1
|
Eshun G, Osonga FJ, Sadik OA. Quercetin-Derived Platinum Nanomaterials Influence Particle Stability, Catalytic, and Antimicrobial Performance. ACS OMEGA 2024; 9:38557-38568. [PMID: 39310166 PMCID: PMC11411542 DOI: 10.1021/acsomega.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024]
Abstract
Quercetin possesses high biological properties but low bioavailability, poor solubility, and rapid body clearance. Its structural modification is imperative for enhanced applications. Herein, we demonstrate the catalytic and antimicrobial characteristics of shape-dependent (cuboidal and peanuts) platinum nanoparticles. Modified quercetin, 4'-QP, was employed as the reducing and stabilizing agent for the aqueous synthesis of PtNPs without extraneous reagents. Monodispersed platinum nanocubes (C-PtNPs) and nanopeanuts (P-PtNPs) were produced by reacting 4'-QP and Pt ions in the ratios of 3:1 and 1:1, respectively. TEM characterization confirmed the formation of Pt nanocubes and Pt nanopeanuts, with their corresponding sizes of 39.1 ± 0.20 and 45.1 ± 0.24 nm. The shape-dependency of PtNPs on the nosocomial-causing bacteria, Citrobacter freundii ATCC 8090 (C. freundii) was determined by the Agar well-diffusion assay. Under the same particle size and dose treatments, C-PtNPs and P-PtNPs exhibited 16.28 ± 0.10 and 4.50 ± 0.15 mm zones of inhibition with minimum inhibitory concentrations of 25 and 45 μg/mL, respectively. SEM analysis of C-PtNPs treated C. freundii showed a damaged cell membrane and confirmed contact-killing as the antibacterial mechanism. The catalytic conversion of 4-nitrophenol (4-NP) to 4-amino phenol (4-AP) was tested using a shape-dependent PtNPs catalyst in the presence of sodium borohydride. The conversion rates (k) of C-PtNPs and P-PtNPs in wastewater samples from New Jersey were 0.0108 and 0.00607 s-1, respectively.
Collapse
Affiliation(s)
- Gaddi
B. Eshun
- Department of Chemistry and Environmental
Science BioSMART Center, New Jersey Institute
of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States
| | - Francis J. Osonga
- Department of Chemistry and Environmental
Science BioSMART Center, New Jersey Institute
of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States
| | - Omowunmi A. Sadik
- Department of Chemistry and Environmental
Science BioSMART Center, New Jersey Institute
of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Barathi S, Ramalingam S, Krishnasamy G, Lee J. Exploring the Biomedical Frontiers of Plant-Derived Nanoparticles: Synthesis and Biological Reactions. Pharmaceutics 2024; 16:923. [PMID: 39065620 PMCID: PMC11279729 DOI: 10.3390/pharmaceutics16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
As contemporary technology advances, scientists are striving to identify new approaches to managing several diseases. Compared to the more popular physiochemical synthesis, the plant-derived combination of metallic nanoparticles using plant secondary metabolites as a precursor has a number of benefits, including low expenses, low energy consumption, biocompatibility, and medicinal usefulness. This study intends to explore the impacts of using plant-derived synthetic materials including metallic nanoparticles (NPs), emphasizing the benefits of their broad use in next-generation treatments for cancer, diabetes, Alzheimer's, and vector diseases. This comprehensive analysis investigates the potential of plant-derived remedies for diseases and looks at cutting-edge nanoformulation techniques aimed at addressing the function of the nanoparticles that accompany these organic substances. The purpose of the current review is to determine how plant extracts contribute to the synthesis of Silver nanoparticles (AgNPs), Gold nanoparticles (GtNPs), and platinum nanoparticles (PtNPs). It provides an overview of the many phytocompounds and their functions in biomedicine, including antibacterial, antioxidant, anticancer, and anti-inflammatory properties. Furthermore, this study placed a special focus on a range of applications, including drug delivery systems, diagnostics and therapy, the present benefits of nanoparticles (NPs), their biomedical uses in medical technology, and their toxicities.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Srinivasan Ramalingam
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Huang G, Wang M, Liu Q, Zhao S, Liu H, Liu F, Liu J. Efficient removal of tetracycline in water using modified eggplant straw biochar supported green nanoscale zerovalent iron: synthesis, removal performance, and mechanism. RSC Adv 2024; 14:3567-3577. [PMID: 38259987 PMCID: PMC10802144 DOI: 10.1039/d3ra08417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
A novel NaOH modified eggplant straw biochar supported green nanoscale zerovalent iron (P-nZVI/ESBC) composite was synthesized and its removal performance and reaction mechanism for tetracycline (TC) in water were investigated. Multiple characterizations showed that the prepared P-nZVI/ESBC composite contained oxygen-containing functional groups (hydroxyl, carbonyl, and carboxyl groups) and Fe species (nZVI and its oxides). The dosage of composite, temperature, and solution pH significantly affected the removal capacity of the P-nZVI/ESBC composite for TC. The Avrami fraction-order kinetic model and Sips adsorption isotherm model can fit well the removal process of TC by the P-nZVI/ESBC composite, indicating that the adsorption behavior of TC involved multiple adsorption mechanisms and chemical adsorption might occur. The maximum adsorption capacity of the P-nZVI/ESBC composite for TC was 304.62 mg g-1. The adsorption and reductive degradation were the dominant mechanisms of TC removal by the P-nZVI/ESBC composite. This work offers abundant information on the application of eggplant straw to manufacture biochar-based composites for the efficient removal of antibiotic contaminants from aquatic environments.
