1
|
Yang J, Du Q, Jiang X, Ye Q, Lv P, Zeng D, Li P, Wu W, He D. Effects of different natural organic matter on catalytic properties of green rust: Mechanism and environmental significance. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137937. [PMID: 40117778 DOI: 10.1016/j.jhazmat.2025.137937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Natural organic matter (NOM) has an important impact on the environmental behaviors of iron minerals, such as green rust (GR), however, NOM with different types and concentrations on these phenomena and mechanisms are still limited. This study explored effects of two common NOM (humic acid (HA) and fulvic acid (FA)) on the physicochemical properties of GR as well as the catalytic degradation of Bisphenol F (BPF). Results indicated that both HA and FA had a critical impact on the mineralization process and catalytic performance of GR, and the impact was concentration-dependent. High concentration of NOM inhibited the GR crystallization, accompanied by changing the surface structure from lamellar to porous, while reducing the degradation efficiency of BPF. Low concentration of NOM modified the morphology of GR into a petal-like shape, which increased surface oxygen vacancies and charge transfer, more importantly, facilitated the reduction of Fe(III) in GR. As a result, the production of reactive oxygen species, such as hydroxyl radicals (•OH), superoxide anions (O2•-), and singlet oxygen (1O2) was increased. O2•- and •OH were identified as the primary ROS for enhancing the degradation of BPF. Humic-like substances and tyrosine of NOM played an important role in promoting the reduction of Fe(III).
Collapse
Affiliation(s)
- Jianguo Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolu Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China
| | - Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China.
| | - Pengfei Lv
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Dong Zeng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China
| | - Peiran Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China
| | - Dechun He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China
| |
Collapse
|
2
|
Javed J, Zhou Y, Ullah S, Gao T, Yang C, Han Y, Wu H. Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater. Molecules 2025; 30:2194. [PMID: 40430366 PMCID: PMC12114071 DOI: 10.3390/molecules30102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Emerging contaminants (ECs) in wastewater threaten environmental and human health, while conventional methods often prove inadequate. This has driven increased concern among decision makers, justifying the need for innovative and effective treatment approaches. Pyrite-derived materials have attracted great interest in advanced oxidation processes (AOPs) as catalysts because of their unique Fe-S structure, ability to undergo redox cycling, and environmental friendliness. This review explores recent advances in pyrite-derived materials for AOP applications, focusing on their synthesis, catalytic mechanisms, and pollutant degradation. It examines how pyrite activates oxidants such as hydrogen peroxide (H2O2), peracetic acid (PAA), and peroxymonosulfate (PMS) can be used to generate reactive oxygen species (ROS). The role of multi-dimensional pyrite architectures (0D-3D) in enhancing charge transfer, catalytic activity, and recyclability is also discussed. Key challenges, including catalyst stability, industrial scalability, and Fe/S leaching, are addressed alongside potential solutions. Future directions include the integration of pyrite-based catalysts with hybrid materials, as well as green synthesis to improve practical applications. This review provides researchers and engineers with valuable insights into developing sustainable wastewater treatment technologies.
Collapse
Affiliation(s)
- Jannat Javed
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
- School of International Education, Yanshan University, Qinhuangdao 066004, China;
| | - Yuting Zhou
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
| | - Saad Ullah
- School of International Education, Yanshan University, Qinhuangdao 066004, China;
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Tianjiu Gao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
| | - Caiyun Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
| | - Ying Han
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
- Shenzhen Research Institute of Yanshan University, Shenzhen 518000, China
| | - Hao Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
- Shenzhen Research Institute of Yanshan University, Shenzhen 518000, China
| |
Collapse
|
3
|
Wang X, Zhang P, Wang W, Rončević SAD, Sun H. New Insights into the Role of Crystalline Fe 3P in Phosphatized Zerovalent Iron for Enhancing Advanced Oxidation Processes and Storage Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6319-6330. [PMID: 40107854 DOI: 10.1021/acs.est.4c14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Zerovalent iron (ZVI) is a widely utilized remediation agent for contaminated soil and groundwater; however, it has consistently faced the challenge of balancing catalytic activity with storage stability. Herein, submicron ZVI particles were phosphatized to produce phosphatized ZVI (P-ZVI), which was employed to activate peroxydisulfate (PDS) for phenol degradation. As anticipated, phosphatization significantly enhanced both the storage stability (>10 months vs 1 d) and catalytic activity (4.37 vs 0.12 L m-2 h-1) of ZVI compared to unphosphatized counterparts attributed to the formation of a crystalline Fe3P shell on P-ZVI. This Fe3P shell selectively interacts with H2O/O2/PDS, maintaining the stability of P-ZVI under high humidity and oxygen conditions while creating mass transfer channels that enhance reactivity in the presence of PDS. Characterization results from the reaction process demonstrated that the Fe3P shell activated PDS through both direct (via Fe cations) and indirect pathways (through a phosphorus anion-mediated Fe3+/Fe2+ cycle), generating reactive species and facilitating mass transfer between core Fe0 and external PDS for efficient PDS activation and phenol degradation. This study elucidates how constructing an Fe3P shell can realize selective activation of PDS while simultaneously enhancing both the storage and catalytic stabilities of ZVI, thereby boosting the practical application of PDS-based advanced oxidation processes in various environmental remediation.
Collapse
Affiliation(s)
- Xinhua Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Wenjiang Wang
- CCCC-TDC Environmental Engineering Co.Ltd., Tianjin 300450, China
| | - Srd An D Rončević
- University Novi Sad, Fac Sci, Trg Dositeja Obradovica 3, Novi Sad 21000, Serbia
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
4
|
Zhu R, Hui L, Zhao Z, Zhou Q, Duong TC, Li J, Liu Z, Ding D. The morphology and structure of zero-valent iron nanosheets promote the activation of persulfate for degradation of ciprofloxacin. ENVIRONMENTAL RESEARCH 2025; 268:120766. [PMID: 39788445 DOI: 10.1016/j.envres.2025.120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC2-2) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC2-2 showed considerably better CIP degradation efficiency (96.9% at 20 mg L-1) than traditional catalysts. Furthermore, Fe@BC2-2 exhibited CIP degradation efficiency above 96% in a wide pH range (3-11) and high resistance to interference from various inorganic anions and humic acid even under real water body conditions. The Fe@BC2-2 catalyst showed good magnetic separation performance and maintained high CIP degradation efficiency (87.0%) after five degradation-regeneration cycles. CIP degradation was facilitated by ZVI nanosheets along with functional groups and defects on the surface of the biochar. As determined through radical-quenching experiments, both radical and non-radical pathways contributed to the degradation of CIP, with the non-radical pathway being dominant, especially with singlet oxygen (1O2) as the active species. The degradation pathway of CIP was inferred through the analysis of intermediate products, which showed lower toxicity than CIP. This work not only proposes a strategy for the utilization of traditional kraft pulping lignin and Fenton sludge but also presents an innovative catalyst for the degradation of antibiotics.
Collapse
Affiliation(s)
- Rongyao Zhu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Lanfeng Hui
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Zhiqiang Zhao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Quanwei Zhou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Tan Cuong Duong
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jiayan Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Zhong Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Dayong Ding
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
5
|
Rahmani A, Naidu H, Świergosz T, Rahimi HR, Mousavi Z, Dolatabadi M, Ahmadzadeh S. Process and mechanism modeling of cefotaxime removal from hospital wastewater using pistachio shells based magnetic activated carbon nanoparticles. Sci Rep 2024; 14:29951. [PMID: 39622855 PMCID: PMC11612276 DOI: 10.1038/s41598-024-76271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/11/2024] [Indexed: 12/06/2024] Open
Abstract
Antibiotic residues have been extensively identified in diverse aquatic environments, posing significant health risks to both humans and animals, while also presenting challenges to the environment. Consequently, the imperative need to effectively removal antibiotics from the environment has become a very importance issue. In this study, response surface methodology with central composite design was employed to systematically investigate the effects of key process parameters, on the removal of cefotaxime (CTX) from hospital wastewater using pistachio sells based activated carbon modified with FeCl3. The modified activated carbon was synthesized using a thermochemical method and characterized by analytical techniques including FE-SEM, FTIR, XRD, pHpzc, and BET analysis, which demonstrated its remarkable physicochemical properties. Maximum removal efficiency of 99.1% was obtained via the optimal values of 45 mg L- 1 of initial CTX concentration, solution pH 7, and 200 mg L- 1 of Fe@ACP dosage, 56 min of reaction time through adsorption process. According to the results, the non-linear Langmuir isotherm model (R2 = 0.9931) and non-linear second order kinetic model (R2 = 0.9934) are suitably described the monolayer and chemisorption of CTX adsorption. The maximum adsorption capacity of Fe@ACP is 651.6 mg g- 1. Consequently, the developed treatment process revealed successful performance for quick and efficient removal of CTX by Fe@ACP. The developed process introduced an economic and green approach for the comprehensive utilization of agricultural waste resources used for environmental pollution control.
