1
|
Abreu NJ, Jaramillo AF, Becker-Garcés DFA, Antileo C, Martínez-Retureta R, Martínez-Ruano JA, Ñanculeo J, Pérez MM, Cea M. Modification of Natural and Synthetic Zeolites for CO 2 Capture: Unrevealing the Role of the Compensation Cations. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2403. [PMID: 40429140 PMCID: PMC12113214 DOI: 10.3390/ma18102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/13/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
The development of highly effective natural-based adsorbents to face the increasing rates of CO2 production and their delivery to the atmosphere are a big concern nowadays. For such purposes, synthetic and natural zeolites were modified via an ion exchange procedure to enhance the CO2 uptake. Samples were characterized by SEM, EDS, TGA and nitrogen adsorption at 77 K, showing the correct incorporation of the new metals; in addition, the CO2 adsorption isotherms were determined using a gas analyser. During the first stage, the role of the compensation cations for CO2 adsorption was assessed by modifying a pure ZSM-5 synthetic zeolite with different metal precursors present in salt solutions via an ion exchange procedure. Then, five samples were studied; the samples modified with bivalent cation precursors (Zn2+ and Cu2+) presented a higher adsorption uptake than those modified with a monovalent cation (Na+ and K+). Specifically, the substitution of the compensation cations for Cu2+ increased the CO2 capture uptake without affecting the surface properties of the zeolite. The results depict the prevalence of π-cation interactions enhanced by the field gradient induced by divalent cations and their lower ionic radii, if compared to monovalent ones. Subsequently, a natural zeolite was modified considering the best results of the previous phase. This Surface Response Methodology was implemented considering 11 samples by varying the concentration of the copper precursor and the time of the ion exchange procedure. A quantitative quadratic model to predict the adsorption uptake with an R2 of 0.92 was obtained. The results depicted the optimal conditions to modify the used natural zeolite for CO2 capture. The modification procedure implemented increased the CO2 adsorption capacity of the natural zeolite more than 20%, reaching an adsorption capacity of 75.8 mg CO2/g zeolite.
Collapse
Affiliation(s)
- Norberto J. Abreu
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile; (D.F.A.B.-G.); (C.A.); (J.A.M.-R.); (M.M.P.); (M.C.)
- Centro de Manejo de Residuos y Bioenergía, BIOREN, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile;
| | - Andrés F. Jaramillo
- Department of Mechanical Engineering, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Departamento de Ingeniería Mecánica, Universidad de Córdoba, Cr 6 #76-103, Montería 230002, Colombia
| | - Daniel F. A. Becker-Garcés
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile; (D.F.A.B.-G.); (C.A.); (J.A.M.-R.); (M.M.P.); (M.C.)
- Departamento de Ingeniería Química, Universidad de Concepción, Concepción 4070386, Chile
| | - Christian Antileo
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile; (D.F.A.B.-G.); (C.A.); (J.A.M.-R.); (M.M.P.); (M.C.)
| | - Rebeca Martínez-Retureta
- Departamento de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4780000, Chile;
| | - Jimmy A. Martínez-Ruano
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile; (D.F.A.B.-G.); (C.A.); (J.A.M.-R.); (M.M.P.); (M.C.)
| | - Jaime Ñanculeo
- Centro de Manejo de Residuos y Bioenergía, BIOREN, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile;
- Programa de Doctorado en Ciencias de la Ingeniería Mención Bioprocesos, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
| | - Matías M. Pérez
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile; (D.F.A.B.-G.); (C.A.); (J.A.M.-R.); (M.M.P.); (M.C.)
- Laboratorio Químico, División Chuquicamata, SGS Chile, Calama 1390000, Chile
| | - Mara Cea
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile; (D.F.A.B.-G.); (C.A.); (J.A.M.-R.); (M.M.P.); (M.C.)
- Centro de Manejo de Residuos y Bioenergía, BIOREN, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile;
| |
Collapse
|
2
|
Laeber KFP, Prates L, Baptista L, Cruz MM. Study of the Electronic Structure of Coronene Doped with Nitrogen Atoms and Its Effect on CO 2 Capture. ACS OMEGA 2025; 10:16559-16578. [PMID: 40321537 PMCID: PMC12044568 DOI: 10.1021/acsomega.4c11531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
Climate change is a serious global problem. CO2 is of paramount importance in mitigating this environmental problem. Understanding the interaction of CO2 with functionalized carbon structures is essential for designing new materials to aid in efficiently capturing CO2. In this work, the interaction between carbon dioxide (CO2) and coronene models, simulating graphene and the asphaltene moiety, was studied through DFT (CAM-B3LYP-D3) and DLPNO-CCSD(T) methods to investigate the effect of nitrogen doping in two arrangements. Aromaticity, electronic, and topological properties were evaluated using HOMA, HOMO-LUMO gap, QTAIM, and NCI methods. The results show that the adsorption of CO2 in the coronene molecule is dependent on the position of the heteroatom and governed by noncovalent interactions, such as van der Waals and hydrogen bonds. The CO2/N-coronene complex with pyridinic-N is stabilized due to two unconventional hydrogen bonds parallel to the aromatic π system. We hope that the present results can help the synthesis of inhibitors of asphaltene precipitation and better systems for CO2 capture.
Collapse
Affiliation(s)
- Kelly F. P. Laeber
- Departamento
de Química Geral e Inorgânica, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro-RJ CEP 20550-900, Brazil
| | - Letícia
M. Prates
- Centro
de Tecnologia Mineral Avenida Pedro Calmon, 900, Cidade Universitária, Rio de Janeiro-RJ CEP, 21941 908, Brazil
| | - Leonardo Baptista
- Departamento
de Química e Ambiental, Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, Av. Dr. Omar Dibo Calixto Afrange,
s/n—acesso pela Rod. Pres. Dutra, km 304, sentido RJ-SP—Polo
Industrial, Resende, Rio
de Janeiro CEP 27537 000, Brazil
| | - Maurício
T. M. Cruz
- Departamento
de Química Geral e Inorgânica, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro-RJ CEP 20550-900, Brazil
| |
Collapse
|
3
|
Ding X, Duan J, Jia M, Fan H, Lyu Y, Fu J, Liu X. Advanced Zeolite-Based Catalysts for CO 2 Hydrogenation to Targeted High-Value Chemicals and Fuels. Chem Asian J 2025; 20:e202401703. [PMID: 39888332 DOI: 10.1002/asia.202401703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
The excessive use of fossil fuels has resulted in elevated CO2 emissions in the atmosphere, significantly impacting the climate and global environment. The catalytic conversion of CO2 into high-value chemicals has been recognized as a promising strategy to mitigate CO2 emissions. Light olefins, aromatics, and alcohols, etc. are widely used high-value chemicals as fuels and chemical synthesis intermediates. To enhance the catalytic efficiency and selectivity for producing these chemicals, various catalysts have been developed. Among them, zeolite-based catalysts have garnered significant attention due to their unique microporous structure, shape-selective catalysis capability, high thermal stability, and tunable acidity. This article focuses on the distinctive structural characteristics of zeolites and their notable representative applications, with particular emphasis on the impact of zeolite structural properties on catalytic performance and reaction mechanism. Additionally, we discuss the current challenges of fabricating highly efficient zeolite-based catalysts and future development prospects in improving the catalytic performance and industrial-scale applications. We propose rational and strategic insights to pave the way for the efficient utilization of CO₂ as a valuable resource.
Collapse
Affiliation(s)
- Xuechun Ding
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jiayi Duan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Meijie Jia
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Haihan Fan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Yuchao Lyu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jianye Fu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Xinmei Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| |
Collapse
|
4
|
Fakhraie S, Rajabi HR, Ghasemy E, Rashidi A, Orooji Y, Hadizadeh MH, Maklavany D. Exceptional CO 2 and H 2S adsorption by tuning micro/mesopore ratios with embedded graphene oxide/N-doped carbon quantum dots in MIL-101(Cr): Experimental and computational insights. J Colloid Interface Sci 2025; 683:769-783. [PMID: 39752927 DOI: 10.1016/j.jcis.2024.12.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques. Results revealed that the main drawback of microporous MOFs, lack of mesopores, could be solved by embedding RC nanoparticles into MOFs, decreasing the micropore/mesopore volume ratio from 7.71 to 1.15. Optimizing the mesopore volume in RC-ML-1 dramatically improved the surface area and total pore volume by 40 % compared to pristine MIL-101(Cr). Adsorption experiments indicated that the sample containing 1 wt% had outstanding CO2 and H2S adsorption capacity of 25.79 and 34.15 mmol g-1 at 35 and 15 bar in 25 °C, respectively, elevated up to 15.80 % and 19.26 % compared to pristine MIL-101(Cr). This may be attributable to the cumulative effect of suitable micropore/mesopore volume ratio and the creation of the unsaturated metal sites and nitrogen functional groups by RC loading. In addition, the adsorption selectivity in different gas mixtures of CO2/CH4, H2S/CH4, CO2/N2, and H2S/N2 was analyzed by IAST. It was found that the samples containing 10 and 5 wt% had the highest selectivity toward CO2 and H2S, respectively, over N2 and CH4. Considering the simple approach adopted to tune the structure of microporous MOFs to achieve impressive gas adsorption and great cyclic capacity, the proposed RC-ML-x nanocomposites can be potential candidates for the adsorption and separation of CO2 and H2S.
Collapse
Affiliation(s)
- Saeed Fakhraie
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | | | - Ebrahim Ghasemy
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1P7, Canada
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sports Complex, P.O. Box 14665, 1998 Tehran, Iran.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | | | - Davood Maklavany
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sports Complex, P.O. Box 14665, 1998 Tehran, Iran
| |
Collapse
|
5
|
Orhan IB, Zhao Y, Babarao R, Thornton AW, Le TC. Machine Learning Descriptors for CO 2 Capture Materials. Molecules 2025; 30:650. [PMID: 39942754 PMCID: PMC11820763 DOI: 10.3390/molecules30030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The influence of machine learning (ML) on scientific domains continues to grow, and the number of publications at the intersection of ML, CO2 capture, and material science is growing rapidly. Approaches for building ML models vary in both objectives and the methods through which materials are represented (i.e., featurised). Featurisation based on descriptors, being a crucial step in building ML models, is the focus of this review. Metal organic frameworks, ionic liquids, and other materials are discussed in this paper with a focus on the descriptors used in the representation of CO2-capturing materials. It is shown that operating conditions must be included in ML models in which multiple temperatures and/or pressures are used. Material descriptors can be used to differentiate the CO2 capture candidates through descriptors falling under the broad categories of charge and orbital, thermodynamic, structural, and chemical composition-based descriptors. Depending on the application, dataset, and ML model used, these descriptors carry varying degrees of importance in the predictions made. Design strategies can then be derived based on a selection of important features. Overall, this review predicts that ML will play an even greater role in future innovations in CO2 capture.