Collapse
Affiliation(s)
- Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Mianmian Wang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Qing Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Shasha Zhao
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Haijian Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse Weifang 262700 China
| | - Fangfang Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
| | - Jun Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology Weifang 262700 China
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources Weifang 262700 China
| |
Collapse
|
4
|
Kaur N. An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: A review. Talanta 2024; 267:125114. [PMID: 37683321 DOI: 10.1016/j.talanta.2023.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The burning of an agro waste residue causes air pollution, global warming and lethal effects. To overcome these obstacles, the transformation of agro waste into nanoparticles (NPs) reduces industrial expenses and amplifies environmental sustainability. The concept of green nanotechnology is considered as a versatile tool for the development of valuable products. Although a plethora of literature on the NPs is available, but, still scientists are exploring to design more novel particles possessing unique shape and properties. So, this review basically summarises about the synthesis, characterizations, advantages and outcomes of the various agro waste derived NPs.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India.
| |
Collapse
|
5
|
Huang G, Wang M, Sun X, Liu H, Liu F. Convenient green synthesis of Cu/Fe nanoparticles using pomegranate peel extracts and their performance for tetrabromobisphenol A removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80817-80827. [PMID: 37306878 DOI: 10.1007/s11356-023-28165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
In this work, pomegranate peel extracts were used as the green reducing agent to synthesize Cu/Fe nanoparticles (P-Cu/Fe nanoparticles) and removed tetrabromobisphenol A (TBBPA) in aqueous solution. P-Cu/Fe nanoparticles were amorphous and irregularly spherical. The surfaces of nanoparticles contained Fe0, Fe3+ oxides (hydroxides), and Cu0. The bioactive molecules from pomegranate peel were extremely important for the synthesis of nanoparticles. P-Cu/Fe nanoparticles had excellent removal performance for TBBPA, and 98.6% of TBBPA (5 mg L-1) was removed within 60 min. The removal reaction of TBBPA by P-Cu/Fe nanoparticles was well-fitted with the pseudo-first-order kinetic model. The Cu loading was critical for TBBPA removal with an optimum value of 1.0 wt%. A weakly acidic condition (pH 5) was more favorable for the removal of TBBPA. The removal efficiency of TBBPA increased with the rise of temperature and decreased with increasing initial TBBPA concentration. The activation energy (Ea) was 54.09 kJ mol-1, indicating that the removal of TBBPA by P-Cu/Fe nanoparticles was mainly surface-controlled. Reductive degradation was the main mechanism of TBBPA removal by P-Cu/Fe nanoparticles. In conclusion, green synthesized P-Cu/Fe nanoparticles using pomegranate peel waste show great potential for the remediation of TBBPA in aqueous solution.
Collapse
Affiliation(s)
- Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang, 262700, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang, 262700, China.
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang, 262700, China.