Collapse
Affiliation(s)
- Atefeh Rahmani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Haripriya Naidu
- Graduated from Department of Civil Engineering, Kansas State University, Fiedler Hall, 1701C Platt Street, Manhattan, KS, 66502, USA
| | - Tomasz Świergosz
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St, Kraków, 31-155, Poland
| | - Hamid Reza Rahimi
- Department of Toxicology and Pharmacology, faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Dolatabadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeid Ahmadzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Liu Y, Guo X, Zhao L, Duan W, Huang Y, Wang X. Synergistic removal mechanism of tetracycline by ethylenediamine modified magnetic chitosan based Fenton-like catalyst. RSC Adv 2024; 14:36507-36516. [PMID: 39553278 PMCID: PMC11565219 DOI: 10.1039/d4ra04059g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Modified magnetic chitosan nanoparticles (EMMCS-G), used as a Fenton-like catalyst, were successfully prepared and modified with glutaraldehyde and ethylenediamine. EMMCS-G has strong magnetization, good reusability, stability, environmental friendliness, and high efficiency. In the Fenton-like system, the synergistic effect of adsorption and advanced oxidation significantly enhances the removal effect of tetracycline (TC). The optimal concentration of persulfate was found to be 20 mmol L-1, and at a pH of 3, the removal efficiency of TC reached 95.6% after 6 hours. The oxidation system demonstrated excellent pH adaptability, achieving a TC removal rate of 94% within 6 hours across a pH range of 3 to 8. Hydroxyl (˙OH) and sulfate (SO4 -˙ ) radicals were present in the reaction system, with ˙OH playing an important role in the oxidation process of TC. The attack sites of tetracycline were identified using density functional theory (DFT), and five degradation pathways for TC were proposed based on LS-MS experiments. Finally, quantitative structure-activity relationship (QSAR) analysis was employed to assess the toxicity of the intermediates. Overall, toxicity gradually decreased, indicating that the Fenton reaction system effectively reduced the toxicity and mutagenicity of TC. This study suggests EMMCS-G as a potential catalyst for enhanced Fenton-like degradation with excellent efficiency observed for the degradation of tetracycline for environmental remediation.
Collapse
Affiliation(s)
- Yuankun Liu
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China
| | - Xiaotian Guo
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China
| | - Liyuan Zhao
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China
| | - Wenqi Duan
- Beijing Haidian Foreign Language Experiment School Beijing 100195 China
| | - Yeqian Huang
- SINOPEC Oil Field Exploration & Development Division 22 Chaoyangmen North Street, Chaoyang District Beijing China
| | - Xiaojuan Wang
- Municipal Engineering Department, College of Civil Engineering and Architecture, Beijing University of Technology Beijing 100124 P. R. China
| |
Collapse
|
7
|
Cao Z, Yang C, Zhang W, Shao H. Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1149-1163. [PMID: 39215729 DOI: 10.2166/wst.2024.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
To achieve the purpose of treating waste by waste, in this study, a nitrogen-doped Fe/Mn bimetallic biochar material (FeMn@N-BC) was prepared from chicken manure for persulfate activation to degrade Bisphenol A (BPA). The FeMn@N-BC was characterized by scanning electron microscopy (SEM), X-ray diffract meter (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS) and found that N doping can form larger specific surface area. Catalytic degradation experiments showed that Fe/Mn bimetal doping not only accelerated the electron cycling rate on the catalyst surface, but also makes the biochar magnetic and easy to separate, thus reducing environmental pollution. Comparative experiments was concluded that the highest degradation efficiency of BPA was achieved when the mass ratios of urea and chicken manure, Fe/Mn were 3:1 and 2:1, respectively, and the pyrolysis temperature was 800 °C, which can almost degrade all the BPA in 60 min. FeMn@N-BC/PS system with high catalytic efficiency and low consumables is promising for reuse of waste resources and the remediation of wastewater.
Collapse
Affiliation(s)
- Zexian Cao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Changhe Yang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China E-mail:
| | - Wenqiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Huiliang Shao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
8
|
Sanni SO, Oluokun O, Akpotu SO, Pholosi A, E Pakade V. Removal of tetracycline from the aquatic environment using activated carbon: A comparative study of adsorption performance based on the activator agents. Heliyon 2024; 10:e34637. [PMID: 39130454 PMCID: PMC11315132 DOI: 10.1016/j.heliyon.2024.e34637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
This research focus endeavour to compare the remediation of tetracycline (TC) through activated carbon (AC), crafted utilizing two distinct chemical activators: zinc chloride (ACZ), and potassium hydroxide (ACK), using pine cone biowaste as an effective carbon precursor, followed by microwave-assisted activation. The impact of TC removal by ACZ and ACK adsorbents was thoroughly examined. The influence of pH, adsorbent mass, adsorption isotherms, kinetics, and inclusive thermodynamics were studied. Our results revealed that the interaction between TC and ACZ or ACK adsorbents aligned well with the model of pseudo-second-order kinetics, whilst the Langmuir model fitted the adsorption isotherm data of ACZ and ACK. The ACZ have a maximum adsorption capacity of 327.87 mg/g compared to that of the ACK (283.29 mg/g). Adsorption of TC was facilitated by the suitable pore volume, abundant microporous, and mesoporous structure of these adsorbents. The ACZ adsorbent is abundant in oxygen-containing functional groups, compared to ACK with minimized reactive sites, in bonding with the TC molecules through hydrogen bonding, for faster removal of TC. Our finding from this work further highlights that the synthesized ACZ from pine cones evidenced significant environmental potentials in the elimination of antibiotics from aqueous solution, to promote clean application perspectives.
Collapse
Affiliation(s)
- Saheed O. Sanni
- Biosorption and Water Treatment Research Laboratory, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900, South Africa
| | - Oluwayimika Oluokun
- Biosorption and Water Treatment Research Laboratory, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900, South Africa
| | - Samson O. Akpotu
- Biosorption and Water Treatment Research Laboratory, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900, South Africa
| | - Agnes Pholosi
- Biosorption and Water Treatment Research Laboratory, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900, South Africa
| | - Vusumzi E Pakade
- Biosorption and Water Treatment Research Laboratory, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900, South Africa
| |
Collapse
|
9
|
do Carmo Dias G, de Souza NCS, de Souza EIP, Puiatti GA, Moreira RPL. Enhanced degradation of Direct Red 80 dye via Fenton-like process mediated by cobalt ferrite: generated superoxide radicals and singlet oxygen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28025-28039. [PMID: 38523211 DOI: 10.1007/s11356-024-32976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Azo dyes, widely used in the textile industry, contribute to effluents with significant organic content. Therefore, the aim of this work was to synthesize cobalt ferrite (CoFe2O4) using the combustion method and assess its efficacy in degrading the azo dye Direct Red 80 (DR80). TEM showed a spherical structure with an average size of 33 ± 12 nm. Selected area electron diffraction and XRD confirmed the presence of characteristic crystalline planes specific to CoFe2O4. The amount of Co and Fe metals were determined by ICP-OES, indicating an n(Fe)/n(Co) ratio of 2.02. FTIR exhibited distinct bands corresponding to Co-O (455 cm-1) and Fe-O (523 cm-1) bonds. Raman spectroscopy detected peaks associated with octahedral and tetrahedral sites. For the first time, the material was applied to degrade DR80 in an aqueous system, with the addition of persulfate. Consistently, within 60 min, these trials achieved nearly 100% removal of DR80, even after the material had undergone five cycles of reuse. The pseudo-second-order model was found to be the most fitting model for the experimental data (k2 = 0.07007 L mg-1 min-1). The results strongly suggest that degradation primarily occurred via superoxide radicals and singlet oxygen. Furthermore, the presence of UV light considerably accelerated the degradation process (k2 = 1.54093 L mg-1 min-1). The material was applied in a synthetic effluent containing various ions, and its performance consistently approached 100% in the photo-Fenton system. Finally, two degradation byproducts were identified through HPLC-MS/MS analysis.
Collapse
Affiliation(s)
- Gessica do Carmo Dias
- Departament of Chemistry, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Noemi Cristina Silva de Souza
- Departament of Chemistry, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Eduardo Israel Pimenta de Souza
- Departament of Chemistry, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Gustavo Alves Puiatti
- Department of Civil Engineering, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Renata Pereira Lopes Moreira
- Departament of Chemistry, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
10
|
Liu Y, Liu S, Chen M, Bai Y, Liu Y, Mei J, Lai B. Enhanced TC degradation by persulfate activation with carbon-coated CuFe 2O 4: The radical and non-radical co-dominant mechanism, DFT calculations and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132417. [PMID: 37774605 DOI: 10.1016/j.jhazmat.2023.132417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Facing the constraints of critical agglomeration and poor reusability of CuFe2O4 in catalytic applications, the feasibility of synthesizing a composite catalyst using carbon coating technology for efficient TC removal with enhanced PDS activity was investigated. The composite catalyst (CuFe2O4@C) can stimulate both radical (SO4•- and HO•) and non-radical (1O2) pathways to dominate the catalytic reaction for removing 95.7% of the TC in 60 min. Meanwhile, the defective structure of the external carbon layer protected the internal CuFe2O4 from excessive oxidation, allowing the CuFe2O4@C to maintain over 90% TC removal after 5 cycles with less interference from inorganic anions, demonstrating significant catalytic performance and satisfactory reusability. Finally, the DFT calculations and TEST evaluation were performed to discuss the structural properties of TC and its toxicity assessment during the whole degradation process, while three possible degradation pathways were proposed. Significantly, the carbon-coated composite catalysts of potential universal applicability for multi-pathway PDS activation offered an attractive new strategy for the effective degradation of antibiotic wastewater.