Collapse
Affiliation(s)
- Ibrahim B. Orhan
- School of Science, STEM College, RMIT University, G.P.O. Box 2476, Melbourne, VIC 3001, Australia
| | - Yuankai Zhao
- School of Engineering, STEM College, RMIT University, G.P.O. Box 2476, Melbourne, VIC 3001, Australia;
| | - Ravichandar Babarao
- School of Science, STEM College, RMIT University, G.P.O. Box 2476, Melbourne, VIC 3001, Australia
| | - Aaron W. Thornton
- CSIRO Manufacturing Flagship, Clayton, Melbourne, VIC 3168, Australia
| | - Tu C. Le
- School of Engineering, STEM College, RMIT University, G.P.O. Box 2476, Melbourne, VIC 3001, Australia;
| |
Collapse
|
6
|
Doan QKT, Chiang KY. Facile synthesis of polyethyleneimine-modified cellulose nanocrystal/silica hybrid aerogel for CO 2 adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3438-3455. [PMID: 37422561 DOI: 10.1007/s11356-023-28359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Cellulose nanocrystal (CNC)/silica hybrid aerogel (CSA) was synthesized from CNC and sodium silicate hybridization using the one-step sol-gel method under atmospheric drying. At a weight ratio of CNC to silica of 1:1, the obtained CSA-1 had a highly porous network, a high specific area of 479 m2 g-1, and a CO2 adsorption capacity of 0.25 mmol g-1. Then, polyethyleneimine (PEI) was impregnated on CSA-1 to improve CO2 adsorption performance. The parameters governing CO2 adsorption performance on CSA-PEI, such as temperatures (70-120 °C) and PEI concentrations (40-60 wt%), were investigated systematically. The optimum adsorbent (CSA-PEI50) exhibited an excellent CO2 adsorption capacity of 2.35 mmol g-1 at 70 °C and a PEI concentration of 50 wt%. The adsorption mechanism of CSA-PEI50 was elucidated by analyzing many adsorption kinetic models. The CO2 adsorption behaviors of CSA-PEI at various temperatures and PEI concentrations had the goodness of fit with the Avrami kinetic model, which can correspond to the multiple adsorption mechanism. The Avrami model also showed fractional reaction orders in a range of 0.352-0.613, and the root mean square error is negligible. Moreover, the rate-limiting kinetic analysis showed that film diffusion and intraparticle diffusion resistance controlled the adsorption speed and dominated the subsequent adsorption stages, respectively. The CSA-PEI50 also exhibited excellent stability after ten adsorption-desorption cycles. This study illustrated that CSA-PEI was a potential adsorbent for CO2 capture from flue gas.
Collapse
Affiliation(s)
- Quyen Kim Thi Doan
- Graduate Institute of Environmental Engineering, National Central University, Zhongda Rd., Zhongli District, Taoyuan City, Taiwan
| | - Kung Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, Zhongda Rd., Zhongli District, Taoyuan City, Taiwan.
| |
Collapse
|
7
|
López Pastor R, Pinna-Hernández M, Sánchez Molina J, Acién Fernández F. Influence of the moisture and ash content in flue gases on the performance of adsorption processes using activated carbons to capture the CO 2 for reuse in greenhouses. Heliyon 2025; 11:e40346. [PMID: 39866470 PMCID: PMC11760289 DOI: 10.1016/j.heliyon.2024.e40346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 01/28/2025] Open
Abstract
This work studies the influence of flue gas composition, its moisture and ash content, on the efficiency of a CO2 adsorption/desorption process to capture the CO2 from flue gases along with its subsequent reuse in greenhouse CO2 enrichment (Patent ES2514090). The influence of the inlet flow rate, moisture, and ash content were analysed. The experimental conditions were based on those that are achievable under real operating conditions, namely an inlet flow rate from 1.2 to 4.8 L per minute, humidity from 3 % to 65 %, and an ash concentration from 0 % to 1 %. The results show that the inlet flow had no effect on the adsorption capacity but that there was a reduction in the adsorption capacity at the higher humidity and ash content levels studied, of 10.5 % and 21 %, respectively. The data were used to develop models based on the Langmuir and Freundlich isotherm that fitted the experimental data with a reliability of 100 % and 80.1 %, respectively. This model was used to optimize the combustion gas variables and thus their influence on the final CO2 adsorption/desorption capacity. The techno-economic analysis performed confirmed a total cost reduction of 12 % when using the optimal combustion gas conditions (a relative humidity of 3 % and an ash concentration of 0 %) versus the worst gas conditions (a relative humidity of 65 % and an ash concentration of 1 %), which resulted in a saving of 60 % by avoiding the use of liquified CO2. These results confirm the technical and economic viability of the proposed technology and its potential contribution to improving the environmental and economic sustainability of agricultural food production.
Collapse
Affiliation(s)
- R. López Pastor
- Department of Chemical Engineering, University of Almería, Carretera de Sacramento s/n 04120 La Cañada de San Urbano, Almería, Spain
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Almería, 04120, Spain
| | - M.G. Pinna-Hernández
- Department of Chemical Engineering, University of Almería, Carretera de Sacramento s/n 04120 La Cañada de San Urbano, Almería, Spain
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Almería, 04120, Spain
| | - J.A. Sánchez Molina
- Department of Chemical Engineering, University of Almería, Carretera de Sacramento s/n 04120 La Cañada de San Urbano, Almería, Spain
- Department of Informatics, University of Almería, Carretera de Sacramento s/n, 04120, La Cañada de San Urbano, Almería, Spain
| | - F.G. Acién Fernández
- Department of Chemical Engineering, University of Almería, Carretera de Sacramento s/n 04120 La Cañada de San Urbano, Almería, Spain
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Almería, 04120, Spain
| |
Collapse
|
8
|
Jiang W, Lin Y, Sun C, Sun Y, Zhu Y. Comparative Review for Enhancing CO 2 Capture Efficiency with Mixed Amine Systems and Catalysts. Molecules 2024; 29:4618. [PMID: 39407549 PMCID: PMC11477971 DOI: 10.3390/molecules29194618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigates methods to enhance the efficiency of CO2 capture using organic amine absorption and compares the performance of traditional and novel amine solvents. It reviews various single-component and mixed amine absorbents, as well as catalysts used in these methods, highlighting the superiority of mixed amine absorbents over single-component amine absorbents in CO2 absorption and desorption. Additionally, the study explores the catalytic mechanisms and effects of catalysts in the CO2 absorption/desorption process with amine solvents and provides an outlook on future research directions. The aim is to promote the widespread adoption of organic amine absorption technology in industrial applications and to contribute to the development of more sustainable and efficient CO2 capture technologies.
Collapse
Affiliation(s)
- Wenhao Jiang
- Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China; (W.J.); (Y.L.); (Y.S.)
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuchen Lin
- Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China; (W.J.); (Y.L.); (Y.S.)
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengqi Sun
- Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China; (W.J.); (Y.L.); (Y.S.)
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yin Sun
- Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China; (W.J.); (Y.L.); (Y.S.)
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yunlong Zhu
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China;
| |
Collapse
|
9
|
Ramasamy N, Raj AJLP, Akula VV, Nagarasampatti Palani K. Leveraging experimental and computational tools for advancing carbon capture adsorbents research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55069-55098. [PMID: 39225926 DOI: 10.1007/s11356-024-34838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
CO2 emissions have been steadily increasing and have been a major contributor for climate change compelling nations to take decisive action fast. The average global temperature could reach 1.5 °C by 2035 which could cause a significant impact on the environment, if the emissions are left unchecked. Several strategies have been explored of which carbon capture is considered the most suitable for faster deployment. Among different carbon capture solutions, adsorption is considered both practical and sustainable for scale-up. But the development of adsorbents that can exhibit satisfactory performance is typically done through the experimental approach. This hit and trial method is costly and time consuming and often success is not guaranteed. Machine learning (ML) and other computational tools offer an alternate to this approach and is accessible to everyone. Often, the research towards materials focuses on maximizing its performance under simulated conditions. The aim of this study is to present a holistic view on progress in material research for carbon capture and the various tools available in this regard. Thus, in this review, we first present a context on the workflow for carbon capture material development before providing various machine learning and computational tools available to support researchers at each stage of the process. The most popular application of ML models is for predicting material performance and recommends that ML approaches can be utilized wherever possible so that experimentations can be focused on the later stages of the research and development.