| | - Mianmian Wang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang, 262700, China
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang, 262700, China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang, 262700, China
| | - Xinying Sun
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang, 262700, China
| | - Haijian Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang, 262700, China
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang, 262700, China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang, 262700, China
| | - Fangfang Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang, 262700, China
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang, 262700, China
- Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang, 262700, China
| |
Collapse
|
6
|
Demishkevich E, Zyubin A, Seteikin A, Samusev I, Park I, Hwangbo CK, Choi EH, Lee GJ. Synthesis Methods and Optical Sensing Applications of Plasmonic Metal Nanoparticles Made from Rhodium, Platinum, Gold, or Silver. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3342. [PMID: 37176223 PMCID: PMC10180225 DOI: 10.3390/ma16093342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The purpose of this paper is to provide an in-depth review of plasmonic metal nanoparticles made from rhodium, platinum, gold, or silver. We describe fundamental concepts, synthesis methods, and optical sensing applications of these nanoparticles. Plasmonic metal nanoparticles have received a lot of interest due to various applications, such as optical sensors, single-molecule detection, single-cell detection, pathogen detection, environmental contaminant monitoring, cancer diagnostics, biomedicine, and food and health safety monitoring. They provide a promising platform for highly sensitive detection of various analytes. Due to strongly localized optical fields in the hot-spot region near metal nanoparticles, they have the potential for plasmon-enhanced optical sensing applications, including metal-enhanced fluorescence (MEF), surface-enhanced Raman scattering (SERS), and biomedical imaging. We explain the plasmonic enhancement through electromagnetic theory and confirm it with finite-difference time-domain numerical simulations. Moreover, we examine how the localized surface plasmon resonance effects of gold and silver nanoparticles have been utilized for the detection and biosensing of various analytes. Specifically, we discuss the syntheses and applications of rhodium and platinum nanoparticles for the UV plasmonics such as UV-MEF and UV-SERS. Finally, we provide an overview of chemical, physical, and green methods for synthesizing these nanoparticles. We hope that this paper will promote further interest in the optical sensing applications of plasmonic metal nanoparticles in the UV and visible ranges.
Collapse
Affiliation(s)
- Elizaveta Demishkevich
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Andrey Zyubin
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Alexey Seteikin
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Department of Physics, Amur State University, 675021 Blagoveshchensk, Russia
| | - Ilia Samusev
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Inkyu Park
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Chang Kwon Hwangbo
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Geon Joon Lee
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
7
|
Mikhailova EO. Green Synthesis of Platinum Nanoparticles for Biomedical Applications. J Funct Biomater 2022; 13:260. [PMID: 36412901 PMCID: PMC9680517 DOI: 10.3390/jfb13040260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The diverse biological properties of platinum nanoparticles (PtNPs) make them ideal for use in the development of new tools in therapy, diagnostics, and other biomedical purposes. "Green" PtNPs synthesis is of great interest as it is eco-friendly, less energy-consuming and minimizes the amount of toxic by-products. This review is devoted to the biosynthesis properties of platinum nanoparticles based on living organisms (bacteria, fungi, algae, and plants) use. The participation of various biological compounds in PtNPs synthesis is highlighted. The biological activities of "green" platinum nanoparticles (antimicrobial, anticancer, antioxidant, etc.), the proposed mechanisms of influence on target cells and the potential for their further biomedical application are discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
8
|
Jiang Y, Zhou P, Zhang P, Adeel M, Shakoor N, Li Y, Li M, Guo M, Zhao W, Lou B, Wang L, Lynch I, Rui Y. Green synthesis of metal-based nanoparticles for sustainable agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119755. [PMID: 35839973 DOI: 10.1016/j.envpol.2022.119755] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 05/22/2023]
Abstract
The large-scale use of conventional pesticides and fertilizers has put tremendous pressure on agriculture and the environment. In recent years, nanoparticles (NPs) have become the focus of many fields due to their cost-effectiveness, environmental friendliness and high performance, especially in sustainable agriculture. Traditional NPs manufacturing methods are energy-intensive and harmful to environment. In contrast, synthesizing metal-based NPs using plants is similar to chemical synthesis, except the biological extracts replace the chemical reducing agent. This not only greatly reduces the used of traditional chemicals, but also produces NPs that are more economical, efficient, less toxic, and less polluting. Therefore, green synthesized metal nanoparticles (GS-MNPs) are widely used in agriculture to improve yields and quality. This review provides a comprehensive and detailed discussion of GS-MNPs for agriculture, highlights the importance of green synthesis, compares the performance of conventional NPs with GS-MNPs, and highlights the advantages of GS-MNPs in agriculture. The wide applications of these GS-MNPs in agriculture, including plant growth promotion, plant disease control, and heavy metal stress mitigation under various exposure pathways, are summarized. Finally, the shortcomings and prospects of GS-MNPs in agricultural applications are highlighted to provide guidance to nanotechnology for sustainable agriculture.