Collapse
Affiliation(s)
- Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China.
| | - Shumeng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Mingyan Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yang Bai
- State Key Lab Oil & Gas Reservoir Geol & Exploita, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yan Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Jiahao Mei
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Bo Lai
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
11
|
Qiu X, Zhao Y, Jia Z, Li C, Jin R, Mutabazi E. Fe and Zn co-doped carbon nanoparticles as peroxymonosulfate activator for efficient 2,4-dichorophenol degradation. ENVIRONMENTAL RESEARCH 2024; 240:117313. [PMID: 37866532 DOI: 10.1016/j.envres.2023.117313] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
Iron-mediated activation of peroxymonosulfate (PMS) has been of great interest for the effective removal of contaminants, but it still suffered from ineffective metal redox cycle rate, which resulted in unsatisfactory catalytic efficiency. Constructing bimetallic carbonaceous materials was effective way to improve the catalytic performance of iron-based heterogeneous system. In this study, magnetic bimetallic porous carbon composite (FZCx) was synthesized via Fe/Zn bi-MOFs pyrolysis for 2,4-dichlorophenol (2,4-DCP) degradation by peroxymonosulfate. Influences of different systems exhibited that 100% of 2,4-DCP was rapidly degraded at the conditions of catalyst dosage = 0.1 g L-1, PMS = 0.5 mM and initial pH = 9.0 within 30 min. The as-prepared FZC600 displayed excellent reusability and stability. Quenching experiments and EPR analysis manifested that SO4·- and 1O2 were primarily responsible for the rapid degradation of 2,4-DCP. Moreover, XPS, EPR and EIS was used to elaborate the bimetallic synergy effect, proving that the introduction of zinc can effectively promote periodic cycle of Fe2+/Fe3+ and improve catalysts durability and reusability. These findings highlighted the preparation of bimetallic based carbonaceous material with excellent PMS activation ability to remove refractory organics from wastewater and provided a depth insight into the promotion of bimetal synergy between zinc and iron on PMS activation process.
Collapse
Affiliation(s)
- Xiaojie Qiu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Zichen Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Chenxi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ruotong Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Emmanuel Mutabazi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
12
|
Huang R, Feng T, Wu S, Zhang X, Fan Z, Yu Q, Chen Y, Chen T. In-situ synthesis of magnetic iron-chitosan-derived biochar as an efficient persulfate activator for phenol degradation. ENVIRONMENTAL RESEARCH 2023; 234:116604. [PMID: 37433379 DOI: 10.1016/j.envres.2023.116604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
Persulfate activation is a forceful method for eliminating organic pollutants from coal chemical wastewater. In this study, an in-situ synthesis method was used to fabricate an iron-chitosan-derived biochar (Fe-CS@BC) nanocomposite catalyst using chitosan as a template. Fe was successfully imprinted into the newly synthesized catalyst. The Fe-CS@BC can activate persulfate to effectively degrade phenol. This point was confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The impact of various parameters on the removal rate was investigated in a single factor experiment. In Fe-CS@BC/PDS system, 95.96% of phenol (significantly higher than the original biochar of 34.33%) was removed within 45 min and 54.39% TOC within 2 h. The system showed superior efficiency over a broad pH value band from 3 to 9 and has a high degradation rate at ambient temperature. Free radical quenching experiment, EPR experiment and LSV experiment confirmed that multiple free radicals (including 1O2, SO4•-, O2•- and •OH) and electron transfer pathway combined to enhance phenol decomposition. Finally, the activation mechanism of persulfate by Fe-CS@BC was proposed to provide logical guidance on the treatment of organic pollutants in coal chemical wastewater.
Collapse
Affiliation(s)
- Ranran Huang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Tao Feng
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources. Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Si Wu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources. Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Xinyue Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhixuan Fan
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Qinghong Yu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yinyu Chen
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Tingpeng Chen
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
13
|
Shao X, Yu J, Chang J, Huang Z, Jiang Y, Deng S. Effect of vermiculite modified with nano-iron-based material on stabilization of lead in lead contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83821-83833. [PMID: 37349492 DOI: 10.1007/s11356-023-28205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Lead (Pb) contamination arising from the production of lead-acid batteries is getting more severe, and research on its treatment technology reflects the increasing concern worldwide. Vermiculite is a mineral with a layered structure, containing hydrated magnesium aluminosilicate and has high porosity and large specific surface area. Vermiculite has the ability of improving soil permeability and water retention performance. However, in recent studies, vermiculite is shown to be less effective than other stabilizing agents in immobilizing heavy metal Pb. Nano-iron-based materials have been widely used to adsorb heavy metals in wastewater. Therefore, vermiculite has been modified with two nano-iron-based materials-nanoscale zero-valent iron (nZVI) and nano-Fe3O4 (nFe3O4) to improve its immobilization effect for the heavy metal lead. SEM and XRD analysis confirmed that nZVI and nFe3O4 were successfully loaded on the raw vermiculite. XPS analysis was applied to further understand the composition of VC@nZVI and VC@nFe3O4. The stability and mobility of nano-iron-based materials were improved after being loaded on raw vermiculite, and the Pb immobilization effect of modified vermiculite on Pb-contaminated soil was evaluated. Adding nZVI-modified vermiculite (VC@nZVI) and nFe3O4-modified vermiculite (VC@nFe3O4) increased the immobilization effect and decreased the bioavailability of Pb. Compared with raw vermiculite, adding VC@nZVI and VC@nFe3O4 increased the amount of exchangeable Pb by 30.8% and 6.17%. After leaching ten times in soil column leaching experiments, the total concentration of Pb in the leachate of the soil with VC@nZVI and VC@nFe3O4 were reduced by 40.67% and 11.47%, compared with raw vermiculite. These results prove that the modification with nano-iron-based materials enhances the immobilization effect of vermiculite, in which the effect of VC@nZVI is significantly better than VC@nFe3O4. Vermiculite was modified with nano-iron-based materials, resulting in a better fixing effect of the modified curing agent. This study provides a new approach for the remediation of Pb-contaminated soil, but further research is needed for soil recovery and utilization of nanomaterials.
Collapse
Affiliation(s)
- Xiao Shao
- School of Agriculture and Environment, University of Western Australia, Perth, WA, 6907, Australia
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, China.
- Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, China.
| | - Jiahua Chang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Zhi Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Yinying Jiang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, China
| | - Siwei Deng
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| |
Collapse
|
14
|
Kyere-Yeboah K, Qiao XC. Non-thermal plasma activated peroxide and percarbonate for tetracycline and oxytetracycline degradation: Synergistic performance, degradation pathways, and toxicity evaluation. CHEMOSPHERE 2023; 336:139246. [PMID: 37330069 DOI: 10.1016/j.chemosphere.2023.139246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Tetracycline (TC) and Oxytetracycline (OTC) are common antibiotics increasingly detected in the environment, posing a potential risk to human and aquatic lives. Although conventional methods such as adsorption and photocatalysis are used for the degradation of TC and OTC, they are inefficient in removal efficiency, energy yield, and toxic byproduct generation. Herein, a falling-film dielectric barrier discharge (DBD) reactor coupled with environmentally friendly oxidants (hydrogen peroxide (HPO), sodium percarbonate (SPC), and HPO + SPC) was applied, and the treatment efficiency of TC and OTC was investigated. Experimental results showed that moderate addition of the HPO and SPC exhibited a synergistic effect (SF > 2), significantly improving the antibiotic removal ratio, total organic removal ratio (TOC), and energy yield by more than 50%, 52%, and 180%, respectively. After 10 min of DBD treatment, the introduction of 0.2 mM SPC led to a 100% antibiotic removal ratio and a TOC removal of 53.4% and 61.2% for 200 mg/L TC and 200 mg/L OTC, respectively. Also, 1 mM HPO dosage led to 100% antibiotic removal ratios after 10 min of DBD treatment and a TOC removal of 62.4% and 71.9% for 200 mg/L TC and 200 mg/L OTC, respectively. However, the DBD + HPO + SPC treatment method had a detrimental effect on the performance of the DBD reactor. After 10 min of DBD plasma discharge, the removal ratios for TC and OTC were 80.8% and 84.1%, respectively, when 0.5 mM HPO +0.5 mM SPC was added. Moreover, principal component and hierarchical cluster analysis confirmed the differences between the treatment methods. Furthermore, the concentration of oxidant-induced in-situ generated ozone and hydrogen peroxide were quantitatively determined, and their indispensable roles during the degradation process were established via radical scavenger tests. Finally, the synergetic antibiotic degradation mechanisms and pathways were proposed, and the toxicities of the intermediate byproducts were evaluated.