Collapse
Affiliation(s)
- Niranjan Ramasamy
- Department of Chemical Engineering, Rajalakshmi Engineering College, Chennai, India
| | | | - Vedha Varshini Akula
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India
| | - Kavitha Nagarasampatti Palani
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India.
| |
Collapse
|
10
|
Zhao J, Zhang S, Zhang X, Zhou W, Zhao Q, Wu F, Xing B. Machine learning and experimentally exploring the controversial role of nitrogen in CO 2 uptake by waste-derived nitrogen-containing porous carbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173471. [PMID: 38788946 DOI: 10.1016/j.scitotenv.2024.173471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Waste-derived nitrogen-containing porous carbons were widely accepted as promising carbon capture materials. However, roles of nitrogen in CO2 uptake were highly controversial, posing a challenge in designing high CO2 uptake porous carbons. Herein, nitrogen-containing species was firstly introduced into machine learning (ML) models to uncover the complex relationship of nitrogen, micropore and CO2 uptake by combining ML models, DFT computations and experiments. The results revealed that micropore volume (Vmicro) was the most important property influencing CO2 uptake, but was not the only determinant factor. Nitrogen-containing species (pyrrolic/pyridonic-N (N5) and pyridinic-N (N6)) rather than total nitrogen content, also played an essential role. On the one hand, they can enhanced CO2 adsorption by Lewis acid-base and hydrogen bonding. On the other hand, they promoted development of micropores by participating in activation reactions. The model further indicated that excessive N5 (>1.5 wt%) or N6 (>1.7 wt%) led to restriction on developments of micropores, which was attributed to enlargement of pore size, collapses or blockage of micropores. The double edged-sword effect of N5 and N6 on changes of microporous structures was responsible for the long-standing controversy over nitrogen. The result was further verified by synthesizing eight porous carbons with different textural and chemical properties. This study provided not only a new perspective for resolving the controversy of nitrogen in CO2 uptake, but also a graphical user interface prediction software meaningful for designing porous carbons.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenneng Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Wuhu Haichuang Environmental Protection Technology Co., Ltd, Wuhu 241000, China.
| | - Fengchang Wu
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Keawkumay C, Krukkratoke P, Youngjan S, Osakoo N, Deekamwong K, Khemthong P, Phanthasri J, Prayoonpokarach S, Wittayakun J. Extraction of silica from sugarcane bagasse ash and its utilization in zeolite 4A synthesis for CO 2 adsorption. RSC Adv 2024; 14:19472-19482. [PMID: 38887648 PMCID: PMC11181773 DOI: 10.1039/d4ra02207f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Sugarcane bagasse ash (SCBA) is a solid waste containing a high amount of silica (SiO2) and is suitable to utilize as a silica source for synthesizing zeolite NaA. SCBA is typically calcined at high temperatures before silica extraction. The method is not environmentally friendly because it consumes energy and produces CO2. This work demonstrates an alternative extraction method of SiO2 from SCBA by treating it with hydrochloric (HCl) and sodium hydroxide (NaOH) solution. The obtained mixture was separated by paper filter No. 1 (P) and a combination of paper filter and syringe filter (PS). The solution was neutralized by HCl solution, producing silica (SiO2-P and SiO2-PS) with a purity of 98 wt%. Both SiO2 samples and SCBA were utilized to synthesize zeolite NaA for CO2 adsorption. The CO2 adsorption capacities of NaA-P and NaA-PS were 4.30 and 4.10 mmol gadsorbent -1, in the same range as commercial NaA. The capacity is influenced by the total basicity of zeolite. The CO2 adsorption behavior of all samples correlates well with the Toth model. The CO2 adsorption kinetics agrees well with the pseudo-second-order kinetic model. Overall, this work shows the successful extraction of silica via using a direct NaOH solution, yielding high-purity silica sufficient for synthesizing zeolite NaA, a promising adsorbent of CO2.
Collapse
Affiliation(s)
- Chalermpan Keawkumay
- School of Chemistry, Institute of Science, Suranaree University of Technology Thailand
- Institute of Research and Development, Suranaree University of Technology Thailand
| | - Panot Krukkratoke
- School of Chemistry, Institute of Science, Suranaree University of Technology Thailand
| | - Saran Youngjan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Thailand
| | - Nattawut Osakoo
- School of Chemistry, Institute of Science, Suranaree University of Technology Thailand
- Institute of Research and Development, Suranaree University of Technology Thailand
| | - Krittanun Deekamwong
- School of Chemistry, Institute of Science, Suranaree University of Technology Thailand
- Institute of Research and Development, Suranaree University of Technology Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Thailand
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Thailand
| | | | - Jatuporn Wittayakun
- School of Chemistry, Institute of Science, Suranaree University of Technology Thailand
| |
Collapse
|
12
|
Serafin J, Dziejarski B. Activated carbons-preparation, characterization and their application in CO 2 capture: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40008-40062. [PMID: 37326723 DOI: 10.1007/s11356-023-28023-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
In this paper, we provide a comprehensive review of the latest research trends in terms of the preparation, and characteristics of activated carbons regarding CO2 adsorption applications, with a special focus on future investigation paths. The reported current research trends are primarily closely related to the synthesis conditions (carbonization and physical or chemical activation process), to develop the microporosity and surface area, which are the most important factors affecting the effectiveness of adsorption. Furthermore, we emphasized the importance of regeneration techniques as a factor determining the actual technological and economic suitability of a given material for CO2 capture application. Consequently, this work provides a summary and potential directions for the development of activated carbons (AC). We attempt to create a thorough theoretical foundation for activated carbons while also focusing on identifying and specific statements of the most relevant ongoing research scope that might be advantageous to progress and pursue in the coming years.
Collapse
Affiliation(s)
- Jarosław Serafin
- Department of Inorganic and Organic Chemistry, University of Barcelona, Martí I Franquès, 1-11, 08028, Barcelona, Spain.
| | - Bartosz Dziejarski
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
- Department of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| |
Collapse
|
13
|
Islam MM, Rahman MA, Alam MA, Rahman MM, Mefford OT, Ul-Hamid A, Miah J, Ahmad H. Facile Fabrication and Characterization of Amine-Functional Silica Coated Magnetic Iron Oxide Nanoparticles for Aqueous Carbon Dioxide Adsorption. ACS OMEGA 2024; 9:20891-20905. [PMID: 38764697 PMCID: PMC11097361 DOI: 10.1021/acsomega.3c10082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Surface active amine-functionalized silica coated magnetic iron oxide nanoparticles were prepared by a simple two-step process for adsorbing CO2 gas from aqueous medium. First, oleic acid (OA) coated iron oxide magnetic particles (denoted as Fe3O4-OA) were prepared by a simple coprecipitation method. Then, the surface of the Fe3O4-OA particles was coated with silica by using tetraethyl orthosilicate. Finally, aminated Fe3O4/SiO2-NH2 nanoparticles were concomitantly formed by the reactions of 3-aminopropyl triethoxysilane with silica-coated particles. The formation of materials was confirmed by Fourier transform infrared spectral analysis. Transmission electron microscopic analysis revealed both spherical and needle-shaped morphologies of magnetic Fe3O4/SiO2-NH2 particles with an average size of 15 and 68.6 nm, respectively. The saturation magnetization of Fe3O4/SiO2-NH2 nanoparticles was found to be 33.6 emu g-1, measured by a vibrating sample magnetometer at ambient conditions. The crystallinity and average crystallite size (7.0 nm) of the Fe3O4/SiO2-NH2 particles were revealed from X-ray diffraction data analyses. Thermogravimetric analysis exhibited good thermal stability of the nanoadsorbent up to an elevated temperature. Zeta potential measurements revealed pH-sensitive surface activity of Fe3O4/SiO2-NH2 nanoparticles in aqueous medium. The produced magnetic Fe3O4/SiO2-NH2 nanoparticles also exhibited efficient proton capturing activity (92%). The particles were used for magnetically recyclable adsorption of aqueous CO2 at different pH values and temperatures. Fe3O4/SiO2-NH2 nanoparticles demonstrated the highest aqueous CO2 adsorption efficiency (90%) at 40 °C, which is clearly two times higher than that of nonfunctionalized Fe3O4-OA particles.
Collapse
Affiliation(s)
- Md. Muhyminul Islam
- Polymer
Colloids and Nanomaterials Research Lab, Department of Chemistry,
Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Abdur Rahman
- Polymer
Colloids and Nanomaterials Research Lab, Department of Chemistry,
Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Ashraful Alam
- Polymer
Colloids and Nanomaterials Research Lab, Department of Chemistry,
Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Mahbubor Rahman
- Polymer
Colloids and Nanomaterials Research Lab, Department of Chemistry,
Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - O. Thompson Mefford
- Department
of Materials Science and Engineering, Clemson
University, Clemson, South Carolina 29634-0971, United States
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
| | - Jalil Miah
- Polymer
Colloids and Nanomaterials Research Lab, Department of Chemistry,
Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hasan Ahmad
- Polymer
Colloids and Nanomaterials Research Lab, Department of Chemistry,
Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
14
|
Pereira D, Ilkaeva M, Vicente F, Vieira R, Sardo M, Lourenço MAO, Silvestre A, Marin-Montesinos I, Mafra L. Valorization of Crab Shells as Potential Sorbent Materials for CO 2 Capture. ACS OMEGA 2024; 9:17956-17965. [PMID: 38680344 PMCID: PMC11044163 DOI: 10.1021/acsomega.3c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
This study delves into the potential advantage of utilizing crab shells as sustainable solid adsorbents for CO2 capture, offering an environmentally friendly alternative to conventional porous adsorbents, such as zeolites, silicas, metal-organic frameworks (MOFs), and porous carbons. The investigation focuses on crab shell waste, which exhibits inherent natural porosity and N-bearing groups, making them promising candidates for CO2 physisorption and chemisorption applications. Selective deproteinization and demineralization treatments were used to enhance textural properties while preserving the natural porous structure of the crab shells. The impact of deproteinization and demineralization treatments on CO2 adsorption and speciation at the atomic scale, via solid-state NMR, and correlated findings with textural properties and biomass composition were investigated. The best-performing sample exhibits a surface area of 36 m2/g and a CO2 adsorption capacity of 0.31 mmol/g at 1 bar and 298 K, representing gains of ∼3.5 and 2, respectively, compared to the pristine crab shell. These results underline the potential of fishing industry wastes as a cost-effective, renewable, and eco-friendly source to produce functional porous adsorbents.
Collapse
Affiliation(s)
- Daniel Pereira
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Marina Ilkaeva
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
- Department
of Chemical and Environmental Engineering, University of Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Francisco Vicente
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Vieira
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Mariana Sardo
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Mirtha A. O. Lourenço
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Armando Silvestre
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Ildefonso Marin-Montesinos
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Zhao Y, Wang X, Li Z, Wang H, Zhao Y, Qiu J. Understanding the Positive Role of Ionic Liquids in CO 2 Capture by Poly(ethylenimine). J Phys Chem B 2024; 128:1079-1090. [PMID: 38260998 DOI: 10.1021/acs.jpcb.3c06510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
CO2 capture technology is one of the most important technical methods for significantly mitigating CO2 emissions in a low-carbon context. The recent invention of mixed absorbents comprising poly(ethylenimine) (PEI) and ionic liquids (ILs) provides a novel strategy for efficiently capturing CO2, and this has garnered widespread attention. However, the intermolecular interactions between the IL and other constituents during the CO2 absorption process remain unclear. In this present work, a series of density functional theory (DFT) calculations and molecular dynamics simulations were conducted to investigate the positive role of IL in CO2 capture by PEI. The results showed that the formation of hydrogen bonds between the IL anion and the amino groups of PEI primarily drives the addition of IL to PEI. During the CO2 absorption process, the IL anion not only can absorb CO2 but also exerts a dehydrogenation effect on the amino group of PEI, facilitating enhanced interaction between PEI and CO2. Additionally, the IL substantially reduces the viscosity of PEI, promoting the diffusion of CO2 within the system and enhancing the absorption rate. Based on the information on interaction energy and viscosity, we can easily make theoretical predictions for the optimal proportion of IL to be added. The above results provide fundamental insights to promote the industrial application of the PEI/IL system for CO2 capture.