Collapse
Affiliation(s)
- Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Manlin Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Benzhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; China Agricultural University Professor's Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China; China Agricultural University Professor's Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
9
|
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Hosny M, Fawzy M, El-Fakharany EM, Omer AM, El-Monaem EMA, Khalifa RE, Eltaweil AS. Biogenic synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:106806. [DOI: 10.1016/j.jece.2021.106806] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
|
11
|
Pushparaj K, Liu WC, Meyyazhagan A, Orlacchio A, Pappusamy M, Vadivalagan C, Robert AA, Arumugam VA, Kamyab H, Klemeš JJ, Khademi T, Mesbah M, Chelliapan S, Balasubramanian B. Nano- from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. ENERGY 2022; 240:122732. [DOI: 10.1016/j.energy.2021.122732] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
|
12
|
|
13
|
Abstract
Metal nanoparticles (MNPs) have been widely used in several fields including catalysis, bioengineering, photoelectricity, antibacterial, anticancer, and medical imaging due to their unique physical and chemical properties. In the traditional synthesis method of MNPs, toxic chemicals are generally used as reducing agents and stabilizing agents, which is fussy to operate and extremely environment unfriendly. Based on this, the development of an environment-friendly synthesis method of MNPs has recently attracted great attention. The use of plant extracts as reductants and stabilizers to synthesize MNPs has the advantages of low cost, environmental friendliness, sustainability, and ease of operation. Besides, the as-synthesized MNPs are nontoxic, more stable, and more uniform in size than the counterparts prepared by the traditional method. Thus, green preparation methods have become a research hotspot in the field of MNPs synthesis. In this review, recent advances in green synthesis of MNPs using plant extracts as reductants and stabilizers have been systematically summarized. In addition, the insights into the potential applications and future development for MNPs prepared by using plant extracts have been provided.
Collapse
|
14
|
A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Ishak NAIM, Kamarudin SK, Timmiati SN, Karim NA, Basri S. Biogenic platinum from agricultural wastes extract for improved methanol oxidation reaction in direct methanol fuel cell. J Adv Res 2020; 28:63-75. [PMID: 33364046 PMCID: PMC7753966 DOI: 10.1016/j.jare.2020.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022] Open
Abstract
Platinum is the most commonly used catalyst in fuel cell application. However, platinum is very expensive, thus limits the commercialisation of fuel cell system due to the cost factor. This study introduces a biosynthesis platinum from plant extracts that can reduce the cost of platinum production compared to the conventional method and the hazardous during the production of the catalyst. The biogenic platinum was tested on a Direct Methanol Fuel Cell. Advanced biogenic of Pt nano-cluster was synthesized through a novel and facile of one-pot synthesis bio-reduction derived from natural source in the form of plant extracts as reducing agent. Several selected plant extracts drawn from agricultural waste such as banana peel, pineapple peels and sugarcane bagasse extracts were comparatively evaluated on the ability of phytochemical sources of polyphenols rich for the development of single-step synthesis for Pt NPs. Notably, the biogenic Pt NPs from sugar cane bagasse has superior electro-catalytic activity, the enhanced utilization efficiency of Pt and appreciable stability towards methanol oxidation reaction, whose ECSA value approximates 94.58 m2g−1, mass activity/specific activity (398.20 mAmg−1/0.8471 mA/cm2Pt) which greater than commercial Pt black (158.12 mAmg−1/1.41 mA/cm2Pt).
Collapse
Affiliation(s)
- N A I M Ishak
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - S K Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - S N Timmiati
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - N A Karim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - S Basri
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
16
|
Cui Y, Lai X, Liang B, Liang Y, Sun H, Wang L. Polyethyleneimine-Stabilized Platinum Nanoparticles as Peroxidase Mimic for Colorimetric Detection of Glucose. ACS OMEGA 2020; 5:6800-6808. [PMID: 32258915 PMCID: PMC7114613 DOI: 10.1021/acsomega.0c00147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/12/2020] [Indexed: 05/29/2023]
Abstract
Colorimetric detection of glucose using enzyme-mimic nanoparticles (NPs) has been drawing great attention. However, many NPs lack good stability in solution, which results in reduced color change of substrates in colorimetric detection. Liner soluble macromolecules with high cationic density may be suitable candidates for the stabilization of NPs. Herein, we prepared polyethyleneimine-stabilized platinum NPs (Pt n -PEI NPs) for colorimetric detection of glucose. The platinum NPs (Pt NPs) used in this system had small size (from 3.21 to 3.70 nm) and narrow size distribution. Pt50-PEI NPs had high stability within one week with a hydrodynamic size of ∼25 nm and slightly positive zeta potential. Pt50-PEI NPs-catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, generating blue oxidized TMB (oxTMB), which indicated the peroxidase-like property of Pt50-PEI NPs. The optimal condition for this reaction was pH = 4.0 at 30 °C. More importantly, Pt50-PEI NPs were successfully used to detect glucose concentration by a colorimetric method with high selectivity. The established method had a linear concentration range from 10 to 5000 μM with a detection limit of 4.2 μM. For example, the concentration of glucose in saliva was tested to be 0.15 mM using our method. The high stability of Pt50-PEI NPs enhanced the high accessibility of the active center of Pt NPs for substrates and consequent excellent catalytic property. This established method has great potential to be used in various applications for glucose detection in the future.