Collapse
Affiliation(s)
- Kwasi Kyere-Yeboah
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiu-Chen Qiao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
15
|
Li Z, Chen H, Dong C, Jin C, Cai M, Chen Y, Xie Z, Xiong X, Jin M. Nitrogen doped bimetallic sludge biochar composite for synergistic persulfate activation: Reactivity, stability and mechanisms. ENVIRONMENTAL RESEARCH 2023; 229:115998. [PMID: 37127103 DOI: 10.1016/j.envres.2023.115998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
As a recycling use of waste activated sludge (WAS), we used high-temperature pyrolysis of WAS to support bimetallic Fe-Mn with nitrogen (N) co-doping (FeMn@N-S), a customized composite catalyst that activates peroxysulphate (PS) for the breakdown of tetracycline (TC). First, the performance of TC degradation was evaluated and optimized under different N doping, pH, catalyst dosages, PS dosages, and contaminant concentrations. Activating PS with FeMn@N-S caused the degradation of 91% of the TC in 120 min. Next, characterization of FeMn@N-S by XRD, XPS and FT-IR analysis highlights N doping is beneficial to take shape more active sites and reduces the loss of Fe and Mn during the degradation reaction. As expected, the presence of Fe-Mn bimetallic on the catalyst surface increases the rate of electron transfer, promoting the redox cycle of the catalyst. Other functional groups on the catalyst surface, such as oxygen-containing groups, accelerated the electron transfer during PS activation. Free radical quenching and ESR analysis suggest that the main contributor to TC degradation is surface-bound SO4•-, along with the presence of single linear oxygen (1O2) oxidation pathway. Finally, the FeMn@N-S composite catalyst exhibits excellent pH suitability and reusability, indicating a solid practicality of this catalyst in PS-based removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Zheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Haifeng Chen
- Haining Municipal Water Investment Group Co, Haining, 314400, China
| | - Chunying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chuzhan Jin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Meiqiang Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yan Chen
- Zhejiang Industrial Environmental Design and Research Institute Co., Ltd. Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Zhiqun Xie
- Center for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, Aarhus C, 8000, Denmark
| | - Xingaoyuan Xiong
- Center for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, Aarhus C, 8000, Denmark
| | - Micong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China; College of Life Sciences, Wuchang University of Technology, Wuhan, 430223, China.
| |
Collapse
|
16
|
Alizadeh Z, Jonoush ZA, Rezaee A. Three-dimensional electro-Fenton system supplied with a nanocomposite of microbial cellulose/Fe 3O 4 for effective degradation of tetracycline. CHEMOSPHERE 2023; 317:137890. [PMID: 36693482 DOI: 10.1016/j.chemosphere.2023.137890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
In this study, the catalytic activity of the modified microbial cellulose/Fe3O4 (MMC/ Fe3O4) composite was studied for tetracycline (TC) degradation and mineralization in a three-dimensional electro-Fenton system (3D-EF). The MC/Fe3O4 was modified at 400 °C for 60 min. The MMC/ Fe3O4 was fully analyzed (morphological, structural, chemical properties). Complete degradation and 65% mineralization of TC was achieved in the 3D-EF process (0.5 g L-1 MMC/ Fe3O4, 10 mM NaCl electrolyte, and neutral pH) within 20 min and electrical energy consumption (EEC) 0.86 kwh g-1 TC under the 6.66 mA cm-2. High degradation efficiency TC, in 3D-EF system was attributed to significant single oxygen (1O2), superoxide(O2•-) participation and less to Hydroxyl radical (OH•). Reusability of the MMC/ Fe3O4 was successfully carried out for five consecutive runs. Accordingly, greencompositeof MMC/ Fe3O4 can be considered as an efficient and durable particle electrode (PE) to degrade and mineralize emerging pollutants in an aquatic environment.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Akbari Jonoush
- Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Rezaee
- Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Scaria J, Nidheesh PV. Pre-treatment of real pharmaceutical wastewater by heterogeneous Fenton and persulfate oxidation processes. ENVIRONMENTAL RESEARCH 2023; 217:114786. [PMID: 36395865 DOI: 10.1016/j.envres.2022.114786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This study compares the pre-oxidation of pharmaceutical wastewater by hydroxyl radical based advanced oxidation (HR-AOP) and a sulfate radical based advanced oxidation process (SR-AOP). The heterogeneous Fenton process is chosen as a model HR-AOP and persulfate (PS) activation as a model SR-AOP. The pre-treatment efficacy of both processes in terms of TOC, and COD removals using Fe3O4-rGO catalyst were considered. Under the investigated experimental conditions, both processes yielded fluctuating COD values with time. The heterogeneous Fenton process discovered to be the most efficient to remove 68.7% TOC in 180 min of treatment, when Fe3O4-rGO: H2O2 = 300 mg L-1:150 mM H2O2 was used at pH 3. Notably, the heterogeneous Fenton system was not considerably inhibited at the natural pH of pharmaceutical wastewater (6.75), as the process successfully removed 64.6% TOC. On the other hand, in persulfate activation studies, Fe3O4-rGO: PS = 400 mg L-1: 5 mM was the ideal condition for removing 59.5% TOC in 180 min at pH 3. Whereas the natural pH condition significantly inhibited the TOC removal, as only 20.8% TOC removal was feasible. The wastewater characterisation before and after Fenton treatment reveals that Fenton oxidation leads to an increase in inorganics (chlorides: 160 ± 15 mg L-1, nitrates: 63.14 ± 3.08 mg L-1, sulfates: 266.31 ± 31.39 mg L-1) necessitating an additional treatment step to reduce COD and inorganics further.
Collapse
Affiliation(s)
- Jaimy Scaria
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Movahedian S, Faraji AR, Ashouri F. Enhanced PMS/O 2 activation by self-crosslinked amine-gluteraldehyde/chitosan-Cu biocomposites for efficient degradation of HEPES as biological pollutants and selective allylic oxidation of cyclohexene. NEW J CHEM 2023. [DOI: 10.1039/d2nj05161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optimization and mechanism elucidation of the catalytic degradation of HEPES and selective aerobic oxidation of cyclohexene by Cu@cross-linked magnetic chitosan.
Collapse
Affiliation(s)
- Sara Movahedian
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Reza Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Xi G, Chen S, Zhang X, Xing Y, He Z. Mechanism analysis of efficient degradation of carbamazepine by chalcopyrite-activated persulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13197-13209. [PMID: 36125685 DOI: 10.1007/s11356-022-23023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, natural chalcopyrite (NCP) was used to activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) oxidatively. Before and after the NCP reaction, the physical and chemical properties were characterized by SEM-EDS, XRD, XPS, XRF, and VSM. The effects of the amount of NCP and PMS, the initial pH value, and the reaction temperature on the catalytic performance of NCP were systematically studied. The research results show that the degradation efficiency of the NCP/PMS system for CBZ can reach 82.34% under the optimal reaction conditions, and the degradation process follows a pseudo-second-order kinetic model. The results of the radical quenching experiment and EPR analysis show that the active species in the system are OH·, SO4-·, and 1O2, of which SO4-· is the main active species. In addition, this study shows that the NCP/PMS system can degrade CBZ with high efficiency of 90.73% only with the assistance of 0.15 g/L Fe0. This study determined the optimal reaction conditions for natural chalcopyrite to activate PMS to degrade CBZ and clarified the activation mechanism, which broadened the application of natural ores in the field of water treatment.
Collapse
Affiliation(s)
- GaoYang Xi
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuxun Chen
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xuhang Zhang
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu Xing
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhengguang He
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
20
|
Yu Y, Liu C, Yang C, Yu Y, Lu L, Ma R, Li L. One-Step Synthesized Iron-Carbon Core-Shell Nanoparticles to Activate Persulfate for Effective Degradation of Tetrabromobisphenol A: Performance and Activation Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4483. [PMID: 36558336 PMCID: PMC9787185 DOI: 10.3390/nano12244483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA), as an emerging endocrine disrupter, has been considered one of the persistent organic contaminants in water. It is urgently necessary to develop an efficient technique for the effective removal of TBBPA from water. Herein, a one-step hydrothermal synthesis route was employed to prepare a novel iron-carbon core-shell nanoparticle (Fe@MC) for effectively activating persulfate (PS) to degrade TBBPA. Morphological and structural characterization indicated that the prepared Fe@MC had a typical core-shell structure composed of a 5 nm thick graphene-like carbon shell and a multi-valence iron core. It can be seen that 94.9% of TBBPA (10 mg/L) could be degraded within 30 min at pH = 7. This excellent catalytic activity was attributed to the synergistic effect of the porous carbon shell and a multi-valence iron core. The porous carbon shell could effectively prevent the leaching of metal ions and facilitate PS activation due to its electron transfer capability. Furthermore, numerous micro-reaction zones could be formed on the surface of Fe@MC during the rapid TBBPA removal process. Radical quenching experiments and electron paramagnetic resonance (EPR) technology indicated that reactive oxygen species (ROS), including OH, SO4-, O2-, and 1O2, were involved in the TBBPA degradation process. Based on density functional theory (DFT) calculation, the carbon atoms linked by phenolic hydroxyl groups would be more vulnerable to attack by electron-rich groups; the central carbon was cracked and hydroxylated to generate short-chain aliphatic acids. The toxicity evaluation provides clear evidence for the promising application potential of our prepared material for the efficient removal of TBBPA from water.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chang Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
- Inner Mongolia Autonomous Region Key Laboratory of Water Pollution Control, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Chenyu Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment Jinan University, Guangzhou 511443, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
21
|
Dehghan S, Naderi A, Kalantary RR, Dehghanifard E. US-assisted catalytic degradation of paraquat using ZnO/Fe 3O 4 recoverable composite: Performance, toxicity bioassay test and degradation mechanism. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:799-811. [PMID: 36406619 PMCID: PMC9672153 DOI: 10.1007/s40201-022-00820-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
In this study, the ZnO/Fe3O4 catalyst was used as an active catalyst for the oxidation of Paraquat (PQ) herbicide in aqueous solution under ultrasonic (US) waves. FTIR, XRD, FE-SEM, and VSM analyses were performed to characterize the synthesized catalyst. Studies on the effect of radical scavengers were also carried out and the amount of organic matter degradation was determined by measuring the TOC. Under the optimized conditions (catalyst concentration = 0.75 g/L, herbicide concentration = 10 ppm, US power = 70w), the degradation and mineralization rates of the herbicide were acquired as 96.1% and 68% within 60 min, respectively. The quenching tests showed that the hydroxyl (oOH) radical was the most effective oxidant agent in the degradation process of the PQ under ZnO/Fe3O4/US system. The toxicity of treated effluent assayed by Daphnia Magna was decreased from %73.16 in raw samples to %7.2 in the treated samples, during 96 h. Finally, it can be concluded that ZnO/Fe3O4/US process can be successfully performed as an effective process to herbicides in aqueous solutions, due to the high efficiency and excellent catalytic activity.