Collapse
Affiliation(s)
- Yuling Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xingyi Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yang Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
16
|
Zheng S, Song C, Curria MC, Ren ZJ, White CE. Ca-Based Layered Double Hydroxides for Environmentally Sustainable Carbon Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17212-17224. [PMID: 37916778 DOI: 10.1021/acs.est.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The process of carbon dioxide capture typically requires a large amount of energy for the separation of carbon dioxide from other gases, which has been a major barrier to the widespread deployment of carbon capture technologies. Innovation of carbon dioxide adsorbents is herein vital for the attainment of a sustainable carbon capture process. In this study, we investigated the electrified synthesis and rejuvenation of calcium-based layered double hydroxides (Ca-based LDHs) as solid adsorbents for CO2. We discovered that the particle morphology and phase purity of the LDHs, along with the presence of secondary phases, can be controlled by tuning the current density during electrodeposition on a porous carbon substrate. The change in phase composition during carbonation and calcination was investigated to unveil the effect of different intercalated anions on the surface basicity and thermal stability of Ca-based LDHs. By decoupling the adsorption of water and CO2, we showed that the adsorbed water largely promoted CO2 adsorption, most likely through a sequential dissolution and reaction pathway. A carbon capture capacity of 4.3 ± 0.5 mmol/g was measured at 30 °C and relative humidity of 40% using 10 vol % CO2 in nitrogen as the feed stream. After CO2 capture occurred, the thermal regeneration step was carried out by directly passing an electric current through the conductive carbon substrate, known as the Joule-heating effect. CO2 was found to start desorbing from the Ca-based LDHs at a temperature as low as 220 °C as opposed to the temperature above 700 °C required for calcium carbonate that forms as part of the Ca-looping capture process. Finally, we evaluated the cumulative energy demand and environmental impact of the LDH-based capture process using a life cycle assessment. We identified the most environmentally concerning step in the process and concluded that the postcombustion CO2 capture using LDH could be advantageous compared with existing technologies.
Collapse
Affiliation(s)
- Sunxiang Zheng
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Cuihong Song
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Maria C Curria
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Claire E White
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
17
|
Senevirathna HL, Wu S, Lee C, Kim JY, Kim SS, Bai K, Wu P. Enhancing MgO efficiency in CO 2 capture: engineered MgO/Mg(OH) 2 composites with Cl -, SO 42-, and PO 43- additives. RSC Adv 2023; 13:27946-27955. [PMID: 37736562 PMCID: PMC10509748 DOI: 10.1039/d3ra04080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
The formation of a MgCO3 shell hampers CO2 capture efficiency in MgO. Our previous studies developed MgO/Mg(OH)2 composites to facilitate CO2 diffusion, improving capture efficiency. However, MgCO3 still formed along the interfaces. To tackle this issue, we engineered the MgO/Mg(OH)2 interfaces by incorporating Cl-, SO42-, and PO43- additives. Novel MgO-H2O-MgX (X = Cl-, SO42-, and PO43-) composites were synthesized to explore the role of additives in preventing MgCO3 formation. MgO-Mg(OH)2-MgCl2 nano-composites displayed enhanced CO2 adsorption and stability. This breakthrough paves the way for effective bio-inspired strategies in overcoming CO2 transport barriers in MgO-based adsorbents.
Collapse
Affiliation(s)
- Hasanthi L Senevirathna
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Shunnian Wu
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Cathie Lee
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Jin-Young Kim
- Department of Materials Science and Engineering, Inha University Incheon 22212 Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University Incheon 22212 Korea
| | - Kewu Bai
- Institute of High Performance Computing, Agency for Science, Technology and Research Fusionopolis Way, #16-16 Connexis Singapore 138632 Singapore
| | - Ping Wu
- Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| |
Collapse
|
18
|
Amaraweera SM, Gunathilake CA, Gunawardene OHP, Dassanayake RS, Cho EB, Du Y. Carbon Capture Using Porous Silica Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2050. [PMID: 37513061 PMCID: PMC10383871 DOI: 10.3390/nano13142050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
As the primary greenhouse gas, CO2 emission has noticeably increased over the past decades resulting in global warming and climate change. Surprisingly, anthropogenic activities have increased atmospheric CO2 by 50% in less than 200 years, causing more frequent and severe rainfall, snowstorms, flash floods, droughts, heat waves, and rising sea levels in recent times. Hence, reducing the excess CO2 in the atmosphere is imperative to keep the global average temperature rise below 2 °C. Among many CO2 mitigation approaches, CO2 capture using porous materials is considered one of the most promising technologies. Porous solid materials such as carbons, silica, zeolites, hollow fibers, and alumina have been widely investigated in CO2 capture technologies. Interestingly, porous silica-based materials have recently emerged as excellent candidates for CO2 capture technologies due to their unique properties, including high surface area, pore volume, easy surface functionalization, excellent thermal, and mechanical stability, and low cost. Therefore, this review comprehensively covers major CO2 capture processes and their pros and cons, selecting a suitable sorbent, use of liquid amines, and highlights the recent progress of various porous silica materials, including amine-functionalized silica, their reaction mechanisms and synthesis processes. Moreover, CO2 adsorption capacities, gas selectivity, reusability, current challenges, and future directions of porous silica materials have also been discussed.
Collapse
Affiliation(s)
- Sumedha M Amaraweera
- Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Chamila A Gunathilake
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH 44242, USA
| | - Oneesha H P Gunawardene
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama 10200, Sri Lanka
| | - Eun-Bum Cho
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yanhai Du
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
19
|
Azhagapillai P, Reddy KSK, Guerrero Pena GDJ, Bojesomo RS, Raj A, Anjum DH, Elkadi M, Karanikolos GN, Ali MI. Synthesis of Mesoporous Carbon Adsorbents Using Biowaste Crude Glycerol as a Carbon Source via a Hard Template Method for Efficient CO 2 Capture. ACS OMEGA 2023; 8:21664-21676. [PMID: 37360493 PMCID: PMC10286101 DOI: 10.1021/acsomega.3c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
Biowaste utilization as a carbon source and its transformation into porous carbons have been of great interest to promote environmental remediation owing to biowaste's cost-effectiveness and useful physicochemical properties. In this work, crude glycerol (CG) residue from waste cooking oil transesterification was employed to fabricate mesoporous crude glycerol-based porous carbons (mCGPCs) using mesoporous silica (KIT-6) as a template. The obtained mCGPCs were characterized and compared to commercial activated carbon (AC) and CMK-8, a carbon material prepared using sucrose. The study aimed to evaluate the potential of mCGPC as a CO2 adsorbent and demonstrated its superior adsorption capacity compared to AC and comparable to CMK-8. The X-ray diffraction (XRD) and Raman results clearly depicted the structure of carbon nature with (002) and (100) planes and defect (D) and graphitic (G) bands, respectively. The specific surface area, pore volume, and pore diameter values confirmed the mesoporosity of mCGPC materials. The transmission electron microscopy (TEM) images also clearly revealed the porous nature with the ordered mesopore structure. The mCGPCs, CMK-8, and AC materials were used as CO2 adsorbents under optimized conditions. The mCGPC adsorption capacity (1.045 mmol/g) is superior to that of AC (0.689 mmol/g) and still comparable to that of CMK-8 (1.8 mmol/g). The thermodynamic analyses of the adsorption phenomena are also carried out. This work demonstrates the successful synthesis of a mesoporous carbon material using a biowaste (CG) and its application as a CO2 adsorbent.
Collapse
Affiliation(s)
- Prabhu Azhagapillai
- Department
of Chemistry, Khalifa University of Science
& Technology, Abu Dhabi 127788, U.A.E.
| | - K. Suresh Kumar Reddy
- Department
of Chemical Engineering, Khalifa University
of Science & Technology, Abu Dhabi 127788, U.A.E.
- Center
for Catalysis and Separation, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
| | | | - Rukayat S. Bojesomo
- Department
of Chemistry, Khalifa University of Science
& Technology, Abu Dhabi 127788, U.A.E.
| | - Abhijeet Raj
- Department
of Chemical Engineering, Khalifa University
of Science & Technology, Abu Dhabi 127788, U.A.E.
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
- Center
for Catalysis and Separation, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
| | - Dalaver H. Anjum
- Center
for Catalysis and Separation, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
- Department
of Physics, Khalifa University of Science
& Technology, Abu Dhabi 127788, U.A.E.
| | - Mirella Elkadi
- Department
of Chemistry, Khalifa University of Science
& Technology, Abu Dhabi 127788, U.A.E.
| | - Georgios N. Karanikolos
- Department
of Chemical Engineering, Khalifa University
of Science & Technology, Abu Dhabi 127788, U.A.E.
- Center
for Catalysis and Separation, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
- Research
and Innovation Center on CO2 and H2 (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, U.A.E.
- Department
of Chemical Engineering, University of Patras, Patras 26500, Greece
| | - Mohamed I. Ali
- Department
of Mechanical Engineering, Khalifa University
of Science & Technology, Abu
Dhabi 127788, U.A.E.
| |
Collapse
|
20
|
Tumurbaatar O, Popova M, Mitova V, Shestakova P, Koseva N. Engineering of Silica Mesoporous Materials for CO 2 Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114179. [PMID: 37297313 DOI: 10.3390/ma16114179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Adsorption methods for CO2 capture are characterized by high selectivity and low energy consumption. Therefore, the engineering of solid supports for efficient CO2 adsorption attracts research attention. Modification of mesoporous silica materials with tailor-made organic molecules can greatly improve silica's performance in CO2 capture and separation. In that context, a new derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, possessing an electron-rich condensed aromatic structure and also known for its anti-oxidative properties, was synthesized and applied as a modifying agent of 2D SBA-15, 3D SBA-16, and KIT-6 silicates. The physicochemical properties of the initial and modified materials were studied using nitrogen physisorption and temperature-gravimetric analysis. The adsorption capacity of CO2 was measured in a dynamic CO2 adsorption regime. The three modified materials displayed a higher capacity for CO2 adsorption than the initial ones. Among the studied sorbents, the modified mesoporous SBA-15 silica showed the highest adsorption capacity for CO2 (3.9 mmol/g). In the presence of 1 vol.% water vapor, the adsorption capacities of the modified materials were enhanced. Total CO2 desorption from the modified materials was achieved at 80 °C. The obtained silica materials displayed stable performance in five CO2 adsorption/desorption cycles. The experimental data can be appropriately described by the Yoon-Nelson kinetic model.