Collapse
Affiliation(s)
- Yanshuai Cui
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiang Lai
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Bo Liang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ying Liang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
17
|
Remediation of azo-dyes based toxicity by agro-waste cotton boll peels mediated palladium nanoparticles. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2019.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1719. [PMID: 31810256 PMCID: PMC6956027 DOI: 10.3390/nano9121719] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
Platinum nanoparticles (PtNPs) are noteworthy scientific tools that are being explored in various biotechnological, nanomedicinal, and pharmacological fields. They are unique because of their large surface area and their numerous catalytic applications such as their use in automotive catalytic converters and as petrochemical cracking catalysts. PtNPs have been widely utilized not only in the industry, but also in medicine and diagnostics. PtNPs are extensively studied because of their antimicrobial, antioxidant, and anticancer properties. So far, only one review has been dedicated to the application of PtNPs to nanomedicine. However, no studies describe the synthesis, characterization, and biomedical application of PtNPs. Therefore, the aim of this review is to provide a comprehensive assessment of the current knowledge regarding the synthesis, including physical, chemical, and biological and toxicological effects of PtNPs on human health, in terms of both in vivo and in vitro experimental analysis. Special attention has been focused on the biological synthesis of PtNPs using various templates as reducing and stabilizing agents. Finally, we discuss the biomedical and other applications of PtNPs.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea; (M.J.); (S.G.); (M.Q.); (M.-H.K.)
| |
Collapse
|
19
|
Kora AJ. Multifaceted activities of plant gum synthesised platinum nanoparticles: catalytic, peroxidase, PCR enhancing and antioxidant activities. IET Nanobiotechnol 2019; 13:602-608. [PMID: 31432793 PMCID: PMC8676073 DOI: 10.1049/iet-nbt.2018.5407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/27/2019] [Accepted: 05/10/2019] [Indexed: 11/07/2023] Open
Abstract
A single pot, green method for platinum nanoparticles (Pt NP) production was devised with gum ghatti (Anogeissus latifolia). Analytical tools: ultraviolet-visible (UV-vis), dynamic light scattering, zeta potential, transmission electron microscope, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy were employed. Wide continuous UV-vis absorption and black solution colouration proved Pt NP formation. Face-centred cubic crystalline structure of NP was evidenced from XRD. NPs formed were nearly spherical with a mean particle size of 3 nm. NP demonstrated a myriad of properties including catalytic, peroxidase, polymerase chain reaction (PCR) enhancing and antioxidant activities. Catalytic action of NP was probed via NaBH4 reduction of arsenazo-III dye. NP displayed considerable peroxidase activity via catalysis of 3, 3', 5, 5'-tetramethylbenzidine oxidation by H2O2. NP showed exceptional stability towards varying pH (3-11), temperature (25-100°C), salt concentration (0-100 mM) and storage time duration (0-12 months). In comparison with horse radish peroxidase, its applicability as an artificial peroxidase is advantageous. NP caused a two-fold enhancement in PCR yield at 0.4 nM. Also showed significant 1', 1' diphenyl picryl-hydrazyle scavenging (80.1%) at 15 µg/mL. Author envisages that the biogenic Pt NP can be used in a range of biological and environmental applications.
Collapse
Affiliation(s)
- Aruna Jyothi Kora
- National Centre for Compositional Characterisation of Materials (NCCCM), Bhabha Atomic Research Centre, ECIL PO, Hyderabad - 500 062, Telangana, India.
| |
Collapse
|
20
|
Fang C, Ma Z, Chen L, Li H, Jiang C, Zhang W. Biosynthesis of gold nanoparticles, characterization and their loading with zonisamide as a novel drug delivery system for the treatment of acute spinal cord injury. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 190:72-75. [DOI: 10.1016/j.jphotobiol.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/10/2023]
|
21
|
Kratošová G, Holišová V, Konvičková Z, Ingle AP, Gaikwad S, Škrlová K, Prokop A, Rai M, Plachá D. From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnol Adv 2018; 37:154-176. [PMID: 30481544 DOI: 10.1016/j.biotechadv.2018.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Chemical, physical and mechanical methods of nanomaterial preparation are still regarded as mainstream methods, and the scientific community continues to search for new ways of nanomaterial preparation. The major objective of this review is to highlight the advantages of using green chemistry and bionanotechnology in the preparation of functional low-cost catalysts. Bionanotechnology employs biological principles and processes connected with bio-phase participation in both design and development of nano-structures and nano-materials, and the biosynthesis of metallic nanoparticles is becoming even more popular due to; (i) economic and ecologic effectiveness, (ii) simple one-step nanoparticle formation, stabilisation and biomass support and (iii) the possibility of bio-waste valorisation. Although it is quite difficult to determine the precise mechanisms in particular biosynthesis and research is performed with some risk in all trial and error experiments, there is also the incentive of understanding the exact mechanisms involved. This enables further optimisation of bionanoparticle preparation and increases their application potential. Moreover, it is very important in bionanotechnological procedures to ensure repeatability of the methods related to the recognised reaction mechanisms. This review, therefore, summarises the current state of nanoparticle biosynthesis. It then demonstrates the application of biosynthesised metallic nanoparticles in heterogeneous catalysis by identifying the many examples where bionanocatalysts have been successfully applied in model reactions. These describe the degradation of organic dyes, the reduction of aromatic nitro compounds, dehalogenation of chlorinated aromatic compounds, reduction of Cr(VI) and the synthesis of important commercial chemicals. To ensure sustainability, it is important to focus on nanomaterials that are capable of maintaining the important green chemistry principles directly from design inception to ultimate application.