Collapse
Affiliation(s)
- Samaneh Dehghan
- Department of Environmental Health Engineering, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Azra Naderi
- Environemtal Health Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Environemtal Health Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Emad Dehghanifard
- Environemtal Health Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Chin SX, Lau KS, Zakaria S, Chia CH, Wongchoosuk C. Chitosan Fibers Loaded with Limonite as a Catalyst for the Decolorization of Methylene Blue via a Persulfate-Based Advanced Oxidation Process. Polymers (Basel) 2022; 14:polym14235165. [PMID: 36501560 PMCID: PMC9736373 DOI: 10.3390/polym14235165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Wastewater generated from industries seriously impacts the environment. Conventional biological and physiochemical treatment methods for wastewater containing organic molecules have some limitations. Therefore, identifying other alternative methods or processes that are more suitable to degrade organic molecules and lower chemical oxygen demand (COD) in wastewater is necessary. Heterogeneous Fenton processes and persulfate (PS) oxidation are advanced oxidation processes (AOPs) that degrade organic pollutants via reactive radical species. Therefore, in this study, limonite powder was incorporated into porous regenerated chitosan fibers and further used as a heterogeneous catalyst to decompose methylene blue (MB) via sulfate radical-based AOPs. Limonite was used as a heterogeneous catalyst in this process to generate the persulfate radicals (SO4-·) that initiate the decolorization process. Limonite-chitosan fibers were produced to effectively recover the limonite powder so that the catalyst can be reused repeatedly. The formation of limonite-chitosan fibers viewed under a field emission scanning electron microscope (FESEM) showed that the limonite powder was well distributed in both the surface and cross-section area. The effectiveness of limonite-chitosan fibers as a catalyst under PS activation achieved an MB decolorization of 78% after 14 min. The stability and reusability of chitosan-limonite fibers were evaluated and measured in cycles 1 to 10 under optimal conditions. After 10 cycles of repeated use, the limonite-chitosan fiber maintained its performance up to 86%, revealing that limonite-containing chitosan fibers are a promising reusable catalyst material.
Collapse
Affiliation(s)
- Siew Xian Chin
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kam Sheng Lau
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (K.S.L.); (C.H.C.); (C.W.)
| | - Sarani Zakaria
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Chin Hua Chia
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (K.S.L.); (C.H.C.); (C.W.)
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Correspondence: (K.S.L.); (C.H.C.); (C.W.)
| |
Collapse
|
23
|
Li Y, Cao H, Liu W, Liu P. Effective degradation of tetracycline via recyclable cellulose nanofibrils/polyvinyl alcohol/Fe 3O 4 hybrid hydrogel as a photo-Fenton catalyst. CHEMOSPHERE 2022; 307:135665. [PMID: 35835244 DOI: 10.1016/j.chemosphere.2022.135665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, the method of in-situ co-precipitation was used to prepare PVA/CNF/Fe3O4 hybrid hydrogel, and the relationship between its structure and performance was explored. The Fe3O4NPs prepared by this method were dispersed on the carrier PVA/CNF hydrogel and were easy to recover. The catalytic degradation of tetracycline was investigated using PVA/CNF/Fe3O4 hybrid hydrogel as photo-Fenton catalysts. The results showed that light and hydrogel carriers were pivotal factors in promoting Fe2+ and Fe3+ cycling and that the PVA/CNF/Fe3O4 hybrid hydrogel as catalysts were able to activate H2O2 to generate a large amount of oxygen radical •OH, resulting in efficient removal of tetracycline. The tetracycline degradation followed a proposed first-order kinetic model and achieved a removal rate of about 98% in 120 min at an optimum pH of 3, H2O2 100 mM, catalyst 0.3 g/L, and a temperature of 25 °C.
Collapse
Affiliation(s)
- Yuhang Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hui Cao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenli Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
24
|
Zhang H, Mei Y, Zhu F, Yu F, Komarneni S, Ma J. Efficient activation of persulfate by C@Fe 3O 4 in visible-light for tetracycline degradation. CHEMOSPHERE 2022; 306:135635. [PMID: 35810856 DOI: 10.1016/j.chemosphere.2022.135635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
A C@Fe3O4 material, Fe3O4 coated with carbon, was prepared by a simple one-pot hydrothermal method. The C@Fe3O4 material was investigated with persulfate (PS) and light to degrade tetracycline (TC) as a function of pH, aeration conditions and quenching. Experimental results suggest that TC was effectively degraded in the C@Fe3O4/PS/Vis system. In addition, due to the availability of different main active species in this catalytic system, TC degradation was possible under both strong acid and strong alkali pH conditions. The presence of dissolved oxygen can also generate oxygen-active species, such as superoxide radicals (O2•-) and singlet oxygen (1O2), to decompose TC organic matter in solution. Simply put, C@Fe3O4/PS/Vis catalytic system removed pollutants by the formation of O2•-, 1O2, hydroxyl radicals (•OH) and sulfate radicals (SO4•-) species for degrading TC. In addition, the stability of the C@Fe3O4 material was found to be outstanding.
Collapse
Affiliation(s)
- He Zhang
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Yu Mei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Zhejiang, 312028, China
| | - Fang Zhu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Fenting Yu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jianfeng Ma
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| |
Collapse
|
25
|
Construction of Highly Active Zn3In2S6 (110)/g-C3N4 System by Low Temperature Solvothermal for Efficient Degradation of Tetracycline under Visible Light. Int J Mol Sci 2022; 23:ijms232113221. [DOI: 10.3390/ijms232113221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, Zn3In2S6 photocatalyst with (110) exposed facet was prepared by low temperature solvothermal method. On this basis, a highly efficient binary Zn3In2S6/g-C3N4 was obtained by low temperature solvothermal method and applied to the degradation of tetracycline (TC). The samples of the preparation were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, UV–vis diffuse reflection spectroscopy, and photoluminescence spectroscopy. Furthermore, the degradation performance of photocatalysts on TC was investigated under different experimental conditions. Finally, the mechanism of Zn3In2S6/g-C3N4 composite material degrading TC is discussed. The results show that Zn3In2S6 and Zn3In2S6/g-C3N4 photocatalysts with excellent performance could be successfully prepared at lower temperature. The Zn3In2S6/g-C3N4 heterojunction photocatalyst could significantly improve the photocatalytic activity compared with g-C3N4. After 150 min of illumination, the efficiency of 80%Zn3In2S6/g-C3N4 to degrade TC was 1.35 times that of g-C3N4. The improvement of photocatalytic activity was due to the formation of Zn3In2S6/g-C3N4 heterojunction, which promoted the transfer of photogenerated electron–holes. The cycle experiment test confirmed that Zn3In2S6/g-C3N4 composite material had excellent stability. The free radical capture experiment showed that ·O2− was the primary active material. This study provides a new strategy for the preparation of photocatalysts with excellent performance at low temperature.
Collapse
|
26
|
Chen X, Lin J, Su Y, Tang S. One-Step Carbonization Synthesis of Magnetic Biochar with 3D Network Structure and Its Application in Organic Pollutant Control. Int J Mol Sci 2022; 23:12579. [PMID: 36293433 PMCID: PMC9604314 DOI: 10.3390/ijms232012579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, a magnetic biochar with a unique 3D network structure was synthesized by using a simple and controllable method. In brief, the microbial filamentous fungus Trichoderma reesei was used as a template, and Fe3+ was added to the culture process, which resulted in uniform recombination through the bio-assembly property of fungal hyphae. Finally, magnetic biochar (BMFH/Fe3O4) was synthesized by controlling different heating conditions in a high temperature process. The adsorption and Fenton-like catalytic performance of BMFH/Fe3O4 were investigated by using the synthetic dye malachite green (MG) and the antibiotic tetracycline hydrochloride (TH) as organic pollutant models. The results showed that the adsorption capacity of BMFH/Fe3O4 for MG and TH was 158.2 and 171.26 mg/g, respectively, which was higher than that of most biochar adsorbents, and the Fenton-like catalytic degradation effect of organic pollutants was also better than that of most catalysts. This study provides a magnetic biochar with excellent performance, but more importantly, the method used can be effective in further improving the performance of biochar for better control of organic pollutants.
