences NITTE Deemed to be University Mangalore India
| |
Collapse
|
45
|
Silva GF, Silva TG, Gobbi VG, Portela TL, Teixeira BN, Santos Mendonça T, Silva Moreira Thiré RM, Oliveira RN, Yaunner RS, Almeida Rodrigues Junior J, Mendonça RH. Swelling degree prediction of polyhydroxybutyrate/chitosan matrices loaded with “
Arnica‐do‐Brasil”. J Appl Polym Sci 2019. [DOI: 10.1002/app.47838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Glauco Fonseca Silva
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Talita Goulart Silva
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Vinícius Guedes Gobbi
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Theresa Lomeu Portela
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Bruna Nunes Teixeira
- PEMM/COPPEUniversidade Federal do Rio de Janeiro Ilha do Fundão, PO Box 68505, 21941‐972, Rio de Janeiro RJ Brazil
| | - Tiago Santos Mendonça
- Departamento de Física Teórica ‐ Instituto de Física A. D. TavaresUniversidade do Estado do Rio de Janeiro R. São Francisco Xavier, 524. Rio de Janeiro RJ 20550‐013 Brazil
| | | | - Renata Nunes Oliveira
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Ricardo Stutz Yaunner
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Federal do Rio de Janeiro (UFRJ). Pólo de Xistoquímica, Rua Hélio de Almeida 40, Cidade Universitária Rio de Janeiro RJ 21941‐614 Brazil
| | - Jorge Almeida Rodrigues Junior
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Federal do Rio de Janeiro (UFRJ). Pólo de Xistoquímica, Rua Hélio de Almeida 40, Cidade Universitária Rio de Janeiro RJ 21941‐614 Brazil
| | - Roberta Helena Mendonça
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| |
Collapse
|
46
|
Wang Y, Wang Y, Luo Q, Zhang H, Cao J. Molecular characterization of the effects of Ganoderma Lucidum polysaccharides on the structure and activity of bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:538-546. [PMID: 30179797 DOI: 10.1016/j.saa.2018.08.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
The investigation about polysaccharides-protein system is attributed to numerous very important applications for pharmaceutical, food, chemical and other industries. In the present work, multi-spectral methods and molecular docking were used to analyze the molecular interactions of polysaccharides from Ganoderma Lucidum (GLP) with bovine serum albumin (BSA). The nonenzymatic glucosylation, fibrillation, thermal stability, and structure information of GLP-BSA system were also studied. The results showed that the formation of GLP-BSA complex by mainly hydrogen-bonding forces resulted in the conformational changes of protein. GLP acted as a stabilizer to increase the thermal stability of BSA solution having a novel and more stable conformational state during the thermal denaturation process. 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence spectral results suggested that there exist some intermediate state which has low binding ability with ANS in the presence of GLP. The presence of GLP caused a decrease in the formation of beta sheet structures with a lower rate. The fluorescence spectra of BSA glycosylated by GLP confirmed the formation of covalent bonds between BSA and GLP through the Maillard reaction which was also confirmed by using thermogravimetric (TGA) and Fourier transform infrared (FTIR) analysis. In addition, BSA still maintains the esterase-like good activity in the presence of GLP. These results provide a basis for screening the molecular interactions of polysaccharides with protein from the perspective of important food active ingredients.
Collapse
Affiliation(s)
- Yanqing Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China; Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China.
| | - Ying Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China
| | - Qiang Luo
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China
| | - Hongmei Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China; Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China.
| | - Jian Cao
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China.
| |
Collapse
|
47
|
Wang W, Hao X, Chen S, Yang Z, Wang C, Yan R, Zhang X, Liu H, Shao Q, Guo Z. pH-responsive Capsaicin@chitosan nanocapsules for antibiofouling in marine applications. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.067] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Ghalayani Esfahani A, Lazazzera B, Draghi L, Farè S, Chiesa R, De Nardo L, Billi F. Bactericidal activity of gallium-doped chitosan coatings against staphylococcal infection. J Appl Microbiol 2018; 126:87-101. [DOI: 10.1111/jam.14133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 01/22/2023]
Affiliation(s)
- A. Ghalayani Esfahani
- Department of Orthopaedic Surgery; University of California, Los Angeles (UCLA); Los Angeles CA USA
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - B. Lazazzera
- Microbiology, Immunology, and Molecular Genetics Department; University of California, Los Angeles (UCLA); Los Angeles CA USA
| | - L. Draghi
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - S. Farè
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - R. Chiesa
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - L. De Nardo
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’; Politecnico di Milano; Milan Italy
| | - F. Billi
- Department of Orthopaedic Surgery; University of California, Los Angeles (UCLA); Los Angeles CA USA
| |
Collapse
|
49
|
Chen KY, Zeng SY. Fabrication of Quaternized Chitosan Nanoparticles Using Tripolyphosphate/Genipin Dual Cross-Linkers as a Protein Delivery System. Polymers (Basel) 2018; 10:E1226. [PMID: 30961151 PMCID: PMC6290633 DOI: 10.3390/polym10111226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
Various amounts of 2-((acryloyloxy)ethyl)trimethylammonium chloride were grafted onto chitosan (CS) via redox polymerization method to obtain water-soluble quaternized CS (QCS). The QCS nanoparticles loaded with bovine serum albumin (BSA) were then produced by ionic gelation with tripolyphosphate (TPP) and further covalently cross-linked with genipin. The formation of QCS nanoparticles was optimized as a function of monomer grafting yield, QCS/TPP weight ratio, and QCS/genipin weight ratio by Box-Behnken design and response surface methodology. The results showed that QCS nanoparticles prepared with a grafting yield of 50%, QCS/TPP weight ratio of 7.67, and QCS/genipin weight ratio of 60 had a particle size of 193.68 ± 44.92 nm, polydispersity of 0.232, zeta potential of +23.97 mV and BSA encapsulation efficiency of 46.37 ± 2.89%, which were close to the predicted values from mathematical models. In vitro drug release studies at pH 1.2 and pH 7.4 exhibited that the release rate of BSA was significantly decreased and the release period was significantly prolonged after QCS nanoparticles cross-linking with genipin. Therefore, QCS nanoparticles cross-linked with TPP/genipin dual cross-linkers may be a promising protein drug carrier for a prolonged and sustained delivery.
Collapse
Affiliation(s)
- Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Si-Ying Zeng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| |
Collapse
|
50
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr Polym 2018; 199:445-460. [DOI: 10.1016/j.carbpol.2018.06.114] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
|