Collapse
Affiliation(s)
- Gabriela Kratošová
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic.
| | - Veronika Holišová
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| | - Zuzana Konvičková
- ENET Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| | - Avinash P Ingle
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Lorena, Brazil
| | - Swapnil Gaikwad
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Tathawade, Pune, India
| | - Kateřina Škrlová
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| | - Aleš Prokop
- Chemical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, S.G.B. Amravati University, Amravati 444602, Maharashtra, India
| | - Daniela Plachá
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic; ENET Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic
| |
Collapse
|
22
|
Wang Y, Xia R, Hu H, Peng T. Biosynthesis, characterization and cytotoxicity of gold nanoparticles and their loading with N-acetylcarnosine for cataract treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 187:180-183. [PMID: 30172104 DOI: 10.1016/j.jphotobiol.2018.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 11/26/2022]
Abstract
The present work showed the biofabrication and characterization of gold nanoparticles (Au NPs) using Coccinia grandis bark extract. The fabricated NPs were well characterized by using different microscopic an spectroscopic techniques such as transmission electron microscopy (TEM), Ultra violet - visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS) and Fourier transform spectroscopy (FTIR). TEM results showed that the prepared AuNPs are spherical in shape with uniformity in size. The calculated average size of the AuNPs is 20 nm. The NAC drug molecule that is used for cataract treatment was successfully encapsulated into Au NPs to increase its bioavailability. Also, the in-vitro cytotoxicity of NAC and NAC - Au NPs were studied against fibroblast cells, and the results showed that encapsulation of NAC into Au NPs did not showed cytotoxicity after encapsulation. NAC molecules do not exhibit toxicity at lower concentrations, While, there is a reduction in the number of viable cells at higher concentration of NAC. Also, the encapsulation of the drug onto Au NPs is considerably increased biocompatibility and bioavailability. In future, this research results may be helpful for the development of drugs for treatment of cataract with high stability and reactivity.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ophthalmology, The First People's Hospital of Wenling, Wenling 317500, Zhejiang Province, China
| | - Ruichun Xia
- Department of Ophthalmology, The People's Hospital of Jinyun County, Jinyun 321400, Zhejiang Province, China
| | - Hao Hu
- Department of Ophthalmology, The First People's Hospital of Wenling, Wenling 317500, Zhejiang Province, China.
| | - Tao Peng
- Department of Ophthalmology, The First People's Hospital of Wenling, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
23
|
Souza WDM, Rodrigues WS, Lima Filho MMS, Alves JJF, Oliveira TMBF. Heavy metals uptake on Malpighia emarginata D.C. seed fiber microparticles: Physicochemical characterization, modeling and application in landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:356-365. [PMID: 32559922 DOI: 10.1016/j.wasman.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/27/2018] [Accepted: 06/04/2018] [Indexed: 06/11/2023]
Abstract
Environmental heavy-metals contamination is a worldwide concern and the treatment of their sources constitutes a sustainable and efficient alternative. This work investigated the performance of Malpighia emarginataD.C. seed fibers microparticles (Me-SFMp) as biosorption platform for heavy metal ions. Integrated physicochemical analyses (FAAS, FTIR, SEM/EDS and XRF) showed that such ability was associated with the high microstructural porosity, wide surface area and diversity of functional groups on Me-SFMp structures, which favored the high and fast uptake of the target-substances (Cd, Zn, Cr, Pb, Cu and Ni ions). In terms of reactional kinetics, the pseudo-second order model showed better data correlation (R2 from 0.9992 to 0.9998) and suggested the chemisorption as limiting step of the reaction mechanisms. From the Langmuir isotherms (R2 from 0.9993 to 0.9998), it was observed that these phenomena occurred non-linearly on a homogeneous biosorbent monolayer. Me-SFMp can also be reused after desorption processes conducted in acid medium and, under ideal conditions (0.8 g biosorbent dosage; 100 mL of 1.00 mg L-1 multi-metal solution adjusted to pH = 8.0; 300 rpm stirring speed; and 60 min contact time), the following maximum removal percentages order was observed for the first cycle: Cd (100%) = Zn (100%) > Cr (95.1%) > Pb (86.8%) > Cu (84.2%) > Ni (81.0%). The procedure was successfully applied to remove the studied heavy metal ions from raw landfill leachate, even in the presence of several (in)organic interferers, reinforcing the strong biosorbent-adsorbate interaction and the viability of this proposal.