Collapse
Affiliation(s)
- Oyundari Tumurbaatar
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, 1113 Sofia, Bulgaria
| | - Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, 1113 Sofia, Bulgaria
| | - Violeta Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, 1113 Sofia, Bulgaria
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 9, 1113 Sofia, Bulgaria
| | - Neli Koseva
- Bulgarian Academy of Sciences, №1, 15 Noemvri St., 1040 Sofia, Bulgaria
| |
Collapse
|
21
|
Ren Q, Wei S, Du J, Wu P. Research progress and perspectives on carbon capture, utilization, and storage (CCUS) technologies in China and the USA: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27749-w. [PMID: 37269511 DOI: 10.1007/s11356-023-27749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
Carbon dioxide capture, utilization, and storage (CCUS) technology is an emerging technology with large-scale emission reduction potential and an essential component of the global response to climate change to achieve net-zero goals. As the two most important countries in global climate governance, it is necessary to review and examine the current status and trends of research in the field of CCUS in China and the USA. This paper uses bibliometric tools to review and analyze peer-reviewed articles in the Web of Science from both countries during 2000-2022. The results show a significant increase in research interest among scholars from both countries. The number of publications in the CCUS field in China and the USA was 1196 and 1302, respectively, showing an increasing trend. China and the USA have become the most influential countries in CCUS. And the USA has a more significant academic influence on a global scale. Furthermore, the research hotspots in the field of CCUS are diverse and differentiated. That is, China and the USA pay attention to different research hotspots or have different focuses in different periods. This paper also finds that new capture materials and technology development, geological storage monitoring and early warning, CO2 utilization and new energy development, sustainable business models, incentive policies and measures, and public awareness are critical directions for future research in the field of CCUS, to provide a comprehensive review and comparison of CCUS technology development in China and the USA. It helps to gain insight into the research differences and linkages between the two countries in the field of CCUS and identify the research gaps between them. And place some consensus that policymakers can use.
Collapse
Affiliation(s)
- Qiang Ren
- Business School, Sichuan University, Chengdu, 610065, China
| | - Shansen Wei
- Business School, Sichuan University, Chengdu, 610065, China
| | - Jianhui Du
- Business School, Sichuan University, Chengdu, 610065, China
| | - Peng Wu
- Business School, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
22
|
Mergbi M, Galloni MG, Aboagye D, Elimian E, Su P, Ikram BM, Nabgan W, Bedia J, Amor HB, Contreras S, Medina F, Djellabi R. Valorization of lignocellulosic biomass into sustainable materials for adsorption and photocatalytic applications in water and air remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27484-2. [PMID: 37227629 DOI: 10.1007/s11356-023-27484-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
An exponential rise in global pollution and industrialization has led to significant economic and environmental problems due to the insufficient application of green technology for the chemical industry and energy production. Nowadays, the scientific and environmental/industrial communities push to apply new sustainable ways and/or materials for energy/environmental applications through the so-called circular (bio)economy. One of today's hottest topics is primarily valorizing available lignocellulosic biomass wastes into valuable materials for energy or environmentally related applications. This review aims to discuss, from both the chemistry and mechanistic points of view, the recent finding reported on the valorization of biomass wastes into valuable carbon materials. The sorption mechanisms using carbon materials prepared from biomass wastes by emphasizing the relationship between the synthesis route or/and surface modification and the retention performance were discussed towards the removal of organic and heavy metal pollutants from water or air (NOx, CO2, VOCs, SO2, and Hg0). Photocatalytic nanoparticle-coated biomass-based carbon materials have proved to be successful composites for water remediation. The review discusses and simplifies the most raised interfacial, photonic, and physical mechanisms that might take place on the surface of these composites under light irradiation. Finally, the review examines the economic benefits and circular bioeconomy and the challenges of transferring this technology to more comprehensive applications.
Collapse
Affiliation(s)
- Meriem Mergbi
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Melissa Greta Galloni
- Dipartimento di Chimica, Università Degli Studi Di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ehiaghe Elimian
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
| | - Peidong Su
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Belhadj M Ikram
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Walid Nabgan
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
- Department of Chemical and Environmental Engineering, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Jorge Bedia
- Chemical Engineering Department, Autonomous University of Madrid, Madrid, Spain
| | - Hedi Ben Amor
- Faculty of Sciences of Gabes, RL Processes, Energetic, Environment and Electric Systems (PEESE), University of Gabes, 6072, Gabes, Tunisia
| | - Sandra Contreras
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Francisco Medina
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| |
Collapse
|
23
|
Sakai M, Hori H, Matsumoto T, Matsukata M. One-Pot Synthesis Method of MIL-96 Monolith and Its CO 2 Adsorption Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22395-22402. [PMID: 37126005 PMCID: PMC10176467 DOI: 10.1021/acsami.2c22955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A novel preparation method was proposed for a metal-organic framework (MOF) monolith using a simple one-pot synthesis method. A MOF tubular monolith was successfully prepared by the hydrothermal treatment for an α-Al2O3 monolith in an aqueous solution of 1,3,5-benzenetricarboxylic acid and nitric acid without the addition of a metal source. The effects of temperature and the HNO3 concentration in the synthesis solution on the crystallization behavior of MIL-96 were studied. HNO3 enhanced the dissolution of the α-Al2O3 monolith and the growth of MIL-96. The growth rate of MIL-96 was also influenced by the synthesis temperature; a synthesis temperature of over 453 K was required for crystallization. The CO2 adsorption capacity of the prepared MIL-96 monoliths was evaluated and found to be comparable to that of the well-grown MIL-96 powdery crystal. Furthermore, the MIL-96 monoliths demonstrated good stability as their adsorption properties were retained even after 2 months of storage under atmospheric conditions.
Collapse
Affiliation(s)
- Motomu Sakai
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Hayata Hori
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Takaya Matsumoto
- Central Technical Research Laboratory, ENEOS Corporation, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa 231-0815, Japan
| | - Masahiko Matsukata
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0085, Japan
| |
Collapse
|
24
|
Karimi M, Shirzad M, Silva JAC, Rodrigues AE. Carbon dioxide separation and capture by adsorption: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-44. [PMID: 37362013 PMCID: PMC10018639 DOI: 10.1007/s10311-023-01589-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 06/02/2023]
Abstract
Rising adverse impact of climate change caused by anthropogenic activities is calling for advanced methods to reduce carbon dioxide emissions. Here, we review adsorption technologies for carbon dioxide capture with focus on materials, techniques, and processes, additive manufacturing, direct air capture, machine learning, life cycle assessment, commercialization and scale-up.
Collapse
Affiliation(s)
- Mohsen Karimi
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mohammad Shirzad
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José A. C. Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
25
|
Xing X, Liu Y, Lin RD, Zhang Y, Wu ZL, Yu XQ, Li K, Wang N. Development of an Integrated System for Highly Selective Photoenzymatic Synthesis of Formic Acid from CO 2. CHEMSUSCHEM 2023; 16:e202201956. [PMID: 36482031 DOI: 10.1002/cssc.202201956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Herein, a Zr-based dual-ligand MOFs with pre-installed Rh complex was employed for NADH regeneration in situ and also used for immobilization of formic acid dehydrogenase (FDH) in order to realize a highly efficient CO2 fixation system. Then, based on the detailed investigations into the photochemical and electrochemical properties, it is demonstrated that the introduction of the photosensitive meso-tetra(4-carboxyphenyl) porphin (TCPP) ligands increased the catalytic active sites and improved photoelectric properties. Furthermore, the electron mediator Rh complex, anchored on the zirconium-based dual-ligand MOFs, enhanced the efficiency of electron transfer efficiency and facilitated the separation of photogenerated electrons and holes. Compared with UiO-66-NH2 , Rh-H2 TCPP-UiO-66-NH2 exhibits an optimized valence band structure and significantly improved photocatalytic activity for NAD+ reduction, resulting the synthesis of formic acid from CO2 increased from 150 μg mL-1 (UiO-66-NH2 ) to 254 μg mL-1 (Rh-H2 TCPP-UiO-66-NH2 ). Moreover, the assembled photocatalyst-enzyme coupled system also allows facile recycling of expensive electron mediator, enzyme, and photocatalyst.
Collapse
Affiliation(s)
- Xiu Xing
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Ru-De Lin
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Yang Zhang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhong-Liu Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
26
|
Mighri R, Demirci UB, Alauzun JG. Microporous Borocarbonitrides B xC yN z: Synthesis, Characterization, and Promises for CO 2 Capture. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:734. [PMID: 36839102 PMCID: PMC9960740 DOI: 10.3390/nano13040734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Porous borocarbonitrides (denoted BCN) were prepared through pyrolysis of the polymer stemmed from dehydrocoupled ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3, EDAB) in the presence of F-127. These materials contain interconnected pores in the nanometer range with a high specific surface area up to 511 m2 · g-1. Gas adsorption of CO2 demonstrated an interesting uptake (3.23 mmol · g-1 at 0 °C), a high CO2/N2 selectivity as well as a significant recyclability after several adsorption-desorption cycles. For comparison's sake, a synthesized non-porous BCN as well as a commercial BN sample were studied to investigate the role of porosity and carbon doping factors in CO2 capture. The present work thus tends to demonstrate that the two-step synthesis of microporous BCN adsorbent materials from EDAB using a bottom-up approach (dehydrocoupling followed by pyrolysis at 1100 °C) is relatively simple and interesting.