Collapse
Affiliation(s)
- Xiaoxin Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiacheng Lin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
27
|
Song T, He Q, Meng X, He Z, Ge M. Facile synthesis of magnetic ZnFe 2O 4/AC composite to activate peroxydisulfate for dye degradation under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76321-76338. [PMID: 35666419 DOI: 10.1007/s11356-022-21253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Heterogeneous photocatalysis/persulfate oxidation process has been considered as a promising technology for dye contaminants removal. The magnetic ZnFe2O4/active carbon (AC) composites were hydrothermally synthesized and firstly used to activate peroxydisulfate (PDS) for rhodamine B (RhB) degradation under visible LED light irradiation. The optimized Vis-ZnFe2O4/AC(4/1)-PDS system can enhance the RhB degradation efficiency by 32.01% and 13.87% compared with Vis-ZnFe2O4-PDS and Vis-AC-PDS systems, respectively. The influence of operational parameters such as catalyst dosage (0.2 - 0.4 g L-1), PDS concentration (1.0 - 2.0 g L-1), temperature (25 - 45 °C), solution pH (2.7 - 10.9), and coexisting inorganic ions (Cl-, NO3-, HCO3-, PO43-, Cu2+, Fe3+, and Ca2+) on RhB degradation was studied, and 100% of RhB (20 mg L-1) was degraded after 80 min at operational condition: 0.30 g L-1 of ZnFe2O4/AC(4/1) and 1.5 g L-1 of PDS, solution pH of 2.74, reaction temperature of 25 °C. The quenching experiments, EPR test, and XPS analysis were employed to reveal the proposed mechanism, which demonstrated that 1O2 played a more important role than other reactive species (SO4•-, •OH, O2•-, and h+) in RhB degradation. The generation of 1O2 via the two routes was as follows: (i) the in situ formed active oxygen (O*) reacted with HSO5- to produce 1O2; (ii) O2•- was oxidized by h+ to form 1O2. After five consecutive cycles, the photodegradation efficiency of RhB by ZnFe2O4/AC(4/1) catalyst slightly decreased from 88.52 to 83.92%, indicating the excellent reusability of ZnFe2O4/AC(4/1) photocatalyst. As designed, Vis-ZnFe2O4/AC-PDS oxidation system can effectively remove RhB from the different real water matrices, and the degradation efficiency of RhB in tap water, river water, and secondary effluent was 78.24%, 79.55%, and 74.53% after 80 min of reaction, respectively.
Collapse
Affiliation(s)
- Tingting Song
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Quanbao He
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Xiaoyan Meng
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhangxing He
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
- Tangshan Sanyou Group Co., Ltd, Tangshan, 063305, China
| | - Ming Ge
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
28
|
Saleh R, Andiane Hidayat S, Yose Rizal M, Taufik A, Yin S. Synthesis and characterization of BiFeO3/LaFeO3/graphene composites as persulfate activator for removal of 4-nitrophenol. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
29
|
Yu Y, Guo H, Zhong Z, Wang A, Xiang M, Xu S, Dong C, Chang Z. Fe 3O 4 loaded on ball milling biochar enhanced bisphenol a removal by activating persulfate: Performance and activating mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115661. [PMID: 35803072 DOI: 10.1016/j.jenvman.2022.115661] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, pristine biochar (BC), ball milling biochar (MBC), Fe3O4 modified BC (Fe3O4@BC), and Fe3O4 modified MBC (Fe3O4@MBC) were prepared to compare the Bisphenol A (BPA) removal efficiency by activating persulfate (PDS). All catalysts exhibited excellent degradation rather than adsorption in the PDS system, and Fe3O4@MBC800 had the best BPA removal efficiency, with 96.73% degradation and negligible 1.43% adsorption due to the synergistic effect between MBC800 and Fe3O4 particles. Radical quenching experiments and electron paramagnetic resonance analysis indicated radical pathways, namely, SO4∙- and ∙OH, O2∙-, and non-radical pathway (1O2) involving BPA degradation. The abundant oxygen-containing groups, increased graphitization and mesopores of MBC800, and Fe3+/Fe2+ conversion of Fe3O4 particles facilitated PDS activation to produce reactive oxygen species. In addition, the superior electrochemical performance accelerated the electron transfer between the catalyst and PDS, promoting BPA degradation in the Fe3O4@MBC800/PDS system. More importantly, Fe3O4@MBC800 is resistant to environmental interference, including pH, anions, cations, and humic acid, and has good catalytic reusability and stability, which fulfills the requirements of engineering applications. Therefore, Fe3O4 loaded on ball-milled biochar provides a convenient strategy for preparing environmentally friendly, economical, and efficient carbon-based catalysts to remove organic contaminants.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haobo Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Zijuan Zhong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Anqi Wang
- Research Centre for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Senhao Xu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
30
|
Ma W, Zhang S, Chen Y, Zhong D, Du Q, Li J, Li R, Du X, Zhang J, Yu T. Fe 3O 4-CuO@Lignite activated coke activated persulfate advanced treatment of phenolic wastewater from coal chemical industry. ENVIRONMENTAL RESEARCH 2022; 213:113601. [PMID: 35660564 DOI: 10.1016/j.envres.2022.113601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In this study, lignite activated coke (LAC) was used as the carrier for the first time, Fe3O4-CuO composite metal oxide was used as the main active material, and the nano-scale magnetic supported composite metal oxide Fe3O4-CuO@LAC catalyst was synthesized for the first time, which can effectively activate the active oxygen in peroxodisulfate (PS). XRD, FTIR, BET, SEM, XPS and other analysis results showed that there was particulate matter with spherical structure on the surface of the active coke, and its diffraction peaks matched well with the characteristic peaks of Fe3O4 and CuO, and it was a mesoporous structure with a specific surface area of 619.090 m2 g-1. By optimizing the experimental conditions, the results showed that more than 92% of hydroquinone can be removed under the conditions of hydroquinone concentration of 50 mg/L, pH = 5, adding 0.1 g/L catalyst and 3 mmol/L PS. EPR and quenching experiments proved that there were four reactive oxygen species in the reaction system ·OH, SO4-·, O2-· and 1O2. According to the degradation products of hydroquinone detected by LC-MS, the possible degradation path was deduced which laid a foundation for solving the problem of difficult treatment of phenol-containing wastewater in coal chemical industry.
Collapse
Affiliation(s)
- Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shaobo Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yiru Chen
- The Quanzhoushi Water Co., Ltd, PR China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Qinghui Du
- The Quanzhoushi Water Co., Ltd, PR China
| | - Jinxin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ru Li
- The Institute of Shanxi Architectural Design and Research Co., Ltd, PR China
| | - Xuan Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Taiping Yu
- Yangtze Ecology and Environment Co. Ltd., Wuhan, 430062, PR China
| |
Collapse
|
31
|
Visible-LED-light-driven photocatalytic activation of peroxydisulfate by magnetic ZnFe2O4/Ag nanocomposite for efficient tetracycline degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Fawzy A, Mahanna H, Mossad M. Effective photocatalytic degradation of amoxicillin using MIL-53(Al)/ZnO composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68532-68546. [PMID: 35543778 PMCID: PMC9508224 DOI: 10.1007/s11356-022-20527-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/26/2022] [Indexed: 05/28/2023]
Abstract
A promising hierarchical nanocomposite of MIL-53(Al)/ZnO was synthesized as a visible-light-driven photocatalyst to investigate the degradation of amoxicillin (AMX). MIL-53(Al)/ZnO ultrafine nanoparticles were obtained by preparing Zn-free MIL-53Al and employing it as a reactive template under hydrothermal and chemical conditions. The synthesized nanocomposite (MIL-53(Al)/ZnO) has a low content of Al > 1.5% with significantly different characterizations of the parent compounds elucidated by various analyses such as SEM, TEM, XRD, EDX, and UV-Vis. The effect of operational parameters (catalyst dose (0.2-1.0 g/L), solution pH (3-11), and initial AMX concentration (10-90 mg/L)) on the AMX removal efficiency was studied and optimized by the response surface methodology. A reasonable goodness-of-fit between the expected and experimental values was confirmed with correlation coefficient (R2) equal to 0.96. Under the optimal values, i.e., initial AMX concentration = 10 mg/L, solution pH ~ 4.5, and catalyst dose = 1.0 g/L, 100% AMX removal was achieved after reaction time = 60 min. The degradation mechanism and oxidation pathway were vigorously examined. The AMX degradation ratios slightly decreased after five consecutive cycles (from 78.19 to 62.05%), revealing the high reusability of MIL-53(Al)/ZnO. The AMX removal ratio was improved with enhancers in order ([Formula: see text]> H2O2 > S2O8-2). The results proved that 94.12 and 98.23% reduction of COD were obtained after 60 and 75 min, respectively. The amortization and operating costs were estimated at 3.3 $/m3 for a large-scale photocatalytic system.