Collapse
Affiliation(s)
- Wallas D M Souza
- Laboratório de Eletroquímica e Química Analítica, Universidade do Estado do Rio Grande do Norte, Campus Central, Setor II, 59625-620 Mossoró, RN, Brazil
| | - Waldiléia S Rodrigues
- Faculdade de Química, Instituto de Ciências Exatas, Universidade Federal do Sul e Sudeste do Pará, Folha 17, Quadra 04, Lote Especial, Nova Marabá, 68505-080 Marabá, PA, Brazil
| | - Manoel M S Lima Filho
- Faculdade de Química, Instituto de Ciências Exatas, Universidade Federal do Sul e Sudeste do Pará, Folha 17, Quadra 04, Lote Especial, Nova Marabá, 68505-080 Marabá, PA, Brazil
| | - Janete J F Alves
- Laboratório de Eletroquímica e Química Analítica, Universidade do Estado do Rio Grande do Norte, Campus Central, Setor II, 59625-620 Mossoró, RN, Brazil
| | - Thiago M B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, Cidade Universitária, 63048-080 Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
24
|
Gloriosa superba Mediated Synthesis of Platinum and Palladium Nanoparticles for Induction of Apoptosis in Breast Cancer. Bioinorg Chem Appl 2018; 2018:4924186. [PMID: 30057593 PMCID: PMC6051271 DOI: 10.1155/2018/4924186] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/16/2018] [Accepted: 05/26/2018] [Indexed: 01/11/2023] Open
Abstract
Green chemistry approaches for designing therapeutically significant nanomedicine have gained considerable attention in the past decade. Herein, we report for the first time on anticancer potential of phytogenic platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) using a medicinal plant Gloriosa superba tuber extract (GSTE). The synthesis of the nanoparticles was completed within 5 hours at 100°C which was confirmed by development of dark brown and black colour for PtNPs and PdNPs, respectively, along with enhancement of the peak intensity in the UV-visible spectra. High-resolution transmission electron microscopy (HRTEM) showed that the monodispersed spherical nanoparticles were within a size range below 10 nm. Energy dispersive spectra (EDS) confirmed the elemental composition, while dynamic light scattering (DLS) helped to evaluate the hydrodynamic size of the particles. Anticancer activity against MCF-7 (human breast adenocarcinoma) cell lines was evaluated using MTT assay, flow cytometry, and confocal microscopy. PtNPs and PdNPs showed 49.65 ± 1.99% and 36.26 ± 0.91% of anticancer activity. Induction of apoptosis was most predominant in the underlying mechanism which was rationalized by externalization of phosphatidyl serine and membrane blebbing. These findings support the efficiency of phytogenic fabrication of nanoscale platinum and palladium drugs for management and therapy against breast cancer.
Collapse
|
25
|
|
26
|
Yin XF, Wang LL, Chu XC. A novel chondroitin sulfate decorated nano platinum for the treatment of osteoarthritis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:452-456. [PMID: 28576008 DOI: 10.1016/j.msec.2017.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
The present work showed the biofabrication of platinum nanoparticles (PtNPs) using chondroitin sulfate via a facile, eco-friendly route by just heating leaf extract and H2PtCl6·6H2O (Chloroplatinic acid) solution which gave a brown-colored PtNPs dispersion. The assynthesized PtNPs were analyzed by using Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Selected area electron diffraction (SAED). TEM analysis showed PtNPs of irregular shape with a size existed in the range from 3 to 5nm. From zeta potential studies it is found the surface charge of the synthesized PtNPs is negative (-25.6mV). FTIR analysis and zeta potential measurements of PtNPs confirm the capping of chondroitin sulfate onto the surface of nanoparticles. XRD and SAED pattern revealed the crystalline nature of synthesized nanoparticles. Further, the in-vitro cytotoxicity of PtNPs against the osteoarthritis chondrocytes showed their biocompatibility, hence the obtained nanoparticles may have future scope in the treatment of osteoarthritis. Also, the present approach is green alternative to the traditionally available chemical methods that are currently been used now a days using chemical reagents such that are hazardous to human and environment.