Collapse
Affiliation(s)
- Rimeh Mighri
- Institut Charles Gerhardt, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Umit B. Demirci
- Institut Europeen des Membranes, IEM–UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Johan G. Alauzun
- Institut Charles Gerhardt, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
27
|
Ramírez-Márquez C, Al-Thubaiti MM, Martín M, El-Halwagi MM, Ponce-Ortega JM. Processes Intensification for Sustainability: Prospects and Opportunities. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- César Ramírez-Márquez
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich58060, México
| | | | - Mariano Martín
- Departamento de Ingeniería Química, Universidad de Salamanca, Plza. Caídos 1-5, Salamanca37008, Spain
| | - Mahmoud M. El-Halwagi
- Chemical Engineering Department, Texas A&M University, College StationTexas77843, United States
| | - José María Ponce-Ortega
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich58060, México
| |
Collapse
|
28
|
Allangawi A, Alzaimoor EFH, Shanaah HH, Mohammed HA, Saqer H, El-Fattah AA, Kamel AH. Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C 2023; 9:17. [DOI: 10.3390/c9010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Global warming and climate changes are among the biggest modern-day environmental problems, the main factor causing these problems is the greenhouse gas effect. The increased concentration of carbon dioxide in the atmosphere resulted in capturing increased amounts of reflected sunlight, causing serious acute and chronic environmental problems. The concentration of carbon dioxide in the atmosphere reached 421 ppm in 2022 as compared to 280 in the 1800s, this increase is attributed to the increased carbon dioxide emissions from the industrial revolution. The release of carbon dioxide into the atmosphere can be minimized by practicing carbon capture utilization and storage methods. Carbon capture utilization and storage (CCUS) has four major methods, namely, pre-combustion, post-combustion, oxyfuel combustion, and direct air capture. It has been reported that applying CCUS can capture up to 95% of the produced carbon dioxide in running power plants. However, a reported cost penalty and efficiency decrease hinder the wide applicability of CCUS. Advancements in the CCSU were made in increasing the efficiency and decreasing the cost of the sorbents. In this review, we highlight the recent developments in utilizing both physical and chemical sorbents to capture carbon. This includes amine-based sorbents, blended absorbents, ionic liquids, metal-organic framework (MOF) adsorbents, zeolites, mesoporous silica materials, alkali-metal adsorbents, carbonaceous materials, and metal oxide/metal oxide-based materials. In addition, a comparison between recently proposed kinetic and thermodynamic models was also introduced. It was concluded from the published studies that amine-based sorbents are considered assuperior carbon-capturing materials, which is attributed to their high stability, multifunctionality, rapid capture, and ability to achieve large sorption capacities. However, more work must be done to reduce their cost as it can be regarded as their main drawback.
Collapse
Affiliation(s)
- Abdulrahman Allangawi
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Eman F. H. Alzaimoor
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Haneen H. Shanaah
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Hawraa A. Mohammed
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Husain Saqer
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Ahmed Abd El-Fattah
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, El-Shatby, Alexandria 21526, Egypt
| | - Ayman H. Kamel
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
29
|
Pugh SM, Forse AC. Nuclear magnetic resonance studies of carbon dioxide capture. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107343. [PMID: 36512903 DOI: 10.1016/j.jmr.2022.107343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Carbon dioxide capture is an important greenhouse gas mitigation technology that can help limit climate change. The design of improved capture materials requires a detailed understanding of the mechanisms by which carbon dioxide is bound. Nuclear magnetic resonance (NMR) spectroscopy methods have emerged as a powerful probe of CO2 sorption and diffusion in carbon capture materials. In this article, we first review the practical considerations for carrying out NMR measurements on capture materials dosed with CO2 and we then present three case studies that review our recent work on NMR studies of CO2 binding in metal-organic framework materials. We show that simple 13C NMR experiments are often inadequate to determine CO2 binding modes, but that more advanced experiments such as multidimensional NMR experiments and 17O NMR experiments can lead to more conclusive structural assignments. We further discuss how pulsed field gradient (PFG) NMR can be used to explore diffusion of adsorbed CO2 through the porous framework. Finally, we provide an outlook on the challenges and opportunities for the further development of NMR methodologies that can improve our understanding of carbon capture.
Collapse
Affiliation(s)
- Suzi M Pugh
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB21EW, UK
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB21EW, UK.
| |
Collapse
|
30
|
Abdul Hadi M, Kadhim MM, Sabri Abbas Z, Hachim SK, Abdullaha SA, Mahdi Rheima A. Investigation the sensing behavior of pristine and Ti-doped C2N monolayer toward H2S gas. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Pérez-Botella E, Valencia S, Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem Rev 2022; 122:17647-17695. [PMID: 36260918 PMCID: PMC9801387 DOI: 10.1021/acs.chemrev.2c00140] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zeolites have been widely used as catalysts, ion exchangers, and adsorbents since their industrial breakthrough in the 1950s and continue to be state-of the-art adsorbents in many separation processes. Furthermore, their properties make them materials of choice for developing and emerging separation applications. The aim of this review is to put into context the relevance of zeolites and their use and prospects in adsorption technology. It has been divided into three different sections, i.e., zeolites, adsorption on nanoporous materials, and chemical separations by zeolites. In the first section, zeolites are explained in terms of their structure, composition, preparation, and properties, and a brief review of their applications is given. In the second section, the fundamentals of adsorption science are presented, with special attention to its industrial application and our case of interest, which is adsorption on zeolites. Finally, the state-of-the-art relevant separations related to chemical and energy production, in which zeolites have a practical or potential applicability, are presented. The replacement of some of the current separation methods by optimized adsorption processes using zeolites could mean an improvement in terms of sustainability and energy savings. Different separation mechanisms and the underlying adsorption properties that make zeolites interesting for these applications are discussed.
Collapse
Affiliation(s)
| | | | - Fernando Rey
- . Phone: +34 96 387 78 00.
Fax: +34 96 387 94
44
| |
Collapse
|
32
|
Barbarin I, Politakos N, Serrano Cantador L, Cecilia JA, Sanz O, Tomosvka R. Tailoring of Textural Properties of 3D Reduced Graphene Oxide Composite Monoliths by Using Highly Crosslinked Polymer Particles toward Improved CO 2 Sorption. ACS APPLIED POLYMER MATERIALS 2022; 4:9065-9075. [PMID: 36532886 PMCID: PMC9748741 DOI: 10.1021/acsapm.2c01421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The main constraint on developing a full potential for CO2 adsorption of 3D composite monoliths made of reduced graphene oxide (rGO) and polymer materials is the lack of control of their textural properties, along with the diffusional limitation to the CO2 adsorption due to the pronounced polymers' microporosity. In this work, the textural properties of the composites were altered by employing highly crosslinked polymer particles, synthesized by emulsion polymerization in aqueous media. For that aim, waterborne methyl methacrylate (MMA) particles were prepared, in which the crosslinking was induced by using different quantities of divinyl benzene (DVB). Afterward, these particles were combined with rGO platelets and subjected to the reduction-induced self-assembly process. The resulting 3D monolithic porous materials certainly presented improved textural properties, in which the porosity and BET surface area were increased up to 100% with respect to noncrosslinked composites. The crosslinked density of MMA polymer particles was a key parameter controlling the porous properties of the composites. Consequently, higher CO2 uptake than that of neat GO structures and composites made of noncrosslinked MMA polymer particles was attained. This work demonstrates that a proper control of the microstructure of the polymer particles and their facile introduction within rGO self-assembly 3D structures is a powerful tool to tailor the textural properties of the composites toward improved CO2 capture performance.
Collapse
Affiliation(s)
- Iranzu Barbarin
- POLYMAT
and Department of Applied Chemistry, University
of the Basque Country UPV/EHU, 20018Donostia-San Sebastián, Spain
| | - Nikolaos Politakos
- POLYMAT
and Department of Applied Chemistry, University
of the Basque Country UPV/EHU, 20018Donostia-San Sebastián, Spain
| | - Luis Serrano Cantador
- Biopren
Group, Inorganic Chemistry and Chemical Engineering Department, Nanochemistry
University Institute (IUNAN), Universidad
de Córdoba, 14014Córdoba, Spain
| | - Juan Antonio Cecilia
- Inorganic
Chemistry, Crystallography and Mineralogy, University of Málaga, 29071Málaga, Spain
| | - Oihane Sanz
- Department
of Applied Chemistry, University of the
Basque Country, 20018Donostia-San Sebastián, Spain
| | - Radmila Tomosvka
- POLYMAT
and Department of Applied Chemistry, University
of the Basque Country UPV/EHU, 20018Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013Bilbao, Spain
| |
Collapse
|
33
|
Balogun AI, Padmanabhan E, Abdulkareem FA, Gebretsadik HT, Wilfred CD, Soleimani H, Viswanathan PM, Wee BS, Yusuf JY. Optimization of CO 2 Sorption onto Spent Shale with Diethylenetriamine (DETA) and Ethylenediamine (EDA). MATERIALS (BASEL, SWITZERLAND) 2022; 15:8293. [PMID: 36499791 PMCID: PMC9738924 DOI: 10.3390/ma15238293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
A novel technique was employed to optimize the CO2 sorption performance of spent shale at elevated pressure-temperature (PT) conditions. Four samples of spent shale prepared from the pyrolysis of oil shale under an anoxic condition were further modified with diethylenetriamine (DETA) and ethylenediamine (EDA) through the impregnation technique to investigate the variations in their physicochemical characteristics and sorption performance. The textural and structural properties of the DETA- and EDA- modified samples revealed a decrease in the surface area from tens of m2/g to a unit of m2/g due to the amine group dispersing into the available pores, but the pore sizes drastically increased to macropores and led to the creation of micropores. The N-H and C-N bonds of amine noticed on the modified samples exhibit remarkable affinity for CO2 sequestration and are confirmed to be thermally stable at higher temperatures by thermogravimetric (TG) analysis. Furthermore, the maximum sorption capacity of the spent shale increased by about 100% with the DETA modification, and the equilibrium isotherm analyses confirmed the sorption performance to support heterogenous sorption in conjunction with both monolayer and multilayer coverage since they agreed with the Sips, Toth, Langmuir, and Freundlich models. The sorption kinetics confirm that the sorption process is not limited to diffusion, and both physisorption and chemisorption have also occurred. Furthermore, the heat of enthalpy reveals an endothermic reaction observed between the CO2 and amine-modified samples as a result of the chemical bond, which will require more energy to break down. This investigation reveals that optimization of spent shale with amine functional groups can enhance its sorption behavior and the amine-modified spent shale can be a promising sorbent for CO2 sequestration from impure steams of the natural gas.