Collapse
Affiliation(s)
- Asmaa Fawzy
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516 Egypt
| | - Hani Mahanna
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516 Egypt
| | - Mohamed Mossad
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
33
|
Liu T, Yao B, Luo Z, Li W, Li C, Ye Z, Gong X, Yang J, Zhou Y. Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155421. [PMID: 35472360 DOI: 10.1016/j.scitotenv.2022.155421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Biochar (BC) is a low-cost material rich in carbon, which is being used increasingly as a catalyst in persulfate-based advanced oxidation processes (PS-AOPs) for the remediation of groundwater and soil contaminated with organic compounds. In this work, a general summary of preparation methods and applications of various BC (i.e., pristine BC, magnetic BC, and chemically modified BC) in PS-AOPs is presented. Different influence factors (e.g., pH, anions, natural organic matter) for the degradation of organic compounds are discussed. Meanwhile, the influence of external energy (e.g., solar irradiation, UV-Vis, ultrasonic) is also mentioned. Furthermore, the advantage of different BC in PS-AOPs are compared. Finally, potential problems, challenges, and prospects in the application of biochar-persulfate based advanced oxidation processes (BCPS-AOPs) are discussed in the conclusion and perspective.
Collapse
Affiliation(s)
- Tianhao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zirui Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi 562400, China.
| | - Changwu Li
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Ziyi Ye
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Xiaoxiang Gong
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
34
|
Chen Y, Gao Y, Liu T, Zhang Z, Li W. Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:690-713. [PMID: 36038972 DOI: 10.2166/wst.2022.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid economic development, the discharge of industrial wastewater and municipal wastewater containing many refractory organic pollutants is increasing, so there is an urgent need for processes that can treat refractory organics in wastewater. Iron-carbon micro electrolysis and advanced oxidation based on persulfate radicals (SO4-·) have received much attention in the field of organic wastewater treatment. Iron-carbon micro electrolysis activated persulfate (Fe-C/PS) treatment of wastewater is characterized by high oxidation efficiency and no secondary pollution. This paper reviews the mechanism and process of Fe-C/PS, degradation of organics in different wastewater, and the influencing factors. In addition, the degradation efficiency and optimal reaction conditions (oxidant concentration, catalyst concentration, iron-carbon material, and pH) of Fe-C/PS in the treatment of refractory organics in wastewater are summarized. Moreover, the important factors affecting the degradation of organics by Fe-C/PS are presented. Finally, we analyzed the challenges and the prospects for the future of Fe-C/PS in application, and concluded that the main future directions are to improve the degradation efficiency and cost by synthesizing stable and efficient catalysts, optimizing process parameters, and expanding the application scope.
Collapse
Affiliation(s)
- Yu Chen
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail: ; Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Tingting Liu
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhao Zhang
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Weishi Li
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
35
|
Alizadeh Z, Rezaee A. Tetracycline removal using microbial cellulose@nano- Fe3O4 by adsorption and heterogeneous Fenton-Like systems. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Zhu N, Yan Q, He Y, Wang X, Wei Z, Liang D, Yue H, Yun Y, Li G, Sang N. Insights into the removal of polystyrene nanoplastics using the contaminated corncob-derived mesoporous biochar from mining area. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128756. [PMID: 35358818 DOI: 10.1016/j.jhazmat.2022.128756] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastic has become a prominent threat to the aquatic ecosystem, and the cost-effective technologies for controlling that are still insufficient. The aim of this study is to use contaminated corncobs collected in mining area to prepare functional mesoporous biochar (MBC) and to investigate its ability to remove polystyrene nanoplastics (PSNPs) from water. The adsorption of PSNPs by MBC could be better described by the Sips isotherm and followed the second-order kinetics, with the theoretical maximum adsorption capacity of MBC for PSNPs was 56.02 mg·g-1. Then the PSNPs adsorbed on MBC could be hydrothermally degraded and the biochar could be simultaneously regenerated. The ability was affected by various factors, including oxygen-containing functional groups, metallic components, superoxide radicals and holes. The degradation products were dominated as low-molecule-weight oligomers and the main possible pathways involved scission, hydrolysis and radical reaction. The findings highlight the great potential of biochar prepared using contaminated biowaste in mining area to remove the nanoplastic pollutants in the aqueous environment.
Collapse
Affiliation(s)
- Na Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Qian Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Yupeng He
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Xingyang Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Zhina Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Dong Liang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
37
|
Li C, Song C, Li H, Ye L, Xu Y, Huang Y, Nie G, Zhang R, Liu W, Huang N, Wong PK, Ma T. Ultradurable fluorinated V2AlC for peroxymonosulfate activation in organic pollutant degradation processes. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64050-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Erdem H, Erdem M. Ciprofloxacin Degradation with Persulfate Activated with the Synergistic Effect of the Activated Carbon and Cobalt Dual Catalyst. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06907-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Wu Q, Ling X, Huang W, Zeng X, Fan L, Lin J, Yu W, Yao J, Wen W. Preparation of aminated porous polyacrylonitrile nanofibers as adsorbent for methyl orange removal. RSC Adv 2022; 12:15337-15347. [PMID: 35693226 PMCID: PMC9118200 DOI: 10.1039/d2ra00780k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, porous electrospinning polyacrylonitrile nanofiber (PPAN) surface functionalization with amine groups is studied for methyl orange (MO) dye removal from aqueous solution. A series of adsorption experiments were carried out to investigate the influence of initial solution pH value, contact time, initial solution concentration, and adsorption temperature on the adsorption performance. The experimental results showed that the removal of MO on these PPAN-PEI and PPAN-TEPA nanofibrous mats was a pH-dependent process with the maximum adsorption capacity at the initial solution pH of 3, and that the PPAN-PEI and PPAN-TEPA nanofibrous mats could be regenerated successfully after 4 recycling processes. The adsorption equilibrium data were all fitted well to the Langmuir isotherm equation, with maximum adsorption capacity of 1414.52 mg g−1 and 1221.09 mg g−1 for PPAN-PEI and PPAN-TEPA, respectively. The kinetic study indicated that the adsorption of MO could be well fitted by the pseudo-second-order equation and Weber–Morris model. Thermodynamic parameters such as free energy, enthalpy, and entropy of adsorption of the MO were also evaluated, and the results showed that the adsorption was a spontaneous exothermic adsorption process. Amino functionalized porous polyacrylonitrile electrospun nanofibers were fabricated, which have good adsorption performance for MO in an acidic environment.![]()
Collapse
Affiliation(s)
- Qinghua Wu
- School of Textile Materials and Engineering, Wuyi University 22# Dongcheng Village Jiangmen Guangdong Province People's Republic of China
| | - Xionghui Ling
- School of Textile Materials and Engineering, Wuyi University 22# Dongcheng Village Jiangmen Guangdong Province People's Republic of China
| | - Weigeng Huang
- School of Textile Materials and Engineering, Wuyi University 22# Dongcheng Village Jiangmen Guangdong Province People's Republic of China
| | - Xianhua Zeng
- School of Textile Materials and Engineering, Wuyi University 22# Dongcheng Village Jiangmen Guangdong Province People's Republic of China
| | - Longfei Fan
- School of Textile Materials and Engineering, Wuyi University 22# Dongcheng Village Jiangmen Guangdong Province People's Republic of China
| | - Junyu Lin
- School of Textile Materials and Engineering, Wuyi University 22# Dongcheng Village Jiangmen Guangdong Province People's Republic of China
| | - Wenhui Yu
- School of Textile Materials and Engineering, Wuyi University 22# Dongcheng Village Jiangmen Guangdong Province People's Republic of China
| | - Jiaen Yao
- School of Textile Materials and Engineering, Wuyi University 22# Dongcheng Village Jiangmen Guangdong Province People's Republic of China
| | - Wu Wen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences China
| |
Collapse
|
40
|
Novel immobilized polyoxometalate heterogeneous catalyst for the efficient and durable removal of tetracycline in a Fenton-like system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Luo H, Fu H, Yin H, Lin Q. Carbon materials in persulfate-based advanced oxidation processes: The roles and construction of active sites. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128044. [PMID: 34933260 DOI: 10.1016/j.jhazmat.2021.128044] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Many researchers have paid more attention to the progress of carbon materials owing to their advantages, such as high activity, low cost, large surface area, high conductivity and high stability. Carbon materials have been widely used in persulfate-based advanced oxidation processes (PS-AOPs), especially for graphene (G), carbon nanotubes (CNTs) and biochar (BC). Various strategies are applied to promote their activity, however, up to now, the relationship between the structures of carbon materials and their activities in PS-AOPs has not been specifically reviewed. The methods to switch reaction pathway (radical and nonradical pathways) in carbon-persulfate-based AOPs have not been systematically explored. Hereon, this review illustrated the active sites of G, CNTs, BC and other carbon materials, and generalized the modification methods to promote the activity of carbon materials and to switch reaction pathway in PS-AOPs. The roles of carbon materials in PS-AOPs were discussed around reactive oxygen species (ROS) and the structures. ROS are frequently complex in AOPs, but main ROS generation is related to the active sites on carbon materials. The structures of carbon materials (e.g., metal-carbon bonds, the electron-deficient C atoms, unbalanced electron distribution and graphitized structures) play a decisive role in the nonradical pathway. Finally, future breakthroughs of carbon materials were proposed for practical engineering and multi-field application.