Collapse
Affiliation(s)
- Xue-Feng Yin
- Department of Joint Surgery, People's Hospital of Dongying City, Dongying City, Shandong Province, China.
| | - Lin-Liang Wang
- Department of Joint Surgery, People's Hospital of Dongying City, Dongying City, Shandong Province, China
| | - Xiu-Cheng Chu
- Department of Joint Surgery, People's Hospital of Dongying City, Dongying City, Shandong Province, China
| |
Collapse
|
27
|
Hydrogenation of methyl methacrylate under mild conditions using biosynthesis Ru catalyst. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Dauthal P, Mukhopadhyay M. Phyto-synthesis and structural characterization of catalytically active gold nanoparticles biosynthesized using Delonix regia leaf extract. 3 Biotech 2016; 6:118. [PMID: 28330190 PMCID: PMC4909019 DOI: 10.1007/s13205-016-0432-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/21/2016] [Indexed: 11/04/2022] Open
Abstract
Biological methods of nanoparticles synthesis are ecologically sound and sustainable alternative to the conventional methods. On the basis of aforesaid premise, the present study deals with the optimization and fabrication of gold nanoparticles (Au-NPs) using easily available bio-resource, Delonix regia leaf extract. The use of practically nontoxic natural extracts and water allows the synthesis pathways presented to be considered as ‘‘green’’ and so permitting the synthesized Au-NPs to be used in sensitive areas, such as bioremediation. Various characterization techniques are adopted for the evaluation of size, stability, morphology, crystal nature, and purity of nanoparticles. Ultraviolet–visible spectroscopy analysis showed a surface Plasmon resonance peak for prepared Au-NPs at 542 nm, and its absorbance increased with increasing the interaction time. Transmission electron microscopy analysis showed that the particles were spherical and 4–24 nm in size. Energy dispersive X-ray spectroscopy analysis displayed a 2.2 keV peak corresponding to the pure phase gold nanocrystal. X-ray diffraction analysis proved the fabrication of crystalline Au-NPs with face-centered cubic geometry within 10 min. Furthermore, ζ potential (−15 mV) and Fourier transform infrared data suggested the role of polar polyphenolic compounds of leaf extract in fabrication and stabilization process. Biofabricated nanoparticles are demonstrated to have catalytic activity for the reduction of toxic nitro-organic pollutant o-nitroaniline. Therefore, the present study offers a straightforward, cost-efficient, eco-friendly, and sustainable alternative for the fabrication of catalytically active Au-NPs.
Collapse
|
29
|
Dobrucka R. Biofabrication of platinum nanoparticles using Fumariae herba extract and their catalytic properties. Saudi J Biol Sci 2016; 26:31-37. [PMID: 30622404 PMCID: PMC6318780 DOI: 10.1016/j.sjbs.2016.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/14/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022] Open
Abstract
Due to the increasing popularity of using plant extract in the synthesis of nanoparticles, this study presented the synthesis of platinum nanoparticles using Fumariae herba extract. The formation of platinum nanoparticles was confirmed by UV–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with EDS profile. Transmission electron micrograph presented the hexagonal and pentagonal shape of the synthesized nanoparticles sized about 30 nm. Moreover, platinum nanoparticles presented good catalytic properties in the reduction of methylene blue and crystal violet.
Collapse
|
30
|
Kisukuri CM, Reis JLMS, Rodrigues TS, Camargo PHC, Andrade LH. Evaluation of AgPd Nanoshells in Dual Catalysis: One-Pot Silane Oxidation and Reduction of Organic Compounds. ChemCatChem 2016. [DOI: 10.1002/cctc.201600977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Camila M. Kisukuri
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - João L. M. S. Reis
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Thenner S. Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Pedro H. C. Camargo
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| | - Leandro H. Andrade
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo SP Brazil
| |
Collapse
|
31
|
Dauthal P, Mukhopadhyay M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00861] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Preeti Dauthal
- Department of Chemical Engineering, S.V. National Institute of Technology, Surat-395007, Gujarat, India
| | - Mausumi Mukhopadhyay
- Department of Chemical Engineering, S.V. National Institute of Technology, Surat-395007, Gujarat, India
| |
Collapse
|
32
|
Ortega-Moo C, Garza J, Vargas R. The substituent effect on the antioxidant capacity of catechols and resorcinols. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1932-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Dauthal P, Mukhopadhyay M. AuPd bimetallic nanoparticles: Single step biofabrication, structural characterization and catalytic activity. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
|
35
|
Synthesis and Structural Characteristic of Platinum Nanoparticles Using Herbal Bidens Tripartitus Extract. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0305-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Dauthal P, Mukhopadhyay M. Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0277-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|