Collapse
Affiliation(s)
- Asmau Iyabo Balogun
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
- Geoscience Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Eswaran Padmanabhan
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
- Geoscience Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Firas Ayad Abdulkareem
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Haylay Tsegab Gebretsadik
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
- Geoscience Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Cecilia Devi Wilfred
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Hassan Soleimani
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
- Geoscience Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Prasanna Mohan Viswanathan
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Boon Siong Wee
- Resource Chemistry Program, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Jemilat Yetunde Yusuf
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
34
|
Parker ST, Smith A, Forse AC, Liao WC, Brown-Altvater F, Siegelman RL, Kim EJ, Zill NA, Zhang W, Neaton JB, Reimer JA, Long JR. Evaluation of the Stability of Diamine-Appended Mg 2(dobpdc) Frameworks to Sulfur Dioxide. J Am Chem Soc 2022; 144:19849-19860. [PMID: 36265017 DOI: 10.1021/jacs.2c07498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are a promising class of CO2 adsorbents, although their stability to SO2─a trace component of industrially relevant exhaust streams─remains largely untested. Here, we investigate the impact of SO2 on the stability and CO2 capture performance of dmpn-Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-propanediamine), a candidate material for carbon capture from coal flue gas. Using SO2 breakthrough experiments and CO2 isobar measurements, we find that the material retains 91% of its CO2 capacity after saturation with a wet simulated flue gas containing representative levels of CO2 and SO2, highlighting the robustness of this framework to SO2 under realistic CO2 capture conditions. Initial SO2 cycling experiments suggest dmpn-Mg2(dobpdc) may achieve a stable operating capacity in the presence of SO2 after initial passivation. Evaluation of several other diamine-Mg2(dobpdc) variants reveals that those with primary,primary (1°,1°) diamines, including dmpn-Mg2(dobpdc), are more robust to humid SO2 than those featuring primary,secondary (1°,2°) or primary,tertiary (1°,3°) diamines. Based on the solid-state 15N NMR spectra and density functional theory calculations, we find that under humid conditions, SO2 reacts with the metal-bound primary amine in 1°,2° and 1°,3° diamine-appended Mg2(dobpdc) to form a metal-bound bisulfite species that is charge balanced by a primary ammonium cation, thereby facilitating material degradation. In contrast, humid SO2 reacts with the free end of 1°,1° diamines to form ammonium bisulfite, leaving the metal-diamine bond intact. This structure-property relationship can be used to guide further optimization of these materials for CO2 capture applications.
Collapse
Affiliation(s)
- Surya T Parker
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex Smith
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Alexander C Forse
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Wei-Chih Liao
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Florian Brown-Altvater
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.,Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca L Siegelman
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Eugene J Kim
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Nicholas A Zill
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jeffrey B Neaton
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California Berkeley, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Boycheva S, Chakarova K, Mihaylov M, Hadjiivanov K, Popova M. Effect of calcium on enhanced carbon capture potential of coal fly ash zeolites. Part II: a study on the adsorption mechanisms. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1934-1944. [PMID: 36172795 DOI: 10.1039/d2em00252c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Coal fly ash zeolites (CFAZs) of type X with low (Na-X) and medium (Na-Ca-X) content of calcium were synthesized by alkaline conversion of lignite coal fly ash generated by combustion of lignite with lower and higher limestone amounts, extracted from different coal deposits and burned in separate thermal power plants. The concentration and state of Ca in the zeolites were investigated by energy dispersive X-ray (EDX) analysis and X-ray photoelectron spectroscopy (XPS). CFAZs Na-Ca-X with a medium Ca-content were found to outperform their lower calcium counterparts Na-X in terms of carbon capture capacity. This provoked our research interest in elucidating the role of Ca in the CO2 retaining mechanism. CFAZs Na-X and Na-Ca-X were studied in consecutive dynamic adsorption cycles, after thermal regeneration at a temperature of 80 °C, at which only the physically adsorbed CO2 molecules can be released. Desorption was investigated by thermogravimetric TG-DTG analyses over a wide temperature range. In situ Fourier-transform infrared (FTIR) spectroscopy was performed to elucidate the structural features of Na-X and Na-Ca-X CFAZs and the types of their accessible adsorption sites. It was found that the role of Ca is to increase the number of accessible Na+ cations in SII and SIII positions in the zeolites where they can simultaneously adsorb two CO or CO2 molecules, which benefits their adsorption capacity. This study raises an issue on coal ash classification for the synthesis of zeolites with carbon capture applications.
Collapse
Affiliation(s)
- Silviya Boycheva
- Technical University of Sofia, Department of Thermal and Nuclear Power Engineering, 8 Kl. Ohridsky Blvd, 1000 Sofia, Bulgaria.
| | - Kristina Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Mihail Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Konstantin Hadjiivanov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113, Sofia, Bulgaria
| |
Collapse
|
36
|
Aniruddha R, Sreedhar I, Reddy BM. Enhanced carbon capture and stability using novel hetero-scale composites based on MCM-41. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Stankovic B, Barbarin I, Sanz O, Tomovska R, Ruipérez F. Experimental and theoretical study of the effect of different functionalities of graphene oxide/polymer composites on selective CO 2 capture. Sci Rep 2022; 12:15992. [PMID: 36163246 PMCID: PMC9512785 DOI: 10.1038/s41598-022-20189-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
There is a constant need for versatile technologies to reduce the continuously increasing concentration of CO2 in the atmosphere, able to provide effective solutions under different conditions (temperature, pressure) and composition of the flue gas. In this work, a combination of graphene oxide (GO) and functionalized waterborne polymer particles was investigated, as versatile and promising candidates for CO2 capture application, with the aim to develop an easily scalable, inexpensive, and environmentally friendly CO2 capture technology. There are huge possibilities of different functional monomers that can be selected to functionalize the polymer particles and to provide CO2-philicity to the composite nanostructures. Density functional theory (DFT) was employed to gain a deeper understanding of the interactions of these complex composite materials with CO2 and N2 molecules, and to build a basis for efficient screening for functional monomers. Estimation of the binding energy between CO2 and a set of GO/polymer composites, comprising copolymers of methyl methacrylate, n-butyl acrylate, and different functional monomers, shows that it depends strongly on the polymer functionalities. In some cases, there is a lack of cooperative effect of GO. It is explained by a remarkably strong GO-polymer binding, which induced less effective CO2-polymer interactions. When compared with experimental results, in the cases when the nanocomposite structures presented similar textural properties, the same trends for selective CO2 capture over N2 were attained. Besides novel functional materials for CO2 capture and a deeper understanding of the interactions between CO2 molecules with various materials, this study additionally demonstrates that DFT calculations can be a shorter route toward the efficient selection of the best functionalization of the composite materials for selective CO2 capture.
Collapse
Affiliation(s)
- Branislav Stankovic
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea, 72, 20018, Donostia-San Sebastián, Spain.,Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, 11050, Republic of Serbia
| | - Iranzu Barbarin
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea, 72, 20018, Donostia-San Sebastián, Spain
| | - Oihane Sanz
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea, 72, 20018, Donostia-San Sebastián, Spain
| | - Radmila Tomovska
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea, 72, 20018, Donostia-San Sebastián, Spain. .,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain.
| | - Fernando Ruipérez
- POLYMAT and Physical Chemistry Department, Faculty of Pharmacy, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
38
|
Anila S, Suresh CH. Polyanionic cyano-fullerides for CO 2 capture: a DFT prediction. Phys Chem Chem Phys 2022; 24:22144-22153. [PMID: 36082817 DOI: 10.1039/d2cp03464f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of C60 fullerene with 'n' molecules (n = 1 to 6) of 1,3-dimethyl-2,3-dihydro-2-cyano-imidazole (IMCN) results in the exothermic formation of imidazolium cation-polyanionic fulleride complexes, (IM+)n⋯((C60(CN)n)n-). The binding energy of IM+ with (C60(CN)n)n- in the imidazolium-fulleride ionic complexes increased from -69.6 kcal mol-1 for n = 1 to -202.9 kcal mol-1 for n = 6. The energetics of the complex formation and cation-anion interaction energy data suggest the formation of imidazolium-fulleride ionic liquid (IL) systems. Furthermore, the dimer formation of such ionic complexes showed more exergonic nature due to multiple cooperative electrostatic interactions between oppositely charged species and suggested improved energetics for higher order clusters. The molecular electrostatic potential (MESP) analysis has revealed that the extra 'n' electrons in the ionic complex as well as that in the bare (C60(CN)n)n- are delocalized mainly on the unsaturated carbon centers of the fullerene unit, while the CN groups remain as a neutral unit. The MESP minimum (Vmin) values of (C60(CN)n)n- on the carbon cage have shown that the addition of each CN- unit on the cage enhances the negative character of Vmin by ∼54.7 kcal mol-1. This enhancement in MESP is comparable to the enhancement observed when one electron is added to C60 to produce (-62.5 kcal mol-1) and suggests that adding 'n' CN- groups to the fullerene cage is equivalent to supplying 'n' electrons to the carbon cage. Also the high capacity of the fullerene cage to hold several electrons can be attributed to the spherical delocalization of them onto the electron deficient carbon cage. The interactive behavior of CO2 molecules with (IM+)n⋯(C60(CN)n)n- systems showed that the interaction becomes stronger from -2.3 kcal mol-1 for n = 1 to -18.6 kcal mol-1 for n = 6. From the trianionic fulleride onwards, the C⋯CO2 noncovalent (nc) interaction changes to C-CO2 covalent (c) interaction with the development of carboxylate character on the adsorbed CO2. These results prove that cyano-fullerides are promising candidates for CO2 capture.