Collapse
Affiliation(s)
- Haoyu Luo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hengyi Fu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
42
|
Lin R, Li Y, Yong T, Cao W, Wu J, Shen Y. Synergistic effects of oxidation, coagulation and adsorption in the integrated fenton-based process for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114460. [PMID: 35026715 DOI: 10.1016/j.jenvman.2022.114460] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Fenton process is the most popular for wastewater treatment among all available advanced oxidation processes (AOPs). Numerous endeavors have been devoted to improving the oxidation efficiency of Fenton reaction in terms of promoting ·OH generation, accelerating iron redox cycle and extending applicable pH range. However, in addition to oxidation, coagulation and adsorption also simultaneously occur in the Fenton process, which play important role in the removal of pollutants. Rapid progress has revealed the synergistic effects of oxidation, coagulation and adsorption in the Fenton process, providing new ideas for the treatment of complex and refractory wastewater. Based on available studies, this review is the first to systematically summarize the research progress regarding the synergistic effects of oxidation, coagulation and adsorption in the integrated Fenton-based processes for wastewater treatment. The involved mechanism of the synergistic effects in different Fenton processes (homogeneous Fenton, heterogeneous Fenton and physical field-assistant Fenton coupling process) are critically reviewed. Furthermore, special attention has been paid to the representative applications of the synergistic effects in wastewater treatment (such as industrial organic wastewater, landfill leachate and heavy metal-organic complexes, etc.), particularly focusing on the operation parameters and removal performance. Finally, a conclusion of the review and subsequently, perspectives are given for possible research directions. We believe this review can provide useful information for researchers and end-users involved in the development and application of the Fenton process in wastewater treatment.
Collapse
Affiliation(s)
- Ruoyun Lin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Tianzhi Yong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Wenxing Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Junsheng Wu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yafei Shen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| |
Collapse
|
43
|
Hadi S, Taheri E, Amin MM, Fatehizadeh A, Khayet M. Magnetized Activated Carbon Synthesized from Pomegranate Husk for Persulfate Activation and Degradation of 4-Chlorophenol from Wastewater. APPLIED SCIENCES 2022; 12:1611. [DOI: 10.3390/app12031611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The compound 4-chlorophenol (4-CP) is known to be a highly toxic compound having harmful effects on human health and the environment. To date, the removal of 4-CP by advanced oxidation processes (AOPs) has attracted tremendous attentions. The persulfate-based AOPs show higher oxidation, better selectivity, wider pH range, and no secondary pollution compared to the traditional Fenton-based AOPs. Carbon materials with low cost and chemical stability are useful for the activation of persulfate (PS) to produce reactive species. Herein, we magnetized activated carbon synthesized from pomegranate husk (MPHAC). By using 4-CP as a model organic pollutant, tests of the activation of PS via MPHAC for the removal of 4-CP were performed. Batch processes were carried out to study the influence of different parameters (initial solution pH, catalyst dose, PS dose, and initial 4-CP concentration) on the adsorption of 4-CP on PHAC with ferric oxide (Fe3O4-PHAC). The results show that under the obtained optimal conditions (MPHAC dose: 1250 mg/L, PS dose: 350 mg/L, solution pH 5, an initial 4-CP concentration of 100 mg/L, and a contact time of 60 min), a 4-CP removal factor of 99.5% was reached by the developed MPHAC/PS system. In addition, it was found that reusing MPHAC in five successive cycles is feasible because the catalyst in the last cycle kept exhibiting a high potential for 4-CP absorption, indicating the economically viable procedure. Therefore, this study provides a comprehensive understanding on the degradation of 4-CP by the magnetized activated carbon persulfate system.
Collapse
Affiliation(s)
- Sousan Hadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, 28040 Avda. Complutense s/n, Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com nº 2, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
44
|
Sharifi N, Nasiri A, Silva Martinez S, Amiri H. Synthesis of Fe3O4@activated carbon to treat metronidazole effluents by adsorption and heterogeneous Fenton with effluent bioassay. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Liu J, Peng C, Shi X. Preparation, characterization, and applications of Fe-based catalysts in advanced oxidation processes for organics removal: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118565. [PMID: 34822943 DOI: 10.1016/j.envpol.2021.118565] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Fe-based catalysts as low-cost, high-efficiency, and non-toxic materials display superior catalytic performances in activating hydrogen peroxide, persulfate (PS), peracetic acid (PAA), percarbonate (PC), and ozone to degrade organic contaminants in aqueous solutions. They mainly include ferrous salts, zero-valent iron, iron-metal composites, iron sulfides, iron oxyhydroxides, iron oxides, and supported iron-based catalysts, which have been widely applied in advanced oxidation processes (AOPs). However, there is lack of a comprehensive review systematically reporting their synthesis, characterization, and applications. It is imperative to evaluate the catalytic performances of various Fe-based catalysts in diverse AOPs systems and reveal the activation mechanisms of different oxidants by Fe-based catalysts. This work detailedly summarizes the synthesis methods and characterization technologies of Fe-based catalysts. This paper critically evaluates the catalytic performances of Fe-based catalysts in diverse AOPs systems. The effects of solution pH, reaction temperature, coexisting ions, oxidant concentration, catalyst dosage, and external energy on the degradation of organic contaminants in the Fe-based catalyst/oxidant systems and the stability of Fe-based catalysts are also discussed. The activation mechanisms of various oxidants and the degradation pathways of organic contaminants in the Fe-based catalyst/oxidant systems are revealed by a series of novel detection methods and characterization technologies. Future research prospects on the potential preparation means of Fe-based catalysts, practical applications, assistive technologies, and impact in AOPs are proposed.
Collapse
Affiliation(s)
- Jiwei Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Changsheng Peng
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Xiangli Shi
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
46
|
Zeng S, Kan E. Thermally enhanced adsorption and persulfate oxidation-driven regeneration on FeCl 3-activated biochar for removal of microcystin-LR in water. CHEMOSPHERE 2022; 286:131950. [PMID: 34426274 DOI: 10.1016/j.chemosphere.2021.131950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, a cyclic process of adsorption and persulfate (PS) oxidation-driven regeneration using FeCl3-activated biochar (FA-BC) was suggested as a novel remediation process to remove microcystin-LR (MC-LR) from water. For enhancing overall treatment efficiency and cost effectiveness, the impacts of temperature on adsorption and PS oxidation-driven regeneration were investigated. The increase of temperature resulted in the increase of MC-LR adsorption rate on FA-BC due to the enhanced MC-LR diffusivity in water. Moreover, the MC-LR oxidation and PS reaction rates during the PS regeneration on FA-BC were remarkably improved by factors of 3.4 and 3.5 with increasing temperature from 20 °C to 50 °C. Both diffusion and desorption of MC-LR from FA-BC were thought to be the key factors for controlling the MC-LR oxidation rate during the PS regeneration of MC-LR. In addition, the decrease of pH (from 10 to 4) and increase of PS concentration (from 100 to 400 mg/L) enhanced the regeneration efficiency for MC-LR-spent FA-BC. The four cycles of adsorption-PS regeneration (200 mg/L PS, pH 6, and 50 °C) resulted in 92.81% regeneration efficiency in DI water and 82.89% in lake water. However, the four cycles of adsorption-PS regeneration led to the reduction of surface area (from 835 to 413 m2/g), oxidation of carbon surface and slight reduction of Fe0 on FA-BC. In overall, the cyclic adsorption-PS regeneration at higher temperature could provide practical reuse of FA-BC for cost-effective treatment of aqueous MC-LR.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX, 77843, USA; Department of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, TX, 76401, USA.
| |
Collapse
|
47
|
Bao Y, Chen T, Zhu Z, Zhang H, Qiu Y, Yin D. Mo 2C/C catalyst as efficient peroxymonosulfate activator for carbamazepine degradation. CHEMOSPHERE 2022; 287:132047. [PMID: 34474388 DOI: 10.1016/j.chemosphere.2021.132047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Compared with generally reported Mo4+/Mo6+ redox cycle, the exposed Mo2+ active sites of Mo-based materials may have a superior potential to effectively activate PMS. However, Mo2+-involved materials as efficient catalysts in sulfate radical-based advanced oxidation processes (SR-AOPs) has rarely been researched. In this work, a spherical Mo2C-loaded carbon material, Mo2C/C, was prepared for the first time by hydrothermal-calcination method directly used as peroxymonosulfate (PMS) activator towards carbamazepine (CBZ) degradation. The results showed that the Mo2C/C could effectively remove nearly 100% CBZ (5 mg·L-1) in the presence of 0.75 mM PMS within 75 min under the optimal conditions. It was attributed to the reductive Mo2+, as active sites, benefits to absorb PMS on the surface to trigger electron transmission, and the defective carbon structures accelerate the activation of PMS. Consequently, the efficient Mo2+/Mo4+/Mo6+ electron transfer was achieved, resulting in excellent catalysis. A series of reactive species including SO4-, OH and 1O2 species participated in CBZ oxidation degradation. Derived from the superior stability and reusability of Mo2C/C, the removal rate of CBZ still maintained above 80% even after five consecutive cycles, which is expected to be applied in the wastewater treatment including pharmaceuticals in the future.
Collapse
Affiliation(s)
- Yujie Bao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China
| | - Ting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China.
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai, 200092, China
| |
Collapse
|
48
|
Heterogeneous activation of peroxymonosulfate using superparamagnetic β-CD-CoFe2O4 catalyst for the removal of endocrine-disrupting bisphenol A: Performance and degradation mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Tian K, Hu L, Li L, Zheng Q, Xin Y, Zhang G. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Su P, Fu W, Du X, Song G, Tang Y, Zhou M. Nanoscale confinement in carbon nanotubes encapsulated zero-valent iron for phenolics degradation by heterogeneous Fenton: Spatial effect and structure–activity relationship. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|