Collapse
Affiliation(s)
- Sebastian Anila
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695 019, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695 019, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
39
|
Peredo-Mancilla D, Matei Ghimbeu C, Réty B, Ho BN, Pino D, Vaulot C, Hort C, Bessieres D. Surface-Modified Activated Carbon with a Superior CH 4/CO 2 Adsorption Selectivity for the Biogas Upgrading Process. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deneb Peredo-Mancilla
- Department of Fisheries, Universidad Autónoma de Baja California Sur, La Paz 23080, Mexico
- CNRS/Total/Univ Pau & Pays Adour/E2S UPPA, Laboratoire des Fluides Complexes et Leurs Reservoirs-IPRA, UMRS5150, 64000 Pau, France
| | - Camelia Matei Ghimbeu
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Bénédicte Réty
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Bich-Ngoc Ho
- CNRS/Total/Univ Pau & Pays Adour/E2S UPPA, Laboratoire des Fluides Complexes et Leurs Reservoirs-IPRA, UMRS5150, 64000 Pau, France
- Université Pau & Pays Adour/E2S UPPA, Laboratoire de Thermique, Energetique et Procedes-IPRA, EA1932, 64000 Pau, France
| | - David Pino
- CNRS/Total/Univ Pau & Pays Adour/E2S UPPA, Laboratoire des Fluides Complexes et Leurs Reservoirs-IPRA, UMRS5150, 64000 Pau, France
| | - Cyril Vaulot
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Cécile Hort
- Université Pau & Pays Adour/E2S UPPA, Laboratoire de Thermique, Energetique et Procedes-IPRA, EA1932, 64000 Pau, France
| | - David Bessieres
- CNRS/Total/Univ Pau & Pays Adour/E2S UPPA, Laboratoire des Fluides Complexes et Leurs Reservoirs-IPRA, UMRS5150, 64000 Pau, France
| |
Collapse
|
40
|
Bo K, Feng Y, Lan Z, Yang W, Li Y. Facile Preparation of Porous CaMgAl Hydrotalcite-Like Derived Mixed Oxides through Alkaline Etching of KOH for CO2 Capture. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422070160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Gutsev GL, Tibbetts KM, Gutsev LG, Aldoshin SM, Ramachandran BR. Mechanisms of complete dissociation of CO2 on iron clusters. Chemphyschem 2022; 23:e202200277. [DOI: 10.1002/cphc.202200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - Katharine Moore Tibbetts
- Virginia Commonwealth University College of Humanities and Sciences Chemistry 1001 W. Main St 23284 Richmond UNITED STATES
| | - Lavrenty G Gutsev
- Louisiana Technical University: Louisiana Tech University Institute for Micromanufacturing 71272 Ruston UNITED STATES
| | - Sergey M Aldoshin
- Institute of Problems of Chemical Physics Quantum Chemistry 1 Acad. Semenov av 142432 Chernogolovka RUSSIAN FEDERATION
| | | |
Collapse
|
42
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
43
|
Rico-Martínez S, Álvarez C, Hernández A, Miguel JA, Lozano ÁE. Mixed Matrix Membranes Loaded with a Porous Organic Polymer Having Bipyridine Moieties. MEMBRANES 2022; 12:membranes12060547. [PMID: 35736254 PMCID: PMC9228454 DOI: 10.3390/membranes12060547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023]
Abstract
Mixed matrix membranes (MMMs), derived from three aromatic polyimides (PIs), and an affordable porous organic polymer (POP) having basic bipyridine moieties were prepared. Matrimid and two fluorinated polyimides, which were derived from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride and 2,2′-bis(4-aminophenyl)hexafluoropropane (6F6F) or 2,4,6-trimethyl-m-phenylenediamine (6FTMPD), were employed as polymer matrixes. The used POP was a highly microporous material (surface area of 805 m2 g−1) with excellent thermal and chemical stability. The MMMs showed good compatibility between the PIs and POP, high thermal stabilities and glass transition temperatures superior to those of the neat PI membranes, and good mechanical properties. The addition of POP to the matrix led to an increase in the gas diffusivity and, thus, in permeability, which was associated with an increase in the fractional free volume of MMMs. The increase in permeability was higher for the less permeable matrix. For example, at 30 wt.% of POP, the permeability to CO2 and CH4 of the MMMs increased by 4- and 7-fold for Matrimid and 3- and 4-fold for 6FTMPD. The highest CH4 permeability led to a decrease in CO2/CH4 selectivity. The CO2/N2 separation performance was interesting, as the selectivity remained practically constant. Finally, the POP showed no molecular sieving effect towards the C2H4/C2H6 and C3H6/C3H8 gas pairs, but the permeability increased by about 4-fold and the selectivity was close to that of the matrix. In addition, because the POP can form metal ion bipyridine complexes, modified POP-based MMMs could be employed for olefin/paraffin separations.
Collapse
Affiliation(s)
- Sandra Rico-Martínez
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (S.R.-M.); (Á.E.L.)
| | - Cristina Álvarez
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
- Surfaces and Porous Materials (SMAP, UA-UVA_CSIC), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
- Correspondence: (C.Á.); (J.A.M.)
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP, UA-UVA_CSIC), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
| | - Jesús A. Miguel
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (S.R.-M.); (Á.E.L.)
- Correspondence: (C.Á.); (J.A.M.)
| | - Ángel E. Lozano
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (S.R.-M.); (Á.E.L.)
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
- Surfaces and Porous Materials (SMAP, UA-UVA_CSIC), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
| |
Collapse
|
44
|
Tan S(J, Do DD, Chew JW. Nucleation of water clusters on functionalised graphite with kinetic Monte Carlo scheme. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2075548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shiliang (Johnathan) Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - D. D. Do
- School of Chemical Engineering, The University of Queensland, St. Lucia, Australia
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
45
|
Kunalan S, Palanivelu K, Sachin EK, Syrtsova DA, Teplyakov VV. Thin‐film hydrogel polymer layered polyvinyltrimethylsilane dual‐layer flat‐bed composite membrane for
CO
2
gas separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shankar Kunalan
- Centre for Environmental Studies and Centre for Climate Change and Disaster Management Anna University Chennai India
| | - Kandasamy Palanivelu
- Centre for Environmental Studies and Centre for Climate Change and Disaster Management Anna University Chennai India
- Centre for Climate Change and Disaster Management Anna University Chennai India
| | | | | | | |
Collapse
|
46
|
Tiainen T, Mannisto JK, Tenhu H, Hietala S. CO 2 Capture and Low-Temperature Release by Poly(aminoethyl methacrylate) and Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5197-5208. [PMID: 34879650 PMCID: PMC9069862 DOI: 10.1021/acs.langmuir.1c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Poly(aminoethyl methacrylate) (PAEMA), poly(ethylene oxide)-block-(aminoethyl methacrylate) (PEO-PAEMA), and their guanidinylated derivates, poly(guanidine ethyl methacrylate) (PGEMA) and poly(ethylene oxide)-block-(guanidine ethyl methacrylate) (PEO-PGEMA), were prepared to study their capabilities for CO2 adsorption and release. The polymers of different forms or degree of guanidinylation were thoroughly characterized, and their interaction with CO2 was studied by NMR and calorimetry. The extent and kinetics of adsorption and desorption of N2 and CO2 were investigated by thermogravimetry under controlled gas atmospheres. The materials did not adsorb N2, whereas CO2 could be reversibly adsorbed at room temperature and released by an elevated temperature. The most promising polymer was PGEMA with a guanidinylation degree of 7% showing a CO2 adsorption capacity of 2.4 mmol/g at room temperature and a desorption temperature of 72 °C. The study also revealed relations between the polymer chemical composition and CO2 adsorption and release characteristics that are useful in future formulations for CO2 adsorbent polymer materials.
Collapse
|
47
|
Highly selective adsorbent by gamma radiation-induced grafting of glycidyl methacrylate on polyacrylonitrile/polyurethane nanofiber: Evaluation of CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Wei M, Zhao Q, Liu Q, Li L, Zhong Z. A new comprehensive evaluation indicator of adsorbent for gas separation. ENVIRONMENTAL TECHNOLOGY 2022; 43:1624-1633. [PMID: 33143571 DOI: 10.1080/09593330.2020.1845818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
To evaluate and compare the performances of different adsorbents for gas separation, an adsorbent comprehensive evaluation indicator (ACEI) is proposed. In the ACEI, the working capacity, selectivity, adsorption rate, regeneration and circulation parameters, stability during adsorption, and tolerance to impurities are considered, and some exponents are introduced to allow the ACEI to adapt to different adsorbent working conditions. To illustrate the applicability of the ACEI, the adsorption of CO2 and N2 was investigated on two kinds of activated carbons (ACs), which were used for gas purification and bulk separation. The ACEI is a better overall indicator than other currently used indicators to evaluate the performance of adsorbents.
Collapse
Affiliation(s)
- Mengqi Wei
- Jiangsu Provincial Academy of Environmental Science, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Environmental Engineering, Nanjing, People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qiuyue Zhao
- Jiangsu Provincial Academy of Environmental Science, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Environmental Engineering, Nanjing, People's Republic of China
| | - Qian Liu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Environmental Engineering, Nanjing, People's Republic of China
| | - Li Li
- Jiangsu Provincial Academy of Environmental Science, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Environmental Engineering, Nanjing, People's Republic of China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
49
|
Lu X, Liu L, Liu H, Tian G, Peng G, Zhuo L, Wang Z. Zeolite-X synthesized from halloysite nanotubes and its application in CO2 capture. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Sultan T, Zabiri H, Shahbaz M, Maulud AS. Model Analysis for the Implementation of a Fast Model Predictive Control Scheme on the Absorption/Stripping CO 2 Capture Plants. ACS OMEGA 2022; 7:8437-8455. [PMID: 35309478 PMCID: PMC8928549 DOI: 10.1021/acsomega.1c05974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this paper is to investigate the possible implementation of the Fast model predictive control (MPC) scheme for chemical systems. Due to the difficulties associated with complicated dynamic behavior and model sensitivity, which results in considerable offsets, the Fast MPC controller has not been implemented on the CO2 capture plant based on the absorption/stripping system. The main objective of this work is to evaluate the most appropriate model for implementing the Fast MPC control strategy, which results in fast output responses, negligible offsets, and minimum errors. The steady-state and dynamic simulation models of the CO2 capture plant are designed in Aspen PLUS. In the System Identification Toolbox, multiple state-space models are identified to achieve a highly accurate model for the Fast MPC controller. The Fast MPC controller is then implemented to evaluate the performance under a setpoint tracking mode with ±5 and ±15% step changes. The results showed that the Fast MPC based on the state-space prediction focus model has on average 7.9 times lower offset than the simulation focus model and 10.4 times lower integral absolute error values. The comparison study concluded that the Fast MPC control strategy performs efficiently using prediction-based focus state-space models for CO2 capture plants using the absorption/stripping system with minimum offsets and errors.
Collapse
Affiliation(s)
- Tahir Sultan
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Haslinda Zabiri
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Muhammad Shahbaz
- Division
of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, 5825 Doha, Qatar
| | - Abdulhalim Shah Maulud
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| |
Collapse
|